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We establish a relationship between Heegaard Floer homology 
and the fractional Dehn twist coefficient of surface automor-
phisms. Specifically, we show that the rank of the Heegaard 
Floer homology of a 3-manifold bounds the absolute value 
of the fractional Dehn twist coefficient of the monodromy of 
any of its open book decompositions with connected binding. 
We prove this by showing that the rank of Floer homology 
gives bounds for the number of boundary parallel right or 
left Dehn twists necessary to add to a surface automorphism 
to guarantee that the associated contact manifold is tight or 
overtwisted, respectively. By examining branched double cov-
ers, we also show that the rank of the Khovanov homology 
of a link bounds the fractional Dehn twist coefficient of its 
odd-stranded braid representatives.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let S be a compact oriented 2-manifold with a single boundary component, and φ a 
homeomorphism of S fixing its boundary pointwise. The fractional Dehn twist coefficient 
of φ is a rational number τ(φ) ∈ Q that depends only on the isotopy class of φ rel 
boundary, and can be understood as a measure of the amount of twisting around the 
boundary effected by φ compared to a “canonical”—e.g., pseudo-Anosov—representative 
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of its (free) isotopy class. More precisely, consider the image of φ under the natural map 
Aut(S, ∂S) → Aut(S) which drops the requirement that an isotopy fixes the boundary 
pointwise. In this latter group, φ is isotopic to its Nielsen–Thurston representative; that 
is, there is an isotopy Φ : S × [0, 1] → S such that Φ0 = φ and Φ1 is either periodic, 
reducible, or pseudo-Anosov.1 Considering the restriction of Φ to the boundary, we obtain 
a homeomorphism:

Φ∂ : ∂S × [0, 1] → ∂S × [0, 1]

defined by Φ∂(x, t) = (Φt(x), t). The fractional Dehn twist coefficient τ(φ) can be defined 
as the winding number of the arc Φ(θ× [0, 1]) where θ ∈ ∂S is a basepoint.2 This would 
appear only to associate a real number to φ, which could depend on the choice of base-
point and isotopy. The Nielsen–Thurston classification, however, shows that this winding 
number is a well-defined rational-valued invariant τ(φ) ∈ Q. The definition extends eas-
ily to surfaces with several boundary circles, in which case there is a corresponding twist 
coefficient for each component of the boundary. Here we will be concerned only with the 
case of connected boundary.

The study of fractional Dehn twist coefficients dates at least from the work of Gabai 
and Oertel [7] in the context of essential laminations of 3-manifolds, where, with different 
conventions than those used here, it appeared as the slope of the “degenerate curve” [7, 
pg. 62]. Honda, Kazez, and Matic [13,14] observed a connection with contact topology 
through open book decompositions, which has been explored by various authors [3,18,
16]. The following proposition summarizes a few key properties of the fractional Dehn 
twist coefficient.

Proposition ([21,16]). Let τ : Aut(S, ∂S) → Q be the fractional Dehn twist coefficient, 
and let t∂ denote the mapping class of a right-handed Dehn twist around a curve parallel 
to ∂S. Then for all φ, ψ ∈ Aut(S, ∂S), we have:

(1) (Quasimorphism) |τ(φ ◦ ψ) − τ(φ) − τ(ψ)| � 1.
(2) (Homogeneity) τ(φn) = nτ(φ).
(3) (Boundary Twisting) τ(φ ◦ t∂) = τ(φ) + 1.

The first two properties easily imply that the fractional Dehn twist is invariant under 
conjugation (see e.g., [8, Proposition 5.3]), and the third implies that it can be arbitrarily 
large, either positively or negatively. There are constraints, however, on the possible 
denominators of τ(φ) based on the topology of S; cf. [6, Theorem 8.8], [18, Theorem 4.4], 
[36].

1 As in [18], such a map is called reducible only if is not periodic. Moreover, in the reducible case, after 
an isotopy rel ∂S we get a subsurface of S to which φ restricts as a map with periodic or pseudo-Anosov 
representative: we apply the definition of fractional Dehn twist coefficient to the restriction of φ to that 
subsurface.
2 τ(φ) can be defined without Nielsen–Thurston theory by lifting φ to the universal cover and using the 

translation number of an associated action on a line at infinity [21].
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Surface homeomorphisms of the sort we consider arise naturally as monodromies of 
fibered knots in 3-manifolds or, equivalently, open book decompositions of 3-manifolds 
with connected binding. Indeed, if K ⊂ Y is a fibered knot then the complement of a 
neighborhood of K is a bundle over S1 with fiber a compact surface S with one boundary 
component. This bundle is described by a monodromy homeomorphism φK : S → S that 
is the identity on the boundary and well-defined up to isotopy and conjugation. Hence 
we can think of the twist coefficient as giving rise to an invariant of fibered knots in 
3-manifolds, K �→ τ(φK), where we suppress the choice of fibration from our notation. 
Our main result shows that if the 3-manifold is fixed, then there is an a priori bound on 
the value of the twist coefficient for any fibered knot in that manifold.

Theorem 1. Let Y be a closed oriented 3-manifold. Then there exists a real number 
M � 0 with the following property: Let K be any fibered knot in Y and let φK denote its 
monodromy. Then

|τ(φK)| � M.

In the case that a knot fibers in many distinct ways, the bound is to be interpreted as 
stated: regardless of the choice of fiber, the twist coefficient of the resulting monodromy 
is bounded by a number depending only on Y .

Given Y , we let MY denote the smallest number satisfying the conclusion of Theo-
rem 1.

To the best of our knowledge, the only situation prior to our theorem in which the 
bound MY was known to exist is for knots in the 3-sphere, in which case work of Gabai [6]
and Kazez–Roberts [18] shows that |τ(φK)| ≤ 1/2. Their proof relies on the application 
of thin position, among other things, and does not extend to other manifolds in an 
obvious way. Our proof exploits the connection between twist coefficients and contact 
topology, and a connection between contact topology and Heegaard Floer homology. 
Recall that by a construction of Thurston–Winkelnkemper [37], a fibered knot K ⊂ Y , 
regarded as an open book decomposition, uniquely determines a contact structure ξK
on Y (see [38] for uniqueness). It was shown by Honda, Kazez, and Matic that if ξK
is tight, then τ(φK) � 0 [13, Theorem 1.1 and Propositions 3.1, 3.2]. Using property 
(3) of τ , we see that to obtain a lower bound on τ(φK) it suffices to show that there is 
an integer N depending only on Y such that the monodromy φK ◦ tn∂ describes a tight 
contact structure (on a different 3-manifold) for any n > N . Therefore Theorem 1 is 
implied by the following.

Theorem 2. For a closed oriented 3-manifold Y , there is an integer N � 0 with the 
following property: Let ξ be a contact structure on Y , and choose any open book decom-
position (S, φ) that supports ξ and has connected binding. Then for any n > N , the open 
book (S, φ ◦ tn∂S) determines a tight contact structure.
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As before, we write NY for the smallest integer N satisfying the conclusion of Theo-
rem 2. Theorem 1 follows from Theorem 2 by observing that open book decompositions 
for Y are in bijection with those for −Y under a correspondence induced by inverting 
monodromies. Thus M = 1 + max{NY , N−Y } satisfies Theorem 1.

Theorem 2 was first observed by Ozsváth and Szabó in the case that Y is an L-space, 
in which case NY = N−Y = 0 [30, Theorem 1.6]. Indeed, in that paper they ask the 
following question:

Question 3 ([30, pg. 43]). Given an open book decomposition (S, φ) for Y , what is the 
minimum n such that (S, φ ◦ tn∂S) specifies a tight contact structure?

Theorem 2 is proved by a generalization of Ozsváth and Szabó’s argument, and we 
obtain a bound depending on the Heegaard Floer homology of Y . Indeed, our proof 
shows

NY � 1
2(dimF ĤF(Y ) − |Tor H1(Y ;Z)|) (1)

where ĤF(Y ) denotes the Heegaard Floer groups of Y with coefficients in F = Z/2Z
and |Tor H1(Y ; Z)| is the number of elements in the torsion submodule of first singular 
homology. Since the right side of (1) does not depend on the orientation, we immediately 
obtain a similar estimate for the number MY bounding twist coefficients. Theorem 2 can 
be viewed as an answer to Ozsváth and Szabó’s question, and Theorem 1 as a geometric 
interpretation of the rank of the Heegaard Floer homology groups of a 3-manifold Y : it 
is a “speed limit” for fibered knots in Y with respect to the twist coefficient. Such an 
interpretation raises the natural question:

Question 4. Does every 3-manifold that is not an L-space contain a “fast” knot? That 
is, a fibered knot for which the absolute value of the twist coefficient is at least 1?

This question is closely tied to the conjecture that L-spaces are exactly those 
3-manifolds without taut foliations. Indeed, an affirmative answer to Question 4 would 
imply this conjecture, by recent work of Kazez and Roberts [17]. In a related direction, 
is perhaps worth pointing out the following corollary, stated in terms of the reduced
Heegaard Floer homology groups:

Corollary 5. Let K ⊂ Y be a fibered knot, and let Σn(K) denote its n-fold branched cyclic 
cover. Then

dimF HFred(Σn(K)) ≥ n · |τ(φK)| − 1.

In particular, if K has right- (or left-)veering monodromy then all cyclic branched covers 
over K with sufficiently large order are not L-spaces.
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Note that work of Kazez and Roberts could be used to show that high order branched 
cyclic covers of fibered knots with right- or left-veering monodromy are not L-spaces, but 
that their work wouldn’t produce the quantitative growth rate of the corollary. We expect 
that for most knots the rank of the reduced Floer homology of branched cyclic covers will 
have at least positive linear growth in the order of the cover. There are examples, however 
(such as the figure eight knot [2]), for which all branched cyclic covers are L-spaces; the 
corollary of course implies such knots have vanishing twist coefficient.

We should remark that there are many more refined estimates of NY made possible by 
taking into account further structure on the Floer groups (see the remarks after the proof 
of Theorem 2.5). For example, since our argument depends only on one spinc structure 
at a time, we can show

NY ≤ max
s∈spinc(Y )

1
2(dimF ĤF(Y, s) − 1) (2)

(here we assume Y is a rational homology sphere for convenience, cf. Remark 2.6). In 
general (2) is a much better estimate than (1), though both recover NY = 0 in the case 
that Y is an L-space.

If we are given more data about the knot our bound for the twist coefficient can be 
sharpened further. To state one such result, recall that an oriented plane field distribution 
on a closed oriented 3-manifold is determined up to homotopy by two pieces of data: 
its associated spinc structure, together with a “3-dimensional invariant,” as described 
by Gompf [10] (ultimately this classification goes back to Pontryagin). Supposing ξ
to be a plane field on Y whose spinc structure sξ has torsion first Chern class, the 
3-dimensional invariant is a rational number called the Hopf invariant h(ξ) (see Equation 
(7) in Section 4 below). Strictly this quantity also depends on the orientation of the 
ambient 3-manifold; when necessary we will write h(ξY ) or h(ξ−Y ) to indicate that ξ
is to be considered on the oriented manifold Y or −Y (meaning Y with the reversed 
orientation), respectively. Now whenever a spinc structure has torsion Chern class, the 
associated Heegaard Floer homology group carries a rational-valued grading, and in fact 
for a spinc structure sξ the grading takes values in Z +h(ξ). The reduced Floer homology 
groups are finite-dimensional and, in particular, can be nonzero in at most finitely many 
degrees. Keeping this in mind, the following theorem provides a more precise bound on 
the twist coefficient of a fibered knot, given the homotopy data of its associated contact 
structure.

Theorem 6. Let ξ be a contact structure on Y whose associated spinc structure sξ is 
torsion, and let (S, φ) be an open book supporting ξ with genus g and connected binding. 
Then the twist coefficient of φ satisfies

−1 −
∑

d≡−h(ξY )+1
mod 2g−2

dimF HFred
d (−Y, sξ) � τ(φ) � 1 +

∑
d≡−h(ξY )
mod 2g−2

dimF HFred
d (−Y, sξ).
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(The change in sign of h(ξ) arises since we consider Floer homology for −Y instead 
of Y ; note the shift in degree between the two sides.)

