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Splicing knot complements and
bordered Floer homology

By Matthew Hedden at East Lansing and Adam Simon Levine at Princeton

Abstract. We show that the integer homology sphere obtained by splicing two non-
trivial knot complements in integer homology sphere L-spaces has Heegaard Floer homology
of rank strictly greater than one. In particular, splicing the complements of nontrivial knots in
the 3-sphere never produces an L-space. The proof uses bordered Floer homology.

1. Introduction

A rational homology 3-sphere Y is called an L-space if the rank of its Heegaard Floer
homology group HE(Y) equals the order of Hy(Y;Z). Examples of L-spaces include S3,
lens spaces, all manifolds with finite fundamental group (see [20, Proposition 2.3]), and the
branched double covers of alternating (or, more generally, quasi-alternating) links in S (see
[21, Proposition 3.3]). Since the rank of P/IF(Y) is always greater than or equal to |H{(Y;Z)|
(see [19, Proposition 5.1]), L-spaces are the manifolds with the smallest possible Heegaard
Floer homology, and it is natural to ask for a complete classification of L-spaces or a more topo-
logical characterization [16, Question 11]. The following conjecture, first raised by Ozsvath and
Szab6 [22, p.40], is of central importance in Heegaard Floer theory:

Conjecture 1. If Y is an irreducible homology sphere that is an L-space, then Y is
homeomorphic to either S3 or the Poincaré homology sphere.

Thus, the conjecture asserts that the classification of L-spaces with the singular homology
of the 3-sphere is extremely simple: they are simply the connected sums of zero or more copies
of the Poincaré sphere (with either orientation). Conjecture 1 is known to hold for manifolds
obtained by Dehn surgery on knots in S3 (see [17, Proof of Corollary 1.3], [3, Proof of Corol-
lary 1.5]) and for all Seifert fibered spaces (see [26]). In light of the Geometrization Theorem
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(see [13,23,24]), one should consider how Heegaard Floer homology behaves under the oper-
ation of gluing along incompressible tori. The following conjecture would reduce Conjecture 1
to the case of hyperbolic 3-manifolds.

Conjecture 2. [fY is an irreducible homology sphere that contains an incompressible
torus, then Y is not an L-space.

The purpose of this paper is to prove a special case of Conjecture 2.

To describe our result, let the exterior of a knot K in a homology sphere Y be denoted
by Xx. The meridian and Seifert longitude of K, viewed as curves in 0Xg, are respectively
denoted wg and Ag. Given knots K; C Y7 and K> C Y», let Y(K1, K») denote the manifold
obtained by gluing Xk, and Xk, via an orientation-reversing diffeomorphism ¢: 0X g, — 0Xg,
taking Ak, to ug, and Ak, to g, . We say that Y (K, K») is obtained by splicing the knot
complements Xk, and Xg,. The Mayer—Vietoris sequence shows that Y(K1, K3) is a homol-
ogy sphere. The image of 0Xg, is incompressible in Y (K, K») if and only if the knots K
and K> are both nontrivial. Furthermore, a separating torus 7" in a homology sphere Y canoni-
cally determines a decomposition ¥ = Y (K1, K»):if Y = X1 Ut X5, we obtain Y (resp. Y2)
by Dehn filling X (resp. X») along the unique slope in 7" that bounds a surface in Y (resp. Y1),
and we let K (resp. K») be the core of the glued-in solid torus.

The main result of this paper is the following:

Theorem 1. Let Yy and Y, be L-space homology spheres, and let K1 C Y1 and Ko C Y»
be nontrivial knots. Then dimHF(Y (K, K3)) > 1.

Removing the hypothesis that Y7 and Y, are themselves L-spaces would complete the
proof of Conjecture 2. Of course we have the immediate corollary:

Corollary 2. Splicing the complements of nontrivial knots in the 3-sphere never pro-
duces an L-space.

Our strategy for studying P/IF(Y(K 1, K»2)) is to relate it to the knot Floer homology of K
and K,. For a knot K C Y in an integral homology sphere, HFK(Y, K) is a bigraded vector
space over ¥ = 7 /27,

HFK(Y.K) = @) HFK,(Y.K.a).
a,meZ
whose graded Euler characteristic is the Alexander polynomial of K (see [18, 25]). These
groups detect the Seifert genus of K (see [17, Theorem 1.2]), in the sense that
¢(K) = max{a | HFK«(Y, K, a) # 0} = —min{a | HFK4(Y, K, a) # 0}.

If Ky and K, are nontrivial knots, we show that IfITJ(Y (K1, K2)) contains a subspace of
dimension

2 - dim HFK (Y1, K1, —g(K1)) - dim HFK (Y2, K2, —2(K2)) > 2,

which implies Theorem 1. Indeed, since dim H/F\K*(Y, K,—g(K)) =1 if and only if K is
a fibered knot [3, 14], we obtain a stronger lower bound on dim HF(Y (K1, K»)) if either K;
or K, is non-fibered.
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Our basic tool for proving Theorem 1 is bordered Floer homology [10], which can be
used to compute the Heegaard Floer homology of a closed 3-manifold obtained by gluing two
pieces along a common boundary as the homology of the derived tensor product of algebraic
invariants associated to the pieces. We review some of the basics of this theory in Section 2.
In the present setting, we have

HF(Y(K1. K2)) = H.(CFA(Xg,) K CFD(Xx,)).

where C/FTA(X k,) and C/FT)(X K,) are the bordered invariants of Xg, and Xk, with suitable
boundary parameterizations. Lipshitz, Ozsvéth, and Thurston give a formula describing CFD
of the complement of a knot in an L-space homology sphere in terms of the knot Floer com-
plex of the knot [10], and a simple algorithm (given below as Theorem 2.2) yields a similar
description of CFA. Using an Alexander grading on the bordered invariants, we can identify
subspaces of C/EA(X k,) and C/F\D(X K,) that are isomorphic to the corresponding knot Floer
homology groups in extremal Alexander grading and whose algebraic structure can be under-
stood quite explicitly. These subspaces combine in the tensor product to produce the subgroup
of IfITJ(Y(Kl, K>)) described above.

In a sequence of preprints in 2008, Eaman Eftekhary announced a proof of Conjecture 2,
but several delicate technical issues were overlooked in his original treatment. In [2], Eftekhary
provides a chain complex that ostensibly computes ITIF(Y(K 1, K2)) in terms of data associ-
ated to K; and K>, essentially by using a precursor to bordered Floer homology. The original
version of this complex yielded incorrect results; for instance, its homology has rank 13 in the
case where K and K, are both the right-handed trefoil in S3, whereas a computation using
bordered Floer homology, given below in Section 4, shows that the correct rank is only 7."
Subsequent to the submission of the present article, Eftekhary released a revision of [2] that
provides a corrected version of this chain complex. (However, Eftekhary’s original proof of
Conjecture 2 relies on work that has been retracted.)

Acknowledgement. The authors are grateful to Eaman Eftekhary, Jonathan Hansel-
man, Jen Hom, Robert Lipshitz, Peter Ozsvath, and Dylan Thurston for many enlightening
conversations, and to the referees for helpful suggestions.

2. Bordered Heegaard Floer homology

We begin by reviewing a few basic definitions and facts regarding bordered Heegaard
Floer homology [10], focusing on the case of manifolds with torus boundary. Some of this
material is adapted from the second author’s exposition in [9, Section 2].

2.1. Algebraic preliminaries. In this subsection, we recall the key algebraic structures
that occur in bordered Floer homology, known as Aso-modules and type D structures. While
these objects can be defined in general over an underlying #Aso-algebra -, the relevant algebra
for our purposes is merely differential graded, so it will be convenient to give the definitions in
this simplified setting.

