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Splicing knot complements and
bordered Floer homology

By Matthew Hedden at East Lansing and Adam Simon Levine at Princeton

Abstract. We show that the integer homology sphere obtained by splicing two non-
trivial knot complements in integer homology sphere L-spaces has Heegaard Floer homology
of rank strictly greater than one. In particular, splicing the complements of nontrivial knots in
the 3-sphere never produces an L-space. The proof uses bordered Floer homology.

1. Introduction

A rational homology 3-sphere Y is called an L-space if the rank of its Heegaard Floer
homology group cHF.Y / equals the order of H1.Y IZ/. Examples of L-spaces include S3,
lens spaces, all manifolds with finite fundamental group (see [20, Proposition 2.3]), and the
branched double covers of alternating (or, more generally, quasi-alternating) links in S3 (see
[21, Proposition 3.3]). Since the rank of cHF.Y / is always greater than or equal to jH1.Y IZ/j
(see [19, Proposition 5.1]), L-spaces are the manifolds with the smallest possible Heegaard
Floer homology, and it is natural to ask for a complete classification of L-spaces or a more topo-
logical characterization [16, Question 11]. The following conjecture, first raised by Ozsváth and
Szabó [22, p. 40], is of central importance in Heegaard Floer theory:

Conjecture 1. If Y is an irreducible homology sphere that is an L-space, then Y is
homeomorphic to either S3 or the Poincaré homology sphere.

Thus, the conjecture asserts that the classification of L-spaces with the singular homology
of the 3-sphere is extremely simple: they are simply the connected sums of zero or more copies
of the Poincaré sphere (with either orientation). Conjecture 1 is known to hold for manifolds
obtained by Dehn surgery on knots in S3 (see [17, Proof of Corollary 1.3], [3, Proof of Corol-
lary 1.5]) and for all Seifert fibered spaces (see [26]). In light of the Geometrization Theorem
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(see [13, 23, 24]), one should consider how Heegaard Floer homology behaves under the oper-
ation of gluing along incompressible tori. The following conjecture would reduce Conjecture 1
to the case of hyperbolic 3-manifolds.

Conjecture 2. If Y is an irreducible homology sphere that contains an incompressible
torus, then Y is not an L-space.

The purpose of this paper is to prove a special case of Conjecture 2.
To describe our result, let the exterior of a knot K in a homology sphere Y be denoted

by XK . The meridian and Seifert longitude of K, viewed as curves in àXK , are respectively
denoted �K and �K . Given knots K1 � Y1 and K2 � Y2, let Y.K1; K2/ denote the manifold
obtained by gluingXK1

andXK2
via an orientation-reversing diffeomorphism �W àXK1

! àXK2

taking �K1
to �K2

and �K2
to �K1

. We say that Y.K1; K2/ is obtained by splicing the knot
complements XK1

and XK2
. The Mayer–Vietoris sequence shows that Y.K1; K2/ is a homol-

ogy sphere. The image of àXK1
is incompressible in Y.K1; K2/ if and only if the knots K1

and K2 are both nontrivial. Furthermore, a separating torus T in a homology sphere Y canoni-
cally determines a decomposition Y D Y.K1; K2/: if Y D X1 [T X2, we obtain Y1 (resp. Y2)
by Dehn fillingX1 (resp.X2) along the unique slope in T that bounds a surface in Y2 (resp. Y1),
and we let K1 (resp. K2) be the core of the glued-in solid torus.

The main result of this paper is the following:

Theorem 1. Let Y1 and Y2 be L-space homology spheres, and letK1 � Y1 andK2 � Y2
be nontrivial knots. Then dim cHF.Y.K1; K2// > 1.

Removing the hypothesis that Y1 and Y2 are themselves L-spaces would complete the
proof of Conjecture 2. Of course we have the immediate corollary:

Corollary 2. Splicing the complements of nontrivial knots in the 3-sphere never pro-
duces an L-space.