A slightly sharper version is given in Corollary 4.8 below. As before, the bounds on 
twist number come from estimating the number of boundary twists which, when added to 
the monodromy, is sufficient to obtain a tight contact structure. Concretely, Theorem 6
follows from:

Theorem 7. Let ξ be a contact structure on Y with torsion Chern class, and for a rational 
number d let

N(d) = dimF HFred
d (−Y, sξ).

Then for an open book (S, φ) compatible with ξ, having genus g and connected bind-
ing, any open book obtained by composing φ with at least 1 +

∑
d N(d) boundary Dehn 

twists describes a tight contact structure, where the sum is over degrees d congruent to 
−h(ξY ) + 1 modulo 2g − 2.

We remark that in both Theorem 6 and Theorem 7, if the page genus is 1 then the 
sums consist only of a single term in the appropriate degree.

The first inequality in Theorem 6 follows as before; the other inequality follows sim-
ilarly by inverting the monodromy, though note this inversion does introduce a shift 
in gradings. This issue is discussed more thoroughly in Section 4; see the proof of 
Corollary 4.8. Theorem 7 yields a surprising corollary: it shows that for “most” contact 
structures ξ, “most” open books which support ξ yield a tight structure after adding a 
single right-handed Dehn twist along the boundary.

Corollary 8. Let (Y, s) be a spinc 3-manifold with c1(s) torsion. Let S ∼= Z be the set of 
homotopy classes of contact structures on Y whose induced spinc structure is s. Then 
there is a finite subset S0 ⊂ S such any ξ whose homotopy class is in S − S0 has the 
following property. There exists an integer g0 � 0 such that for any open book decompo-
sition which supports ξ (with connected binding) and has genus g � g0, adding a single 
right-handed, boundary-parallel Dehn twist to the monodromy produces a tight contact 
structure.

Indeed, we take S0 to be the set of homotopy classes of ξ such that the group 
HFred

−h(ξ)+1(−Y, s) is nontrivial (see section 4 for a discussion of homotopy classification of 
plane fields). Then for ξ ∈ S−S0 and g sufficiently large it is clear that HFred

d (−Y, sξ) = 0
when d = −h(ξY ) + 1 modulo 2g − 2.

In a different direction, our results readily imply a connection between the “twist 
number” of a closed braid in S3 and the reduced Khovanov homology of the link ob-
tained as its closure. We thank John Baldwin and Liam Watson for bringing this to our 
attention.
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Theorem 9. Let L be a link in S3, and let β̂ be any closed braid isotopic to L and having 
an odd number of strands. Then

|τ(β̂)| � dimF K̃h(−L) − |det(L)| + 2.

Here τ(β̂) is the twist coefficient of β, viewed as an element in the mapping class group 
of the disk with n marked points, and K̃h denotes reduced Khovanov homology.

The organization of this article is as follows. In the next section we give a proof of our 
main results, Theorems 1 and 2, based on a surgery exact triangle for Heegaard Floer 
homology with twisted coefficients. Section 2 also contains the proof of Corollary 5. In 
Section 3, we spell out the connection between twist numbers and Khovanov homology. 
Then in Section 4 we revisit our proof of Theorems 1 and 2 to refine our estimates 
on NY and give the proof of Theorems 6 and 7, making use of an absolute grading on 
Heegaard Floer homology by homotopy classes of oriented plane fields on Y due to Huang 
and Ramos [15]. In the final section we provide more details on the construction of the 
twisted surgery triangle that plays a primary role in the proof of our main theorems.

2. Proof of Theorems 1 and 2

We work in characteristic two throughout, and let F = Z/2Z. This is for simplicity, 
and all our arguments could be made with Z in place of F.

In this section we prove Theorem 2, from which Theorem 1 will follow easily. More 
precisely, we show that adding

N(Y ) = 1
2(dimFĤF(Y ) − |TorZ H1(Y ;Z)|)

right-handed Dehn twists to the boundary of any open book decomposition (S, φ) of 
Y will produce an open book decomposition for a tight contact structure. The key 
observation is that the manifold specified by (S, φ ◦ tn∂) is homeomorphic to Y−1/n(K), 
where K = ∂S is the binding of the open book, viewed as a knot in Y . Let ξn denote 
the contact structure on Y−1/n(K) induced by (S, φ ◦ tn∂). Our strategy is as follows

(1) Observe that to show ξn is tight, it suffices by [30, Theorem 1.4] to show that its 
contact invariant c(ξn) ∈ HF+(−(Y−1/n(K))) is not zero.

(2) Fit HF+(−(Y−1/n(K))) into an exact triangle of modules over F[U ]

HF+(−(Y−1/n(K));F) HF+(−Y ;F)

HF+(−Y0(K);F[Cn])
GF
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where the bottom term is a twisted version of the Floer homology for zero surgery 
on the binding, with coefficients in the group algebra of the cyclic group Cn = Z/nZ.

(3) Show that non-triviality of F , restricted to a particular subgroup

HF+(−Y0(K), s1−g;F[Cn]),

implies c(ξn) 
= 0. Here s1−g is the spinc structure on the fibered 3-manifold Y0(K)
whose Chern class evaluates to 2 − 2g on the fiber and which is cobordant through 
the surgery cobordism to the spinc structure associated to ξ.

(4) Show that the subgroup from Step (3) is isomorphic to F[Cn], as an F[U ]-module 
where U acts as zero. In particular, this group is a vector space of dimension n
over F.

(5) Conclude, by Step (3) and exactness at −Y0, that c(ξn) 
= 0 provided that

n > dimF coker U : HF+(−Y ) → HF+(−Y ),

and relate dimF coker U to N(Y ).

There are two main technical issues involved in implementing this strategy. The first 
pertains to Steps (2) and (3). The issue is that while the surgery exact triangle used 
for Step (2) appears in various places in the literature, neither the definition nor the 
geometric content of the maps in the triangle as required in Step (3) is totally clear. We 
resolve this issue by first relating the maps in the exact triangle to maps on twisted Floer 
homology groups associated to 2-handle cobordisms, and then relying on a naturality 
result for the contact submodule in twisted Floer homology under these latter maps. 
In order to achieve this, we establish a general exact triangle satisfied by the (twisted) 
Floer homologies of certain triples of Dehn filled manifolds using a well-known “exact 
triangle detection lemma”. The above surgery triangle, and indeed all previously known 
exact triangles satisfied by Heegaard Floer modules of closed three manifolds, can be 
viewed as specializations. So as not to disrupt the flow of the argument, this discussion 
is postponed to Section 5.

The other technical issue is that Step (4) fails when the fiber surface S has genus 
one; the relevant summand of HF+(−Y0(K), F[Cn]) is infinite dimensional in this case. 
To account for this, we alter our coefficients through the discussion, replacing F with a 
certain Novikov field Λ, which is the coefficient module for Floer homology perturbed 
by a 2-form. Using Floer homology perturbed by a 2-form Poincaré dual to a meridian 
of the binding, the case of genus one proceeds exactly as above.

2.1. Essentials of the proof

With the general outline of our proof in place, we turn to the details of the argu-
ment. Suppose W : Z1 → Z2 is a compact oriented cobordism between closed connected 
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oriented 3-manifolds Z1 and Z2. For each spinc structure s on W there is an induced 
homomorphism between the Heegaard Floer homology groups of Z1 and Z2. More gen-
erally, if A is a module for the group algebra F[H1(Z1; Z)], there is a homomorphism in 
Floer homology with twisted coefficients,

FA

W,s : HF+(Z1, s1;A) → HF+(Z2, s2;A⊗F[H1(Z1)] K(W )),

where si = s|Zi
, and K(W ) = F[Im(H1(∂W ) → H2(W, ∂W ))] (cf. [32, Theorem 3.8]).

In the case that W consists of a single 2-handle addition along a knot, the induced 
homomorphism is defined by counting holomorphic triangles in a suitable Heegaard 
triple-diagram. Explicitly, suppose that Zi are described by pointed Heegaard diagrams 
(Σ, α, γi, w) such that (Σ, α, γ1, γ2, w) is an admissible triple diagram describing W
and adapted to the knot in the standard way. Then the Floer chain groups for Zi are 
generated over the appropriate coefficient modules by intersection points in Tα ∩ Tγi , 
and FA

W is the map induced in homology by the chain map

FA

W (U−j · x) =
∑

y∈Tα∩Tγ2

∑
ψ∈π2(x,Θ,y)

#M(ψ)A(ψ)Unw(ψ)−j · y,

where the sum is over homotopy classes of triangles ψ whose associated moduli space 
M(ψ) has dimension 0, and Θ ∈ Tγ1 ∩ Tγ2 is a canonical intersection point. Here A :
π2(x, Θ, y) → K(W ) is an “additive assignment” that we now describe in the situations 
relevant for us; namely, in the case of a 2-handle cobordism associated to a “zero surgery” 
(see [32] for more details, or Section 5 below).

Assume that Z0 is the 3-manifold resulting from 0-framed surgery along a null-
homologous knot in a 3-manifold, Z, and that W is the associated cobordism. The 
oriented boundary of W is given as

∂W = −Z ∪ Z0 = −(−Z0) ∪ −Z,

indicating that we can view W as a cobordism either from Z to Z0, or from −Z0 to 
−Z. The latter viewpoint will be more relevant for our purposes. Note that K(W ) =
F[H1(Z0)], so that any choice of coefficient module A chosen for −Z0 will induce the 
module A ⊗F[H1(Z0)] K(W ) = A for the Floer homology of −Z.

We will primarily specialize to the case where A = F[Cn] is the group algebra over F
on the cyclic group Cn, though we will also use coefficients in the group algebra on Cn

over the Novikov field Λ. For both, suppose that we are given a Heegaard triple diagram 
compatible with the cobordism as above, so that it contains a curve representing the 
0-framed longitude. On this curve we place a basepoint p. Then for ψ ∈ π2(x, Θ, y) let 
np(∂ψ) be the algebraic number of times the boundary of ψ meets the codimension-one 
submanifold (of the Lagrangian torus) determined by p. Taking coefficients in the module 
F[Cn], where Cn is the cyclic group of order n with fixed generator ζ, the map induced 
by W can be written
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F
F[Cn]
W (ζk · U−j · x) =

∑
y∈Tα∩Tγ2

∑
ψ∈π2(x,Θ,y)

#M(ψ) ζnp(∂ψ)+k · Unw(ψ)−j · y (3)

yielding a map on homology

F
F[Cn]
W : HF+(−Z0;F[Cn]) → HF+(−Z;F[Cn]).

Note that the factor involving ζ on the right side of (3) is the additive assignment.
When we view W as a cobordism from Z to Z0, then for any coefficient module A

over F[H1(Z)], the induced module over F[H1(Z0)] is

A⊗F[H1(Z)] K(W ) ∼= A⊗F[H1(Z)] F[H1(Z0)] ∼= A[T, T−1],

with isomorphisms induced by the splitting H1(Z0) ∼= H1(Z) ⊕ Z, and where the addi-
tional variable T corresponds to a generator of the Z summand. For F coefficients, we 
thus have a chain map

F F

W (U−j · x) =
∑

y∈Tα∩Tγ2

∑
ψ∈π2(x,Θ,y)

#M(ψ)Tnp(∂ψ) · Unw(ψ)−j · y (4)

which induces a map

F F

W : HF+(Z) → HF+(Z0;F[T, T−1]).

Note that in equations (3) and (4) we use the same symbols x, y, α, . . . to correspond to 
generators and Heegaard circles that play corresponding roles in the equations, though 
they denote generators in different groups, and circles in different Heegaard triples, in 
the two equations. In particular, in (3) the pair (α, γ1) describe −Z0 and (α, γ2) gives 
−Z, while in (4), (α, γ1) corresponds to Z and (α, γ2) describes Z0.