D In this case, Y(K1. K») can also be obtained as +1 surgery on the positive, untwisted Whitehead double
of the right-handed trefoil, whose knot Floer complex is known via [5,6]. The surgery formula from [18] confirms
that HF(Y (K1, K2)) has rank 7.
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Let (4, d) be a unital differential algebra over F = Z /27, and assume that the set 4 of
idempotents in #4 is a commutative subring of 4 and possesses a basis {(;} over I such that
tit; = 6;;1; and ), ; = 1, the identity element of A.

A (right) Aso-module or (right) type A module over 4 is a vector space M equipped
with a right action of 4 such that M = My & --- @ M, as a vector space, and multiplication
maps

Mpgt1 M Q@ ARy - QoA > M
k times

satisfying the 4o relations: for any x € M and ay,...,a, € A,

n
2.1 0= Zmn_i+1(mi+1(x Ra1 R ®a;) ®aj+1 - @ ap)
=0

n
+Zmn+1(x Qa1 ® - ®ai—1®d(a;) ®ai+1 ® -+ ®an)
i=1
n—1
+ Zmn(X®a1 R ®ai—1Q®aiait1 Qa2 Q ay).
i=1
We also require that ma(x @ 1) = xand mp (x ® --- ® 1 ® ---) = 0 for k > 2. We say that M
is bounded if my = 0 for all k sufficiently large.
A (left) type D structure over +4 is an IF-vector space N equipped with a left action of J
suchthat N = ;N @ --- & (, N, and a map

512 N — A Ky N
satisfying the relation
(2.2) (n ®idy) o (idy ®81) 081 + (d ®idy) o8 =0,

where u: A ® A — 4 denotes the multiplication on . If N is a type D module, the tensor
product A ®y4 N is naturally a left differential module over +, with module structure given
by a-(b® x)=ab® x, and differential d(a ® x) = a - 81(x) + d(a) ® x. Condition (2.2)
translates to 0> = 0. We inductively define maps

SN > ARy Qg ARQgN
—_————
k times

by 8o = idy and 6 = (id 4@k—1 ®31) 0 dg—1. We say N is bounded if §; = O for all k suffi-
ciently large.

If M is a type A module and N is a type D module, the #qo-tensor product M @ N
(see [10, Definition 2.12]) is a chain complex whose chain homotopy type depends only on the
chain homotopy types of M and N (using suitable notions of chain homotopy equivalence for
type A and D modules).

If either M or N is bounded, the box tensor product M X N 1is the vector space M ®y N
equipped with the differential

Px@y) =) (M1 ®idy)(x ® ().
k=0
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This is a finite sum, and (2.1) and (2.2) imply that 0®00® = 0. Lipshitz, Oszvath, and Thurston
[10, Proposition 2.34] show that when M or N is bounded, M X N is chain homotopy equiv-
alentto M ® N.

In addition to type A modules and D structures over «+, we can also talk about bimodules
(or trimodules, et cetera). These come in several flavors, known as type AA, AD, DA, DD. For
instance, for differential graded algebras 4 and B a left-left type DD bimodule over (4, B)
is simply a left type D module over A ® B; the other types are slightly more complicated.
The Axo-tensor products of bimodules behave as expected: for instance, given a right type A
module M over #4 and a type DD bimodule N over (A, B), M ® 4 N is a type D module
over B. The box tensor product X may be used in place of ® under suitable conditions.
See [11, Section 2] for the complete definitions.

2.2. Invariants of bordered manifolds. We will focus solely on the case of torus
boundary. We consider 72 = S! x S, oriented by choosing the same orientation on both S
factors and taking the product orientation.

The torus algebra A = A(T?) is freely generated as a vector space over F by mutually
orthogonal idempotents t¢ and ¢; and additional elements p1, p2, p3, P12, P23, and p123, with
the following nonzero multiplications:

lop1 = p1t1 = p1, l1p2 = p2to = P2, lop3z = p3l1 = p3,
lop12 = P12lo = P12, L1P23 = P23L1 = P23, LloP123 = P123L1 = P123,
P1P2 = P12, P203 = P23, P1203 = P1023 = P123.

(All other multiplications among the generators zero.) The multiplicative identity in A is
1 = 1y + 1. The differential on »4 is defined to be zero; note that this eliminates the second
sum in (2.1) and the third term in (2.2).

A bordered manifold (with torus boundary) is an oriented 3-manifold Y along with
a diffeomorphism ¢: 72 — 9Y, which we consider up to isotopy fixing a neighborhood of
a point. We call (Y, ¢) type A if ¢ is orientation-preserving and type D if ¢ is orientation-
reversing. Lipshitz, Ozsvath, and Thurston associate to a type A bordered manifold (Y7, ¢1)
a type A module @(Yl,qﬁl) over #, and to a type D bordered manifold (Y2, ¢2) a type D
module C/ﬁ)(Yz, ¢2) over A. (The maps ¢ and ¢, are often suppressed from the notation
if they are understood from the context.) Up to the appropriate notion of chain homotopy equiv-
alence, each of these modules is a diffeomorphism invariant of the manifold with parametrized
boundary. These invariants are defined in terms of counts of pseudo-holomorphic curves
in ¥ x [0, 1] x R, where ¥ is a bordered Heegaard diagram; we shall say nothing more about
the definition. The pairing theorem states that the Heegaard Floer homology of the closed,
oriented 3-manifold gotten by gluing Y to Y5 along their boundaries via the diffeomorphism
¢o o qbl_l is determined by the bordered invariants of ¥ and Y5:

HF(Y1 Uy, op1 Y2) = Hx(CFA(Y1, $1) @ CFD(Y2, $2)).

There are also various bimodules associated to manifolds with two boundary components,
denoted CFAA, CFAD, CFDA, and CFDD according to whether the parameterizations of the
boundary components are orientation-preserving or orientation-reversing, and similar gluing
theorems apply. See [10, 11] for further details.

Lipshitz, Ozsvath, and Thurston provide a convenient notation for type D modules over
the torus algebra eA(TZ) (see [10, Section 11.1]). If Iy, ..., Iy are finite sequences of integers,
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let Iy --- Iy denote their concatenation. Let Jt denote the set of nonempty, strictly increasing
sequences of consecutive integers in {1, 2, 3}, and let R’ = R U {@}. Thus, the non-idempotent
generators of #(7?) correspond to elements of 9 ; for convenience, we define pg = 1.

Let V = V%@ V! beaZ/2-graded vector space over F = Z/27. A collection of coef-
ficient maps consists of a linear map D = Dg:V — V taking V° to V° and V! to V1, and,
foreach I = (i1,...,iy) € R, alinear map Dy: ylii=1 _ ylinl (where fori € Z,[i] € {0, 1}
denotes the mod-2 reduction of i) satisfying the condition that for each I € &',

(2.3) Z DgoDy =0,

J,KeR’

JK=I
where the sum is taken over all pairs of elements in &’ whose concatenation is /. In other
words, Dy is a differential; Dy, D;, and D3 are chain maps; D, and D3 are nullhomo-
topies of D, o D1 and D3 o D,, respectively; and Dj,3 is a homotopy between D33 o D
and D3 o D1,. For convenience, we may trivially extend each D over all of V0 @ V1. A col-
lection of coefficient maps determines a type D structure on V': define multiplication by (¢
and (1 by projection onto V? and V! respectively, and for each v € V, define

§1(v) = Y pr ® D1 (v).

IeR’

The higher maps 6 are then given by compositions of the maps Dy :

Sy = Y pr ® @ pr ® Dy 00 Dp)(v).
11,...,Ike§R’

Furthermore, any type D structure over # can be obtained in this manner [10, Lemma 11.5].
We say that (V, {Dy}) is reduced if Dg = 0, in which case the relations in (2.3) simplify
to

(2.4) D20D1:0 D3OD2=O D3OD12=D23OD1.