Our strategy for studying cHF.Y.K1; K2// is to relate it to the knot Floer homology ofK1
and K2. For a knot K � Y in an integral homology sphere, bHFK.Y;K/ is a bigraded vector
space over F D Z=2Z,

bHFK.Y;K/ D
M
a;m2Z

bHFKm.Y;K; a/;

whose graded Euler characteristic is the Alexander polynomial of K (see [18, 25]). These
groups detect the Seifert genus of K (see [17, Theorem 1.2]), in the sense that

g.K/ D max¹a j bHFK�.Y;K; a/ ¤ 0º D �min¹a j bHFK�.Y;K; a/ ¤ 0º:

If K1 and K2 are nontrivial knots, we show that cHF.Y.K1; K2// contains a subspace of
dimension

2 � dim bHFK�.Y1; K1;�g.K1// � dim bHFK�.Y2; K2;�g.K2// � 2;

which implies Theorem 1. Indeed, since dim bHFK�.Y;K;�g.K// D 1 if and only if K is
a fibered knot [3, 14], we obtain a stronger lower bound on dim cHF.Y.K1; K2// if either K1
or K2 is non-fibered.
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Our basic tool for proving Theorem 1 is bordered Floer homology [10], which can be
used to compute the Heegaard Floer homology of a closed 3-manifold obtained by gluing two
pieces along a common boundary as the homology of the derived tensor product of algebraic
invariants associated to the pieces. We review some of the basics of this theory in Section 2.
In the present setting, we havecHF.Y.K1; K2// Š H�.bCFA.XK1

/� bCFD.XK2
//;

where bCFA.XK1
/ and bCFD.XK2

/ are the bordered invariants of XK1
and XK2

with suitable
boundary parameterizations. Lipshitz, Ozsváth, and Thurston give a formula describing bCFD
of the complement of a knot in an L-space homology sphere in terms of the knot Floer com-
plex of the knot [10], and a simple algorithm (given below as Theorem 2.2) yields a similar
description of bCFA. Using an Alexander grading on the bordered invariants, we can identify
subspaces of bCFA.XK1

/ and bCFD.XK2
/ that are isomorphic to the corresponding knot Floer

homology groups in extremal Alexander grading and whose algebraic structure can be under-
stood quite explicitly. These subspaces combine in the tensor product to produce the subgroup
of cHF.Y.K1; K2// described above.

In a sequence of preprints in 2008, Eaman Eftekhary announced a proof of Conjecture 2,
but several delicate technical issues were overlooked in his original treatment. In [2], Eftekhary
provides a chain complex that ostensibly computes cHF.Y.K1; K2// in terms of data associ-
ated to K1 and K2, essentially by using a precursor to bordered Floer homology. The original
version of this complex yielded incorrect results; for instance, its homology has rank 13 in the
case where K1 and K2 are both the right-handed trefoil in S3, whereas a computation using
bordered Floer homology, given below in Section 4, shows that the correct rank is only 7.1)

Subsequent to the submission of the present article, Eftekhary released a revision of [2] that
provides a corrected version of this chain complex. (However, Eftekhary’s original proof of
Conjecture 2 relies on work that has been retracted.)

Acknowledgement. The authors are grateful to Eaman Eftekhary, Jonathan Hansel-
man, Jen Hom, Robert Lipshitz, Peter Ozsváth, and Dylan Thurston for many enlightening
conversations, and to the referees for helpful suggestions.

2. Bordered Heegaard Floer homology

We begin by reviewing a few basic definitions and facts regarding bordered Heegaard
Floer homology [10], focusing on the case of manifolds with torus boundary. Some of this
material is adapted from the second author’s exposition in [9, Section 2].

2.1. Algebraic preliminaries. In this subsection, we recall the key algebraic structures
that occur in bordered Floer homology, known as A1-modules and type D structures. While
these objects can be defined in general over an underlying A1-algebra A, the relevant algebra
for our purposes is merely differential graded, so it will be convenient to give the definitions in
this simplified setting.

1) In this case, Y.K1; K2/ can also be obtained asC1 surgery on the positive, untwisted Whitehead double
of the right-handed trefoil, whose knot Floer complex is known via [5, 6]. The surgery formula from [18] confirms
that bHF.Y.K1; K2// has rank 7.
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Let .A; d / be a unital differential algebra over F D Z=2Z, and assume that the set I of
idempotents in A is a commutative subring of A and possesses a basis ¹�iº over F such that
�i �j D ıij �i and

P
i �i D 1, the identity element of A.

