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odd-stranded braid representatives.
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1. Introduction

Let S be a compact oriented 2-manifold with a single boundary component, and ¢ a

homeomorphism of S fixing its boundary pointwise. The fractional Dehn twist coefficient

of ¢ is a rational number 7(¢) €

Q that depends only on the isotopy class of ¢ rel

boundary, and can be understood as a measure of the amount of twisting around the

boundary effected by ¢ compared to a “canonical”™—e.g., pseudo- Anosov—representative
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of its (free) isotopy class. More precisely, consider the image of ¢ under the natural map
Aut(S,0S5) — Aut(S) which drops the requirement that an isotopy fixes the boundary
pointwise. In this latter group, ¢ is isotopic to its Nielsen—Thurston representative; that
is, there is an isotopy ® : S x [0,1] — S such that ®; = ¢ and ®; is either periodic,
reducible, or pseudo-Anosov.! Considering the restriction of ® to the boundary, we obtain
a homeomorphism:

Dy : 08 x[0,1] = S x [0,1]

defined by ®y(z,t) = (P4(x),t). The fractional Dehn twist coefficient 7(¢) can be defined
as the winding number of the arc ®(6 x [0, 1]) where § € S is a basepoint.” This would
appear only to associate a real number to ¢, which could depend on the choice of base-
point and isotopy. The Nielsen—Thurston classification, however, shows that this winding
number is a well-defined rational-valued invariant 7(¢) € Q. The definition extends eas-
ily to surfaces with several boundary circles, in which case there is a corresponding twist
coefficient for each component of the boundary. Here we will be concerned only with the
case of connected boundary.

The study of fractional Dehn twist coefficients dates at least from the work of Gabai
and Oertel [7] in the context of essential laminations of 3-manifolds, where, with different
conventions than those used here, it appeared as the slope of the “degenerate curve” [7,
pg. 62]. Honda, Kazez, and Matic [13,14] observed a connection with contact topology
through open book decompositions, which has been explored by various authors [3,18,
16]. The following proposition summarizes a few key properties of the fractional Dehn
twist coeflicient.

Proposition (/21,16]). Let 7 : Aut(S,05) — Q be the fractional Dehn twist coefficient,
and let tg denote the mapping class of a right-handed Dehn twist around a curve parallel
to 0S. Then for all ¢,v € Aut(S,dS), we have:

(1) (Quasimorphism) |7(¢ o) —7(p) — 7(¢0)] < 1.
(2) (Homogeneity) 7(¢™) = nt(¢).
(3) (Boundary Twisting) 7(¢ oty) = 7(¢) + 1.

The first two properties easily imply that the fractional Dehn twist is invariant under
conjugation (see e.g., [8, Proposition 5.3]), and the third implies that it can be arbitrarily
large, either positively or negatively. There are constraints, however, on the possible
denominators of 7(¢) based on the topology of S; cf. [6, Theorem 8.8], [18, Theorem 4.4],
[36].

L Asin [18], such a map is called reducible only if is not periodic. Moreover, in the reducible case, after
an isotopy rel 9S we get a subsurface of S to which ¢ restricts as a map with periodic or pseudo-Anosov
representative: we apply the definition of fractional Dehn twist coefficient to the restriction of ¢ to that
subsurface.

2 7(¢) can be defined without Nielsen—Thurston theory by lifting ¢ to the universal cover and using the
translation number of an associated action on a line at infinity [21].
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Surface homeomorphisms of the sort we consider arise naturally as monodromies of
fibered knots in 3-manifolds or, equivalently, open book decompositions of 3-manifolds
with connected binding. Indeed, if K C Y is a fibered knot then the complement of a
neighborhood of K is a bundle over S* with fiber a compact surface S with one boundary
component. This bundle is described by a monodromy homeomorphism ¢g : S — S that
is the identity on the boundary and well-defined up to isotopy and conjugation. Hence
we can think of the twist coefficient as giving rise to an invariant of fibered knots in
3-manifolds, K +— 7(¢x), where we suppress the choice of fibration from our notation.
Our main result shows that if the 3-manifold is fixed, then there is an a priori bound on
the value of the twist coefficient for any fibered knot in that manifold.

Theorem 1. Let Y be a closed oriented 3-manifold. Then there exists a real number
M > 0 with the following property: Let K be any fibered knot in'Y and let ¢ denote its
monodromy. Then

I7(ox)| < M.

In the case that a knot fibers in many distinct ways, the bound is to be interpreted as
stated: regardless of the choice of fiber, the twist coefficient of the resulting monodromy
is bounded by a number depending only on Y.

Given Y, we let My denote the smallest number satisfying the conclusion of Theo-
rem 1.

To the best of our knowledge, the only situation prior to our theorem in which the
bound My was known to exist is for knots in the 3-sphere, in which case work of Gabai [6]
and Kazez—Roberts [18] shows that |7(¢x )| < 1/2. Their proof relies on the application
of thin position, among other things, and does not extend to other manifolds in an
obvious way. Our proof exploits the connection between twist coefficients and contact
topology, and a connection between contact topology and Heegaard Floer homology.
Recall that by a construction of Thurston—Winkelnkemper [37], a fibered knot K C Y,
regarded as an open book decomposition, uniquely determines a contact structure &g
on Y (see [38] for uniqueness). It was shown by Honda, Kazez, and Matic that if {x
is tight, then 7(¢x) = 0 [13, Theorem 1.1 and Propositions 3.1, 3.2]. Using property
(3) of 7, we see that to obtain a lower bound on 7(¢x) it suffices to show that there is
an integer N depending only on Y such that the monodromy ¢x ot describes a tight
contact structure (on a different 3-manifold) for any n > N. Therefore Theorem 1 is
implied by the following.

Theorem 2. For a closed oriented 3-manifold Y, there is an integer N > 0 with the
following property: Let & be a contact structure on'Y, and choose any open book decom-
position (S, @) that supports & and has connected binding. Then for any n > N, the open
book (S, ¢ othg) determines a tight contact structure.
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As before, we write Ny for the smallest integer N satisfying the conclusion of Theo-
rem 2. Theorem 1 follows from Theorem 2 by observing that open book decompositions
for Y are in bijection with those for —Y under a correspondence induced by inverting
monodromies. Thus M = 1 + max{Ny, N_y } satisfies Theorem 1.

Theorem 2 was first observed by Ozsvath and Szabé in the case that Y is an L-space,
in which case Ny = N_y = 0 [30, Theorem 1.6]. Indeed, in that paper they ask the
following question:

Question 3 (/50, pg. 43]). Given an open book decomposition (S,®) for Y, what is the
minimum n such that (S, ¢ o thg) specifies a tight contact structure?

Theorem 2 is proved by a generalization of Ozsvath and Szabd’s argument, and we
obtain a bound depending on the Heegaard Floer homology of Y. Indeed, our proof
shows

Ny < =(dimg HF(Y) — |Tor Hy(Y;Z)|) (1)

N | =

where EF(Y) denotes the Heegaard Floer groups of Y with coefficients in F = Z /27
and |Tor Hy(Y';Z)| is the number of elements in the torsion submodule of first singular
homology. Since the right side of (1) does not depend on the orientation, we immediately
obtain a similar estimate for the number My bounding twist coefficients. Theorem 2 can
be viewed as an answer to Ozsvath and Szabd’s question, and Theorem 1 as a geometric
interpretation of the rank of the Heegaard Floer homology groups of a 3-manifold Y it
is a “speed limit” for fibered knots in Y with respect to the twist coefficient. Such an
interpretation raises the natural question:

Question 4. Does every 3-manifold that is not an L-space contain a “fast” knot? That
is, a fibered knot for which the absolute value of the twist coefficient is at least 17

This question is closely tied to the conjecture that L-spaces are exactly those
3-manifolds without taut foliations. Indeed, an affirmative answer to Question 4 would
imply this conjecture, by recent work of Kazez and Roberts [17]. In a related direction,
is perhaps worth pointing out the following corollary, stated in terms of the reduced
Heegaard Floer homology groups:

Corollary 5. Let K C Y be a fibered knot, and let ¥, (K) denote its n-fold branched cyclic
cover. Then

dimp HF™4(%,,(K)) > n - |7(¢x)| — 1.

In particular, if K has right- (or left- Jveering monodromy then all cyclic branched covers
over K with sufficiently large order are not L-spaces.
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Note that work of Kazez and Roberts could be used to show that high order branched
cyclic covers of fibered knots with right- or left-veering monodromy are not L-spaces, but
that their work wouldn’t produce the quantitative growth rate of the corollary. We expect
that for most knots the rank of the reduced Floer homology of branched cyclic covers will
have at least positive linear growth in the order of the cover. There are examples, however
(such as the figure eight knot [2]), for which all branched cyclic covers are L-spaces; the
corollary of course implies such knots have vanishing twist coefficient.

We should remark that there are many more refined estimates of Ny made possible by
taking into account further structure on the Floer groups (see the remarks after the proof
of Theorem 2.5). For example, since our argument depends only on one spin® structure
at a time, we can show

1 _—
Ny < max —(dimp HF(Y,s) — 1) (2)
s€spin(Y) 2

(here we assume Y is a rational homology sphere for convenience, cf. Remark 2.6). In
general (2) is a much better estimate than (1), though both recover Ny = 0 in the case
that Y is an L-space.

If we are given more data about the knot our bound for the twist coeflicient can be
sharpened further. To state one such result, recall that an oriented plane field distribution
on a closed oriented 3-manifold is determined up to homotopy by two pieces of data:
its associated spin® structure, together with a “3-dimensional invariant,” as described
by Gompf [10] (ultimately this classification goes back to Pontryagin). Supposing &
to be a plane field on Y whose spin® structure s¢ has torsion first Chern class, the
3-dimensional invariant is a rational number called the Hopf invariant h(€) (see Equation
(7) in Section 4 below). Strictly this quantity also depends on the orientation of the
ambient 3-manifold; when necessary we will write h(£y) or h(£_y) to indicate that £
is to be considered on the oriented manifold ¥ or —Y (meaning Y with the reversed
orientation), respectively. Now whenever a spin® structure has torsion Chern class, the
associated Heegaard Floer homology group carries a rational-valued grading, and in fact
for a spin® structure s¢ the grading takes values in Z+ h(§). The reduced Floer homology
groups are finite-dimensional and, in particular, can be nonzero in at most finitely many
degrees. Keeping this in mind, the following theorem provides a more precise bound on
the twist coefficient of a fibered knot, given the homotopy data of its associated contact
structure.