It is not hard to see that any type D structure is homotopy equivalent to a reduced one. See
[9, Section 2.6] for more details.

Finally, if M is a type A module and either M or V is bounded, the differential on the
box tensor product M X V is given explicitly by

Fxey)= Y mu(x®py ® - ®pr,)® (D, 00 D) (y)
Iy,... I, eR

for each x € M and y € V. (The sum includes an r = 0 term, where the composition of zero
coefficient maps is the identity on V.)

2.3. Computing CFA from CFD. Let r: T2 — T2 be the orientation-reversing invo-
lution that interchanges the two coordinates of S x S!. This involution gives a one-to-one
correspondence between type A and type D bordered manifolds, given by (Y, ¢) — (Y, ¢ o r).
The bordered invariants of (Y, ¢) and (Y, ¢ o r) are related by taking tensor products with the
appropriate identity bimodules, C/FEA(H) and C/FﬁD(]I). Here 1 denotes the mapping cylinder
of the identity map of T2. If (Y, ¢) is a type A bordered 3-manifold, [11, Corollary 1.1] says
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that

(2.5) CFD(Y, ¢ o r) ~ CFA(Y, ¢) & CFDD(I),
CFA(Y, ¢) ~ CFAA(I) ® CFD(Y, ¢ o r).

In (2.5), we view (m(]l) as a right-right AA bimodule and @(H) as a left-left DD
bimodule, each over (#4, #).? Thus, if a parametrization ¢ (either orientation-preserving or
orientation-reversing) is understood from context, then we will simply speak of C/FTA(Y) and
C/FT)(Y). Note that the two halves of (2.5) are equivalent statements, since by [12, Theorem 2.3]
the operations of tensoring with C/FEA(]I) and C/Fﬁ)(l[) are inverses up to homotopy equiva-
lence. That is, if M is a type A module and N is a type D module, then M ~ (m(l Y@ N
if and only if M ® CFDD(I) ~ N.

We now describe an algorithm for computing C/EA(Y) from C/F\D(Y), based on an idea
described to us by Peter Ozsvath. The basic idea is as follows. We begin by taking a basis for
C/FT)(Y) as a basis for C/FTA(Y). The nonzero multiplications on C/FTA(Y) are then in bijection
with nonzero compositions of the coefficient maps for C/F\D(Y). Specifically, if

Dj oDy, 0---0Dy ((v) =w,
then
M1V ® pr, ® -+ ® pr,) = w,
where the relationship between (J1, ..., J;) and ({1, ..., I}) is determined by the procedure:

(i) Replace all occurrences of 1 in the string Jy - -+ J, with 3, and vice-versa.

(i) Write the resulting string I (uniquely) as a concatenation / = [ --- I} of increasing
sequences [; satisfying last(/;) > first(/;+1) foralli = 1,...,k — 1.

(Here, first(/) and last(/) denote the first and last entries of /, respectively.) For example,
suppose in (ﬁ:T)(Y) we have D33 0 Dy3 0 Dio3(v) = w. We first take the string 1232323 and
replace it with 3212121, which we then parse as 3, 2, 12, 12, 1. This tells us that in C/EA(Y) we
have a multiplication mg(v ® p3 ® p2 ® p12 ® p12 ® p1) = w. (See Section 4 for an example
of this procedure applied to CFD of the trefoil complement.)

To be more precise, let © denote the set of strictly decreasing, nonempty sequences of
consecutive elements of {1,2,3},% and let ¢: G — R denote the bijection defined by inter-
changing the roles of 1 and 3:

p(1) =3, ¢(2)=2, $3) =1,
p(21) =23, $(32) =12, $(321) = 123.

2 Qur perspective here is slightly different from that of Lipshitz, Ozsvith, and Thurston, who use two
distinct algebras associated to T2 and —T'2, denoted A(T'?) and A(—T72), where A(—T2) = A(T2)°P. If (Y, ¢)
is a type A bordered manifold (in the sense used above), then one can define C/FT)(Y, ¢) as a type D structure
over A(—T?2), and one views m(ﬂ) and (ﬁ(ﬂ) as (A(T?), A(=T?))-bimodules. To see how (2.5) follows
from [11, Corollary 1.1], note that the map r (which can be realized as the symmetry of the pointed matched
circle associated to the torus) induces an isomorphism between #(72) and #4(—72), which gives the identification
between C/FT)(Y, ¢) (as a type D module over A(—72)) and @T)(Y, ¢ or) (as a type D module over A(T?)).
We find it conceptually simpler to work with a single algebra, at the cost of being more explicit about the role of r.

3 We shall write elements of it and & as strings of digits, without parentheses or commas.
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A finite sequence of integers / is called alternating if its entries alternate in parity. Strong
induction on length shows that for any alternating sequence / of elements of {1, 2, 3}, there is
a unique decomposition / = Jq---J;j suchthat Jq,...,J; € Gandforeachi =1,...,j —1,
last(J;) < first(J;41). In this case, we define W (/) = (J1, ..., J;). The following lemma is an
immediate consequence of the definition of W:

Lemma 2.1. Let I and I’ be alternating sequences whose concatenation 11’ is alter-
nating. Suppose that W(I) = (Ji,...,J;) and ¥(I') = (K1, .., Ki). Then

(Ji,....J;. K1, ....Kg) if last(I) < first(1’),

U(I1') = : )
(Jl,...,Jj_l,JjKl,Kz,...,Kk) if last(l) > first(/”).

The algorithm is given by the following theorem:

Theorem 2.2. Let (V,81) be a reduced type-D module over A, seen as a finite-dimen-
sional vector space V = VO V1 with coefficient maps D1, Dy, D3, D13, D33, and D133
satisfying (2.4). For k > 0, define maps

MgtV @ A®F

as follows. Set mqy = 0. For k > 1 and any 11, ..., 1 € R whose concatenation Iy --- Iy is
alternating and for which last(l;) > first(l; 1) foralli = 1,...,k — 1, write

Wy Iy) = (J1..... J))

and define
M4+1(0 ® pr, ® -+ @ pr) = (Dg(y;) 00 D)) (v)
forallv € V. For any other I, ..., I, define

mk-i-l(v ® P, Q& PIk) = 0.
Then the maps my, satisfy the Ao relations. Furthermore, we have

(V,81) =~ (V,{my}) R CFDD(I) and (V,{my}) ~ CFAA(I) K (V,§1).

Proof of Theorem 2.2.  To see that the maps m satisfy the A relations, we must show
that for any /1,..., [y €e Randanyv € V,

k—1
(26) ka—i-l—l(mi—l-l(v 2y PI; Q& PI,-) 029 PI; 44 K /OIk)
i=1
k—1
+ ka—l(v ®pr ® @ pr;_y B PL L4y O Pl B ® pr) = 0.

i=1

We may assume that [ - - - I is alternating, since otherwise all the terms in (2.6) would vanish
because the tensor products are taken over the ring of idempotents. Indeed, if we had a term
such as p; ® p3, we could write it as p1t; ® p3 = p1 ® t1p3 = p1 ® 0, with similar expres-
sions for any other non-alternating occurrence.
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If last(/;) < first(Z; 1), then for any i’ # i, the i’™ terms of both sums in (2.6) must
both vanish by definition. Thus, we may assume that there is at most one value of i for which
last(/;) < first(/;4+1). If such an i exists, Lemma 2.1 implies that if

Wy 0i) = (LY, ... L}),
W(liy1 ) = (Mf..... M}, ),
V(I Iy) = (J1..... J)),
then {; +m; = j and
(LY, Ly MY, My ) = (1, ),
Thus the i ™ term of the first sum in (2.6) equals

2.7) (Dg(1;) © 0 D)) (V).

Since py; pr1; ., = PI; I; 4> the i™ term of the second sum in (2.6) equals (2.7) as well. Thus,
the i terms of the two sums in (2.6) cancel each other, and all other terms in both sums vanish.