We will ultimately need to use the map (3) in the case that −Z0 = −Y0(K) and 
−Z = −(Y−1/n(K)) = (−Y )1/n(K), where K is the connected binding of an open book 
in a 3-manifold Y supporting a contact structure ξ as above. Note that Z0 is indeed 
obtained by zero surgery on a knot in Z; namely, the core of the surgery solid torus 
used to obtain Z as −1/n surgery on K ⊂ Y . Moreover, this knot is fibered in Z with 
monodromy differing from that of K by n right-handed boundary Dehn twists, and 
thus it induces the contact structure we called ξn on Z = Y−1/n(K). While this is the 
application we have in mind (cf. Steps (2) and (3) of the outline given at the beginning 
of this section), for the moment we suppress the auxiliary 3-manifold, fibered knot, and 
contact structure, (Y, ξ, K), and simply consider the general case of a fibered knot L ⊂ Z

inducing a contact structure which we abusively denote by ξ, and the associated zero 
surgery Z0.

We will need a generalization of the Heegaard Floer contact invariant introduced 
in [30] to the situation of twisted coefficients. This generalization is alluded to in [30, 
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Remark 4.5] and further developed in [25, Section 4]. The construction associates to a 
contact structure ξ on Z and any module A over F[H1(Z)], a distinguished submodule:

c(ξ;A) := ι(A) ⊂ HF+(−Z;A).

This contact submodule is generated by the inclusion ι of the homology of the “bottom-
most” non-trivial filtered submodule of the knot Floer homology of a fibered knot L
supporting ξ (which is isomorphic to A by [30, proof of Theorem 1.1]) into the Floer 
homology of −Z. Strictly speaking, the literature only refers to the contact element
in twisted Floer homology, but this does not make sense with coefficients in a general 
module.

The contact submodule behaves well with respect to 2-handle cobordisms like the one 
described above, corresponding to 0-surgery on the binding L, a fact which we now make 
precise. To state the result, note that there is a canonical spinc structure s1−g on Z0
determined by

• s1−g is cobordant through the surgery cobordism to the spinc structure on Z deter-
mined by the contact structure, and

• if Ŝ denotes the fiber of the open book, capped off in Z0, then we have:

〈c1(s1−g), [Ŝ]〉 = 2 − 2g. (5)

Lemma 2.1. Let L ⊂ Z be a fibered knot with induced contact structure ξL. If the fiber 
of L has genus greater than one, then for any module A over F[H1(Z0(L))] there is an 
identification

HF+(−Z0(L), s1−g;A) ∼= A

as a trivial F[U ]-module, i.e. U acts as zero. Moreover, s1−g is the unique spinc-structure 
satisfying (5) that supports non-zero Floer homology. The image of the map

FA

W : HF+(−Z0(L), s1−g;A) → HF+(−Z, sξ;A)

induced by the 0-surgery cobordism is the contact submodule c(ξL; A).
All of the above remains true if the genus of the fiber is one, provided that we take 

coefficients in an algebra over Λω, where Λω is the Novikov field viewed as a module over 
F[H1(Z0)] via a choice of closed 2-form ω which evaluates non-trivially on the capped-off 
fiber.

In the Novikov twisted case, the primary ground algebra for our purposes is Λω[Cn], 
where ω is Poincaré dual to the class of the fiber. We refer to Section 5 for details 
regarding Novikov ring coefficients.
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Proof. In [30, Proposition 3.1], Ozsváth-Szabó construct a Heegaard triple diagram for 
the surgery cobordism W : −Z0(L) → −Z with the following properties:

• The diagram is weakly admissible for the unique spinc structure on W extending 
s1−g.

• There are precisely two intersection points u, v providing generators for the chain 
complex CF+(−Z0(L), s1−g), and the only nontrivial differential is ∂+(U−ju) =
U−j+1 ·v. Thus HF+(−Z0(L), s1−g) is generated by the homology class of u. More-
over, for any other intersection point, x, the quantity 〈c1(sw(x)), [Ŝ]〉 is strictly 
greater than 2 − 2g. In particular there are no intersection points corresponding 
to any other spinc structures satisfying (5).

• There is a unique holomorphic triangle ψ contributing to the image of u under the 
chain map FW .

• The image of u is a cycle representing the contact invariant c(ξ) ∈ HF+(−Z). More 
precisely, the image of u is the unique generator for the knot Floer chain complex 
for L, in filtration level −g.

Using the same diagram for the chain complexes and chain maps with twisted coeffi-
cients gives the desired result. Indeed, all of the statements above remain true with A
replacing the implicit F coefficients. Note that the second item in this case establishes an 
isomorphism HF+(−Z0(L), s1−g; A) ∼= A as a trivial F[U ]-module, but generation by u
is ambiguous; in particular, it does not mean generation as an F[H1(Z0)]-module since 
A may not even be finitely generated over F[H1(Z0)]. This is, in essence, why one needs 
to talk about the contact submodule rather than the contact element in the most general 
case.

When g = 1, the key difference is that c1(s1−g) is torsion and the diagram fails to be 
admissible. However, it fails to be admissible only because of positivity of the periodic 
domain corresponding to the homology class of the fiber. If we take coefficients in an 
algebra over Λω, where ω evaluates non-trivially on this class, then no admissibility is 
required for this periodic domain. �

Just as with contact element in untwisted Floer homology, non-vanishing of the con-
tact submodule implies tightness (cf. [30, Theorem 1.4]).

Lemma 2.2. Suppose a contact structure ξ is overtwisted. Then the contact submodule is 
trivial, i.e. c(ξ; A) ≡ 0 for any ground module A.

Proof. This follows in exactly the same manner as [30, Proof of Theorem 1.4], noting 
only that the Künneth theorem for the knot Floer filtration of the connected sums of 
knots holds with arbitrary coefficient modules and that the contact submodule associated 
to the overtwisted contact structure induced by the left-handed trefoil is trivial over any 
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ground module (this latter fact can be calculated directly or deduced from the universal 
coefficients theorem and the fact that F[H1(S3)] = F). �

The preceding two lemmas yield an immediate corollary.

Corollary 2.3. In the situation of Lemma 2.1, and for g � 2, if the map

F
F[Cn]
W : HF+(−Z0(K), s1−g;F[Cn]) → HF+(−Z, sξ;F[Cn])

is nonzero, then ξL is tight. If g = 1 and the map

F
Λω [Cn]
W : HF+(−Z0(K), s1−g; Λω[Cn]) → HF+(−Z, sξ; Λω[Cn])

is nonzero, then ξL is tight. �
We now return to the surgery exact triangle. In this case, the manifold Z above 

becomes Y−1/n(K), while Z0 = Y0(K). We have:

Proposition 2.4. Let n > 0, and suppose the genus of the fiber is greater than one. If, for 
the map

F : HF+(−Y0(K),F[Cn]) → HF+(−Y−1/n(K);F)

appearing in the surgery triangle, the restriction to the summand corresponding to s1−g

is nontrivial, then the contact structure ξn on Y−1/n is tight. The same is true if the 
genus of the fiber is one, provided we consider the surgery triangle with coefficients in 
the Novikov module Λω associated to a 2-form evaluating non-trivially on the fiber.

Proof. In Section 5 the map F appearing in the surgery triangle is defined on the chain 
level by

F (U−jζkx) :=
∑

ψ∈π2(x,Θ,y)
μ(ψ)=0

np(∂ψ)=−k mod n

#M(ψ) · tω(ψ) · Unw(ψ)−j · y

(cf. equation (11) below). Here t is the variable appearing in the Novikov ring Λω, which 
we set equal to 1 if the genus of the fiber is at least two. Comparing this to the definition 
of the cobordism-induced homomorphism F F[Cn]

W in (3) above, it is easy to check that 
there is a commutative diagram
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CF+(−Y0;F[Cn])
F

F[Cn]
W � CF+(−Y−1/n;F[Cn])

CF+(−Y0;F)

N
�

FW � CF+(−Y−1/n;F)

Π

�

F

�

where N and Π are chain maps induced by the coefficient F-homomorphisms N : F →
F[Cn] and Π : F[Cn] → F given by

N (1) =
n−1∑
k=0

ζk and Π(p(ζ)) = p(0),

where p(ζ) denotes a polynomial in ζ. In particular, we see that if F induces a nontrivial 
map in homology (in a particular spinc structure), then so does F F[Cn]

W . An analogous 
diagram exists with Λω replacing F throughout. The result follows now from the previous 
corollary. �

Our main results (Theorems 1 and 2) now follow easily. We give a combined restate-
ment.

Theorem 2.5. Let Y be a closed oriented 3-manifold. Then there exists a constant 
N(Y ) � 0 with the following property. Let K ⊂ Y be a fibered knot with monodromy φK , 
and let τK = τ(φK) be the fractional Dehn twist coefficient of φK. Then

(1) For all n > N(Y ), the contact structure ξn supported by the open book with mon-
odromy obtained from φK by composition with n boundary-parallel Dehn twists is 
tight.

(2) We have the bound

|τK | � N(Y ) + 1.

Moreover, we can take

N(Y ) = 1
2(dimFĤF(Y ) − |TorZ H1(Y ;Z)|). (6)

Here ĤF(Y ) indicates the sum of Heegaard Floer groups over all spinc structures 
on Y , while |TorZ H1(Y ; Z)| is the order of the torsion subgroup of the first homology.

Proof. We treat the case that the fiber genus is at least two explicitly; the genus 
one case is exactly the same, using coefficients in Λω, where ω is Poincaré dual to 
the meridian of the binding. Strictly speaking, this latter argument produces (6) with 
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dimΛĤF(Y ; Λω) in place of dimFĤF(Y ). These dimensions are equal, however, since 
ĤF(Y ; Λω) ∼= ĤF(Y ) ⊗F Λ by the universal coefficient theorem and the fact that 
[ω] = 0 ∈ H2(Y ; R).

Proceeding, then, consider the surgery exact triangle:

HF+(−Y−1/n(K);F) HF+(−Y ;F),

HF+(−Y0(K);F[Cn])
GF

The summand of the bottom module corresponding to s1−g is, according to Lemma 2.1, 
isomorphic to F[Cn] and therefore of dimension n over F. By Lemma 2.1 again and 
U -equivariance of the sequence, the component of G mapping into the s1−g summand fac-
tors through the cokernel of the action of U on HF+(−Y ; F), which is finite-dimensional 
and independent of n. Hence for n sufficiently large, we conclude F is nonzero and 
therefore the contact structure ξn on Y−1/n is tight by Proposition 2.4.

To estimate the size of n required, observe that it suffices that n be larger than the 
dimension of the cokernel of U , acting on HF+(−Y ). In a given spinc structure it is easy 
to see that dim ĤF(Y, s) = dim kerU + dim cokerU = 2 dim cokerU + ks, where ks is 
the rank of HF∞(Y, s) as a module over F[U, U−1]. Note that ks is 0 if s is non-torsion, 
and at least 1 in the torsion case (cf. [27, Theorem 10.1] and [29, Lemma 2.3]). Adding 
over all spinc structures, if we set N(Y ) = 1

2 (dim ĤF(Y ) − |TorZH1(Y )|) it follows that 
adding at least N(Y ) +1 right twists to the monodromy of any open book with connected 
binding will produce a tight contact structure.