A (right) A1-module or (right) type A module over A is a vector space M equipped
with a right action of I such thatM DM�1 ˚ � � � ˚M�n as a vector space, and multiplication
maps

mkC1WM ˝I A˝I � � � ˝I A„ ƒ‚ …
k times

!M

satisfying the A1 relations: for any x 2M and a1; : : : ; an 2 A,

0 D

nX
iD0

mn�iC1.miC1.x ˝ a1 ˝ � � � ˝ ai /˝ aiC1 ˝ � � � ˝ an/(2.1)

C

nX
iD1

mnC1.x ˝ a1 ˝ � � � ˝ ai�1 ˝ d.ai /˝ aiC1 ˝ � � � ˝ an/

C

n�1X
iD1

mn.x ˝ a1 ˝ � � � ˝ ai�1 ˝ aiaiC1 ˝ aiC2 ˝ � � � ˝ an/:

We also require thatm2.x ˝ 1/ D x andmk.x ˝ � � � ˝ 1˝ � � � / D 0 for k > 2. We say thatM
is bounded if mk D 0 for all k sufficiently large.

A (left) type D structure over A is an F -vector space N equipped with a left action of I

such that N D �1N ˚ � � � ˚ �nN , and a map

ı1WN ! A˝I N

satisfying the relation

(2.2) .�˝ idN / ı .idA˝ı1/ ı ı1 C .d ˝ idN / ı ı1 D 0;

where �WA˝A! A denotes the multiplication on A. If N is a type D module, the tensor
product A˝I N is naturally a left differential module over A, with module structure given
by a � .b ˝ x/ D ab ˝ x, and differential à.a˝ x/ D a � ı1.x/C d.a/˝ x. Condition (2.2)
translates to à2 D 0. We inductively define maps

ık WN ! A˝I � � � ˝I A„ ƒ‚ …
k times

˝IN

by ı0 D idN and ık D .idA˝k�1 ˝ı1/ ı ık�1. We say N is bounded if ık D 0 for all k suffi-
ciently large.

If M is a type A module and N is a type D module, the A1-tensor product M Q̋ N

(see [10, Definition 2.12]) is a chain complex whose chain homotopy type depends only on the
chain homotopy types of M and N (using suitable notions of chain homotopy equivalence for
type A and D modules).

If eitherM orN is bounded, the box tensor productM �N is the vector spaceM ˝I N

equipped with the differential

à�.x ˝ y/ D
1X
kD0

.mkC1 ˝ idN /.x ˝ ık.y//:
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This is a finite sum, and (2.1) and (2.2) imply that à�ıà� D 0. Lipshitz, Oszváth, and Thurston
[10, Proposition 2.34] show that when M or N is bounded, M �N is chain homotopy equiv-
alent to M Q̋ N .

In addition to type Amodules andD structures over A, we can also talk about bimodules
(or trimodules, et cetera). These come in several flavors, known as typeAA,AD,DA,DD. For
instance, for differential graded algebras A and B a left-left type DD bimodule over .A;B/
is simply a left type D module over A˝B; the other types are slightly more complicated.
The A1-tensor products of bimodules behave as expected: for instance, given a right type A
module M over A and a type DD bimodule N over .A;B/, M Q̋ A N is a type D module
over B. The box tensor product � may be used in place of Q̋ under suitable conditions.
See [11, Section 2] for the complete definitions.

2.2. Invariants of bordered manifolds. We will focus solely on the case of torus
boundary. We consider T 2 D S1 � S1, oriented by choosing the same orientation on both S1

factors and taking the product orientation.
The torus algebra A D A.T 2/ is freely generated as a vector space over F by mutually

orthogonal idempotents �0 and �1 and additional elements �1, �2, �3, �12, �23, and �123, with
the following nonzero multiplications:

�0�1 D �1�1 D �1; �1�2 D �2�0 D �2; �0�3 D �3�1 D �3;

�0�12 D �12�0 D �12; �1�23 D �23�1 D �23; �0�123 D �123�1 D �123;

�1�2 D �12; �2�3 D �23; �12�3 D �1�23 D �123:

(All other multiplications among the generators zero.) The multiplicative identity in A is
1 D �0 C �1. The differential on A is defined to be zero; note that this eliminates the second
sum in (2.1) and the third term in (2.2).