Therefore, we may assume that for alli = 1,...,k — 1, we have last(/;) > first(/;+1).
Since pr; pr;,; = 0, the entire second sum in (2.6) vanishes. Suppose that

V(- Ig) = (1, Jj)
and foreachi =1,...,k —1,
Wy A = (LY, L) and W(ligr... [p) = (M],.... Mj,).

Thus, the first sum in (2.6) equals

(2.8) 2 Pyas,) ©° Dyqaaiy © Dy ) © 0 Dyri) ).
i=1 !

Furthermore, Lemma 2.1 implies that £; +m; — 1 = j and
(Jiooondj) = (LY, LYy Ly My, M, M),

In partlcular the concatenation L’ M, I equals either 21, 32, or 321.
IfL’ = 3andM’ =2, then

D oD DzODl—O

p(M) ¢(Ly) —

by (2.4), and therefore the i™ term of (2.8) vanishes. The same argument holds when LZ =2
and M{ = 1 using the fact that D3 o Dy = 0.

If Lz = 32and M; I — 1, the concatenation I - -- I; ends in 32, and we must have i > 1,
last(l;—1) =3, [; = 2, and first(/; +1) = 1. Therefore,

Wy Tio) = (Ly, .o Ly _4,3) and Wi D) = (21, My,.... My,.).
The sum of the (i — 1) and i terms of (2.8) then equals

Z(D¢(M;§qi) 0-+-0 D¢(M£) o(D3oDjp+ Dy30Dq)o D¢(L§il»71) 0+--0 D¢(L,'1))(v),
i=1

which vanishes by (2.4).
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If L’ = 3 and Ml = 21, then a similar argument shows that the ™ and (i + 1)™ terms
of (2.8) cancel This completes the proof of (2.6). Thus, the maps mj, satisty the Ao relations.

For the second part of the theorem, as noted in the discussion following (2.5), it suffices
to show that

(V,81) ~ (V, {my}) X CEDD(I).
According to [11, Proposition 10.1], the left-left DD bimodule (f:ﬁ)(]l) has generators p, ¢,
with idempotent action given by
(to®t)-p=p and (1 ®u)-q=¢g

and structure map given by

S51(p) = (P1 ®pP3 + p3 @ p1 +p123 ® p123) ®q and 51(g) = p2 ® p2 ® p.

Thus, (V,{m;}) X C/Fﬁ)(l ) is isomorphic to V' as a vector space. According to the definition
of the box tensor product of a type A module and a type DD bimodule, for v € VV°, we have

§1(v® p) = (p1 ® ma(v, p3) + p3 @ M2 (v, p1) + p123 @ (M2(v, p123)
+ my(v, p3, p2,p1))) ® ¢ + p12 ® m3(v, p3,p2) ® p
= (p1 ® D1(v) + p3 ® D3(v) + p123 ® (D30 D2 0 D1(v) + D123(v))) ®
+p12® D12(v) ® p

= (p1 ® D1(v) + p3 ® D3(v) + p123 ® D123(v)) ® ¢ + p12 ® D12(v) ® p,
where the final line follows from the fact that D, o D; = D3 o D5 = 0. Likewise, forw € V1,

S51(w ® q) = p2 @ ma(w, p2) ® p + p23 ® m3(w, p2,p1) V ¢
=p2 ® D2(w) ® p + p23 @ Dr3(w) ® q.

Thus, the differential on (V, {m;}) X @)(l ) is equal to the original differentialon V. D

2.4. Bordered invariants of knot complements. If K is a knot in a homology sphere Y
and Xk denotes the exterior of K, let ¢x: T2 — 0Xg be the orientation-reversing parametriza-
tion taking S! x {pt} to a O-framed longitude of K and {pt} x S! to a meridian of K. When Y
is an L-space, Lipshitz, Ozsvath, and Thurston give a formula for C/F\D(X K, ®K) in terms of
the knot Floer complex of (Y, K), which we now describe (adding a few details).

We begin by reviewing some facts about knot Floer homology, as defined in [18, 25].
Let C~ = CFK™ (Y, K) denote the knot Floer complex of K, a finitely generated free chain
complex over [F[U] with a bounded-above filtration

"C%C%+1C"'Cc_

such that U - ¥; C ¥;— for all i. The filtered chain homotopy type of this complex is an
invariant of the knot.

For any nonzero x € C~, let A(x) = min{i | x € ¥;}; we call this the filtration level or
Alexander grading of x. Multiplication by U decreases the Alexander grading by one:

AU -x) = A(x) — 1.
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By convention, A(0) = —oco. We may assume that C ™ is reduced, in the sense that for any
xe€C™,0x =U-y+ z,where A(z) < A(x); this implies that

rankg(] C~ = dimp HFK(Y, K) = 21 + 1

for some n > 0. The manner by which knot Floer homology detects the genus [17, Theo-
rem 1.2] implies

Fe)-1 & Fex) =€ Fg)—1 CUCT, Fgx) £ UC.

Let C® = C™ ®p) FIU, U ~1, and extend the filtration to C* accordingly. Suppose
that {xg, ..., X2} is a basis for C~ over F[U]; then {U'x; | k =0,...,2n, i € Z} is a basis
for C* over IF. We may picture these basis elements living on the integer lattice in R?, with the
element U* x; at the point (—k, A(xy) — k). We refer to the coordinates in the plane as i and j,
and we identify C~ with the subcomplex C{i < 0} C C°° generated by the basis elements at
lattice points with i < 0. The complexes C{i < s} (s € Z) provide a second filtration on C~
and C*°.

Let CY = C~/UC™ and C" = F((C®)/F_1(C°), and let 3, 8" denote the respec-
tive induced differentials. We refer to (C?,d%) and (C",0") as the vertical and horizontal
complexes, respectively.

The associated graded object of C™~ (with respect to the original filtration) is the free
F[U]-module

ar(CT) =P 7/ Fi.
i€Z
with the induced multiplication by U. Note that the direct sum is as an [F-vector space,
and not as an [F[U]-module since multiplication by U decreases the filtration by one. For
x € C7, let [x] € gr(C™) denote the image of x in F4(x)/F4(x)—1- Note that [Ux] = U[x].
A basis {xg, ..., X2, } for C™ is called a filtered basis if {[xo], . .., [x2x]} is a basis for gr(C ™)
over F[U]. Any two filtered bases {xo,...,x2,} and {x,...,x},} are related by a filtered
change of basis: if x; = Zj a,-jx]/. and x] = Zj bijx;, where a;;, b;;j € F[U], then

A(aijx}) < A(x;) and  A(bijx;) < A(x;) foralli, ;.

In particular, if a;; # 0 (mod UC™), then A(x]’.) < A(x;), and similarly for b;;. -

A key tool for our main theorem (Theorem 1) is a formula which expresses CFD(Xg)
in terms of CFK™ (Y, K). The most useful way to express this formula is by picking a basis
for CFK™ (Y, K) and describing (ﬁJT)(X k) in terms of this basis. To do this it will be useful to
have particularly nice bases for CFK™, whose definitions we now recall.

Definition 2.3. A filtered basis {&,...,&2,} for C~ over F[U] is called vertically
simplified if, for j = 1,...,n,

A(§2j—1) — A(§2;) = k; >0 and 051 =&, (mod UCT),

while for p = 0,1,...,n, we have

We say that there is a vertical arrow of length kj from &1 to &> and that & is the generator
of vertical homology.