According to Honda–Kazez–Matic [13, Theorem 1.1 and Propositions 3.1, 3.2], the 
fractional Dehn twist coefficient of the monodromy of an open book supporting a tight 
contact structure is nonnegative. Since we added N(Y ) + 1 right twists, the new mon-
odromy is φK ◦ tN(Y )+1

∂ . Hence

0 � τ(φK ◦ tN(Y )+1
∂ ) = τK + N(Y ) + 1,

which gives half the desired inequality. For the other half, replace φK by φ−1
K . This 

amounts to reversing the orientation on Y , giving a lower bound on τ(φ−1
K ) = −τ(φK)

in terms of N−Y . But since (6) is insensitive to the orientation of Y (cf. [27, Proposi-
tion 2.5]), the result follows. �
Remark 2.6. We could, by the argument in the proof, take

N(Y ) = 1
2 max

s
(dim ĤF(Y, s) − ks),

which gives (2) in the case that Y is a rational homology sphere. Indeed, note that the 
homomorphism G is a sum of homogeneous terms corresponding to spinc structures on 
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the surgery cobordism −Y → −Y0(K), hence just one term of G maps to the spinc

structure s1−g on −Y0(K). Therefore we may consider one spinc structure on −Y at a 
time.

Remark 2.7. It follows from the main result of [23] together with work of Lidman [20]
that if s is a torsion spinc structure on a 3-manifold with positive first Betti number, 
there is an estimate

ks � LY :=
{

2 · 3(b1(Y )−1)/2 if b1(Y ) is odd
4 · 3b1(Y )/2−1 if b1(Y ) is even.

Thus, letting L(s) = LY if s is torsion and L(s) = 0 otherwise, we can take

N(Y ) = 1
2 max

s
(dim ĤF(Y, s) − L(s)).

Remark 2.8. If Y is an L-space, meaning that Y is a rational homology sphere with 
dim ĤF(Y ) = |H1(Y ; Z)|, then the theorem says |τ(φK)| � 1 for any fibered knot K
in Y . In fact, we must have

|τ(φK)| < 1 for any fibered K in an L-space.

Indeed, if K ⊂ Y has |τ(φK)| � 1 then Y admits a taut foliation, according to [14, Theo-
rem 1.2]. On the other hand, L-spaces do not admit taut foliations by [25, Theorem 1.4]. 
Note that while |τ(K)| � 1/2 for knots in S3, this is not true for knots in arbitrary 
L-spaces.

To illustrate the last statement, if K ⊂ S3 is the right trefoil, then K is fibered with 
τK(φ) = 1/6. The result of +1 surgery on K is the Poincaré sphere Y = −Σ(2, 3, 5), 
an L-space, and the induced knot K ⊂ Y (the core of the surgery) is fibered with twist 
coefficient −5/6, since +1 surgery corresponds to addition of a left Dehn twist.

In a similar spirit, we turn to the proof of Corollary 5:

Proof of Corollary 5. Suppose that K is a fibered knot in a 3-manifold Y with mon-
odromy φK . Then the n-fold cyclic branched cover Σn(K) is well-defined (in general, it 
depends on a homomorphism of the knot group to Z/nZ, but this is specified by counting 
intersections with the fiber) and has an open book decomposition with the same fiber 
and monodromy φn

K . The proof of Theorem 2.5 shows that

|τ(φn
K)| ≤ 1 + dimF coker(U : HF+(Σn) → HF+(Σn)).

Homogeneity of the twist coefficient shows that the left-hand side equals n · |τ(φK))|
whereas 1 + dim HFred(Σn) is at least as large as the right-hand side, since reduced 
Floer homology is defined as the limit (see [28, Definition 4.7])

HFred := lim
k→∞

coker Uk. �
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3. Application to braids

Fractional Dehn twist coefficients can be defined in various contexts; for example 
Malyutin [21] gave a definition of a “twist number” for closed braids by considering 
a braid as an element of the mapping class group of a punctured disk (see also Ito–
Kawamuro [16]). For a braid β write τ(β) ∈ Q for the twist number; note that while 
τ(β) is conjugation-invariant and so depends only on the closure β̂, it is not an invariant 
of the link type of β̂. That is to say, different closed braid representatives of a given link 
may have different twist numbers (for example, while it is easy to construct braids with 
arbitrarily large twist number, it follows from [21, Proposition 13.1] that if β is a Markov 
stabilization of another braid, then |τ(β)| � 1).

The following application of Theorem 2.5 was pointed out to us by John Baldwin and 
Liam Watson.

Theorem 3.1. Let L be a link in S3, and let β̂ be any closed braid isotopic to L and 
having an odd number of strands. Then

|τ(β)| � dimF K̃h(−L) − |det(L)| + 2.

Here K̃h(−L) denotes the reduced Khovanov homology of the mirror of L, with co-
efficients in F.

Proof. If β̂ is a closed braid with axis the unknot U and representing the link type L, 
then forming the double cover of S3 branched along β̂ gives rise to a 3-manifold Σ2(L)
equipped with an open book decomposition lifting the decomposition of S3 with disk 
pages and binding U . Since β has an odd number of strands, this open book structure 
on Σ2(L) has connected binding.

If φ denotes the monodromy of the lifted open book, then it is not hard to check that 
τ(φ) = 1

2τ(β). From Theorem 1 and using (1), we have

|τ(φ)| � 1
2(dim ĤF(Σ2(L)) − |H1(Σ2(L))|) + 1.

Now recall that there is a spectral sequence whose E2 page is the reduced Khovanov 
homology K̃h(−L), and which converges to ĤF(Σ2(L)) (see [31]). Hence

dim ĤF(Σ2(L)) � dim K̃h(−L).

Moreover, |H1(Σ2(L))| = | det(L)| unless the latter quantity is 0. Combining these ob-
servations gives the desired result. �

Suppose that β′ is an alternating braid on n � 3 strands. Using Corollary 5.5 of 
[21], for example, it is easy to see that τ(β′) = 0. However, it is not the case that any 
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braid Markov equivalent to β′ has vanishing twist number. The following shows that 
nevertheless, there is an upper bound on the twist number of a braid representing the 
same link type as β̂′.

Corollary 3.2. Let L be an alternating link, and β any braid on an odd number of strands 
with the property that the closure β̂ is isotopic to L. Then

|τ(β)| < 2.

Proof. Since β̂ is the alternating link L, the double branched cover Σ2(L) is an L-space, 
and moreover the spectral sequence from K̃h(−L) to ĤF(Σ2(L)) collapses (cf. [31]). The 
proof of Theorem 3.1 then gives |τ(β̂′)| � 2, and the strict inequality follows from the 
remark at the end of Section 2. �

The corollary applies equally, of course, to braids whose closures are quasi-alternating 
in the sense of Ozsváth-Szabó [31]: the double cover of S3 branched along such a link is 
also an L-space.

4. Graded refinement

Here we provide the proof of Theorem 6. To do so, we make use of absolute gradings 
constructed on Heegaard Floer homology by Ozsváth and Szabó [32] (in the case of 
torsion spinc structures) and Huang and Ramos [15] (in general). We also clarify some 
properties of the general grading by homotopy classes of plane fields in the latter case.

4.1. Plane field grading on Floer homology

Recall that Heegaard Floer homology carries a relative cyclic grading in each spinc

structure. Huang and Ramos [15] proved that this can be lifted to an absolute grading 
on HF◦(Y ) by the set of homotopy classes of oriented 2-plane fields on Y , which we will 
denote by P(Y ) (here HF◦ indicates any of the versions of Heegaard Floer homology). 
Our goal in this subsection is to calculate the absolute grading on the Floer homology 
of a fibered 3-manifold, in a canonical spinc structure.

To begin, recall the homotopy classification of oriented plane fields on a closed oriented 
3-manifold (for a much more detailed discussion, see [10]). The set P(Y ) is a Z-set whose 
orbits correspond bijectively to spinc structures; in particular if ξ is an oriented plane 
field, then there is an associated spinc structure sξ. The Z-orbit in P(Y ) corresponding 
to a given spinc structure s is isomorphic to Z/d(s)Z, where d(s) is the divisibility of 
c1(s), see e.g., [10, Section 4] or [19, Lemma 2.3 and Section 5(i)]. In particular, the 
orbit in P(Y ) corresponding to a spinc structure with torsion first Chern class is free. 
We remark that while the set P(Y ) is independent of the orientation on Y , the action 
of Z on P(Y ) does depend on this orientation: specifically, this action is negated under 
orientation reversal.
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The homotopy class of a plane field ξ for which c1(sξ) is a torsion class is specified by 
sξ together with a rational number called the Hopf invariant. This quantity is defined as 
follows: choose a compact almost-complex 4-manifold (W, J) with ∂W = Y as oriented 
manifolds, and TY ∩ J(TY ) homotopic to ξ. Then

h(ξ) = h(ξY ) = 1
4(c21(W,J) − 3σ(W ) − 2χ(W ) + 2), (7)

where σ is the signature of W , χ(W ) is the Euler characteristic, and c21 denotes the 
rational-valued square of the Chern class.

It is not hard to determine the effect of reversing orientation of Y on the Hopf invari-
ant: since the quantity c21 − 3σ − 2χ vanishes for closed almost-complex 4-manifolds, we 
have

h(ξY ) + h(ξ−Y ) = 1. (8)

Huang and Ramos proved certain properties of the grading on Floer homology by 
P(Y ), notably:

• For any plane field ξ ∈ P(Y ), we have HF+
[ξ](Y ) ⊂ HF+(Y, sξ).

• The grading by plane fields lifts the relative grading on Heegaard Floer homology 
defined by Ozsváth and Szabó. Moreover, if c1(sξ) is torsion, the summand HF◦

[ξ](Y )
coincides with the Q-graded summand HF◦

h(ξ)(Y, sξ).

To describe the final property, let W : Y1 → Y2 be a cobordism, and let pi ∈ P(Yi) for 
i = 1, 2. We say plane fields p1 and p2 are related by W if there is an almost-complex 
structure J on W such that the fields of complex tangencies TYi ∩ J(TYi) represent pi, 
for i = 1, 2.

• If x ∈ HF+
p1

(Y1) is a homogeneous element such that FW (x) has a nonzero component 
in HF+

p2
(Y2), then p1 and p2 are related by W .

To expand on this point, we recall some of the homotopy classification of almost-
complex structures on 4-manifolds. First, observe that an almost-complex structure on 
an oriented 4-manifold W is the same as a lift of the classifying map for TW from 
BSO(4) to BU(2). Since the fiber of the bundle BU(2) → BSO(4) is SO(4)/U(2) ∼= S2, 
we are interested in obstruction theory for a bundle over W with fiber S2. (An alternate 
perspective is given by choosing a metric on W , after which a choice of almost-complex 
structure is the same as a non-vanishing section of the rank-3 vector bundle Λ+ of self-
dual 2-forms on W .)

Proposition 4.1. Let W : Y1 → Y2 be a cobordism between connected oriented 3-manifolds. 
For a spinc structure s ∈ spinc(W ), let Js(W ) denote the set of homotopy classes of 
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almost-complex structures on W whose associated spinc structure is s, and assume Js(W )
is nonempty. Then there is a transitive Z-action on Js(W ), such that the restriction 
Js(W ) → P(Yi), J �→ TYi ∩ JTYi, is a map of Z-sets.

Proof. Choose a nicely embedded path [0, 1] → W connecting the two boundary compo-
nents; identify its neighborhood with [0, 1] ×B3. Given an almost-complex structure J , 
regarded as a section of the unit sphere bundle of Λ+(W ), we trivialize the latter over 
[0, 1] × B3 and construct J ′ such that J ′ = J away from the arc, and over each t ×B3

the two sections glue over ∂B3 to give the Hopf map S3 → S2. This is easily seen to 
correspond to generators of the Z actions on P(Yi). Transitivity of the action follows 
from the fact that the obstruction to homotopy between two elements of Js(W ) lies in 
H3(W ; π3(S2)) = Z, and there is no further obstruction. �

The following provides the calculation we need:

Lemma 4.2. Let M be an oriented, fibered 3-manifold with oriented fiber Ŝ having 
genus g > 1. Write [T Ŝ] for the plane field of oriented tangents to the fibers. Then 
HF+(M, s1−g) is supported in absolute grading [T Ŝ] − 1.