A bordered manifold (with torus boundary) is an oriented 3-manifold Y along with
a diffeomorphism �WT 2 ! àY , which we consider up to isotopy fixing a neighborhood of
a point. We call .Y; �/ type A if � is orientation-preserving and type D if � is orientation-
reversing. Lipshitz, Ozsváth, and Thurston associate to a type A bordered manifold .Y1; �1/
a type A module bCFA.Y1; �1/ over A, and to a type D bordered manifold .Y2; �2/ a type D
module bCFD.Y2; �2/ over A. (The maps �1 and �2 are often suppressed from the notation
if they are understood from the context.) Up to the appropriate notion of chain homotopy equiv-
alence, each of these modules is a diffeomorphism invariant of the manifold with parametrized
boundary. These invariants are defined in terms of counts of pseudo-holomorphic curves
in † � Œ0; 1� �R, where † is a bordered Heegaard diagram; we shall say nothing more about
the definition. The pairing theorem states that the Heegaard Floer homology of the closed,
oriented 3-manifold gotten by gluing Y1 to Y2 along their boundaries via the diffeomorphism
�2 ı �

�1
1 is determined by the bordered invariants of Y1 and Y2:cHF.Y1 [�2ı�

�1
1
Y2/ Š H�

�bCFA.Y1; �1/ Q̋ bCFD.Y2; �2/
�
:

There are also various bimodules associated to manifolds with two boundary components,
denoted 1CFAA, 1CFAD, 1CFDA, and 1CFDD according to whether the parameterizations of the
boundary components are orientation-preserving or orientation-reversing, and similar gluing
theorems apply. See [10, 11] for further details.

Lipshitz, Ozsváth, and Thurston provide a convenient notation for type D modules over
the torus algebra A.T 2/ (see [10, Section 11.1]). If I1; : : : ; Ik are finite sequences of integers,
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let I1 � � � Ik denote their concatenation. Let R denote the set of nonempty, strictly increasing
sequences of consecutive integers in ¹1; 2; 3º, and let R0 D R [ ¹;º. Thus, the non-idempotent
generators of A.T 2/ correspond to elements of R; for convenience, we define �; D 1.

Let V D V 0 ˚ V 1 be a Z=2-graded vector space over F D Z=2Z. A collection of coef-
ficient maps consists of a linear map D D D;WV ! V taking V 0 to V 0 and V 1 to V 1, and,
for each I D .i1; : : : ; in/ 2 R, a linear mapDI WV Œi1�1� ! V Œin� (where for i 2 Z, Œi � 2 ¹0; 1º
denotes the mod-2 reduction of i ) satisfying the condition that for each I 2 R0,

(2.3)
X

J;K2R0

JKDI

DK ıDJ D 0;

where the sum is taken over all pairs of elements in R0 whose concatenation is I . In other
words, D; is a differential; D1, D2, and D3 are chain maps; D12 and D23 are nullhomo-
topies of D2 ıD1 and D3 ıD2, respectively; and D123 is a homotopy between D23 ıD1
and D3 ıD12. For convenience, we may trivially extend each DI over all of V 0 ˚ V 1. A col-
lection of coefficient maps determines a type D structure on V : define multiplication by �0
and �1 by projection onto V 0 and V 1 respectively, and for each v 2 V , define

ı1.v/ D
X
I2R0

�I ˝DI .v/:

The higher maps ık are then given by compositions of the maps DI :

ık.v/ D
X

I1;:::;Ik2R0

�I1
˝ � � � ˝ �Ik

˝ .DIk
ı � � � ıDI1

/.v/:

Furthermore, any type D structure over A can be obtained in this manner [10, Lemma 11.5].
We say that .V; ¹DI º/ is reduced if D; D 0, in which case the relations in (2.3) simplify

to

(2.4) D2 ıD1 D 0 D3 ıD2 D 0 D3 ıD12 D D23 ıD1:

It is not hard to see that any type D structure is homotopy equivalent to a reduced one. See
[9, Section 2.6] for more details.

Finally, if M is a type A module and either M or V is bounded, the differential on the
box tensor product M � V is given explicitly by

à�.x ˝ y/ D
X

I1;:::;Ir2R

mrC1.x ˝ �I1
˝ � � � ˝ �Ir

/˝ .DIr
ı � � � ıDI1

/.y/

for each x 2M and y 2 V . (The sum includes an r D 0 term, where the composition of zero
coefficient maps is the identity on V .)