140 Hedden and Levine, Splicing knot complements and bordered Floer homology

The name is motivated by the fact that in a vertically simplified basis the differential on
the vertical complex (CY, 0V) is particularly simple; indeed, in a vertically simplified basis 0”
can be represented by a collection of vertical arrows which pair up the even and odd basis
elements, and where &y has no incoming or outgoing arrows. Similarly, for the horizontal
complex we have

Definition 2.4. A filtered basis {ng, ..., 25} for C™ over F[U] is called horizontally
simplified if, for j = 1,...,n,

A(n2j) — A(nzj—1) =€, >0 and Onzj—1 = U%1p; (mod Fam;— -1

while for p =0, 1,...,n, we have

A(n2p) < A(n2p).

We say that there is a horizontal arrow of length {; from n2; 1 to n2; and that 7o is the
generator of horizontal homology.

Lipshitz, Ozsvath, and Thurston showed that C ™~ always admits both horizontally and
vertically simplified bases [10, Proposition 11.52]. Furthermore, for any vertically simplified
basis {&o, ..., &} and horizontally simplified basis {7o, ..., n2,}, the two unordered tuples
{k1,...,kn}and {£q,...,¢,} are equal; this follows from the symmetry of knot Floer homol-
ogy under reversing the knot orientation [18, Section 3.5].

Two particularly useful derivatives of the filtered chain homotopy type of C°° can be
expressed easily in terms of a vertical or horizontally simplified basis. The first is the Ozsvéith—
Szabé concordance invariant [15,25]. Denoted t(K), this invariant is a homomorphism from
the smooth concordance group to the integers which bounds the smooth 4-genus:

[T(K)| = g4(K).

In terms of a vertically simplified basis, we have

©(K) = A(So),
while in terms a horizontally simplified basis we have
T(K) = —A(no).

The latter equality again follows from the orientation reversal symmetry.

The second invariant we derive from C* is Hom’s invariant €(K) € {—1,0, 1}, which
captures whether the four-dimensional cobordisms obtained by attaching two-handles to Y
along K induce nontrivial maps on Floer homology in certain Spin-structures [8, Defini-
tion 3.1]. This invariant can also be expressed in terms of vertically and horizontally simplified
bases. Let [no] denote the image of 7o in the vertical complex C?. Also, viewing &y as an
element of C°°, the chain £, = UAG0g is in %o, so we may consider its image [£5] in the
horizontal complex C h Then:

* If e(K) = —1, then 8"[no] # 0 and 9" [£}] # O.
* If €(K) = 0, then [no] € kero” ~ima" and [§;] € kerd” < imd".
* If e(K) = 1, then [no] € imdV and [£)] € im 9",
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The following proposition tells us that the change of basis passing between horizontally
and vertically simplified bases can be assumed to be relatively well-behaved.

Proposition 2.5. There exist filtered bases {&o,...,Exn} and {no,...,N2n} for C~
over F[U] with the following properties:

(1) {&o....,&n} is a vertically simplified basis.
(i) {no, ..., n2n} is a horizontally simplified basis.
(iii) Ife(K) = —1, then &g = n1. If e(K) = 0, then & = no. If €(K) = 1, then &y = n».
@v) If
2n 2n
&p = Zap,qnq and 1p = Z bp.gq-
q=0 q=0

where ap 4,bp 4 € F[U], then

apq =0 whenever A(§p) # A(ap,gng),

and

bpg =0 whenever A(np) # A(bp.q€q)-

In other words, each &, is an F[U]-linear combination of the elements ny that are the
same filtration level as &y, and vice versa.

Proof.  According to Hom [7, Lemmas 3.2 and 3.3], we may find vertically and horizon-
tally simplified bases {£o. ..., &2, } and {ng, ..., n5,} satisfying (iii) (with ; replaced by 7;).
We shall modify the latter basis to produce a new basis {1, . . . , 25} satisfying the conclusions
of the proposition.

As above, any two filtered bases are related by a filtered change of bases, so let

2n 2n
/ / / /
& = Z Apgllg and 1, = Z by.q8q
q=0 q=0

be filtered change of bases. That is, for all p,q € {0, ...,2n}, we have

Alap gng) = A(Ep) and  A(by, ,&¢) < A(1p).

Let
by = =b;,,q if A(b) 489) = AlT,).
0 if A(bp,g€q) < A(n},),
and define
2n
Np = pr,qéq and A, = ’7;; —Tp-
q=0

Note that A(np) = A(n},), while A(Ap) < A(n},). The change-of-basis matrix (bpq) is in
block-diagonal form (after reordering rows and columns according to filtration level), so its
inverse is as well. Thus the bases {&o,..., &} and {no, ..., n2n} satisfy (iv). Furthermore,
if i € {0, 1,2} is the index for which & = 7/, then n; = 7} by construction, so (iii) also holds.
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It remains to show that the basis {no, ..., n2,} is horizontally simplified. We have, for
any j =1,...,n, )
Onzj—1 = 0Ny —0A2j—1

= arIIZj—l (mod ?A(,Iéjil)—l)

=yb m,; (mod .'/*‘A(,,/zj_l)—l)
= UYn + UY Ay

=UY 2  (mod Fagpy, 1y-1):

where the last line follows from the fact that
AUY Azj) = A(Dsj) =) < AGy)) =4 = A(ny;—y) = A(12j-1).-
Likewise, for j = 0,1,...,n, we have
Omaj = 0na; + 0A2j € Fuqyy )-1-

as required. O

_ For the remainder of this section, choose vertically and horizontally simplified bases
{€o,...,&n} and {70, ..., an} for CFK™ (Y, K) satisfying the conclusions of Proposition 2.5
above.? Assume that

2n 2n
§p = Z ap,qilq and fjp = Z bp.q8q- p.g-bp.q € F[U],
q=0 q=0

and let
dpg =dpglu=0 and bpq = bpglu=o.

According to [10, Theorem 11.27 and Theorem A.11], C/F\D(X K, ¢$K) is completely determined
by the lengths of the arrows (i.e., k; and £;), 7(K), and the change-of-basis matrix (ap.q), as
follows.

Theorem 2.6. With notation as above, C/F\D(X K) satisfies the following properties:

e The summand LOC/FT)(XK) has dimension 2n + 1, with designated bases {&y, ..., %25}
and {no, ..., Nan} related by

2n 2n
&p = Z apglg and np = Z bp,géq-
q=0 q=0

e The summand 1;CFD(X) has dimension > ii(kj +1j) +t, wheret =2 |t(K)|, with
basis

n n
_Ul{xf,...,xgj}u Ul{)tj,...,?t{j}U{m,...,uz}-
]: =

4 We use tildes for the generators of CFK™ (Y, K) in order to distinguish them from the corresponding
elements of CFD(Xg).
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» For j = 1,...,n, corresponding to the vertical arrow 52,-_1 — §2j of length kj, there
are coefficient maps

D23 j D23 D>3 i D1
(2.9) £r) K] e ki E2j-1.
s For j =1,...,n, corresponding to the horizontal arrow 121 — 12 of length l;, there
are coefficient maps
D3 i D23 D»3 i D>
(2.10) N2j—1 M e A M-

J

* Depending on t(K), there are additional coefficient maps

D D D D
o ——> i) —> >y «—— &, T(K) >0,
D
(2.11) Eo —— no. 7(K) =0,
D D D D
EO 123 /J,] 23 23 th 2 )’]0, ‘E(K) < O

We refer to the subspaces of C/FT)(X x) spanned by the generators in (2.9), (2.10), and (2.11)
as the vertical chains, horizontal chains, and unstable chain, respectively.S)

As described in [10 Lemma 11.40], CFD(X k) admits a gradmg by half-integers, taking
integer values on L()CFD(X k) and non-integer values on L1CFD(X K):

(2.12) 1CFD(Xg) = D CFD(Xk.s) and ;CFD(Xk) = P CFD(Xk.s).
SEZ seZ+1

We refer to this grading as the Alexander grading. This is justified since there are canonical
identifications

10CFD(Xk) =~ HFK(Y, K) and (;CFD(Xg) =~ HFL(K),

where the latter invariant is the longitude Floer homology [1]. Under these identifications the
grading on the summands of (ﬁ:T)(X k) agrees with the Alexander gradings on each of these
groups. Proposition 2.5 implies that the Alexander gradings (in C/FT)(X x)) of &, ..., &, and
no, ..., Na2n are equal to the filtration levels (in CFK™ (Y, K)) of §0, e, §2,, and 7o, ..., D2n,
respectively, and that the change of basis is homogeneous. We denote the grading of a homo-
geneous element x by A(x), and for each s € %Z, let my: (ﬁJT)(XK/)\e C/FT)(XK, s) be the
projection map coming from (2.12). The Alexander grading on CFD(Xg) will eventually
enable us to isolate certain pieces of the chain complex for a spliced manifold. As seen in [10],
the coefficient maps on @(X k) are all homogeneous with respect to A, with the following
degrees.