Proof. Construct a Lefschetz fibration X over D2 with oriented boundary ∂X = −M , 
whose singular fibration extends the surface bundle structure on the boundary. Removing 
a 4-ball from X, Ozsváth and Szabó show in [29, Theorem 5.3] that there is a unique 
spinc structure tcan on X having 〈c1(tcan), Ŝ〉 = 2 − 2g and inducing a nontrivial map 
(in fact an isomorphism) HF+(M, s1−g) → HF+

0 (−S3), where the subscript in the latter 
refers to the absolute Q-grading, and we take the natural orientation on S3 to be that 
induced by B4. According to the third bullet point above, there is an almost-complex 
structure on X−B4 relating the plane fields giving the gradings on these groups; we can 
identify one such as follows. Note that X admits a canonical symplectic structure [12, 
Theorem 10.2.18] (cf. [11]) to which is associated a natural homotopy class of compatible 
almost-complex structure, from which an element J0 can be chosen so that the fibers 
of the Lefschetz fibration X → D2 are J0-holomorphic. In particular the adjunction 
formula implies that c1(J0) pairs with the fiber Ŝ to give 2 − 2g, and from [29] the spinc

structure associated to J0 is tcan. Now P(S3) is identified with the integers via the Hopf 
invariant (7), and the standard tight contact structure on S3 has Hopf invariant 0. We 
may suppose that the chosen B4 ⊂ X is a standard Darboux ball, so that the plane field 
ξ0 = TS3 ∩ J0(TS3) is isotopic to the standard contact structure on S3. However, we 
are considering ξ0 as a plane field on −S3, and from (8), we have that h([ξ0]−S3) is +1. 
Therefore a member of JŜ(X − B4) relates the tangent field [T Ŝ] (and no other plane 
field on M , by Proposition 4.1) to grading level 1 in HF+(−S3). Hence only [T Ŝ] − 1
is related to the grading of HF+

0 (−S3) = HF+
0 (S3). The result follows from the third 

bullet point above. �
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Given an oriented 3-manifold Y with positive co-oriented (and hence oriented) contact 
structure ξ, Giroux’s theorem [9] implies that we can find an open book decomposition 
for Y that supports ξ, has connected binding K, and has pages S of genus g > 1. Let 
W : −Y0 → −Y be the surgery cobordism obtained by attaching a 2-handle along K with 
framing determined by the pages, “turned around” and equipped with the unique spinc

structure extending s1−g on −Y0. Then Lemma 2.1 implies that the contact invariant 
of ξ is equal to the image under F+

W of the nonzero element of HF+(−Y0, s1−g) ∼= F (in 
fact, in this untwisted situation Lemma 2.1 is nothing but [30, Proposition 3.1]).

Now construct a Lefschetz fibration X with oriented boundary −Y0 and whose singular 
fibration extends the surface bundle structure on the boundary, as in the proof above. 
The spinc structure on W glues with tcan on X to give a spinc structure on the cobordism 
X∪W , with the property that the contact invariant c(ξ) is equal to the “mixed invariant” 
Fmix
X∪W (Θ−) (cf. Plamenevskaya [35, Lemma 1] for more details). In the case that c1(sξ)

is torsion, it follows quickly from the formula for the shift in rational grading induced 
by cobordisms that c(ξ) lies in rational grading h(ξ−Y ) − 1 = −h(ξY ). This corrects 
[30, Prop. 4.6], though the correction has been made in the literature long ago, e.g. [35, 
Section 4].

We remark that for general sξ, Huang and Ramos claim that the contact invariant 
lies in the absolute grading of Floer homology corresponding to the plane field [ξ]. In 
light of the above and the second bullet point previously, this should be interpreted as 
saying that c(ξ) lies in the graded summand of ĤF(−Y ) that is dual to the summand 
of ĤF(Y ) in grading [ξ]; in terms of plane fields this says c(ξ) ∈ ĤF [ξ]−1(−Y ) (where 
in the subscript the action of −1 is taken using the orientation on −Y ). However, since 
in our application we will focus on the case that c1(sξ) is torsion, we do not pursue this 
discussion.

Observe that the set P(Y ) carries a natural involution [ξ] �→ [ξ]∗ induced by reversing 
the orientation of the plane field ξ. It can be seen that this involution respects the Z
action, i.e., ([ξ] + n)∗ = [ξ]∗ + n. In fact we have:

Lemma 4.3. For any oriented 3-manifold Y with oriented plane field [ξ], there is an 
isomorphism

HF+
[ξ](Y, sξ) ∼= HF+

[ξ]∗(Y, sξ∗).

This can be seen as a refinement of the conjugation invariance of Floer homology, 
since the spinc structure associated to [ξ]∗ is conjugate to sξ. Given Huang and Ramos’s 
construction, the proof is routine and based on the observation that if x is a Heegaard 
Floer generator coming from the diagram (Σ, α, β, z) and with corresponding spinc struc-
ture s, then the same intersection point interpreted in (−Σ, β, α, z) corresponds to the 
conjugate of s and gives rise to the negative of the gradient-like vector field originally 
determined by x (cf. [15], [27, Theorem 2.4]).



22 M. Hedden, T.E. Mark / Advances in Mathematics 324 (2018) 1–39
4.2. Adding twists to open books

With these preliminaries in place, we return to the homomorphism

G : HF+(−Y,F) → HF+(−Y0(K),F[Cn])

appearing in the surgery triangle. We assume for the rest of the section that the spinc

structure corresponding to the contact structure ξ has torsion first Chern class. Here, as 
before, our arguments are given for the case g > 1 but carry over directly to the genus 
1 case by replacing F by the Novikov field Λ. We leave the attendant adjustments of the 
following proofs to the reader.

Comparing the definition of G, given in (10) below, with (4) defining cobordism maps 
in twisted Floer homology, we observe that G is the map on Floer homology induced by 
a 2-handle cobordism connecting −Y to −Y0(K), followed by the change of coefficients 
homomorphism induced by the projection F[T, T−1] → F[T, T−1]/〈Tn−1〉 ∼= F[Cn]. Note 
that if W : Y → Y0(K) is the standard 2-handle cobordism such as the one considered 
above, then the cobordism under consideration here is −W . For the present purposes it 
is convenient to consider −W as a cobordism from Y0(K) to Y ; recall that Y carries a 
contact structure we denote by ξ, supported by an open book with connected binding 
K and page genus g.

Proposition 4.4. The surgery cobordism −W : Y0(K) → Y admits an almost-complex 
structure J with the following properties:

• The tangents to the fiber surfaces in Y0(K) are positively J-invariant.
• If η = TY ∩ J(TY ) is the plane field on Y induced by J , then the homotopy classes 

[η] and [ξ] are related by

h([ξ]Y ) − h([η]Y ) = 2g − 1.

Proof. We have seen that an oriented, fibered knot L in an oriented 3-manifold M gives 
rise to a positive, oriented contact structure via the Thurston–Winkelnkemper construc-
tion, whose homotopy class we denote TW (M, L). Implicitly, the fiber surface is oriented 
using the orientation on L. Recall that Eliashberg [4] has constructed a symplectic struc-
ture on the surgery cobordism Z(M, L) : M → M0(L) for which the fibration on M0(L)
is symplectic and such that the contact planes on M are symplectically positive. It 
follows as before that there is an almost-complex structure (compatible with the sym-
plectic structure) on Z(M, L) relating the contact field TW (M, L) on M to the plane 
field tangent to the fibers in M0(L).

Applying this construction to the oriented knot K lying in −Y gives a plane field 
TW (−Y, K) and an almost-complex structure on the corresponding surgery cobordism, 
which is Z(−Y, K) = −Z(Y, K) = −W . It remains to compare the Hopf invariants 
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of [η] = TW (−Y, K) and [ξ] = TW (Y, K), bearing in mind that we must reverse the 
ambient orientation to do so.

For this, recall that (by the determination above of the grading of the contact invari-
ant, together with symmetries of knot Floer homology) the Hopf invariant of TW (M, L)
is equal to the grading in which the highest nontrivial filtered summand of knot Floer 
homology ĤFK (M, L, g) is supported, which we write as gr(ĤFK (M, L, g)). Therefore, 
h(TW (−Y, K)−Y ) is equal to gr(ĤFK (−Y, K, g)). Using symmetries of knot Floer ho-
mology ([26, Proposition 3.7] and [26, Proposition 3.10] in particular) we obtain

h(TW (−Y,K)−Y ) = gr(ĤFK (−Y,K, g))

= − gr(ĤFK (Y,K,−g))

= −(gr(ĤFK (Y,K, g)) − 2g)

= −h(TW (Y,K)Y ) + 2g.

The result now follows from (8). �
Corollary 4.5. The only elements of HF+(−Y ) that map nontrivially to HF+(−Y0(K),
s1−g; F[Cn]) under the surgery cobordism lie in degree congruent to −h([ξ]Y ) + 1 modulo 
2g − 2.

Proof. The target group is supported in degree [T Ŝ]−Y0 − 1, and we have just seen that 
[T Ŝ]Y0 is related through −W to [η]Y . By Proposition 4.1, and since the divisibility of 
s1−g is 2g − 2, we have that [T Ŝ]Y0 is related only to plane fields congruent to [η]Y
modulo the action of 2g − 2 ∈ Z. Turning the cobordism around, −W relates [η]−Y to 
[T Ŝ]−Y0 , and likewise any plane field obtained from [η]−Y by the action of 2g−2 (where 
now the Z action uses the orientation −Y ). Therefore, the only plane fields on −Y that 
are related to [T Ŝ]−Y0 − 1 through −W have Hopf invariant congruent modulo 2g − 2
to

h([η]−Y − 1) = h([η]−Y ) − 1 = −h([η]Y ) = −h([ξ]Y ) + 2g − 1. �
Theorem 4.6. Suppose that for some n > 0 the restriction to the canonical grading 
[T Ŝ] − 1 of the map in the surgery triangle,

F : HF+
[TŜ]−1

(−Y0(K);F[Cn]) → HF+(−Y−1/n(K);F),

vanishes. Then ∑
k∈Z

dimF(HF+
−h(ξY )+1+(2g−2)k(−Y, sξ;F)/ Im(U)) � n.
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If sξ is self-conjugate and g > 1, then∑
k∈Z

dimF(HF+
−h(ξY )+1+(2g−2)k(−Y, sξ;F)/ Im(U)) � 2n.

Proof. The hypothesis holds if and only if the map G : HF+(−Y, F) → HF+(−Y0(K);
F[Cn]) maps onto the summand in degree [T Ŝ] − 1. Corollary 4.5 shows that the only 
contribution to the image of the map G in that degree comes from its restriction to 
gradings congruent to −h(ξY ) + 1 modulo 2g − 2. By Lemma 2.1 and Corollary 4.2 the 
twisted Floer homology of −Y0(K) in degree [T Ŝ] − 1 has dimension n over F and has 
trivial U -action. Since cobordism maps are U -equivariant, the first statement follows.

For the strengthened conclusion in the self-conjugate case, begin by noting that by 
conjugation invariance, our hypotheses imply that the restriction of F to the summand 
corresponding to s∗1−g also vanishes, and hence the map G surjects to the group

HF+(−Y0(K), s1−g;F[Cn]) ⊕ HF+(−Y0(K), s∗1−g;F[Cn]) ∼= F2n.