Theorem 6. Let & be a contact structure on Y whose associated spin® structure s¢ is
torsion, and let (S, @) be an open book supporting & with genus g and connected binding.
Then the twist coefficient of ¢ satisfies

—1 =) dimp HF (Y, s¢) < 7(¢) < 1+ Y dims HF;(-Y, 5¢).

d=—h(&y)+1 d=—h(&y)
mod 2g—2 mod 2g—2
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(The change in sign of h(&) arises since we consider Floer homology for —Y instead
of Y'; note the shift in degree between the two sides.)

A slightly sharper version is given in Corollary 4.8 below. As before, the bounds on
twist number come from estimating the number of boundary twists which, when added to
the monodromy, is sufficient to obtain a tight contact structure. Concretely, Theorem 6
follows from:

Theorem 7. Let & be a contact structure on'Y with torsion Chern class, and for a rational
number d let

N(d) = dimp HFF4(-Y, 5¢).

Then for an open book (S,¢p) compatible with &, having genus g and connected bind-
ing, any open book obtained by composing ¢ with at least 1 + ), N(d) boundary Dehn
twists describes a tight contact structure, where the sum is over degrees d congruent to
—h(&y) + 1 modulo 2g — 2.

We remark that in both Theorem 6 and Theorem 7, if the page genus is 1 then the
sums consist only of a single term in the appropriate degree.

The first inequality in Theorem 6 follows as before; the other inequality follows sim-
ilarly by inverting the monodromy, though note this inversion does introduce a shift
in gradings. This issue is discussed more thoroughly in Section 4; see the proof of
Corollary 4.8. Theorem 7 yields a surprising corollary: it shows that for “most” contact
structures £, “most” open books which support £ yield a tight structure after adding a
single right-handed Dehn twist along the boundary.

Corollary 8. Let (Y,s) be a spin® 3-manifold with c1(s) torsion. Let S = Z be the set of
homotopy classes of contact structures on Y whose induced spin® structure is s. Then
there is a finite subset So C S such any & whose homotopy class is in S — Sy has the
following property. There exists an integer go = 0 such that for any open book decompo-
sition which supports & (with connected binding) and has genus g = go, adding a single
right-handed, boundary-parallel Dehn twist to the monodromy produces a tight contact
structure.

Indeed, we take Sy to be the set of homotopy classes of £ such that the group
HF Tfﬁl@) +1(=Y,5) is nontrivial (see section 4 for a discussion of homotopy classification of
plane fields). Then for ¢ € S—8; and g sufficiently large it is clear that HF*(-Y, s¢) =0
when d = —h(&y) + 1 modulo 2g — 2.

In a different direction, our results readily imply a connection between the “twist
number” of a closed braid in S and the reduced Khovanov homology of the link ob-
tained as its closure. We thank John Baldwin and Liam Watson for bringing this to our
attention.
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Theorem 9. Let L be a link in S, and let B be any closed braid isotopic to L and having
an odd number of strands. Then

[7(B)] < dimg Kh(—L) — | det(L)| + 2.

Here T(B) is the twist coefficient of B, viewed as an element in the mapping class group
of the disk with n marked points, and Kh denotes reduced Khovanov homology.

The organization of this article is as follows. In the next section we give a proof of our
main results, Theorems 1 and 2, based on a surgery exact triangle for Heegaard Floer
homology with twisted coeflficients. Section 2 also contains the proof of Corollary 5. In
Section 3, we spell out the connection between twist numbers and Khovanov homology.
Then in Section 4 we revisit our proof of Theorems 1 and 2 to refine our estimates
on Ny and give the proof of Theorems 6 and 7, making use of an absolute grading on
Heegaard Floer homology by homotopy classes of oriented plane fields on Y due to Huang
and Ramos [15]. In the final section we provide more details on the construction of the
twisted surgery triangle that plays a primary role in the proof of our main theorems.

2. Proof of Theorems 1 and 2

We work in characteristic two throughout, and let F = Z/27Z. This is for simplicity,
and all our arguments could be made with Z in place of F.

In this section we prove Theorem 2, from which Theorem 1 will follow easily. More
precisely, we show that adding

N(Y) = (dims HF(Y) ~ [Tors Hy(V: 7))

right-handed Dehn twists to the boundary of any open book decomposition (S, ¢) of
Y will produce an open book decomposition for a tight contact structure. The key
observation is that the manifold specified by (5, ¢ o tj) is homeomorphic to Y_; ,(K),
where K = 0S5 is the binding of the open book, viewed as a knot in Y. Let &, denote
the contact structure on Y_, ,,(K) induced by (S, ¢ o t}). Our strategy is as follows

(1) Observe that to show &, is tight, it suffices by [30, Theorem 1.4] to show that its

contact invariant ¢(&,) € HF ™ (—(Y_1,(K))) is not zero.
(2) Fit HF+(7(Y_1/”(K))) into an exact triangle of modules over F[U]

HF " (—(Y_1/,(K)); F) ~ HF " (-Y;F)
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where the bottom term is a twisted version of the Floer homology for zero surgery
on the binding, with coefficients in the group algebra of the cyclic group C,, = Z/nZ.
(3) Show that non-triviality of F, restricted to a particular subgroup

MJF(_YO(K)a 51—g5 F[Cn])7

implies ¢(&,) # 0. Here s;_, is the spin® structure on the fibered 3-manifold Yy (K)
whose Chern class evaluates to 2 — 2¢g on the fiber and which is cobordant through
the surgery cobordism to the spin® structure associated to &.

(4) Show that the subgroup from Step (3) is isomorphic to F[C}], as an F[U]-module
where U acts as zero. In particular, this group is a vector space of dimension n
over F.

(5) Conclude, by Step (3) and exactness at —Yp, that ¢(&,) # 0 provided that

n > dimg coker U : HFY(-Y) — HFT(-Y),
and relate dimy coker U to N(Y').

There are two main technical issues involved in implementing this strategy. The first
pertains to Steps (2) and (3). The issue is that while the surgery exact triangle used
for Step (2) appears in various places in the literature, neither the definition nor the
geometric content of the maps in the triangle as required in Step (3) is totally clear. We
resolve this issue by first relating the maps in the exact triangle to maps on twisted Floer
homology groups associated to 2-handle cobordisms, and then relying on a naturality
result for the contact submodule in twisted Floer homology under these latter maps.
In order to achieve this, we establish a general exact triangle satisfied by the (twisted)
Floer homologies of certain triples of Dehn filled manifolds using a well-known “exact
triangle detection lemma”. The above surgery triangle, and indeed all previously known
exact triangles satisfied by Heegaard Floer modules of closed three manifolds, can be
viewed as specializations. So as not to disrupt the flow of the argument, this discussion
is postponed to Section 5.

The other technical issue is that Step (4) fails when the fiber surface S has genus
one; the relevant summand of HE"(—Y,(K),F[C,,]) is infinite dimensional in this case.
To account for this, we alter our coefficients through the discussion, replacing F with a
certain Novikov field A, which is the coefficient module for Floer homology perturbed
by a 2-form. Using Floer homology perturbed by a 2-form Poincaré dual to a meridian
of the binding, the case of genus one proceeds exactly as above.

2.1. Essentials of the proof

With the general outline of our proof in place, we turn to the details of the argu-
ment. Suppose W : Z7 — Z5 is a compact oriented cobordism between closed connected
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oriented 3-manifolds Z; and Z,. For each spin® structure s on W there is an induced
homomorphism between the Heegaard Floer homology groups of Z; and Z,. More gen-
erally, if A is a module for the group algebra F[H'(Z;;Z)], there is a homomorphism in
Floer homology with twisted coefficients,

Fiy : HE(Z1,51;A) = HFY(Z3,52; A @i (2,)) K(W)),

where s; = s|z,, and K(W) = F[Im(H'(0W) — H2(W,0W))] (cf. [32, Theorem 3.8]).

In the case that W consists of a single 2-handle addition along a knot, the induced
homomorphism is defined by counting holomorphic triangles in a suitable Heegaard
triple-diagram. Explicitly, suppose that Z; are described by pointed Heegaard diagrams
(2, a, 4%, w) such that (¥, c,~', 7% w) is an admissible triple diagram describing W
and adapted to the knot in the standard way. Then the Floer chain groups for Z; are
generated over the appropriate coefficient modules by intersection points in T N T,
and F{f‘}, is the map induced in homology by the chain map

FU 7 -x)= Y S H#MW)A@) U Ly,

yE'JI‘aﬁT_Y2 Pema(x,0,y)

where the sum is over homotopy classes of triangles ¢ whose associated moduli space
M(4)) has dimension 0, and © € T,1 N T,z is a canonical intersection point. Here A :
ma(x,0,y) = K(W) is an “additive assignment” that we now describe in the situations
relevant for us; namely, in the case of a 2-handle cobordism associated to a “zero surgery”
(see [32] for more details, or Section 5 below).

Assume that Zp is the 3-manifold resulting from O-framed surgery along a null-
homologous knot in a 3-manifold, Z, and that W is the associated cobordism. The
oriented boundary of W is given as

OW = —ZU Zy = —(~Zo)U—Z,

indicating that we can view W as a cobordism either from Z to Zy, or from —Z to
—Z. The latter viewpoint will be more relevant for our purposes. Note that K(W) =
F[H!(Zy)], so that any choice of coefficient module A chosen for —Z; will induce the
module A ®p(g1(z,) K(W) = A for the Floer homology of —Z.

We will primarily specialize to the case where A = F[C,,] is the group algebra over F
on the cyclic group C,, though we will also use coefficients in the group algebra on C,,
over the Novikov field A. For both, suppose that we are given a Heegaard triple diagram
compatible with the cobordism as above, so that it contains a curve representing the
O-framed longitude. On this curve we place a basepoint p. Then for ¢ € ma(x,0,y) let
n,(01) be the algebraic number of times the boundary of 1 meets the codimension-one
submanifold (of the Lagrangian torus) determined by p. Taking coefficients in the module
F[C)], where C,, is the cyclic group of order n with fixed generator ¢, the map induced
by W can be written
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F‘I/F[/[Cn](ck U %) = Z Z #M (1) @)tk e (®)=i Ly (3)

YETaNT 2 YEms(x,0,y)

yielding a map on homology
Py s HE* (= Z0; F(Cy]) — HE' (—Z;F[C)).

Note that the factor involving ¢ on the right side of (3) is the additive assignment.
When we view W as a cobordism from Z to Zj, then for any coefficient module A
over F[H'(Z)], the induced module over F[H(Zy)] is

A ®p (2)) K(W) = A @pja 2y FIH (Z0)] = AT, T,

with isomorphisms induced by the splitting H'(Zy) = H'(Z) @ Z, and where the addi-
tional variable T corresponds to a generator of the Z summand. For F coefficients, we
thus have a chain map

FE(UT.x) = Z Z H#M () T yre@)=i .y (4)

yETaNT, 2 pEma(x,0,y)
which induces a map
FYy - HF(Z) — HF*(Zy; [T, T7Y).