2.3. Computing bCFA from bCFD. Let r WT 2 ! T 2 be the orientation-reversing invo-
lution that interchanges the two coordinates of S1 � S1. This involution gives a one-to-one
correspondence between type A and typeD bordered manifolds, given by .Y; �/ 7! .Y; � ı r/.
The bordered invariants of .Y; �/ and .Y; � ı r/ are related by taking tensor products with the
appropriate identity bimodules, 1CFAA.I/ and 1CFDD.I/. Here I denotes the mapping cylinder
of the identity map of T 2. If .Y; �/ is a type A bordered 3-manifold, [11, Corollary 1.1] says
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that

bCFD.Y; � ı r/ ' bCFA.Y; �/ Q̋ 1CFDD.I/;(2.5)

bCFA.Y; �/ ' 1CFAA.I/ Q̋ bCFD.Y; � ı r/:

In (2.5), we view 1CFAA.I/ as a right-right AA bimodule and 1CFDD.I/ as a left-left DD
bimodule, each over .A;A/.2) Thus, if a parametrization � (either orientation-preserving or
orientation-reversing) is understood from context, then we will simply speak of bCFA.Y / and
bCFD.Y /. Note that the two halves of (2.5) are equivalent statements, since by [12, Theorem 2.3]

the operations of tensoring with 1CFAA.I/ and 1CFDD.I/ are inverses up to homotopy equiva-
lence. That is, if M is a type A module and N is a type D module, then M ' 1CFAA.I / Q̋ N
if and only if M Q̋ 1CFDD.I/ ' N .

We now describe an algorithm for computing bCFA.Y / from bCFD.Y /, based on an idea
described to us by Peter Ozsváth. The basic idea is as follows. We begin by taking a basis for
bCFD.Y / as a basis for bCFA.Y /. The nonzero multiplications on bCFA.Y / are then in bijection

with nonzero compositions of the coefficient maps for bCFD.Y /. Specifically, if

DJr
ıDJr�1

ı � � � ıDJ1
.v/ D w;

then
mkC1.v ˝ �I1

˝ � � � ˝ �Ik
/ D w;

where the relationship between .J1; : : : ; Jr/ and .I1; : : : ; Ik/ is determined by the procedure:

(i) Replace all occurrences of 1 in the string J1 � � �Jr with 3, and vice-versa.

(ii) Write the resulting string I (uniquely) as a concatenation I D I1 � � � Ik of increasing
sequences Ii satisfying last.Ii / > first.IiC1/ for all i D 1; : : : ; k � 1.

(Here, first.I / and last.I / denote the first and last entries of I , respectively.) For example,
suppose in bCFD.Y / we have D23 ıD23 ıD123.v/ D w. We first take the string 1232323 and
replace it with 3212121, which we then parse as 3; 2; 12; 12; 1. This tells us that in bCFA.Y / we
have a multiplicationm6.v ˝ �3 ˝ �2 ˝ �12 ˝ �12 ˝ �1/ D w. (See Section 4 for an example
of this procedure applied to bCFD of the trefoil complement.)

To be more precise, let S denote the set of strictly decreasing, nonempty sequences of
consecutive elements of ¹1; 2; 3º,3) and let �WS! R denote the bijection defined by inter-
changing the roles of 1 and 3:

�.1/ D 3; �.2/ D 2; �.3/ D 1;

�.21/ D 23; �.32/ D 12; �.321/ D 123:

2) Our perspective here is slightly different from that of Lipshitz, Ozsváth, and Thurston, who use two
distinct algebras associated to T 2 and �T 2, denoted A.T 2/ and A.�T 2/, where A.�T 2/ D A.T 2/op. If .Y; �/
is a type A bordered manifold (in the sense used above), then one can define bCFD.Y; �/ as a type D structure
over A.�T 2/, and one views 1CFAA.I/ and 1CFDD.I/ as .A.T 2/;A.�T 2//-bimodules. To see how (2.5) follows
from [11, Corollary 1.1], note that the map r (which can be realized as the symmetry of the pointed matched
circle associated to the torus) induces an isomorphism between A.T 2/ and A.�T 2/, which gives the identification
between bCFD.Y; �/ (as a type D module over A.�T 2/) and bCFD.Y; � ı r/ (as a type D module over A.T 2/).
We find it conceptually simpler to work with a single algebra, at the cost of being more explicit about the role of r .