Since s1−g and s∗1−g are cobordant through −W only to sξ and s∗ξ , respectively, when sξ
is self-conjugate the group HF+(−Y, sξ; F) maps onto the group above. We claim only 
the indicated degrees can map nontrivially. We have seen this already for the component 
of G mapping into the first factor; for the second, note that from Lemma 4.3, if M is 
fibered then HF+(M, s∗1−g) is supported in degree [T Ŝ]∗ − 1. Observe that if J is an 

almost-complex structure on −W : Y0(K) → Y relating [T Ŝ]Y0 to [η]Y , then −J relates 
[T Ŝ]∗ to [η]∗. Since h(η) = h(η∗), the same argument as above then gives that the degrees 
that can map nontrivially to the second factor above are also congruent to −h(ξY ) + 1
modulo 2g − 2. Hence the sum of groups in these degrees must map onto F2n, which 
gives the result. �

For the next results it is convenient to introduce the notation

Kd(M, s) = dimF(ker(U) ∩ HF+,red
d (M, s;F)) ∈ Z

and

K∗
d(M, s) = dimF(HF+

d (M, s;F)/ Im(U)) ∈ Z

Corollary 4.7. Let ξ be a contact structure on a 3-manifold Y , having torsion first Chern 
class and supported by a genus g open book with connected binding K. Let ξn denote the 
contact structure obtained by adding n right Dehn twists along the boundary of the page. 
Then

n >
∑

d=−h(ξY )+1

K∗
d(−Y, sξ) =⇒ ξn is tight.
mod 2g−2
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If sξ is self-conjugate, then

2n >
∑

d=−h(ξY )+1
mod 2g−2

K∗
d(−Y, sξ) =⇒ ξn is tight.

Proof. Combine Theorem 4.6 and Proposition 2.4. �
Proof of Theorem 7. The statement follows from Corollary 4.7 since the group
HF+

d (−Y, sξ; F)/ Im(U) appearing in the corollary is a quotient of HFred
d (−Y, sξ). �

Corollary 4.8. Let K ⊂ Y be a fibered knot, and let τK be the fractional Dehn twist 
coefficient of the monodromy of K. Then we have an inequality

−1 −
∑

d=−h(ξY )+1
mod 2g−2

K∗
d(−Y, sξ) � τK � 1 +

∑
d=−h(ξY )
mod 2g−2

Kd(−Y, sξ),

where ξ is the contact structure associated to K by the Thurston–Winkelnkemper con-
struction, and we assume c1(sξ) is a torsion class.

If the spinc structure associated to this contact structure is self-conjugate, then in fact

−1 −
⌊

1
2

∑
d=−h(ξY )+1
mod 2g−2

K∗
d(−Y, sξ)

⌋
� τK � 1 +

⌊
1
2

∑
d=−h(ξY )
mod 2g−2

Kd(−Y, sξ)
⌋
.

Proof. For the first inequality of the corollary, observe that adding 1 +
∑

K∗
d(−Y, sξ) right 

twists to the monodromy of K produces an open book supporting a tight contact struc-
ture by the previous corollary, where the sum is over degrees d congruent to −h(ξY ) + 1
modulo 2g− 2. The new monodromy has twist coefficient τK + 1 +

∑
K∗

d(−Y, sξ), which 
must be nonnegative since the supported contact structure is tight [14].

For the upper bound on τK , first observe that for any 3-manifold M with spinc

structure s, there is the relation

Kd(M, s) = K∗
−d−1(−M, s),

which follows quickly from the isomorphism CF±
d (M, s) ∼= CF−d−2

∓ (−M, s), where the 
superscript index indicates cohomology, proved by Ozsváth and Szabó [24], together with 
the long exact sequence relating the different versions of Floer homology.

Now the fibered knot K induces an open book on −Y with oriented fiber S and 
monodromy φ−1

K . Letting ξ̄ denote the associated positive contact structure on −Y , the 
result just obtained says

−τK = τ(φ−1
K ) � −1 −

∑
K∗

d(−Y, sξ̄),
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the sum over degrees congruent modulo 2g − 2 to −h(ξ̄−Y ) + 1 = h(ξ̄Y ). Using the 
observation above, this gives

τK � 1 +
∑

d≡h(ξ̄Y )

K−d−1(−Y, sξ̄) = 1 +
∑

d≡−h(ξ̄Y )−1

Kd(−Y, sξ̄).

As plane fields on Y , the positive contact structure ξ and the now-negative contact 
structure ξ̄ stand in the same relationship as ξ and η in Proposition 4.4, so that h(ξ̄Y ) =
h(ξY ) − 2g + 1 ≡ h(ξY ) − 1 modulo 2g − 2. The desired upper bound follows from the 
fact that sξ = sξ̄.

The bound on τK when sξ is self-conjugate follows similarly, using the stronger con-
clusion in Corollary 4.7 for this case. �
Proof of Theorem 6. By definition, K∗

d(−Y, sξ) and Kd(−Y, sξ) are the dimensions of 
quotient- and sub-spaces of HFred

d (−Y, sξ), respectively. Hence the statement of the 
theorem follows immediately from the first inequality in Corollary 4.8. �
5. Twisted Floer homology and the surgery exact triangle

In this subsection we state and sketch a proof of a general surgery exact triangle 
relating the (twisted) Floer homology of three 3-manifolds obtained by Dehn filling a 
single manifold M with torus boundary. The discussion can be viewed as a synthesis and 
clarification of the literature.

Before stating the theorem, we briefly recall that Heegaard Floer homology of a 
3-manifold Y can be defined with coefficients in any F[H1(Y ; Z)]-module, by appeal-
ing to standard constructions of homology with twisted coefficients (imported to the 
setting of Morse homology) and noting that the fundamental group of the configuration 
space of paths between the Heegaard tori is given by

π1(P(Tα,Tβ),x) ∼= π2(x,x) ∼= Z⊕H1(Y ;Z).

The totally twisted Floer complex CF∞(Y ) is thus freely generated over F[Z ⊕
H1(Y ; Z)] ∼= F[U, U−1] ⊗F[H1(Y ; Z)] by Tα∩Tβ. See [27, Section 8]. The F[U, U−1]-mod-
ule structure coming from the Z summand in π2(x, x) gives rise to a filtration (by 
complexes of F[U ] submodules) of CF∞ with sub-, quotient-, and subquotient complexes 
CF−, CF+, ̂CF . We denote the collection of complexes by CF ◦. Now let Λ denote the 
Novikov ring (which is a field, in this case)

Λ :=
{

Σ
r∈R

ar · tr | ar ∈ F, and {ar|ar 
= 0, r < λ} is finite for all λ ∈ R
}
,

with multiplication defined on monomials by artr ·bsts = arbst
r+s and extended linearly. 

A choice of two form ω ∈ Ω2(Y ; R) defines an F[H1(Y )]-module structure on Λ, where 
η ∈ H1(Y ) ⊂ H1(Y ; R) acts by:
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η( Σ
r∈R

art
r) := Σ

r∈R

art
(r+

∫
Y

η∧ω).

Viewed as an F[H1(Y )]-module in this way, we denote the Novikov ring by Λω. See [1] for 
a nice discussion. Similarly, given a closed curve γ ⊂ Y we can define an F[H1(Y )]-module 
structure on the group algebra of the cyclic group Cn = Z/nZ by:

η(ai · ζi) := ai · ζi+η([γ]),where ζ = e2πi/n ∈ F[Cn],

and [γ] ∈ H1(Y ) is the homology class of the curve. When we view F[Cn] as a module in 
this way, we may refer to it as F[Cn]γ . These definitions thus allow us to speak of Floer 
homology with coefficients in Λω or F[Cn]γ :

CF ◦(Y ; Λω) := CF ◦(Y ) ⊗F[H1] Λω, CF ◦(Y ;F[Cn]γ) := CF ◦(Y ) ⊗F[H1] F[Cn]γ

Given ω ∈ Ω2(Y ; R), or a curve γ ⊂ Y , we can also amalgamate the actions above 
to consider Λ[Cn] as an F[H1(Y )]-module, where the action takes place on Λ and Cn

independently, as defined above. It will often be more convenient to use concrete models 
for these chain complexes, which will be described in the course of the proof of the 
following theorem.

Theorem 5.1. Let M be an oriented 3-manifold with oriented boundary ∂M = T 2, and let 
σ0, σ1, σ2 ⊂ T 2 be a triple of simple closed curves, whose algebraic intersection numbers 
satisfy (for some choice of orientations)

#{σ0 ∩ σ1} = −n, #{σ1 ∩ σ2} = #{σ2 ∩ σ0} = −1,

where n > 0. Then for any 2-form ω which vanishes on ∂M , and for R = F or Λω, there 
is a long exact sequence

HF+(M0;R) HF+(M1;R),

HF+(M2;R[Cn])
GF

where Mj is the 3-manifold obtained by Dehn filling M with slope σj. The module struc-
ture on R[Cn] is defined by the curve σ∗

2 obtained as the core of the filling torus and, 
for n = 1, is isomorphic to R. In each case Λω should be interpreted as the module 
associated with the extension of ω by zero to a 2-form over the filling solid torus.

The maps G and F are related to the maps on twisted Floer homology groups induced 
by the canonical 2-handle cobordisms between the filled 3-manifolds, and are defined by 
chain maps in Equations (10) and (11) below.
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Remark 5.2. The assumption on the intersection numbers is equivalent to the condition 
that the slopes satisfy

[σ0 + σ1 + nσ2] = 0 ∈ H1(∂M).

Remark 5.3. The theorem also holds with Z replacing F throughout, and for the other 
versions of Floer homology provided that we complete the coefficients with respect to U
in the case of minus and infinity.

Before proving the theorem, we discuss a collection of closely related results in the 
literature. To begin, the theorem with R = Z was first proved in [27, Theorem 9.14], in 
the (not-so) special case that M = Y \ nbd(K) is the complement of a null-homologous 
knot in a homology sphere, σ1 its meridian, and σ2 its Seifert longitude. This yields 
an exact triangle for the Floer homologies of the triple Y1/n(K), Y, Y0(K) with twisting 
on the zero surgery term. In the same paper, the case where σ2 is the meridian of a 
null-homologous knot and σ0 its Seifert longitude was also addressed, yielding an exact 
triangle for Y0(K), Yn(K), Y , with trivially twisted coefficients for the Floer homology 
of Y (groups which are isomorphic to the direct sum of n copies of the untwisted Floer 
homology). In both cases, the proof relied on an adaptation of Floer’s argument for an 
exact triangle in instanton homology [5]. In particular, the long exact sequences came 
from short exact sequences on the chain level. This left the geometric meaning of the 
connecting homomorphisms unclear. This was remedied for the fractional surgery exact 
triangle in [24, Section 3.1], where the maps starting and terminating on the twisted term 
were interpreted in terms of holomorphic triangle counts in a cover of the symmetric 
product of a Heegaard diagram (the third map, too, was identified with triangle counts, 
but this fact was already explicit in [27]).

In [31, Theorem 4.5], the exact sequence with R = Z/2Z and n = 1 was reproved in 
such a way to put all of the maps on equal footing. In particular, each map was defined 
using the same holomorphic triangle counts involved in the definition of the theory’s 
2-handle cobordism maps; indeed, in the case n = 1, consecutive pairs of 3-manifolds in 
the triangle are manifestly cobordant through a single 2-handle attachment. Each map 
in the exact sequence is a sum of the maps on Floer homology induced by this cobordism. 
The key for this approach was a break from Floer’s proof of the exact triangle, and the 
implementation of an “exact triangle detection lemma” [31, Lemma 4.2] (see proof below 
a statement). In [1, Theorem 3.1], this approach was extended to the case n = 1 and 
R = Λω.