Note that in equations (3) and (4) we use the same symbols x,y, ., . .. to correspond to
generators and Heegaard circles that play corresponding roles in the equations, though
they denote generators in different groups, and circles in different Heegaard triples, in
the two equations. In particular, in (3) the pair (c,~y') describe —Zy and (a,v?) gives
—Z, while in (4), (a,4!) corresponds to Z and (a,~?) describes Zj.

We will ultimately need to use the map (3) in the case that —Zy = —Y,(K) and
~Z = —(Y_1/n(K)) = (=Y)1/n(K), where K is the connected binding of an open book
in a 3-manifold Y supporting a contact structure £ as above. Note that Zy is indeed
obtained by zero surgery on a knot in Z; namely, the core of the surgery solid torus
used to obtain Z as —1/n surgery on K C Y. Moreover, this knot is fibered in Z with
monodromy differing from that of K by n right-handed boundary Dehn twists, and
thus it induces the contact structure we called &, on Z = Y_;,,,(K). While this is the
application we have in mind (cf. Steps (2) and (3) of the outline given at the beginning
of this section), for the moment we suppress the auxiliary 3-manifold, fibered knot, and
contact structure, (Y, ¢, K), and simply consider the general case of a fibered knot L C Z
inducing a contact structure which we abusively denote by &, and the associated zero
surgery Zjy.

We will need a generalization of the Heegaard Floer contact invariant introduced
in [30] to the situation of twisted coefficients. This generalization is alluded to in [30,
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Remark 4.5] and further developed in [25, Section 4. The construction associates to a
contact structure £ on Z and any module A over F[H'(Z)], a distinguished submodule:

c(&A) = u(A) C HF " (=Z; A).

This contact submodule is generated by the inclusion ¢ of the homology of the “bottom-
most” non-trivial filtered submodule of the knot Floer homology of a fibered knot L
supporting ¢ (which is isomorphic to A by [30, proof of Theorem 1.1]) into the Floer
homology of —Z. Strictly speaking, the literature only refers to the contact element
in twisted Floer homology, but this does not make sense with coefficients in a general
module.

The contact submodule behaves well with respect to 2-handle cobordisms like the one
described above, corresponding to 0-surgery on the binding L, a fact which we now make
precise. To state the result, note that there is a canonical spin® structure s;_, on Zy
determined by

e 51_4 is cobordant through the surgery cobordism to the spin® structure on Z deter-
mined by the contact structure, and
« if S denotes the fiber of the open book, capped off in Zj, then we have:

(c1(s1-9), [S]) = 2 - 2g. (5)

Lemma 2.1. Let L C Z be a fibered knot with induced contact structure £, If the fiber
of L has genus greater than one, then for any module A over F{H(Zy(L))] there is an
identification

HF " (=Zo(L),51-; A) = A

as a trivial F{U]-module, i.e. U acts as zero. Moreover, §1_, is the unique spin®-structure
satisfying (5) that supports non-zero Floer homology. The image of the map

Fyy « HEY (= Zo(L),s1-g; A) — HE " (= Z,5¢; A)

induced by the 0-surgery cobordism is the contact submodule ¢(&r; A).

All of the above remains true if the genus of the fiber is one, provided that we take
coefficients in an algebra over A, where A, is the Novikov field viewed as a module over
F[H'(Zy)] via a choice of closed 2-form w which evaluates non-trivially on the capped-off
fiber.

In the Novikov twisted case, the primary ground algebra for our purposes is A, [Ch],
where w is Poincaré dual to the class of the fiber. We refer to Section 5 for details
regarding Novikov ring coefficients.
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Proof. In [30, Proposition 3.1], Ozsvath-Szabé construct a Heegaard triple diagram for
the surgery cobordism W : —Zy(L) — —Z with the following properties:

e The diagram is weakly admissible for the unique spin® structure on W extending
S1_g.

o There are precisely two intersection points u, v providing generators for the chain
complex CF*(—Zy(L),s1—,), and the only nontrivial differential is o7 (U7u) =
U=+ .v. Thus HF " (—Zo(L),51—,) is generated by the homology class of u. More-
over, for any other intersection point, x, the quantity (c;(sw(x)),[S]) is strictly
greater than 2 — 2g. In particular there are no intersection points corresponding
to any other spin® structures satisfying (5).

e There is a unique holomorphic triangle 1 contributing to the image of u under the
chain map Fyy.

+ The image of u is a cycle representing the contact invariant c¢(¢) € HF T (—Z). More
precisely, the image of u is the unique generator for the knot Floer chain complex
for L, in filtration level —g.

Using the same diagram for the chain complexes and chain maps with twisted coeffi-
cients gives the desired result. Indeed, all of the statements above remain true with A
replacing the implicit F coefficients. Note that the second item in this case establishes an
isomorphism HF'(—Zy(L),s1-4;A) = A as a trivial F[U]-module, but generation by u
is ambiguous; in particular, it does not mean generation as an F[H'(Z)]-module since
A may not even be finitely generated over F[H!(Zp)]. This is, in essence, why one needs
to talk about the contact submodule rather than the contact element in the most general
case.

When g = 1, the key difference is that ci(s1_4) is torsion and the diagram fails to be
admissible. However, it fails to be admissible only because of positivity of the periodic
domain corresponding to the homology class of the fiber. If we take coefficients in an
algebra over A, where w evaluates non-trivially on this class, then no admissibility is
required for this periodic domain. O

Just as with contact element in untwisted Floer homology, non-vanishing of the con-
tact submodule implies tightness (cf. [30, Theorem 1.4]).

Lemma 2.2. Suppose a contact structure £ is overtwisted. Then the contact submodule is
trivial, i.e. ¢(§;A) =0 for any ground module A.

Proof. This follows in exactly the same manner as [30, Proof of Theorem 1.4], noting
only that the Kiinneth theorem for the knot Floer filtration of the connected sums of
knots holds with arbitrary coefficient modules and that the contact submodule associated
to the overtwisted contact structure induced by the left-handed trefoil is trivial over any
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ground module (this latter fact can be calculated directly or deduced from the universal
coefficients theorem and the fact that F[H'(S%)]=F). O

The preceding two lemmas yield an immediate corollary.

Corollary 2.3. In the situation of Lemma 2.1, and for g > 2, if the map

Fol s HE (= Z0(K), 515 FICu])  HE* (= Z,5¢ F[C,))
is monzero, then &, is tight. If g = 1 and the map

Fy ') HEY (= Z0(K), 8163 Au[Ch]) = HET (=2, 5¢; A [Co))
is nonzero, then &, is tight. O

We now return to the surgery exact triangle. In this case, the manifold Z above
becomes Y_1/,(K), while Zy = Yy (K). We have:

Proposition 2.4. Let n > 0, and suppose the genus of the fiber is greater than one. If, for
the map

F: HF (=Yo(K),F[C,]) = HF " (=Y_/n(K);F)

appearing in the surgery triangle, the restriction to the summand corresponding to s1_g4
is nontrivial, then the contact structure &, on Y_y,, is tight. The same is true if the
genus of the fiber is one, provided we consider the surgery triangle with coefficients in
the Novikov module A, associated to a 2-form evaluating non-trivially on the fiber.

Proof. In Section 5 the map F' appearing in the surgery triangle is defined on the chain
level by

F(U_jCkX) — Z HM(2)) @) g ()i -y
PEM2(x,0,y)
u(p)=0
ny(0Y)=—k mod n

(cf. equation (11) below). Here ¢ is the variable appearing in the Novikov ring A,,, which
we set equal to 1 if the genus of the fiber is at least two. Comparing this to the definition
of the cobordism-induced homomorphism F‘]FV[C"] in (3) above, it is easy to check that

there is a commutative diagram
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F[Chn]
CF* (Y FIC,]) ~ s CET (=Y /,: F[Cy))

N & 1

R
CF*(~Yy;F) W

CF+(_Y71/TL’F)

where A and II are chain maps induced by the coefficient F-homomorphisms NV : F —
F[C,] and II : F[C,,] — F given by

N =S ¢F and Q) = pl(0),
k=0

where p({) denotes a polynomial in ¢. In particular, we see that if F' induces a nontrivial
map in homology (in a particular spin® structure), then so does FVFI,[C"]. An analogous
diagram exists with A, replacing F throughout. The result follows now from the previous

corollary. O

Our main results (Theorems 1 and 2) now follow easily. We give a combined restate-
ment.

Theorem 2.5. Let Y be a closed oriented 3-manifold. Then there exists a constant
N(Y) = 0 with the following property. Let K CY be a fibered knot with monodromy ¢,
and let Tk = T(dK) be the fractional Dehn twist coefficient of ¢r. Then

(1) For allm > N(Y), the contact structure &, supported by the open book with mon-
odromy obtained from ¢ by composition with n boundary-parallel Dehn twists is
tight.

(2) We have the bound

|| < N(Y) + 1.

Moreover, we can take
1 —
N(Y) = 5 (dimgHF(Y) — [Tory Hy(Y37))). (6)

Here EF’(Y) indicates the sum of Heegaard Floer groups over all spin® structures
on Y, while |Torz H;(Y;Z)] is the order of the torsion subgroup of the first homology.

Proof. We treat the case that the fiber genus is at least two explicitly; the genus
one case is exactly the same, using coefficients in A, where w is Poincaré dual to
the meridian of the binding. Strictly speaking, this latter argument produces (6) with
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dimAﬁ(Y;Aw) in place of dimyﬁ(Y). These dimensions are equal, however, since
ﬁ(Y;Aw) = ﬁ(Y) ®r A by the universal coefficient theorem and the fact that
w] =0 € HX(Y;R).

Proceeding, then, consider the surgery exact triangle:

HF ™ (=Y_1/(K); F) ~ HF Y (=Y F),

T

HE* (=Yo(K); F[Ca))

The summand of the bottom module corresponding to s1_, is, according to Lemma 2.1,
isomorphic to F[C,] and therefore of dimension n over F. By Lemma 2.1 again and
U-equivariance of the sequence, the component of G mapping into the s;_, summand fac-
tors through the cokernel of the action of U on HF*(—Y;F), which is finite-dimensional
and independent of n. Hence for n sufficiently large, we conclude F' is nonzero and
therefore the contact structure &, on Y_ /, is tight by Proposition 2.4.

To estimate the size of n required, observe that it suffices that n be larger than the
dimension of the cokernel of U, acting on HF ' (—Y). In a given spin® structure it is easy
to see that dim ﬁ(Y, 5) = dimker U + dim cokerU = 2dim cokerU + ks, where kg is
the rank of HF*(Y,s) as a module over F[U,U~1]. Note that ks is 0 if s is non-torsion,
and at least 1 in the torsion case (cf. [27, Theorem 10.1] and [29, Lemma 2.3]). Adding
over all spin® structures, if we set N(Y) = 3(dim ﬁ(Y) — |TorzH1(Y')|) it follows that
adding at least N(Y)+1 right twists to the monodromy of any open book with connected
binding will produce a tight contact structure.