3) We shall write elements of R and S as strings of digits, without parentheses or commas.
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A finite sequence of integers I is called alternating if its entries alternate in parity. Strong
induction on length shows that for any alternating sequence I of elements of ¹1; 2; 3º, there is
a unique decomposition I D J1 � � �Jj such that J1; : : : ; Jj 2 S and for each i D 1; : : : ; j � 1,
last.Ji / < first.JiC1/. In this case, we define‰.I / D .J1; : : : ; Jj /. The following lemma is an
immediate consequence of the definition of ‰:

Lemma 2.1. Let I and I 0 be alternating sequences whose concatenation II 0 is alter-
nating. Suppose that ‰.I / D .J1; : : : ; Jj / and ‰.I 0/ D .K1; : : : ; Kk/. Then

‰.II 0/ D

´
.J1; : : : ; Jj ; K1; : : : ; Kk/ if last.I / < first.I 0/;

.J1; : : : ; Jj�1; JjK1; K2; : : : ; Kk/ if last.I / > first.I 0/:

The algorithm is given by the following theorem:

Theorem 2.2. Let .V; ı1/ be a reduced type-D module over A, seen as a finite-dimen-
sional vector space V D V 0 ˚ V 1, with coefficient maps D1, D2, D3, D12, D23, and D123
satisfying (2.4). For k � 0, define maps

mkC1WV ˝A˝k ! V

as follows. Set m1 D 0. For k > 1 and any I1; : : : ; Ik 2 R whose concatenation I1 � � � Ik is
alternating and for which last.Ii / > first.IiC1/ for all i D 1; : : : ; k � 1, write

‰.I1 � � � Ik/ D .J1; : : : ; Jj /

and define
mkC1.v ˝ �I1

˝ � � � ˝ �Ik
/ D .D�.Jj / ı � � � ıD�.J1//.v/

for all v 2 V . For any other I1; : : : ; Ik , define

mkC1.v ˝ �I1
˝ � � � ˝ �Ik

/ D 0:

Then the maps mk satisfy the A1 relations. Furthermore, we have

.V; ı1/ ' .V; ¹mkº/� 1CFDD.I/ and .V; ¹mkº/ ' 1CFAA.I/� .V; ı1/:

Proof of Theorem 2.2. To see that the mapsmk satisfy the A1 relations, we must show
that for any I1; : : : ; Ik 2 R and any v 2 V ,

k�1X
iD1

mk�iC1.miC1.v ˝ �I1
˝ � � � ˝ �Ii

/˝ �IiC1
˝ � � � ˝ �Ik

/(2.6)

C

k�1X
iD1

mk�1.v ˝ �I1
˝ � � � ˝ �Ii�1

˝ �Ii
�IiC1

˝ �IiC2
˝ � � � ˝ �Ik

/ D 0:

We may assume that I1 � � � Ik is alternating, since otherwise all the terms in (2.6) would vanish
because the tensor products are taken over the ring of idempotents. Indeed, if we had a term
such as �1 ˝ �3, we could write it as �1�1 ˝ �3 D �1 ˝ �1�3 D �1 ˝ 0, with similar expres-
sions for any other non-alternating occurrence.
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If last.Ii / < first.IiC1/, then for any i 0 ¤ i , the i 0th terms of both sums in (2.6) must
both vanish by definition. Thus, we may assume that there is at most one value of i for which
last.Ii / < first.IiC1/. If such an i exists, Lemma 2.1 implies that if

‰.I1 � � � Ii / D .L
i
1; : : : ; L

i
`i
/;

‰.IiC1 � � � Ik/ D .M
i
1; : : : ;M

i
mi
/;

‰.I1 � � � Ik/ D .J1; : : : ; Jj /;

then `i Cmi D j and

.Li1; : : : ; L
i
`i
;M i

1; : : : ;M
i
mi
/ D .J1; : : : ; Jj /:

Thus the i th term of the first sum in (2.6) equals

(2.7) .D�.Jj / ı � � � ıD�.J1//.v/:

Since �Ii
�IiC1

D �IiIiC1
, the i th term of the second sum in (2.6) equals (2.7) as well. Thus,

the i th terms of the two sums in (2.6) cancel each other, and all other terms in both sums vanish.
Therefore, we may assume that for all i D 1; : : : ; k � 1, we have last.Ii / > first.IiC1/.

Since �Ii
�IiC1

D 0, the entire second sum in (2.6) vanishes. Suppose that

‰.I1 � � � Ik/ D .J1; : : : ; Jj /

and for each i D 1; : : : ; k � 1,

‰.I1 : : : Ii / D .L
i
1; : : : ; L

i
`i
/ and ‰.IiC1 : : : Ik/ D .M

i
1; : : : ;M

i
mi
/:

Thus, the first sum in (2.6) equals

(2.8)
k�1X
iD1

.D�.M i
mi
/ ı � � � ıD�.M i

1/
ıD�.Li

`i
/ ı � � � ıD�.Li

1/
/.v/:

Furthermore, Lemma 2.1 implies that `i Cmi � 1 D j and

.J1; : : : ; Jj / D .L
i
1; : : : ; L

i
`i�1

; Li`i
M i
1;M

i
2; : : : ;M

i
mi
/:

In particular, the concatenation Li
`i
M i
1 equals either 21, 32, or 321.