Coefficient map Dq D> D3 D> D;; D3
A-degree —% % % 0 1 %
5) Note that our notation differs slightly from that of [10]: the generators K{ ..... Kli' are indexed in the
J

reverse order, as are (1, ..., Mz in the case where T(K) > 0.
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Note that C/F\D(X k) need not be bounded,; for instance, if K is the unknot, then C/F\D(X K)
has a single generator &, with §;(§) = p12 ® &, and therefore
k() =p12® - ®p12®E, k>1

To avoid this issue, we may introduce a modified version of C/F\K(X k) when t(K) = 0.9 Let
CFD(Xk)' be just as in Theorem 2.6, except that the unstable chain in the t(K) = 0 case is

replaced with
D, Dy D>
§o —> V1 <— v2 —> 1)o.

The two generators vy and v, have Alexander grading —%. It is easy to verify that C/F\D(X x)
is chain homotopy equivalent as a type- D module to CFD(Xg).

Lemma 2.7. For any knot K C S3, CFD(Xk)' is bounded.

Proof. 'We must show that every sufficiently long composition of the coefficient maps
on CFD(Xg) is zero. Note that the vertical chains are closed with respect to any of the coeffi-
cient maps: for any / € R,

Dy (Span(ky, ... ,/c]ij)) C Span(xy, ..., K,ﬁj).

Also, the only compositions of coefficient maps whose restrictions to Span(/c{ e Klg,-) are
nonzero are D74 for m < kj. An analogous statement is true for the unstable chain when
7(K) > 0. Therefore, for the purpose of boundedness, it suffices to consider only sequences of
coefficient maps made from the horizontal chains and from the unstable chain when t(K) < 0.
Since these maps do not involve D or D5, they all increase the Alexander grading by % orl.
Since the Alexander gradings of all elements are between —g(K) and g(K), this implies that
any composition of more than 4g coefficient maps is equal to zero. O

3. Splicing knot complements

For any knots K1 C Y; and K, C Y3, note that the composition
¢, 0T o¢,;11:aXKl — 0Xk,

is orientation-reversing and takes a O-framed longitude of K1 to a meridian of K5 and a merid-
ian of K to a O-framed longitude of K>. The manifold gotten by gluing Xk, and Xk, via
¢k, 0r o qu}ll is thus precisely Y (K1, K»), as defined in the introduction. Therefore, we have

HF(Y (K1, K2)) = Hx(CFA(Xk, . ¢k, © 1) ® CFD(Xk,. ¢x,))-
(Henceforth, we suppress the parametrizations from the notation.) Since
CFD(Xk,) ~ CFD(Xx,)’
and the latter is bounded, there are homotopy equivalences
CFA(Xg,) ® CFD(Xx,) ~ CFA(X,) ® CFD(X,)
~ CFA(Xg,) ® CFD(Xk,)'.

9 We are grateful to Jonathan Hanselman for pointing out this argument, which also appears in his
preprint [4].
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We obtain C/EA(X k,) by applying Theorem 2.2 to C/F\D(X k,); we do not need to use the
bounded version.

Our strategy will be to describe, for any knot K in an L-space homology sphere Y, the
behavior of those elements of C/F\D(X k) and C/PT)(X k) that come from the part of knot Floer
homology in lowest Alexander grading, Pfﬁ((Y, K, —g(K)). We will then use Theorem 2.2 to
describe the corresponding elements of C/FTA(X k). The tensor products of these elements will
give rise to the homology classes in

H.,(CFA(Xg,) ® CFD(Xk,))

needed for Theorem 1.

Assume, for the duration of this section, that we have bases {50, el g?z,,}, {0, 72n}
for CFK™ (Y, K) just as in Theorem 2.6. We begin by considering the basis elements that have
Alexander grading equal to —g(K).

By the definitions of vertically and horizontally reduced bases, for any j € {1,...,n},
neither §2 j—1nor 7j2; can have Alexander grading equal to —g (K), since that would require §2 J
or 7)2j—1 to have Alexander grading less than —g(K). Furthermore, if K is a nontrivial knot
and A(Eo) —g(K),then7(K) = —g(K) and e(K) = —1, since 50 is congruent modulo UC ™
to a linear combination of 7j1, . . ., 7j2—1. Likewise, if A(7)o) = —g(K) < 0, then 7(K) = g(K)
and €(K) = 1.

Lemma3.1. IfA(7]2j—1) = —g(K) and {j = 1, then i]2; is congruent modulo UC™
a linear combination of &, éz §4, .. ézn Furthermore, the coefficient of éo is zero unless
T(K)=—g(K)+ land g(K) > 1.

Proof. For p=0,...,2n, let ép and 7), respectively denote the images of ép and 17,
in CV = C~/UC™. The elements g?o,g?z, .. .,5?2,, generate the cycles for 0V, so we must
show that 0¥7)>; = 0, i.e., 072; € UC~. When £; = 1, the definition of a horizontally simpli-
fied basis says that A(7)2;) = A(72j—1) + 1 and 07)2;—1 = Ufj2; + €, where A(e) < —g(K).
The fact that 7 _; is in the minimal Alexander grading on C ~/UC ™ implies that ¢ = U§ for
some § with A(§) < —g(K). We have

0 = 0%f2j—1 = Udija; + 0e = U(dija; + 96),

and since multiplication by U is injective, 07)2; = 05. Now, since C~ is reduced, it follows
that 0§ = Ua + B, where A(B) < A(§) < A(7)2j—1), and therefore B = Uy as above. Thus
we have 072 = U(e + y), as required.

Furthermore, if 7,; has a éo component, then the Alexander grading of So—whlch by
definition is (K )—is equal to —g(K) + 1, and €(K) = 1 since 50 has an incoming horizontal
arrow. The fact that g(K) > 1 then follows from Lemma 3.2 below. O

Lemma 3.2. IfY is an L-space homology sphere, and K C Y is a knot with g(K) = 1
and t(K) = 0, then €(K) = 0.

Proof. Suppose, toward a contradiction, that €(K) = 1. We may find horizontally and
reduced bases {no, ..., n2n} and {&o, ..., &2y} satisfying the conclusions of Proposition 2.5;
in particular, & = n,. Since g(K) = 1, the horizontal arrow from 7; to 7, has length 1,
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which means that A(ny) = —1 and dn; = U&y + y, where A(y) < —1. As above, we have
y = U§ for some § with A(8) < —1 since there are no chains with U power zero having
Alexander grading less than —g = —1. Now the filtration levels of & and each of the & ;1
are strictly greater than —1, because the vertical differential decreases the Alexander grading
and A(&y) = ©(K) = 0. It follows that 1y is in the span of {&5,...,&x,}, so there exist ele-
ments &, o such that 06 = n; + Ucw. Hence,

0=0% =0n +Uda = Uy + § + o),
s0, by the injectivity of multiplication by U,
oa = &g+ 6.