According to Honda—Kazez—Matic [13, Theorem 1.1 and Propositions 3.1, 3.2|, the
fractional Dehn twist coefficient of the monodromy of an open book supporting a tight
contact structure is nonnegative. Since we added N(Y') + 1 right twists, the new mon-

odromy is ¢ o tg(Y)H. Hence

0< 7(pr ot) My = 1 + N(V) + 1,

which gives half the desired inequality. For the other half, replace ¢ by d)l_(l. This
amounts to reversing the orientation on Y, giving a lower bound on T(qb;(l) = —7(dK)
in terms of N_y. But since (6) is insensitive to the orientation of Y (cf. [27, Proposi-
tion 2.5]), the result follows. O

Remark 2.6. We could, by the argument in the proof, take
1 —
N(Y) = 3 max(dim HF(Y,s) — ks),
5

which gives (2) in the case that Y is a rational homology sphere. Indeed, note that the
homomorphism G is a sum of homogeneous terms corresponding to spin® structures on
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the surgery cobordism —Y — —Y{(K), hence just one term of G maps to the spin®
structure s;_, on —Yy(K). Therefore we may consider one spin® structure on —Y at a
time.

Remark 2.7. It follows from the main result of [23] together with work of Lidman [20]
that if s is a torsion spin® structure on a 3-manifold with positive first Betti number,
there is an estimate

s oo 2 3G()=1/2if by (Y) is odd
STV T 4.3 (/2= if by (Y) s even.

Thus, letting L(s) = Ly if s is torsion and L(s) = 0 otherwise, we can take
1 —
NY) = 5 max(dim HF(Y,s) — L(s)).
5

Remark 2.8. If Y is an L-space, meaning that Y is a rational homology sphere with
dim HF(Y) = |H1(Y;Z)|, then the theorem says |7(¢x)| < 1 for any fibered knot K
in Y. In fact, we must have

|7(¢px)| <1 for any fibered K in an L-space.

Indeed, if K C Y has |7(¢x)| = 1 then Y admits a taut foliation, according to [14, Theo-
rem 1.2]. On the other hand, L-spaces do not admit taut foliations by [25, Theorem 1.4].
Note that while |7(K)| < 1/2 for knots in S3, this is not true for knots in arbitrary
L-spaces.

To illustrate the last statement, if K C S3 is the right trefoil, then K is fibered with
7k (¢) = 1/6. The result of +1 surgery on K is the Poincaré sphere Y = —3(2,3,5),
an L-space, and the induced knot K C Y (the core of the surgery) is fibered with twist
coefficient —5/6, since +1 surgery corresponds to addition of a left Dehn twist.

In a similar spirit, we turn to the proof of Corollary 5:

Proof of Corollary 5. Suppose that K is a fibered knot in a 3-manifold ¥ with mon-
odromy ¢r. Then the n-fold cyclic branched cover ¥,,(K) is well-defined (in general, it
depends on a homomorphism of the knot group to Z/nZ, but this is specified by counting
intersections with the fiber) and has an open book decomposition with the same fiber
and monodromy ¢%. The proof of Theorem 2.5 shows that

I7(¢%)| < 1+ dimg coker(U : HFT(%,,) — HF(X,,)).
Homogeneity of the twist coefficient shows that the left-hand side equals n - |7(dx))|

whereas 1 + dim HF™%(%,,) is at least as large as the right-hand side, since reduced
Floer homology is defined as the limit (see [28, Definition 4.7])

HF™? .= lim coker U*. 0O

k—o0
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3. Application to braids

Fractional Dehn twist coefficients can be defined in various contexts; for example
Malyutin [21] gave a definition of a “twist number” for closed braids by considering
a braid as an element of the mapping class group of a punctured disk (see also Ito—
Kawamuro [16]). For a braid g write 7(8) € Q for the twist number; note that while
7(f) is conjugation-invariant and so depends only on the closure B , it is not an invariant
of the link type of B . That is to say, different closed braid representatives of a given link
may have different twist numbers (for example, while it is easy to construct braids with
arbitrarily large twist number, it follows from [21, Proposition 13.1] that if 8 is a Markov
stabilization of another braid, then |7(5)] < 1).

The following application of Theorem 2.5 was pointed out to us by John Baldwin and
Liam Watson.

Theorem 3.1. Let L be a link in S3, and let B be any closed braid isotopic to L and
having an odd number of strands. Then

I7(8)| < dimg Kh(—L) — | det(L)| + 2.

Here Kh(—L) denotes the reduced Khovanov homology of the mirror of L, with co-
efficients in .

Proof. If B is a closed braid with axis the unknot U and representing the link type L,
then forming the double cover of S% branched along /3’ gives rise to a 3-manifold Xy (L)
equipped with an open book decomposition lifting the decomposition of S with disk
pages and binding U. Since 8 has an odd number of strands, this open book structure
on X5(L) has connected binding.

If ¢ denotes the monodromy of the lifted open book, then it is not hard to check that
7(¢) = $7(8). From Theorem 1 and using (1), we have

(dim HF (Z(L)) — [Hy(S2(L))]) + 1.

N =

(o)l <

Now recall that there is a spectral sequence whose Fy page is the reduced Khovanov
homology Kh(—L), and which converges to HF (35(L)) (see [31]). Hence

dim HF(3(L)) < dim Kh(-L).

Moreover, |H;(X2(L))| = |det(L)| unless the latter quantity is 0. Combining these ob-
servations gives the desired result. O

Suppose that 8’ is an alternating braid on n > 3 strands. Using Corollary 5.5 of
[21], for example, it is easy to see that 7(5’) = 0. However, it is not the case that any
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braid Markov equivalent to 8’ has vanishing twist number. The following shows that
nevertheless, there is an upper bound on the twist number of a braid representing the
same link type as f’.

Corollary 3.2. Let L be an alternating link, and 8 any braid on an odd number of strands
with the property that the closure B is isotopic to L. Then

[T(B)] < 2.

Proof. Since /3 is the alternating link L, the double branched cover Y5(L) is an L-space,
and moreover the spectral sequence from Kh(—L) to ﬁ(ZQ(L)) collapses (cf. [31]). The
proof of Theorem 3.1 then gives |T(B’ )| < 2, and the strict inequality follows from the
remark at the end of Section 2. O

The corollary applies equally, of course, to braids whose closures are quasi-alternating
in the sense of Ozsvath-Szabé [31]: the double cover of S3 branched along such a link is
also an L-space.

4. Graded refinement

Here we provide the proof of Theorem 6. To do so, we make use of absolute gradings
constructed on Heegaard Floer homology by Ozsviath and Szabd [32] (in the case of
torsion spin® structures) and Huang and Ramos [15] (in general). We also clarify some
properties of the general grading by homotopy classes of plane fields in the latter case.

4.1. Plane field grading on Floer homology

Recall that Heegaard Floer homology carries a relative cyclic grading in each spin®
structure. Huang and Ramos [15] proved that this can be lifted to an absolute grading
on HF°(Y) by the set of homotopy classes of oriented 2-plane fields on Y, which we will
denote by P(Y) (here HF® indicates any of the versions of Heegaard Floer homology).
Our goal in this subsection is to calculate the absolute grading on the Floer homology
of a fibered 3-manifold, in a canonical spin® structure.

To begin, recall the homotopy classification of oriented plane fields on a closed oriented
3-manifold (for a much more detailed discussion, see [10]). The set P(Y) is a Z-set whose
orbits correspond bijectively to spin® structures; in particular if £ is an oriented plane
field, then there is an associated spin® structure s¢. The Z-orbit in P(Y’) corresponding
to a given spin® structure s is isomorphic to Z/d(s)Z, where d(s) is the divisibility of
c1(s), see e.g., [10, Section 4] or [19, Lemma 2.3 and Section 5(i)]. In particular, the
orbit in P(Y) corresponding to a spin® structure with torsion first Chern class is free.
We remark that while the set P(Y") is independent of the orientation on Y, the action
of Z on P(Y') does depend on this orientation: specifically, this action is negated under
orientation reversal.
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The homotopy class of a plane field £ for which ¢ (s¢) is a torsion class is specified by
s¢ together with a rational number called the Hopf invariant. This quantity is defined as
follows: choose a compact almost-complex 4-manifold (W, J) with 0W =Y as oriented
manifolds, and TY N J(T'Y) homotopic to &. Then

1
h(€) = h&y) = (AW, J) = 30(W) = 2x(W) + 2), (7)
where o is the signature of W, x(W) is the Euler characteristic, and ¢? denotes the
rational-valued square of the Chern class.
It is not hard to determine the effect of reversing orientation of Y on the Hopf invari-
ant: since the quantity ¢? — 30 — 2x vanishes for closed almost-complex 4-manifolds, we
have

h(&y) +h(E-y) = 1. (8)

Huang and Ramos proved certain properties of the grading on Floer homology by
P(Y), notably:

« For any plane field £ € P(Y), we have HF [, (Y) C HF* (Y, s¢).
e The grading by plane fields lifts the relative grading on Heegaard Floer homology
defined by Ozsvéth and Szab6. Moreover, if ¢ (s¢) is torsion, the summand HF (Y')

coincides with the Q-graded summand HFJ, ) (Y, s¢).

To describe the final property, let W : Y7 — Y5 be a cobordism, and let p; € P(Y;) for
i = 1,2. We say plane fields p; and ps are related by W if there is an almost-complex
structure J on W such that the fields of complex tangencies TY; N J(TY;) represent p;,
fori=1,2.

o Ifz € HF ;1 (Y1) is a homogeneous element such that Fyy (z) has a nonzero component
in HF;L2 (Y2), then p; and ps are related by W.

To expand on this point, we recall some of the homotopy classification of almost-
complex structures on 4-manifolds. First, observe that an almost-complex structure on
an oriented 4-manifold W is the same as a lift of the classifying map for TW from
BSO(4) to BU(2). Since the fiber of the bundle BU(2) — BSO(4) is SO(4)/U(2) = 52,
we are interested in obstruction theory for a bundle over W with fiber S2. (An alternate
perspective is given by choosing a metric on W, after which a choice of almost-complex
structure is the same as a non-vanishing section of the rank-3 vector bundle A™ of self-
dual 2-forms on W.)

Proposition 4.1. Let W : Y] — Y5 be a cobordism between connected oriented 3-manifolds.
For a spin® structure s € spin®(W), let Js(W) denote the set of homotopy classes of
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almost-complex structures on W whose associated spin® structure is s, and assume Js(W')
is nonempty. Then there is a transitive Z-action on Js(W), such that the restriction
TJs(W) = P(Y,;), J—TY;NJTY;, is a map of Z-sets.