In [34, Theorem 3.1], the case with R = Z, M = Y \ nbd(K) a null-homologous knot 
complement, σ2 its meridian, and σ0 an m-framed longitude was treated. This yields an 
exact triangle between the Floer homology of Ym(K), Ym+n(K), and n copies of that 
of Y . There, the treatment was again via the exact triangle detection lemma, but the 
discussion left ambiguous the precise definition of certain maps relevant in the application 
of the lemma. A theorem equivalent to Theorem 5.1 in the case R = Z was stated for the 
completed minus version of Floer homology [22, Proposition 9.5]. We turn to the proof.
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Proof. Since many elements of the proof appear in the literature, we will outsource vari-
ous details to specific references, and focus on issues that are either absent or ambiguous 
elsewhere. An easily stated version of the exact triangle detection lemma says that if Ai

are chain complexes, fi chain maps, and hi chain homotopies arranged as:

A0 A1,

A2

f0

f1f2

h0

h1

h2

which satisfy, for each i ∈ {0, 1, 2} (regarded cyclically):

(1) (Null-homotopy) fi+1 ◦ fi = ∂i+2 ◦ hi + hi ◦ ∂i
(2) (Quasi-isomorphism) fi+2 ◦ hi + hi+1 ◦ fi induces an isomorphism on homology,

then the maps induced by fi form a long exact sequence on homology. Chain complexes, 
maps, and homotopies satisfying these assumptions, and which induce the desired exact 
triangle are produced from a specific Heegaard quadruple diagram:

(Σ; {α,γ0,γ1,γ2}; {w, p}),

where

(1) Σ is a closed oriented surface of genus g.
(2) γi = {γi

1, . . . , γ
i
g}, i = 0, 1, 2, are g-tuples of simple closed curves in Σ, arranged so 

that the first g− 1 curves are all small Hamiltonian translates of each other, and so 
that γi

g live in a torus connect summand of Σ and intersect minimally in the same 
way as the filling slopes.

(3) α = {α1, . . . , αg} is a g-tuple of homologically independent, pairwise disjoint, simple 
closed curves in Σ, transverse to the union of γj .

(4) For each i = 0, 1, 2, the Heegaard diagram (Σ, α, γi) specifies Mi.
(5) w is a basepoint in the complement of all curves, and p is a basepoint in γ2

g .
(6) The diagram is admissible, in the sense that any multi-periodic domain satisfying 

nw(P) = 0 either has at least one negative coefficient or satisfies ω([P]) > 0, where 
ω is the perturbation 2-form.

In terms of this diagram we define chain groups

Ai =

⎧⎪⎨⎪⎩
⊕

x∈Tα∩Tγi

R+ · x i = 0, 1,⊕
x∈T ∩T

R+[Cn] · x i = 2.

α γi
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Here R+ is the R[U ] module R[U, U−1]/U ·R[U ]. The boundary operators ∂i : Ai → Ai

are given by:

∂i(U−j · x) =
∑

φ∈π2(x,y)
μ(φ)=1

#M̂(φ) · tω(φ) · Unw(φ)−j · y, for i = 0, 1,

and

∂2(ζk · U−j · x) =
∑

φ∈π2(x,y)
μ(φ)=1

#M̂(φ) · tω(φ) · ζk+np(∂φ) · Unw(φ)−j · y.

In the case that R = F, the coefficients can be obtained from the above formulae by 
setting t = 1. Here, the exponent of t is given by the evaluation of ω on the two-chain in 
Y arising from the domain of the Whitney disk (viewed as a two-chain on Σ), together 
with two-chains that cone off its boundary with gradient flowlines to the index one and 
two critical points of a Morse function on Y specifying the Heegaard diagram. In the 
R[Cn] twisted case, we further multiply by the n-th root of unity, raised to the algebraic 
number of times the boundary of the domain crosses the p basepoint. Tracing through 
the definitions, one see that these complexes compute the Heegaard Floer groups in the 
theorem:

H∗(Ai, ∂i) ∼= HF+(Mi,R), i = 0, 1,

H∗(A2, ∂2) ∼= HF+(M2,R[Cn]).

(For the R[Cn] twisted complexes, the key point is that the multiplicity np(∂φ) equals 
the intersection number of ∂D(φ) with a curve that intersects γ2

g exactly once and no 
other curves; such a curve is isotopic to the core of the filling solid torus.)

The hypotheses required by the triangle detection lemma will follow from the A∞
structure present in the Fukaya category of the symmetric product of Σ, together with 
the standard nature of the tori Tγj coming from the collections γj , j = 0, 1, 2. Most of 
the gross features of the argument appear in the aforementioned references (see especially 
[34, Proof of Theorem 3.1] and [33]). The new technical challenges reside primarily in 
understanding exactly how the twisting should be incorporated in the definition of the 
chain maps fi and homotopies hi, and how these definitions affect algebraic and geometric 
aspects of the argument. Since these details are particularly relevant to the proof of our 
main theorem, we will try to provide a thorough treatment.

To begin, we must consider the (twisted) completed minus Floer complexes
CF−(Tγi , Tγi+1) for i = 0, 1, 2. This notation seems to be dominant in the literature, 
but we should note that it differs from [33, Section 2.5] where the complexes are denoted 
CF−−. In each case, the complex is freely generated by x ∈ Tγi ∩ Tγi+1 . For i = 0 the 
ground ring is R[[U ]] and for i = 1, 2 we use R[[U ]][Cn]. The boundary operators are 
defined as above, with the cases i = 1, 2 accounting for the multiplicity of domains of 
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Whitney disks at p ∈ γ2
g . The reason to consider power series in U is that there may be 

infinitely many homotopy classes of Whitney polygons defined by the Heegaard diagram 
which admit holomorphic representatives. The admissibility conditions placed on our 
diagram ensure, however, that there are only finitely many such homotopy classes with 
fixed nw(ψ). It follows that the polygon counts can be used to define maps between the 
completed minus (or infinity) groups.

Observe that the 3-manifold specified by (Σ, Tγi , Tγi+1) is homeomorphic to
#g−1S1 × S2 when i = 1, 2, while (Σ, Tγ0 , Tγ1) specifies the connected sum
L(n, 1)#g−1S1 × S2. Their Floer homologies are given as follows:

HF−(Tγ0 ,Tγ1) ∼= Rn ⊗ Λ∗(Rg−1) ⊗R[[U ]]

HF−(Tγi ,Tγi+1) ∼= Λ∗(Rg−1) ⊗R[[U ]][Cn], for i = 1, 2.

One can compute this directly, or apply the Künneth theorem for the (completed) Floer 
homology of a connected sum of 3-manifolds. For i = 1, 2, the highest graded sum-
mand of the Floer group is rank one over R[Cn], and we denote a generator by Θi,i+1. 
For the i = 0 case, the n summands correspond to the n different spinc-structures on 
L(n, 1). Picking a particular spinc-structure we obtain a top-dimensional generator for 
its summand, which we denote Θ0,1. Our choice appears to be specified instead by the 
particular generator, but could be described more intrinsically in terms of the Chern class 
of a spinc structure on the 4-manifold with 3-boundary components determined by the 
pointed Heegaard triple diagram (Σ; {α, γ0, γ1, w}). From either perspective, we have 
made a choice of spinc-structure on L(n, 1); however, each such choice would produce 
a (presumably different, in general) exact triangle. Indeed, our particular choice of Θ0,1

can be viewed, even less intrinsically, as the unique one for which the maps that we are 
about to define satisfy the conditions required by the exact triangle detection lemma. 
Picking a different spinc structure on L(n, 1) (or different top-dimensional generator) 
would still result in an exact triangle, but would necessitate modification of the mod n
congruences demanded of the np multiplicities for its maps.

With all this in mind, we can now define the chain maps and homotopies which serve 
as input for the exact triangle detection lemma. The chain maps are given as follows:

f0(U−jx) :=
∑

ψ∈π2(x,Θ0,1,y)
μ(ψ)=0

#M(ψ) · tω(ψ) · Unw(ψ)−j · y (9)

f1(U−jx) :=
∑

ψ∈π2(x,Θ1,2,y)
μ(ψ)=0

#M(ψ) · tω(ψ) · ζnp(∂ψ) · Unw(ψ)−j · y (10)

f2(U−jζkx) :=
∑

ψ∈π2(x,Θ2,0,y)
μ(ψ)=0

#M(ψ) · tω(ψ) · Unw(ψ)−j · y (11)
np(∂ψ)=−k mod n
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Note that the map fi is defined by counting holomorphic triangles with boundary 
mapping to Tα, Tγi , Tγi+1 , and with the vertex that maps into Tγi ∩ Tγi+1 sent to our 
distinguished generator Θi,i+1. In each case the Novikov ring enters as with the definition 
of the boundary operators: we simply measure the ω area of the coned-off domains 
of the Whitney triangles. The two chains arising from coning Whitney triangles are 
contained within the four-manifold Xα,γi,γi+1 specified by the Heegaard triple diagram 
via the construction of [28, Section 8], and ω canonically extends to this four-manifold 
by our assumption that ω|∂M = 0. The only difference between the maps, then, is how 
they incorporate the Cn twisting: f0 makes no use of it; f1 uses it similarly to the 
boundary operator on CF+(M2), via the signed crossing number of the boundary of a 
triangle at the twisting basepoint p; f2 incorporates the twisting by requiring triangles 
counted in the expansion of f2(ζkx) to have boundary which crosses p negative k times 
(modulo n). Verification that these define chain maps is, as usual, a consequence of 
Gromov compactness together with a homotopy conservation principle; namely, that 
intersection numbers (in the case of the U action and Cn twisting) and ω areas (in the 
case of the Novikov twisting) are homotopy invariants of a class ψ ∈ π2(a, b, c) which are 
additive under decomposition of such a class into the juxtaposition of a triangle with a 
disk.

Similarly, we define homotopy operators using pseudo-holomorphic quadrilateral 
counts:

h0(U−jx) :=
∑

ψ∈π2(x,Θ0,1,Θ1,2,y)
μ(ψ)=−1

#M(ψ) · tω(ψ) · ζnp(∂ψ) · Unw(ψ)−j · y (12)

h1(U−jx) :=
∑

ψ∈π2(x,Θ1,2,Θ2,0,y)
μ(ψ)=−1

np(∂ψ)=0 mod n

#M(ψ) · tω(ψ) · Unw(ψ)−j · y (13)

h2(U−jζkx) :=
∑

ψ∈π2(x,Θ2,0,Θ0,1,y)
μ(ψ)=−1

np(∂ψ)=−k mod n

#M(ψ) · tω(ψ) · Unw(ψ)−j · y (14)

If we consider one dimensional families of pseudo-holomorphic quadrilateral (arising 
from μ = 0 homotopy classes) then Gromov compactness, together with additivity of 
ω(ψ), nw(ψ), np(∂ψ) under juxtaposition, implies that hi provides a homotopy between 
fi+1 ◦ fi and the operator:

fα,i,i+2(−⊗ fi,i+1,i+2(Θi,i+1 ⊗ Θi+1,i+2)),

where

fα,i,i+2 : CF+(Mi;R) ⊗ CF−(Tγi ,Tγi+2) → CF+(Mi+2;R)

fi,i+1,i+2 : CF−(Tγi ,Tγi+1) ⊗ CF−(Tγi+1 ,Tγi+2) → CF−(Tγi ,Tγi+2)
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Fig. 1. The universal cover of the torus summand of the Heegaard diagram where the filling slopes lie in 
the case n = 3. The black lines of slope 1/3 represent lifts of γ0

g , and the blue vertical lines are lifts of γ1
g . 

The red horizontal lines are lifts of γ2
g , and contain lifts of the basepoint p which defines the C3 twisting 

(we represent lifts of p by small black triangles). Shown are the triangles ψ±
1 with vertices on Θi,i+1 and 

Θi+1,i+2. They satisfy nw(ψ±
1 ) = 0, np(∂ψ±

1 ) = 0 mod 3. (For interpretation of the references to color in 
this figure, the reader is referred to the web version of this article.)

are chain maps defined by counting holomorphic triangles with appropriate boundary 
conditions (for these latter maps, we have suppressed notation indicating which com-
plexes are Cn twisted, but remind the reader that the complexes for Mj are twisted only 
when j = 2, and the complexes for pairs Tγi , Tγj are twisted unless {i, j} = {0, 1}). 
For all of the maps, homotopies, etc. involved, the key idea to keep in mind is that if 
the map emanates from a Cn twisted complex, then the holomorphic polygons counted 
must cross the twisting point p a number of times equal to negative the exponent of 
the ζ power appearing in front of the intersection point. Another notable feature is the 
requirement by h1 that the Tγ2 boundary of the rectangles should cross p zero times, 
modulo n. This is actually a convention which is tied to our choice of spinc-structure on 
L(n, 1) used to determine Θ0,1. Choosing a different spinc-structure would force us to 
require np(∂ψ) = m mod n for some other value of m.