If we write § = aofo+- -+ aznan, where a; € F[U], the fact that A(§) < —1 implies that ag
and ay,as,...,az,—1 must be divisible by U. Setting

n

/

o =a+ E azjézj—1,
Jj=1

we see that
aOl, = EO (mod UC_),

which means that &y is in the image of the vertical differential, a contradiction.
If e(K) = —1, we reduce to the previous case by considering the mirror K in place
of K. O

‘We now return to the bordered invariants. For a nontrivial knot K, let
Bk = CFD(Xk, —g(K)).

Note that
Bk = HFK(Y, K. —g(K)),

and it is generated by some subset of {&»; | j = 1,...,n}, along with & if 7(K) = —g(K);
it is also generated by some subset of {21 | j = 1,...,n}, along with n if 7(K) = g(K).
Let mp = m—_g denote the projection onto Bg. o

Additionally, note that C/I-JT)(X K>— g(ﬁ + %) is generated by the elements /c{ , k{ ,and [t
that are “adjacent” to the generators of CFD(Xg,—g(K)) in the vertical, horizontal, and
unstable chains. To be precise, let

Vk = subspace generated by {K{ | A(ggj) = —g(K)}, and u if t(K) = —g(K),
and
Hpg = subspace generated by {)L{ | A(2j-1) = —g(K)}, and pq if ©(K) = g(K).

Clearly, C/FT)(X Kk, —g(K) + %) = Vg & Hg. Furthermore, Vx and Hg each have the
same rank as Bg; indeed, the restrictions of D53 and D3 to Bg gives isomorphisms from Bg
to Vx and Hg, respectively. Let nV:C/ﬁ)(XK) — Vg and nH:C/ﬁD(XK) — Hg be the
composition of 7_g 1 1/, with projection onto the appropriate factors.
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In C/ﬁ)(X k), let By, Vi, and H be defined identically, except that Hg also includes
v1 and vy in the case where g(K) = 1 and t(K) = 0.

The next two propositions describe all of the differentials into and out of Bg and Vi, as
well as their counterparts in C/F\D(X k). (The subspace Hg turns out not to be as useful for the
present purposes.)

Proposition 3.3. Let K be a nontrivial knot with genus g > 0 in an L-space homology
sphere, and consider the subspace Bx C CFD(Xg) as described above.

(i) Elements of Bg have no incoming coefficient maps of any type. More precisely, for
each I € R, we have mg o Dy = 0.

(i) If I,...,I, € R are such that the restriction of Dy, o---o Dy, to Bk is nontrivial,
then:

(@) Iy =30r123.
(b) IfI) =123 and r > 1, then I, = 23.
() If 1 =3andr > 1,then I =2 0r23; if [, =2 and r > 2, then I3 = 123.

The same is true for B, C CFD(Xk)'.

Proof. The proofs for Bx and Bj are identical, so we consider only Bg.

The first statement follows immediately from Theorem 2.6 and the fact that Bg does not
contain elements of the form 75, for j = 1,...,n, and does not contain 1o if 7(K) < 0 (the
only cases where 719 has an incoming coefficient map).

For the second statement, note that Dy and D, restricted to Bg are both zero, so we
may reduce to the two cases where /1 = 3 or 123, which we treat separately.

In the case where /; = 123, we consider the vertical basis for Bg. If &>; € By, where
J €{l,...,n}, then the only nonzero sequence of coefficient maps coming from &,; and
starting with D153 is the vertical chain

£ D23 K{ D3 D23 K]ij-

Ité& € (ﬁST)(X k.—&),then 7(K) = —g(K) < 0, so the unstable chain provides the sequence

D23 D3 D3 D>
€o H1 e M2g 1o,

with at least one D»3. Thus, the only / such that Dj o D123|p, can be nonzero is [ = 23.
In the case where /7 = 3, we use the horizontal basis. If ng € Bk, then 7(K) = g(K) > 0,
so the unstable chain provides the sequence

D3 D3 D>3
1o M1 e Hag-

Ifny;—1 € C/FT)(X K —g), the horizontal chain from 7,1 to 12, provides the sequence

D3

S 2/ D23 D23
J— 1

. D2
J
Aej n2;j-

Thus, it remains to consider the case where £; = 1. Lemma 3.1 says that 15 is a linear combi-
nation of &5, &4, ..., &35, along with & provided that 7(K) = —g(K) 4+ 1 and g(K) > 1, and
only D53 is nonzero on these elements (via corresponding vertical or unstable chains). Hence,
the only / such that D; o D5 o D3|, can be nonzero is [ = 123, as required. O
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Proposition 3.4. Let K be a nontrivial knot with genus g > 0 in an L-space homology
sphere, and consider the subspace Vxk C CFD(Xg) as described above.

(1) The only possible nonzero sequences of coefficient maps into Vi are D123 and Dy. More
precisely, if ry o Dy, o---0 Dy, # 0, thenr = 1 and I; = 123 or 1.

(ii) If the restriction of Dy, o ---o Dy, to Vi is nontrivial, then Iy = 23.

The same is true for Vi, C CFD(Xk)'.

Proof. By Theorem 2.6, the only coefficient maps whose image have nonzero projection
to VK are D1 and Dq33. Furthermore, the only nonzero contrlbutlon to my o D1 comes when
A(SZJ) = —g(K)and k; = 1, in which case D1(§2;-1) = /cl It remains to verify that &>, 1
has no incoming coefficient maps coming from the horizontal or unstable chains. If 7,; has
anonzero &1 component, then A(n2;) = A(§2j—1) = —g(K)+1and A(n2;-1) = —g(K),
so by Lemma 3.1, 7,; is in the span of &g, &,,...,&2,, a contradiction. Likewise, if no has
anonzero &1 component, then t(K) = —A(no) = g(K) — lande(K) = —1,s0 g(K) > 1
by Lemma 3.2, hence 7(K) > 0. The unstable chain then gives 19 an outgoing differential,
namely

Ds3
no — M1,
not an incoming one. This concludes the proof of the first statement.

The second statement follows Proposition 3.3 and the fact that D123|g,: Bk — Vi is

an isomorphism. O

Next, we use the algorithm of Theorem 2.2 to give analogous results for CFA(X K)-
We view CFA(X k) as having the same underlying vector space as CFD(X K ), with #Aso-mul-
tiplications given by Theorem 2.2. We may then think of Bg, Vk, and Hg as subspaces
of CFA(Xk).

Proposition 3.5. Let K be a nontrivial knot with genus g > 0 in an L-space homology
sphere, and consider the subspace Bx C CFA(Xk) as described above.

(1) Elements of Bx have no incoming multiplications of any type. More precisely, for
anyay, ...,ay € A, the composition tp omp (- ® a1 ® --- ® ay) is trivial.

(ii) If In,..., I, are elements of R such that the restriction of my+1(-® pr, ® --- ® pr,.)
to Bg is nonzero, then:
() If Iy =123, thenr > 2 and I, = 2.
() If Iy =3, thenr >3, I, =2, and I3 = 1 or 12.

Proof. This proposition follows by applying Theorem 2.2 to the results of Proposi-
tion 3.3. For any Iy,..., 1, € i with [; --- [, alternating and last(/;) > first(/; 1) for all i,
we have

Mmr41(- @ pry ® - ® pr,) = Dy;)©-+ 0 Dy,

where (J1,...,J;) = W[y ---I;). If the restriction of m, +1(-® pr, ®---® pr,) to Bg or Vg
is nonzero, the sequence (¢(J1),...,¢(J;)) must satisfy the conclusions of Proposition 3.3.
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Specifically:

o If I; =123, then ¢(J1) = 3 and ¢(J2) = 2, so Proposition 3.3 says that j > 2 and
J3 =123. Hence I{--- 1, = 12321 ...,s0 I, = 2.

o If I} =3, then ¢(J;) begins with 1, so Proposition 3.3 says that ¢(J;) = 123 and
¢(Jp) =23if j > 1.Hence Iy --- 1, =321 0or32121...,s0 [ =2and I3 = 1 or 12.