Proof. Choose a nicely embedded path [0,1] — W connecting the two boundary compo-
nents; identify its neighborhood with [0, 1] x B3. Given an almost-complex structure J,
regarded as a section of the unit sphere bundle of A*T(W), we trivialize the latter over
[0,1] x B? and construct J’ such that J' = J away from the arc, and over each ¢t x B3
the two sections glue over dB? to give the Hopf map S® — S2. This is easily seen to
correspond to generators of the Z actions on P(Y;). Transitivity of the action follows
from the fact that the obstruction to homotopy between two elements of J;(W) lies in
H3(W;m3(S5?)) = Z, and there is no further obstruction. 0

The following provides the calculation we need:

Lemma 4.2. Let M be an oriented, fibered 3-manifold with oriented fiber S having

genus g > 1. Write [T'S] for the plane field of oriented tangents to the fibers. Then
HF*(M,s,_,) is supported in absolute grading [T'S] — 1.

Proof. Construct a Lefschetz fibration X over D? with oriented boundary 0X = —M,
whose singular fibration extends the surface bundle structure on the boundary. Removing
a 4-ball from X, Ozsvath and Szabd show in [29, Theorem 5.3] that there is a unique
spin® structure t.q, on X having (c¢1(tean), §> = 2 — 2¢g and inducing a nontrivial map
(in fact an isomorphism) HF ' (M,s;_,) — HF{ (—S%), where the subscript in the latter
refers to the absolute Q-grading, and we take the natural orientation on S® to be that
induced by B*. According to the third bullet point above, there is an almost-complex
structure on X — B relating the plane fields giving the gradings on these groups; we can
identify one such as follows. Note that X admits a canonical symplectic structure [12,
Theorem 10.2.18] (cf. [11]) to which is associated a natural homotopy class of compatible
almost-complex structure, from which an element Jy can be chosen so that the fibers
of the Lefschetz fibration X — D? are .Jy-holomorphic. In particular the adjunction
formula implies that ¢;(Jy) pairs with the fiber S to give 2 — 2¢g, and from [29] the spin®
structure associated to Jy is teqn. Now P(S?) is identified with the integers via the Hopf
invariant (7), and the standard tight contact structure on S has Hopf invariant 0. We
may suppose that the chosen B* C X is a standard Darboux ball, so that the plane field
& = TS3 N Jo(T'S3) is isotopic to the standard contact structure on S®. However, we
are considering &y as a plane field on —S3, and from (8), we have that h([&y]_gs) is +1.
Therefore a member of J5(X — B*) relates the tangent field [T5] (and no other plane
field on M, by Proposition 4.1) to grading level 1 in HF*(—S%). Hence only [TS'\] -1
is related to the grading of HF{ (—S%) = HF{(S%). The result follows from the third
bullet point above. O
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Given an oriented 3-manifold Y with positive co-oriented (and hence oriented) contact
structure &, Giroux’s theorem [9] implies that we can find an open book decomposition
for Y that supports £, has connected binding K, and has pages S of genus g > 1. Let
W : =Yy — —Y be the surgery cobordism obtained by attaching a 2-handle along K with
framing determined by the pages, “turned around” and equipped with the unique spin®
structure extending s;_, on —Yy. Then Lemma 2.1 implies that the contact invariant
of ¢ is equal to the image under Fy}; of the nonzero element of HF" (—Yy,81_,) = F (in
fact, in this untwisted situation Lemma 2.1 is nothing but [30, Proposition 3.1]).

Now construct a Lefschetz fibration X with oriented boundary —Y; and whose singular
fibration extends the surface bundle structure on the boundary, as in the proof above.
The spin® structure on W glues with t.,, on X to give a spin® structure on the cobordism
XUW, with the property that the contact invariant c¢(§) is equal to the “mixed invariant”
Fiz (©7) (cf. Plamenevskaya [35, Lemma 1] for more details). In the case that c;(s¢)
is torsion, it follows quickly from the formula for the shift in rational grading induced
by cobordisms that ¢(€) lies in rational grading h(é_y) — 1 = —h(&y). This corrects
[30, Prop. 4.6], though the correction has been made in the literature long ago, e.g. [35,
Section 4].

We remark that for general s;, Huang and Ramos claim that the contact invariant
lies in the absolute grading of Floer homology corresponding to the plane field [£]. In
light of the above and the second bullet point previously, this should be interpreted as
saying that ¢(§) lies in the graded summand of ?IF(—Y) that is dual to the summand
of ﬁ(Y) in grading [¢]; in terms of plane fields this says ¢(§) € ﬁ[g]_l(—Y) (where
in the subscript the action of —1 is taken using the orientation on —Y’). However, since
in our application we will focus on the case that ¢;(s¢) is torsion, we do not pursue this
discussion.

Observe that the set P(Y') carries a natural involution [£] — [£]* induced by reversing
the orientation of the plane field £. It can be seen that this involution respects the Z
action, i.e., ([{] + n)* = [¢]* + n. In fact we have:

Lemma 4.3. For any oriented 3-manifold Y with oriented plane field [€], there is an
isomorphism

HFT

g (Yo 8g) = HF (. (Y, 5¢-).

[€1-

This can be seen as a refinement of the conjugation invariance of Floer homology,
since the spin® structure associated to [£]* is conjugate to s¢. Given Huang and Ramos’s
construction, the proof is routine and based on the observation that if x is a Heegaard
Floer generator coming from the diagram (X, e, 8, z) and with corresponding spin® struc-
ture s, then the same intersection point interpreted in (—X, 8, a, z) corresponds to the
conjugate of s and gives rise to the negative of the gradient-like vector field originally
determined by x (cf. [15], [27, Theorem 2.4]).
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4.2. Adding twists to open books

With these preliminaries in place, we return to the homomorphism
G: HFT(-Y,F) — HE"(-Yy(K),F[C,])

appearing in the surgery triangle. We assume for the rest of the section that the spin®
structure corresponding to the contact structure £ has torsion first Chern class. Here, as
before, our arguments are given for the case g > 1 but carry over directly to the genus
1 case by replacing F by the Novikov field A. We leave the attendant adjustments of the
following proofs to the reader.

Comparing the definition of G, given in (10) below, with (4) defining cobordism maps
in twisted Floer homology, we observe that G is the map on Floer homology induced by
a 2-handle cobordism connecting —Y to —Yy(K), followed by the change of coefficients
homomorphism induced by the projection F[T, T~ — F[T,T~1]/(T"—1) = F[C,,]. Note
that if W :Y — Yu(K) is the standard 2-handle cobordism such as the one considered
above, then the cobordism under consideration here is —W. For the present purposes it
is convenient to consider —W as a cobordism from Yy(K) to Y; recall that Y carries a
contact structure we denote by &, supported by an open book with connected binding
K and page genus g.

Proposition 4.4. The surgery cobordism —W : Yo(K) — Y admits an almost-complex
structure J with the following properties:

o The tangents to the fiber surfaces in Yo(K) are positively J-invariant.
o Ifn=TY NJ(TY) is the plane field on Y induced by J, then the homotopy classes
[n] and [€] are related by

h([€ly) — W([n]y) =29 — 1.

Proof. We have seen that an oriented, fibered knot L in an oriented 3-manifold M gives
rise to a positive, oriented contact structure via the Thurston—Winkelnkemper construc-
tion, whose homotopy class we denote TW (M, L). Implicitly, the fiber surface is oriented
using the orientation on L. Recall that Eliashberg [4] has constructed a symplectic struc-
ture on the surgery cobordism Z(M, L) : M — My(L) for which the fibration on My(L)
is symplectic and such that the contact planes on M are symplectically positive. It
follows as before that there is an almost-complex structure (compatible with the sym-
plectic structure) on Z(M, L) relating the contact field TW (M, L) on M to the plane
field tangent to the fibers in My(L).

Applying this construction to the oriented knot K lying in —Y gives a plane field
TW (=Y, K) and an almost-complex structure on the corresponding surgery cobordism,
which is Z(-Y,K) = —Z(Y,K) = —W. It remains to compare the Hopf invariants
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of [n] = TW(-Y,K) and [{] = TW(Y, K), bearing in mind that we must reverse the
ambient orientation to do so.

For this, recall that (by the determination above of the grading of the contact invari-
ant, together with symmetries of knot Floer homology) the Hopf invariant of TW (M, L)
is equal to the grading in which the highest nontrivial filtered summand of knot Floer
homology ﬁﬁ((M, L, g) is supported, which we write as gr(ﬁﬁ((M, L,g)). Therefore,
h(TW(-Y,K)_y) is equal to gr([jﬁ((f}ﬁ K, g)). Using symmetries of knot Floer ho-
mology ([26, Proposition 3.7] and [26, Proposition 3.10] in particular) we obtain

WIW (=Y, K)-y) = gr(HFK(-Y, K, g))
— —gr(HFK(Y, K, —g))
= —(gr(HFK(Y, K, g)) — 2g)
= —h(TW(Y,K)y) +2g.

The result now follows from (8). O

Corollary 4.5. The only elements of HF™(=Y) that map nontrivially to HE" (—~Yy(K),
s1_¢;F[C,]) under the surgery cobordism lie in degree congruent to —h([€]y) + 1 modulo
2g — 2.

~

Proof. The target group is supported in degree [T'S]_y, — 1, and we have just seen that

-~

[T'S]y, is related through —W to [n]y. By Proposition 4.1, and since the divisibility of

S1—g is 29 — 2, we have that [T Sly, is related only to plane fields congruent to [n]y
modulo the action of 2g — 2 € Z. Turning the cobordism around, —W relates [n]_y to
[Tg]_yo, and likewise any plane field obtained from [n]_y by the action of 2g — 2 (where
now the Z action uses the orientation —Y"). Therefore, the only plane fields on —Y that

are related to [T'S]_y, — 1 through —W have Hopf invariant congruent modulo 2g — 2
to

hnl-y =1) = h([n]-y) =1 = =h(lnly) = =h(¢ly) + 29— 1. O

Theorem 4.6. Suppose that for some m > 0 the restriction to the canonical grading

~

[TS] — 1 of the map in the surgery triangle,

F: ﬂaglil(—%(K);F[Cn]) — HF ' (=Y_y1,(K); F),

vanishes. Then

Zdim]F(HFi_h(gY)+1+(29_2)k(7Y7 5£§F)/Im(U)) Zn.
kEZ
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If s¢ is self-conjugate and g > 1, then

D dime(HFE, () g 0p(=Y5 56 F)/ Im(U)) > 2.
kEZ

Proof. The hypothesis holds if and only if the map G : HF " (=Y, F) — HF ' (-Yy(K);
F[C,]) maps onto the summand in degree [T'S] — 1. Corollary 4.5 shows that the only
contribution to the image of the map G in that degree comes from its restriction to
gradings congruent to —h(&y) + 1 modulo 2g — 2. By Lemma 2.1 and Corollary 4.2 the
twisted Floer homology of —Yy(K) in degree [T'S] — 1 has dimension n over F and has
trivial U-action. Since cobordism maps are U-equivariant, the first statement follows.
For the strengthened conclusion in the self-conjugate case, begin by noting that by
conjugation invariance, our hypotheses imply that the restriction of F' to the summand

corresponding to s7_, also vanishes, and hence the map G surjects to the group
HE ' (~Yo(K),51-; F[Cy]) © HE " (—Yo(K), 87_; F[Cy]) = F*".