To verify that hi, so defined, is a null-homotopy for fi+1 ◦ fi, it suffices to show 
that fi,i+1,i+2(Θi,i+1 ⊗ Θi+1,i+2) = 0. This is essentially a local calculation in the torus 
summand of the Heegaard surface where the filling slopes lie, together with a neck 
stretching argument and similar local considerations for the torus summands where the 
other γ curves lie. See [33, Proposition 2.10] for details on the argument, as applied to 
the hat theory, and [33, Section 2.5] for its extension to plus. For us, the only difference 
will be in the torus connect summand of the Heegaard surface where the filling slopes lie 
and the added bells and whistles that our twisting(s) incorporate. The universal cover 
of this torus, together with the lifts of the filling slopes, is shown in Fig. 1 in the case 
where n = 3.
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The key fact about this region for this part of the argument is that triangles with two 
vertices on the g-th component of Θi,i+1 and Θi+1,i+2 and fixed values of nw(ψ), ω(ψ)
and np(∂ψ) mod n come in canceling pairs. More precisely, for each k > 0, there are 
exactly two triangles, ψ±

k with two vertices on the g-th component of Θi,i+1 and Θi+1,i+2, 
and these triangles satisfy nw(ψ±

k ) = n · k(k−1)
2 and np(∂ψ±

k ) = 0 mod n. That the 
triangles cancel comes from the facts that our base rings have characteristic two and 
that ω(ψ+

k ) = ω(ψ−
k ) for all k. To see this latter fact, it suffices to observe that the 

cohomology class determined by ω on the four-manifold Xγi,γi+2,γi+2 is trivial, cf. [1, 
Theorem 3.1, last paragraph of proof].

We now turn to the quasi-isomorphism condition in the triangle detection lemma. 
For this we consider an augmented Heegaard diagram which, in addition to the four 
sets of attaching curves previously mentioned, contains an additional g-tuple of curves 
γ̃i each of which arises via small Hamiltonian perturbation from a corresponding curve 
in γi (in particular, the 3-manifold specified by (Σ, α, γ̃i) is homeomorphic to Mi). 
We further require that each curve in γ̃i intersects the corresponding curve in γi in 
exactly two points. There are corresponding complexes, denoted Ãi, and we consider 
maps gi : Ai → Ãi, defined by counting pseudo-holomorphic pentagons:

g0(U−jx) :=
∑

ψ∈π2(x,Θ0,1,Θ1,2,Θ̃2,0,y)
μ(ψ)=−2

np(∂ψ)=0 mod n

#M(ψ) · tω(ψ) · Unw(ψ)−j · y (15)

g1(U−jx) :=
∑

ψ∈π2(x,Θ1,2,Θ2,0,Θ̃0,1,y)
μ(ψ)=−2

np(∂ψ)=0 mod n

#M(ψ) · tω(ψ) · Unw(ψ)−j · y (16)

g2(U−jζkx) :=
∑

ψ∈π2(x,Θ2,0,Θ0,1,Θ̃1,2,y)
μ(ψ)=−2

np(∂ψ)=−k mod n

#M(ψ) · tω(ψ) · ζnp̃(∂ψ) · Unw(ψ)−j · y, (17)

where Θ̃i,i+1 is a top-dimensional generator for the complex associated to the La-
grangians coming from γi and γ̃i+1. Note the appearance of p̃ in the last equation: this 
is a basepoint on γ̃2

g which is the image of p under the Hamiltonian isotopy defining γ2
g .

Gromov compactness for one dimensional families of pseudo-holomorphic pentagons, 
applied in this context, implies that such a family will have ten types of ends. Five arise 
from the non-compactness of the domain coming from the vertices (boundary punctures) 
of the pentagon. Using the fact that the Θ intersection points are cycles rules out three 
of the these ends, and the remaining two give rise to terms of the form gi ◦ ∂i + ∂̃i ◦ gi. 
The other five ends correspond to ends of the moduli space of conformal structures 
on a pentagon, over which the moduli spaces M(ψ) fiber. Each of these comes from a 
conformal degeneration of a pentagon into a rectangle and triangle joined at a vertex. Of 
these, two give rise to the terms in the sum of compositions f̃i+2 ◦ hi + h̃i+1 ◦ fi, where 
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f̃i+2 and h̃i+1 are defined exactly as in Equations (9)–(14), but with the γ̃i curves used 
in place of γi in the range of the map. Two of the remaining ends involve triangles which 
contribute to the maps fi,i+1,i+2(Θi,i+1 ⊗ Θi+1,i+2) and fi+1,i+2,̃i(Θi+1,i+2 ⊗ Θ̃i+2,i), 
which were previously shown to be zero. The remaining ends contribute to the map

qi(−) := fα,i,̃i(−⊗ hi,i+1,i+2,̃i(Θi,i+1 ⊗ Θi+1,i+2 ⊗ Θ̃i+2,i)) (18)

where hi,i+1,i+2,̃i is an operator defined by counting holomorphic quadrilaterals. Thus 
the pentagon operators provide a chain homotopy between f̃i+2◦hi+ h̃i+1◦fi and qi. We 
claim that qi induces an isomorphism on homology (in fact, it is an isomorphism of chain 
complexes, but we will not need this). Granting this, we have essentially proved the the-
orem. The one caveat is that q is not a map from Ai to itself, but to a (quasi-)isomorphic 
complex Ãi. The easiest way around this technicality is to tweak the detection lemma 
to address a family of chain complexes which have three-periodic homology. This is the 
route taken by [31] and subsequent incarnations. We follow suit, so that our f, h, and g
maps increase the index (by 1, 2, and 3, respectively) in the family of complexes {Ai}i∈Z

which we will show have three-periodic homology via qi : Ai → Ai+3, with Ai+3 := Ãi.
Working with this setup, it only remains to show that qi induces an isomorphism on 

homology. When i 
= 2 mod 3 it will suffice to show that

ĥi,i+1,i+2,̃i(Θi,i+1 ⊗ Θi+1,i+2 ⊗ Θi+2,̃i) = tλ · Θi,̃i,

for some λ (since tλ is a unit in Λ), and that

f̂α,i,̃i(−⊗ Θi,̃i)

induces an isomorphism on homology, where in both cases the “hat” refers to the induced 
map on the corresponding hat Floer complex (that verification of isomorphism for the 
hat complex implies it for the plus complex is a consequence of [33, Exercise 1.4]). Ver-
ifying the former is essentially the same argument found in [33, Discussion surrounding 
Equation 15, Figures 8 and 9], the only real difference being the local calculation in the 
torus region where the filling slopes lie and the implicit Novikov twisting. Indeed, we 
obtain the factor of tλ in front of Θi,̃i, where λ is the ω area of the coned off domain of 
the unique pseudo-holomorphic quadrilateral with np(∂ψ) = 0 modulo n and nw(ψ) = 0.

For the latter, when i 
= 2 mod 3, one can easily show that that fα,i,̃i(− ⊗ Θi,̃i) is 
an isomorphism by arguing that it agrees, up to higher order terms with respect to the 
area filtration, with the “closest point” map ι discussed in [33, Proof of Lemma 2.17]. 
When Novikov coefficients are used, one needs to be careful if a non-admissible Heegaard 
diagram is employed: in that case one cannot find an area form which vanishes on all 
periodic domains, hence the area filtration is not well-defined. The argument still works, 
however, if the Heegaard diagram is admissible in the weaker sense that ω evaluates 
positively on positive multi-periodic domain. For then one can filter the complex using 
a combination of area and the natural filtration of Λω by powers of t.
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The cases with i = 2 mod 3 are somewhat different than the other two. Here the 
chain maps considered in Equation (18) are defined by holomorphic triangle counts with 
twisting on both the input and output complexes:

CF+(M2;R[Cn]) ⊗
R[Cn][[U ]]

CF−(Tγ2 , T̃γ2)
fα,2,2̃−→ CF+(M2̃;R[Cn])

where the twisting on the input is induced by the basepoint p ⊂ γ2
g , and on the output 

by p̃ ⊂ γ̃2
g . Note that the complex associated to the pair Tγ2 , T̃γ2 is twisted by both 

basepoints, and thus is freely generated over

R[[U ]][Cn] ⊗R[[U ]] R[[U ]][Cn].

Equivalently, we can think of it as a complex of R[[U ]][Cn] −R[[U ]][Cn] bimodules. The 
boundary operator is given by

∂(ζixζ̃j) =
∑

φ∈π2(x,y)
μ(φ)=1

#M̂(φ) · tω(φ) · Unw(φ) · ζi+np(∂φ)yζ̃j+np̃(∂φ),

where we use ζ (resp. ζ̃) to record the twisting induced by p (resp. p̃). Its homology, 
viewed as either a right or left module over R[[U ]][Cn] can easily be computed:

HF−(Tγ2 , T̃γ2) ∼= (R[[U ]][Cn] ⊕R[[U ]][Cn]) ⊗R Λ∗(Rg−1),

where a bimodule generator for the top dimensional summand is given by

Θ2,2̃ =
n∑

i=1
ζ−iθ+ζ̃

i.

Here, θ+ is the explicit g-tuple of intersection points representing the top-graded gener-
ator of the chain complex for #gS1 ×S2 coming from the Heegaard diagram (Σ, γ2, γ̃2). 
Now the map fα,2,2̃ is defined on generators by (we suppress the role of U):

fα,2,2̃(xζi ⊗ ζjyζ̃k) :=
∑

ψ∈π2(x,y,r)
μ(ψ)=0

np(∂ψ)=−i−j mod n

#M(ψ) · tω(ψ) · ζ̃k+np̃(∂ψ) · r (19)

We wish to show that the map q2 defined in (18) induces an isomorphism on homology. 
To do this, we observe

ĥ2,0,1,2̃(Θ2,0 ⊗ Θ0,1 ⊗ Θ1,2̃) =
n∑

i=1
ζn−iθ+ζ̃

i = Θ2,2̃, (20)

Fig. 2 and its caption explain the first equality, and for the second we use the fact 
ζn−i = ζ−i.
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Fig. 2. The figure shows the domains of n = 3 holomorphic quadrilaterals embedded in the universal cover 
of the torus summand where the filling slopes lie. These account for the terms in the sum (20). Each can 
be viewed as a slight perturbation of the triangle ψ+

1 from Fig. 1, and they differ only in which lift of the 
g-th component of θ+ the boundary of the quadrilateral “jumps” from γ̃2 to γ2. This difference affects the 
values of np(ψ) and np̃(ψ), giving rise to the different terms in Equation (20). The top, middle, and bottom 
quadrilaterals give rise to the terms ζ2θ+ζ̃1, ζ1θ+ζ̃2, and ζ0θ+ζ̃3, respectively.

Next we note that

f̂α,2,2̃(x ⊗ 1θ+ζ̃
j) = ζ̃jι(x) + lower order terms,

where ι is the closest point map on generators, and lower order is with respect to the 
area filtration. This follows from the existence of small triangles connecting x to ι(x)
with third vertex mapping to θ+ whose boundaries do not cross the basepoints p, p̃. Now 
consider the restriction of q2 to the hat complex. We have

q̂2(ζjx) := f̂α,2,2̃(xζj ⊗ Θ2,2̃)
=

∑n
i=1 f̂α,2,2̃(xζj ⊗ ζ−iθ+ζ̃

i)
=

∑n
i=1 f̂α,2,2̃(x ⊗ ζj−iθ+ζ̃

i)
= f̂α,2,2̃(x ⊗ 1θ+ζ̃

j) + lower order terms
= ζ̃jι(x) + lower order terms.
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Thus q̂2 is an isomorphism up to lower order terms which implies that it, and q2, induce 
isomorphisms on homology. �
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