The proof is complete. o
A similar argument shows the following proposition.

Proposition 3.6. Let K be a nontrivial knot with genus g > 0 in an L-space homology
sphere, and consider the subspace Vg C CFA(Xk) as described above.

(1) The only possible nonzero Aoo-multiplications into Vg are ma(- ® p3 ® p2 ® p1) and
ma (- ® p3). More precisely, if ty om,1(- ® pr, @ --- ® pr,) # 0, then either r =1
and Iy =3, orr =3 and (11, 12, 13) = (3,2, 1).

(i) If the restriction of my+1(- ® pr, ® -+ ® py,) to Bk is nonzero, then I = 2. i

Proof of Theorem 1. Let K; C Y7 and K, C Y» be two nontrivial knots in L-space
homology spheres. The Alexander gradings on CFA(K;) and CFD(K,)’ give a direct sum
decomposition of CFA(Xk,) X CFD(Xg,)" as a vector space,

CFA(Xx,) R CFD(X,) = D Cs.

SEZ
where
Cy = P CFA(Xk,.1) ®4 CFD(Xk,.s —1)'.
telz
Note that
Cg(k1)~g(K2) = Bi, ® B,
and

C_gkp)-gkn+1 = Vk, ® Vg,)) ® (Vk, ® Hy)) ® (Hk, ® Vg,) ® (Hg, ® Hy,)
® (Bk, ® CFD(Xk,. ~g(K2) + 1))
® (CFA(Xk,.~g(K1) + 1) ® B,).
We claim that the direct summands B = Bk, ® By, and V = Vk, ® Vg , each of dimen-

sion dim H/F\K(Yl, Ki,—g(Ky))-dim H/F\K(Hz, K>, —g(K>)), both survive in the homology
of CFA(Xk,) X CFD(Xg,)', which will prove that

dim HF (Y(K1, K»)) > 2dimHFK(Y1, K1, —g(K1)) - dim HEK(H», K», —g(K»)) > 2,

as required.
To see that the differential on CFA(Xg,) X CFD(Xk,)  is identically zero on B, we
simply note that there do not exist Iy, ..., [, € R satisfying the conclusions of the second
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parts of Propositions 3.3 and 3.5 simultaneously. Thus, for any x € Bk, and y € B} -

Mrx®y) = Z M1 (X ® pr, ® - pr,) @ (D, o---0 Dy )(y) =0.

(Here m;4+1 denotes an #Ao-multiplication on @(X k,), while Dy, , ..., Dy, denote coeffi-
cient maps on C/FT)(X k,)'.) Furthermore, the first parts of Propositions 3.3 and 3.5 imply that
the composition of 9% with the projection onto B coming from the direct sum decomposition
is zero. Thus, B survives in homology.

The proof for V' is similar, using Propositions 3.4 and 3.6. Just as above, the restriction
of 0% to V vanishes. Furthermore, if x € C/FTA(X k;)and y € (ﬁ:T)(X K,) are two elements

such that 9% (x®y) has nontrivial projection to V, there mustbe /1, . . ., I, that simultaneously
satisfy the first parts of Propositions 3.4 and 3.6, but clearly this is impossible. O
4. Examples

Let L and R denote the left- and right-handed trefoils in S3, respectively. For each of
these knots, CFK™ has a basis that is simultaneously horizontally and vertically simplified (up
to permuting elements). The invariants CFD(X7,) and CFD(XR) are as follows.

CFD(X1) CFD(XR)
D D D
Elf\zuz SO 2 1 3 51

D, D>3
\p " B
K 1
2 K
D3 D23
\ D»3 . D123

é_
gl D> A Ds 50 {D\sz

3

According to Theorem 2.2, C/F\A(X R) is as follows (using capital Greek letters to avoid confu-
sion when we take tensor products below).

P12
N
=0 =5 |

P23
P3
03 //
M K
P12,01
02,01 P3,02,01

1
i

=2

We may use these results to compute the tensor product complexes C/F\A(X R) IZIC/F\D(X L)
and CFA(Xg) X CFD(XR), illustrated in Figures 1 and 2. In each of these figures, the two
homology classes provided by the proof of Theorem 1 are indicated in boldface.
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Az
Eob—— 21§

Ax%

Mj 2

Mk M g .

M; A
26 Eaép

Figure 1. The tensor product complex (fFT\(XR) X @I\D(XL).

Mz a1y Kyt
M;A
Mip 1\/[116(/’_‘\H
2'P\/Cazgo E261
M pq
E2é>

Figure 2.  The tensor product complex @(X r) X C/ﬁ)(X R)-
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From these complexes, it is easy to verify that
dimAF(Y(R, L)) = dim H.(CFA(Xg) K CFD(X1)) = 9

and
dimHE(Y (R, R)) = dim H.(CFA(Xg) ® CFD(Xg)) = 7.

Since Y(L, L) = —Y (R, R), we also have
dimHF(Y(L,L)) = 7.

The reader is encouraged verify these results in another way by computing @(X 1) and
evaluating its box tensor product with CFD(X7,) and CFD(XR).

5. Future directions

We conclude by discussing the prospects for generalizing Theorem 1 to manifolds
obtained by splicing knots in arbitrary homology spheres, which would prove Conjecture 2.
If K is a knot in a homology sphere Y, the proof of Theorem 2.6 given in [10] can be adapted to
give a description of (ﬁJ\D(X x) in terms of CFK™ (Y, K), with multiple unstable chains when Y
is not an L-space. However, the structure of the unstable chains depends on the isomorphism
induced on homology by a certain chain homotopy equivalence

J:(CM o) > (C?, oY)

that arises in the course of the proof, and this isomorphism is not a priori determined merely
by CFK™ (X, K). Furthermore, even though (C”, ") and (C?, d?) are filtered chain homotopy
equivalent, the map J need not be a filtered chain homotopy equivalence. In particular, an
unstable chain may connect a horizontal generator 19 and a vertical generator & with the
property that A(no) # —A(&o)-

As a result, Propositions 3.3 through 3.6 no longer hold when Y is not an L-space. For
example, let Y be the manifold obtained by +1 surgery on the left-handed trefoil L (i.e., the
Brieskorn sphere —X (2, 3, 7)), and let K be the core of the surgery torus. Note that Xg = X,
as smooth manifolds with boundary, but the parametrization ¢ differs from ¢y by a longitu-
dinal Dehn twist. Thus,

CFD(Xx . ¢x) ~ CFDA(z; ') B CFD(XL. ¢L),

where CFDA(I/l 1) is one of the Dehn twist bimodules computed in [11, Sectlon 10.2]. By
evaluating this tensor product and simplifying, the reader may verify that CFD(X K, $x) has

the following form.
E 1 %

D, m2

%3

K €0

D>
D123

M1
&2

D23
D>
2 A 1

D> D5




Hedden and Levine, Splicing knot complements and bordered Floer homology 153

Here, no, 12, and &y are the generators of vertical homology, and &y, &1, and &, are the
generators of horizontal homology. The only generator in Alexander grading —1 is 7;. Notice
that Dy o D123(n1) and D13 o Dy o D3(n7) are both nonzero (and distinct), contrary to Pro-
position 3.3. Furthermore, by Theorem 2.2, the corresponding generator in C/EA(X k) has
outgoing m4(- ® p3 ® p2 @ p12) and m3(- ® p123 @ p2) multiplications, contrary to Propo-
sition 3.5. Therefore, when K; and K> are knots in arbitrary homology spheres, the subgroup

Bk, ® Bx, C CFA(Xk,) ® CFD(Xk,)

does not necessarily survive in homology, unlike in our proof of Theorem 1. A different strategy
will thus be required for a proof of Conjecture 2.
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