Since s1-,4 and s7_, are cobordant through —W only to s¢ and s¢, respectively, when s¢
is self-conjugate the group HF'(—Y,s¢;F) maps onto the group above. We claim only
the indicated degrees can map nontrivially. We have seen this already for the component
of G mapping into the first factor; for the second, note that from Lemma 4.3, if M is
fibered then HF+(M,5T_Q) is supported in degree [TS]* — 1. Observe that if J is an

-~

almost-complex structure on —W : Yo(K) — Y relating [T'S]y, to [n]y, then —.J relates
[T§]* to [n]*. Since h(n) = h(n*), the same argument as above then gives that the degrees
that can map nontrivially to the second factor above are also congruent to —h(€y) + 1
modulo 2g — 2. Hence the sum of groups in these degrees must map onto F2", which

gives the result. O
For the next results it is convenient to introduce the notation
Ka(M,s) = dimg(ker(U) N HEY "™ (M, 5;F)) € Z
and
Ki(M,s) = dimg(HF} (M, s;F)/Im(U)) € Z

Corollary 4.7. Let £ be a contact structure on a 3-manifold Y, having torsion first Chern
class and supported by a genus g open book with connected binding K. Let &, denote the
contact structure obtained by adding n right Dehn twists along the boundary of the page.
Then

n> Y Ki(-Y,se) = & is tight.

d=—h(fy)+1
mod 2g—2
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If s¢ is self-conjugate, then

2n > Y Kj(-Y.se) = & is tight.

d=—h(gy)+1
mod 2g—2

Proof. Combine Theorem 4.6 and Proposition 2.4. 0O

Proof of Theorem 7. The statement follows from Corollary 4.7 since the group
HF} (=Y, 5¢;F)/ Im(U) appearing in the corollary is a quotient of HF* (=Y, s¢). O

Corollary 4.8. Let K C Y be a fibered knot, and let T be the fractional Dehn twist
coefficient of the monodromy of K. Then we have an inequality

—1— Y Ki(-Yisg) < e <1+ ) Ka(=Y,s),

d=—h(§y)+1 d=—h(&y)
mod 2g—2 mod 2g—2

where & is the contact structure associated to K by the Thurston—Winkelnkemper con-
struction, and we assume c1(8¢) is a torsion class.
If the spin® structure associated to this contact structure is self-conjugate, then in fact

—1—{ 3D Ki(=Y,s¢) JS TK <1+{ 5 D Ka(=Y.s¢) J

d=—h(&y)+1 d=—h(&y)
mod 2g—2 mod 2g—2

Proof. For the first inequality of the corollary, observe that adding 14> K%(—Y, s¢) right
twists to the monodromy of K produces an open book supporting a tight contact struc-
ture by the previous corollary, where the sum is over degrees d congruent to —h(&y) + 1
modulo 2g — 2. The new monodromy has twist coefficient 7 +1 4 K3(=Y, s¢), which
must be nonnegative since the supported contact structure is tight [14].

For the upper bound on 7, first observe that for any 3-manifold M with spin®
structure s, there is the relation

ICd(M,E) = IC*—d—l(_Mas)a

which follows quickly from the isomorphism CFdi(M,s) = CF;d_Q(—M, s), where the
superscript index indicates cohomology, proved by Ozsvath and Szab6 [24], together with
the long exact sequence relating the different versions of Floer homology.

Now the fibered knot K induces an open book on —Y with oriented fiber S and
monodromy gf);(l. Letting & denote the associated positive contact structure on —Y’, the
result just obtained says

—Ti = (0K 2 —1 = D Ki(-Yisg),
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the sum over degrees congruent modulo 29 — 2 to —h(é_y) + 1 = h(&y). Using the
observation above, this gives

<1+ Y Koaa(-Yis) =14+ > Ka(-V.s).

As plane fields on Y, the positive contact structure £ and the now-negative contact
structure € stand in the same relationship as € and 7 in Proposition 4.4, so that h(gy) =
h(€y) — 29+ 1= h(&) — 1 modulo 2g — 2. The desired upper bound follows from the
fact that s¢ = s¢.

The bound on 7x when s¢ is self-conjugate follows similarly, using the stronger con-
clusion in Corollary 4.7 for this case. O

Proof of Theorem 6. By definition, K}(—Y,s¢) and K4(—Y,s¢) are the dimensions of
quotient- and sub-spaces of HF :fd(fY7 s¢), respectively. Hence the statement of the
theorem follows immediately from the first inequality in Corollary 4.8. O

5. Twisted Floer homology and the surgery exact triangle

In this subsection we state and sketch a proof of a general surgery exact triangle
relating the (twisted) Floer homology of three 3-manifolds obtained by Dehn filling a
single manifold M with torus boundary. The discussion can be viewed as a synthesis and
clarification of the literature.

Before stating the theorem, we briefly recall that Heegaard Floer homology of a
3-manifold Y can be defined with coefficients in any F[H!(Y’;Z)]-module, by appeal-
ing to standard constructions of homology with twisted coefficients (imported to the
setting of Morse homology) and noting that the fundamental group of the configuration
space of paths between the Heegaard tori is given by

71(P(Ta, Tg), x) = mo(x,x) X Z & H'(Y;Z).

The totally twisted Floer complex CEF*(Y) is thus freely generated over F[Z @
HY(Y;Z)]) 2 FU,UY@F[H(Y;Z)] by TaNTgs. See 27, Section 8]. The F[U, U ~!]-mod-
ule structure coming from the Z summand in mo(x,x) gives rise to a filtration (by
complexes of F[U] submodules) of CF* with sub-, quotient-, and subquotient complexes
CF~,CF™", @ . We denote the collection of complexes by CF°. Now let A denote the
Novikov ring (which is a field, in this case)

A= { ZRGT -t" | ar € F, and {a|a, # 0,7 < A} is finite for all X € R},
re
with multiplication defined on monomials by a,t"-b,t* = a,.bst"T* and extended linearly.

A choice of two form w € Q?(Y;R) defines an F[H!(Y)]-module structure on A, where
n€ HY(Y) c HY(Y;R) acts by:
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A (r+Jy nAw)
n(rgkart ): rgRart v '

Viewed as an F[H*(Y)]-module in this way, we denote the Novikov ring by A,,. See [1] for
a nice discussion. Similarly, given a closed curve vy C Y we can define an F[H!(Y')]-module
structure on the group algebra of the cyclic group C,, = Z/nZ by:

n(a; - ¢ = a; - ¢TOD where ¢ = 2™/™ € F[C,,],

and [y] € H1(Y) is the homology class of the curve. When we view F[C),] as a module in
this way, we may refer to it as F[C,,],. These definitions thus allow us to speak of Floer
homology with coefficients in A,, or F[C,,],:

CF°(Y;A,) := CF°(Y) ®@pa) A, CE°(Y;F[C],) == CE°(Y) ®pa) F[Ch],

Given w € Q*(Y;R), or a curve v C Y, we can also amalgamate the actions above
to consider A[C,,] as an F[H!(Y)]-module, where the action takes place on A and C,
independently, as defined above. It will often be more convenient to use concrete models
for these chain complexes, which will be described in the course of the proof of the
following theorem.

Theorem 5.1. Let M be an oriented 3-manifold with oriented boundary OM = T?, and let
00,01,02 C T? be a triple of simple closed curves, whose algebraic intersection numbers
satisfy (for some choice of orientations)

#{ogNor} =—-n, #{o1Nox} =#{o2Nog} =-1,

wheren > 0. Then for any 2-form w which vanishes on OM, and for R =TF or A, there
is a long exact sequence

HF*(My;R) - HF " (My;R),

v

MJF(M% R[Cn])

where M is the 3-manifold obtained by Dehn filling M with slope ;. The module struc-
ture on R[Cy] is defined by the curve o} obtained as the core of the filling torus and,
for m = 1, is isomorphic to R. In each case A, should be interpreted as the module
associated with the extension of w by zero to a 2-form over the filling solid torus.

The maps G and F are related to the maps on twisted Floer homology groups induced
by the canonical 2-handle cobordisms between the filled 3-manifolds, and are defined by
chain maps in Equations (10) and (11) below.
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Remark 5.2. The assumption on the intersection numbers is equivalent to the condition
that the slopes satisfy

[00 + 01 +nog] =0 € Hi (OM).

Remark 5.3. The theorem also holds with Z replacing F throughout, and for the other
versions of Floer homology provided that we complete the coefficients with respect to U
in the case of minus and infinity.

Before proving the theorem, we discuss a collection of closely related results in the
literature. To begin, the theorem with R = Z was first proved in [27, Theorem 9.14], in
the (not-so) special case that M =Y \ nbd(K) is the complement of a null-homologous
knot in a homology sphere, o7 its meridian, and o9 its Seifert longitude. This yields
an exact triangle for the Floer homologies of the triple Y7/, (K),Y, Yo(K) with twisting
on the zero surgery term. In the same paper, the case where oy is the meridian of a
null-homologous knot and oy its Seifert longitude was also addressed, yielding an exact
triangle for Yo (K), Y, (K),Y, with trivially twisted coefficients for the Floer homology
of Y (groups which are isomorphic to the direct sum of n copies of the untwisted Floer
homology). In both cases, the proof relied on an adaptation of Floer’s argument for an
exact triangle in instanton homology [5]. In particular, the long exact sequences came
from short exact sequences on the chain level. This left the geometric meaning of the
connecting homomorphisms unclear. This was remedied for the fractional surgery exact
triangle in [24, Section 3.1], where the maps starting and terminating on the twisted term
were interpreted in terms of holomorphic triangle counts in a cover of the symmetric
product of a Heegaard diagram (the third map, too, was identified with triangle counts,
but this fact was already explicit in [27]).

In [31, Theorem 4.5], the exact sequence with R = Z/2Z and n = 1 was reproved in
such a way to put all of the maps on equal footing. In particular, each map was defined
using the same holomorphic triangle counts involved in the definition of the theory’s
2-handle cobordism maps; indeed, in the case n = 1, consecutive pairs of 3-manifolds in
the triangle are manifestly cobordant through a single 2-handle attachment. Each map
in the exact sequence is a sum of the maps on Floer homology induced by this cobordism.
The key for this approach was a break from Floer’s proof of the exact triangle, and the
implementation of an “exact triangle detection lemma” [31, Lemma 4.2] (see proof below
a statement). In [1, Theorem 3.1], this approach was extended to the case n = 1 and
R = A..

In [34, Theorem 3.1], the case with R =Z, M =Y \ nbd(XK) a null-homologous knot
complement, o5 its meridian, and oy an m-framed longitude was treated. This yields an
exact triangle between the Floer homology of Y, (K), Y +n(K), and n copies of that
of Y. There, the treatment was again via the exact triangle detection lemma, but the
discussion left ambiguous the precise definition of certain maps relevant in the application
of the lemma. A theorem equivalent to Theorem 5.1 in the case R = Z was stated for the
completed minus version of Floer homology [22, Proposition 9.5]. We turn to the proof.
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Proof. Since many elements of the proof appear in the literature, we will outsource vari-
ous details to specific references, and focus on issues that are either absent or ambiguous
elsewhere. An easily stated version of the exact triangle detection lemma says that if A;
are chain complexes, f; chain maps, and h; chain homotopies arranged as:

h1

/\
Ao Ay,

NK

which satisfy, for each i € {0, 1,2} (regarded cyclically):

(1) (Null—homotopy) fi+1 o fz = 0;4+2 © hz + hl o 61
(2) (Quasi-isomorphism) f;y2 0 h; + h;y1 o f; induces an isomorphism on homology,

then the maps induced by f; form a long exact sequence on homology. Chain complexes,
maps, and homotopies satisfying these assumptions, and which induce the desired exact
triangle are produced from a specific Heegaard quadruple diagram:

(S {7,y Y7 {w, p}),

where

(1) X is a closed oriented surface of genus g.

(2) vt ={~i,... ,’y;}, 1 =0,1,2, are g-tuples of simple closed curves in ¥, arranged so
that the first g — 1 curves are all small Hamiltonian translates of each other, and so
that 'y; live in a torus connect summand of ¥ and intersect minimally in the same
way as the filling slopes.

(3) a ={au,...,a4} is a g-tuple of homologically independent, pairwise disjoint, simple
closed curves in ¥, transverse to the union of 47.

(4) For each i = 0,1,2, the Heegaard diagram (X, o, ') specifies M;.

(5) w is a basepoint in the complement of all curves, and p is a basepoint in ’yg.

(6) The diagram is admissible, in the sense that any multi-periodic domain satisfying
Ny (P) = 0 either has at least one negative coefficient or satisfies w([P]) > 0, where
w is the perturbation 2-form.

In terms of this diagram we define chain groups

D Rt-x i=0,1,
xe’]l'aﬂ'[[‘_yi
B RHC]-x i-2.

x€Tq ﬁ'JT,Yi

A=
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Here R* is the R[U] module R[U,U~!]/U - R[U]. The boundary operators 9; : A; — A;
are given by:

U x)= Y #M(g) @ Uy fori=0,1,
peET2(X,Y)
w(p)=1

and

(U x) = Z #M\(¢) (@) L ckAnp(99) e (@)=d Ly,
pET2(x,y)
m(¢)=1

In the case that R = F, the coefficients can be obtained from the above formulae by
setting ¢t = 1. Here, the exponent of ¢ is given by the evaluation of w on the two-chain in
Y arising from the domain of the Whitney disk (viewed as a two-chain on ¥), together
with two-chains that cone off its boundary with gradient flowlines to the index one and
two critical points of a Morse function on Y specifying the Heegaard diagram. In the
R[C,,] twisted case, we further multiply by the n-th root of unity, raised to the algebraic
number of times the boundary of the domain crosses the p basepoint. Tracing through
the definitions, one see that these complexes compute the Heegaard Floer groups in the
theorem:

H.(A;,0;) =2 HF T (M;,R), i=0,1,
H.(Ay,02) & HF T (Mo, R[C,]).

(For the R[C,] twisted complexes, the key point is that the multiplicity n,(0¢) equals
the intersection number of 9D(¢) with a curve that intersects ’yg exactly once and no
other curves; such a curve is isotopic to the core of the filling solid torus.)

The hypotheses required by the triangle detection lemma will follow from the A
structure present in the Fukaya category of the symmetric product of X, together with
the standard nature of the tori T.; coming from the collections ~7, 5 =0,1,2. Most of
the gross features of the argument appear in the aforementioned references (see especially
[34, Proof of Theorem 3.1] and [33]). The new technical challenges reside primarily in
understanding exactly how the twisting should be incorporated in the definition of the
chain maps f; and homotopies h;, and how these definitions affect algebraic and geometric
aspects of the argument. Since these details are particularly relevant to the proof of our
main theorem, we will try to provide a thorough treatment.

To begin, we must consider the (twisted) completed minus Floer complexes
CF (T,:,Ti+1) for i = 0,1,2. This notation seems to be dominant in the literature,
but we should note that it differs from [33, Section 2.5] where the complexes are denoted
CF~7. In each case, the complex is freely generated by x € Ty: N T:+1. For ¢ = 0 the
ground ring is R[[U]] and for ¢ = 1,2 we use RI[[U]][Cr]. The boundary operators are
defined as above, with the cases i = 1,2 accounting for the multiplicity of domains of
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Whitney disks at p € '73' The reason to consider power series in U is that there may be
infinitely many homotopy classes of Whitney polygons defined by the Heegaard diagram
which admit holomorphic representatives. The admissibility conditions placed on our
diagram ensure, however, that there are only finitely many such homotopy classes with
fixed n,,(¢)). It follows that the polygon counts can be used to define maps between the
completed minus (or infinity) groups.

Observe that the 3-manifold specified by (X, T.:,T,i+1) is homeomorphic to
#97181 x S? when i = 1,2, while (X,T,0,T,1) specifies the connected sum
L(n,1)#971S! x §2. Their Floer homologies are given as follows:

HF (T, To1) 2 R" @ A*(RY™1) @ R[[U]]
HF (T, T,i+1) 2 A*(RYY) @ R[[U])[C,], fori=1,2.

One can compute this directly, or apply the Kiinneth theorem for the (completed) Floer
homology of a connected sum of 3-manifolds. For i = 1,2, the highest graded sum-
mand of the Floer group is rank one over R[C,], and we denote a generator by ©; ;11.
For the i = 0 case, the n summands correspond to the n different spin®-structures on
L(n,1). Picking a particular spin®-structure we obtain a top-dimensional generator for
its summand, which we denote ©¢ ;. Our choice appears to be specified instead by the
particular generator, but could be described more intrinsically in terms of the Chern class
of a spin® structure on the 4-manifold with 3-boundary components determined by the
pointed Heegaard triple diagram (X; {c, v, 4!, w}). From either perspective, we have
made a choice of spin®-structure on L(n,1); however, each such choice would produce
a (presumably different, in general) exact triangle. Indeed, our particular choice of ¢ 1
can be viewed, even less intrinsically, as the unique one for which the maps that we are
about to define satisfy the conditions required by the exact triangle detection lemma.
Picking a different spin® structure on L(n,1) (or different top-dimensional generator)
would still result in an exact triangle, but would necessitate modification of the mod n
congruences demanded of the n, multiplicities for its maps.

With all this in mind, we can now define the chain maps and homotopies which serve
as input for the exact triangle detection lemma. The chain maps are given as follows:

foU7x)= > #M@) t*@ .y .y (9)

PYET2(x,00,1,y)
w(¥)=0

fUUTIX) = Z H#M (1) -t wO¥) L gre®)=i Ly (10)
YET2(%,01,2,y)
p(¥)=0
LU= > M) ey (11)
YET2(%,02,0,y)

1(4)=0
n,(0Y)=—k mod n
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Note that the map f; is defined by counting holomorphic triangles with boundary
mapping to Te, Tyi, Tyi+1, and with the vertex that maps into T.: N T,:+1 sent to our
distinguished generator ©; ;4. In each case the Novikov ring enters as with the definition
of the boundary operators: we simply measure the w area of the coned-off domains
of the Whitney triangles. The two chains arising from coning Whitney triangles are

contained within the four-manifold X i+1 specified by the Heegaard triple diagram

(o2} 11
via the construction of [28, Section 8], ;né w canonically extends to this four-manifold
by our assumption that w|gas = 0. The only difference between the maps, then, is how
they incorporate the C,, twisting: fy makes no use of it; fi uses it similarly to the
boundary operator on CET (M), via the signed crossing number of the boundary of a
triangle at the twisting basepoint p; fo incorporates the twisting by requiring triangles
counted in the expansion of fo(¢*x) to have boundary which crosses p negative k times
(modulo n). Verification that these define chain maps is, as usual, a consequence of
Gromov compactness together with a homotopy conservation principle; namely, that
intersection numbers (in the case of the U action and C,, twisting) and w areas (in the
case of the Novikov twisting) are homotopy invariants of a class ¢ € ma(a, b, ¢) which are
additive under decomposition of such a class into the juxtaposition of a triangle with a
disk.

Similarly, we define homotopy operators using pseudo-holomorphic quadrilateral

counts:
ho(U™7x) := E HM()) -t . @) yre)=i Ly (12)
YeET2(%,00,1,01,2,y)
p()=—1
hy(U77x) := Z H#M(1) - W) eIy (13)
YET2(%x,01,2,02,0,y)
wu(y)=-1
np(09)=0 mod n
ha(U™9¢Mx) = > #M(Q) - W) gy (14)

YE™2(%,02,0,00,1,y)

m(
n,(0Y)=—k mod n

If we consider one dimensional families of pseudo-holomorphic quadrilateral (arising
from p = 0 homotopy classes) then Gromov compactness, together with additivity of
w(®), nw (1), np(0Y) under juxtaposition, implies that h,; provides a homotopy between
fi+1 o f; and the operator:

Jaiit2(—® fiit1,i42(0ii11 ® Oig1,i42)),
where

fati,i+2 :CF™* (Ml, R) X CF_(T.Yi,T.Yi+2) — CF+<MZ‘+2; R)
fi,i+1,i+2 :CF~ (T,yi , T,yi+1) ® CF~ (T,yi+1 , T,ywrz) — CF~ (T,yi , T,yi+2)
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Fig. 1. The universal cover of the torus summand of the Heegaard diagram where the filling slopes lie in
the case n = 3. The black lines of slope 1/3 represent lifts of 'yg, and the blue vertical lines are lifts of 'y;.

The red horizontal lines are lifts of 'yj, and contain lifts of the basepoint p which defines the C3 twisting
(we represent lifts of p by small black triangles). Shown are the triangles wli with vertices on ©; ;41 and
©i11,i+2- They satisfy nw(@bfz) =0, np(ﬁwit) = 0 mod 3. (For interpretation of the references to color in
this figure, the reader is referred to the web version of this article.)

are chain maps defined by counting holomorphic triangles with appropriate boundary
conditions (for these latter maps, we have suppressed notation indicating which com-
plexes are C), twisted, but remind the reader that the complexes for M; are twisted only
when j = 2, and the complexes for pairs T, T,; are twisted unless {i,7} = {0,1}).
For all of the maps, homotopies, etc. involved, the key idea to keep in mind is that if
the map emanates from a C,, twisted complex, then the holomorphic polygons counted
must cross the twisting point p a number of times equal to negative the exponent of
the ¢ power appearing in front of the intersection point. Another notable feature is the
requirement by h; that the T, boundary of the rectangles should cross p zero times,
modulo n. This is actually a convention which is tied to our choice of spin®-structure on
L(n,1) used to determine ©g ;. Choosing a different spin®-structure would force us to
require n,(91) = m mod n for some other value of m.

To verify that h;, so defined, is a null-homotopy for f;+1 o f;, it suffices to show
that fii+1,i+2(0s 41 ® Oiy1442) = 0. This is essentially a local calculation in the torus
summand of the Heegaard surface where the filling slopes lie, together with a neck
stretching argument and similar local considerations for the torus summands where the
other ~ curves lie. See [33, Proposition 2.10] for details on the argument, as applied to
the hat theory, and [33, Section 2.5] for its extension to plus. For us, the only difference
will be in the torus connect summand of the Heegaard surface where the filling slopes lie
and the added bells and whistles that our twisting(s) incorporate. The universal cover
of this torus, together with the lifts of the filling slopes, is shown in Fig. 1 in the case
where n = 3.
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The key fact about this region for this part of the argument is that triangles with two
vertices on the g-th component of ©, ;11 and ©;41 ;42 and fixed values of n,(¥),w(v)
and n,(0¥) mod n come in canceling pairs. More precisely, for each k > 0, there are
exactly two triangles, wf with two vertices on the g-th component of ©; ;11 and ©;41,;42,
and these triangles satisfy n,,(¢if) = n - @ and np(aw,f) = 0 mod n. That the
triangles cancel comes from the facts that our base rings have characteristic two and
that w(¢) = w(yy,) for all k. To see this latter fact, it suffices to observe that the

cohomology class determined by w on the four-manifold X itz is trivial, cf. [1,

YTy
Theorem 3.1, last paragraph of proof].

We now turn to the quasi-isomorphism condition in the triangle detection lemma.
For this we consider an augmented Heegaard diagram which, in addition to the four
sets of attaching curves previously mentioned, contains an additional g-tuple of curves
4% each of which arises via small Hamiltonian perturbation from a corresponding curve
in 4 (in particular, the 3-manifold specified by (¥,a,4") is homeomorphic to M;).
We further require that each curve in 4% intersects the corresponding curve in ~4* in
exactly two points. There are corresponding complexes, denoted A;, and we consider

maps ¢g; : A; — A;, defined by counting pseudo-holomorphic pentagons:

go(U %) :

Z HM() -t gre@)=i Ly (15)

YET2(x,00,1,01,2,02,0,y)

p(y)=-2
np(09)=0 mod n

Z HM() - o) gre@)=i Ly (16)

YET2(%,01,2,02,0,00,1,¥)
w(P)=-2
np(09)=0 mod n

92(U—j<kx) — Z HM (1) @) Cnﬁ(a¢') e () =g -y, (17)

YET2(x,02,0,00,1,01,2,)

H(Y)=—
np(0Y)=—k mod n

g1 (U 7%) :

where éi’i+1 is a top-dimensional generator for the complex associated to the La-
grangians coming from 4* and 4°*1. Note the appearance of { in the last equation: this
is a basepoint on 'Nyg which is the image of p under the Hamiltonian isotopy defining 'yg.

Gromov compactness for one dimensional families of pseudo-holomorphic pentagons,
applied in this context, implies that such a family will have ten types of ends. Five arise
from the non-compactness of the domain coming from the vertices (boundary punctures)
of the pentagon. Using the fact that the © intersection points are cycles rules out three
of the these ends, and the remaining two give rise to terms of the form g; o 9; + d; o Gi.
The other five ends correspond to ends of the moduli space of conformal structures
on a pentagon, over which the moduli spaces M(v) fiber. Each of these comes from a
conformal degeneration of a pentagon into a rectangle and triangle joined at a vertex. Of

these, two give rise to the terms in the sum of compositions fH_Q oh; + ili.H o f;, where
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fiv2 and hy,, are defined exactly as in Equations (9)-(14), but with the 4° curves used
in place of 4 in the range of the map. Two of the remaining ends involve triangles which
contribute to the maps fiit1,i+2(0ii+1 ® Oir1,i42) and fi 4 ;107(Oit1ite ® Oitai),
which were previously shown to be zero. The remaining ends contribute to the map

Gi(=) = fo,ii(=®h; i411407(0iit1 ® Oip1i12 ® Oj42)) (18)

where h; ;. ;.07 is an operator defined by counting holomorphic quadrilaterals. Thus
the pentagon operators provide a chain homotopy between fi+2 oh;+ Bi—&-l o f; and ¢g;. We
claim that ¢; induces an isomorphism on homology (in fact, it is an isomorphism of chain
complexes, but we will not need this). Granting this, we have essentially proved the the-
orem. The one caveat is that ¢ is not a map from A; to itself, but to a (quasi-)isomorphic
complex A;. The easiest way around this technicality is to tweak the detection lemma
to address a family of chain complexes which have three-periodic homology. This is the
route taken by [31] and subsequent incarnations. We follow suit, so that our f,h, and g
maps increase the index (by 1, 2, and 3, respectively) in the family of complexes {A4;}iez
which we will show have three-periodic homology via q; : A; — A;43, with A;1 3 := A;.

Working with this setup, it only remains to show that ¢; induces an isomorphism on
homology. When i # 2 mod 3 it will suffice to show that

o~

Y
Piii1i427(©iit1 ® Oit1,i12 ® O, 53) =170, 3,

for some A (since ¢* is a unit in A), and that

o~

fa,i,i(* ® 912)

induces an isomorphism on homology, where in both cases the “hat” refers to the induced
map on the corresponding hat Floer complex (that verification of isomorphism for the
hat complex implies it for the plus complex is a consequence of [33, Exercise 1.4]). Ver-
ifying the former is essentially the same argument found in [33, Discussion surrounding
Equation 15, Figures 8 and 9], the only real difference being the local calculation in the
torus region where the filling slopes lie and the implicit Novikov twisting. Indeed, we
obtain the factor of #* in front of O, ;, where A is the w area of the coned off domain of
the unique pseudo-holomorphic quadrilateral with n,(9%) = 0 modulo n and n,,(¢)) = 0.

For the latter, when i # 2 mod 3, one can easily show that that f, ;:(— ® ©,;) is
an isomorphism by arguing that it agrees, up to higher order terms with respect to the
area filtration, with the “closest point” map ¢ discussed in [33, Proof of Lemma 2.17].
When Novikov coefficients are used, one needs to be careful if a non-admissible Heegaard
diagram is employed: in that case one cannot find an area form which vanishes on all
periodic domains, hence the area filtration is not well-defined. The argument still works,
however, if the Heegaard diagram is admissible in the weaker sense that w evaluates
positively on positive multi-periodic domain. For then one can filter the complex using
a combination of area and the natural filtration of A, by powers of t.
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The cases with ¢ = 2 mod 3 are somewhat different than the other two. Here the
chain maps considered in Equation (18) are defined by holomorphic triangle counts with
twisting on both the input and output complexes:

CF*(My; R[C)) CF (T2, To) 22F CF+ (My; RIC,)

RIC]IU]]
where the twisting on the input is induced by the basepoint p C 73, and on the output

by p C 73. Note that the complex associated to the pair T2, T,z is twisted by both
basepoints, and thus is freely generated over

RIUNCn] @rjoy RIVIC).

Equivalently, we can think of it as a complex of R[[U]][C}] — R[[U]][Cy] bimodules. The
boundary operator is given by

¢y = > # M(¢) - t2(®) . (@) . ¢itnp(06)y Fitny(99)
pEm2(x,y)
n(d)=1
where we use ¢ (resp. ¢) to record the twisting induced by p (resp. ). Its homology,
viewed as either a right or left module over R[[U]][C),] can easily be computed:

HF ™ (T2, Ty2) = (R{U])[Ca] & RIUV]Cn)) @ A*(RTT),

where a bimodule generator for the top dimensional summand is given by

Oy5 = Z ¢io4C

i=1

Here, 60 is the explicit g-tuple of intersection points representing the top-graded gener-
ator of the chain complex for #95" x S? coming from the Heegaard diagram (%, 42, 42).
Now the map f, 55 is defined on generators by (we suppress the role of U):

Fana(xC ® (TyCh) = > H#M() - 2W) . Jena @) (19)

We wish to show that the map ¢ defined in (18) induces an isomorphism on homology.
To do this, we observe

n

ﬁ2,0,1,2(92,0 ® @0,1 ® 91,2) = ch_i9+§i = @z,ia (20)
i=1

Fig. 2 and its caption explain the first equality, and for the second we use the fact

Cn—i — C_i-
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V2 — A/—\ A/_/\é/:
5 /C/ /C/
g B

ANVAVA VAN

Fig. 2. The figure shows the domains of n = 3 holomorphic quadrilaterals embedded in the universal cover
of the torus summand where the filling slopes lie. These account for the terms in the sum (20). Each can
be viewed as a slight perturbation of the triangle wf' from Fig. 1, and they differ only in which lift of the
g-th component of 8 the boundary of the quadrilateral “jumps” from %2 to 2. This difference affects the
values of ny,(¢) and n;(v), giving rise to the different terms in Equation (20). The top, middle, and bottom
quadrilaterals give rise to the terms C29+C~1, C19+C~2, and C09+g:3, respectively.

Next we note that

fmz’é(x ® 16.,.¢7) = ¢7u(x) + lower order terms,

where ¢ is the closest point map on generators, and lower order is with respect to the
area filtration. This follows from the existence of small triangles connecting x to ¢(x)
with third vertex mapping to 64 whose boundaries do not cross the basepoints p, p. Now
consider the restriction of gs to the hat complex. We have

B(%) 1= Japa (30 ©0,5)

= Y fans(x¢7 @ ¢T0:.07)

= S Fusalx @0 0,0

= fan3(x ®16,¢7) + lower order terms

= (I x) + lower order terms.
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Thus @2 is an isomorphism up to lower order terms which implies that it, and ¢o, induce
isomorphisms on homology. O
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