If Li
`i
D 3 and M i

1 D 2, then

D�.M i
1/
ıD�.Li

`i
/ D D2 ıD1 D 0

by (2.4), and therefore the i th term of (2.8) vanishes. The same argument holds when Li
`i
D 2

and M i
1 D 1 using the fact that D3 ıD2 D 0.

If Li
`i
D 32 andM i

1 D 1, the concatenation I1 � � � Ii ends in 32, and we must have i > 1,
last.Ii�1/ D 3, Ii D 2, and first.IiC1/ D 1. Therefore,

‰.I1 � � � Ii�1/ D .L
i
1; : : : ; L

i
`i�1

; 3/ and ‰.Ii � � � Ik/ D .21;M
i
2; : : : ;M

i
mi
/:

The sum of the .i � 1/th and i th terms of (2.8) then equals

k�1X
iD1

.D�.M i
mi
/ ı � � � ıD�.M i

2/
ı .D3 ıD12 CD23 ıD1/ ıD�.Li

`i�1
/ ı � � � ıD�.Li

1/
/.v/;

which vanishes by (2.4).
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If Li
`i
D 3 andM i1 D 21, then a similar argument shows that the i th and .i C 1/th terms

of (2.8) cancel. This completes the proof of (2.6). Thus, the mapsmk satisfy the A1 relations.
For the second part of the theorem, as noted in the discussion following (2.5), it suffices

to show that
.V; ı1/ ' .V; ¹mkº/� 1CFDD.I/:

According to [11, Proposition 10.1], the left-left DD bimodule 1CFDD.I/ has generators p; q,
with idempotent action given by

.�0 ˝ �0/ � p D p and .�1 ˝ �1/ � q D q

and structure map given by

ı1.p/ D .�1 ˝ �3 C �3 ˝ �1 C �123 ˝ �123/˝ q and ı1.q/ D �2 ˝ �2 ˝ p:

Thus, .V; ¹mkº/� 1CFDD.I / is isomorphic to V as a vector space. According to the definition
of the box tensor product of a type A module and a type DD bimodule, for v 2 V 0, we have

ı1.v ˝ p/ D
�
�1 ˝m2.v; �3/C �3 ˝m2.v; �1/C �123 ˝ .m2.v; �123/

Cm4.v; �3; �2; �1//
�
˝ q C �12 ˝m3.v; �3; �2/˝ p

D
�
�1 ˝D1.v/C �3 ˝D3.v/C �123 ˝ .D3 ıD2 ıD1.v/CD123.v//

�
˝ q

C �12 ˝D12.v/˝ p

D
�
�1 ˝D1.v/C �3 ˝D3.v/C �123 ˝D123.v/

�
˝ q C �12 ˝D12.v/˝ p;

where the final line follows from the fact thatD2 ıD1 D D3 ıD2 D 0. Likewise, forw 2 V 1,

ı1.w ˝ q/ D �2 ˝m2.w; �2/˝ p C �23 ˝m3.w; �2; �1/˝ q

D �2 ˝D2.w/˝ p C �23 ˝D23.w/˝ q:

Thus, the differential on .V; ¹mkº/� 1CFDD.I / is equal to the original differential on V .

2.4. Bordered invariants of knot complements. IfK is a knot in a homology sphereY
andXK denotes the exterior ofK, let �K WT 2 ! àXK be the orientation-reversing parametriza-
tion taking S1 � ¹ptº to a 0-framed longitude of K and ¹ptº � S1 to a meridian of K. When Y
is an L-space, Lipshitz, Ozsváth, and Thurston give a formula for bCFD.XK ; �K/ in terms of
the knot Floer complex of .Y;K/, which we now describe (adding a few details).

We begin by reviewing some facts about knot Floer homology, as defined in [18, 25].
Let C� D CFK�.Y;K/ denote the knot Floer complex of K, a finitely generated free chain
complex over F ŒU � with a bounded-above filtration

� � � � Fi � FiC1 � � � � � C
�

such that U � Fi � Fi�1 for all i . The filtered chain homotopy type of this complex is an
invariant of the knot.

For any nonzero x 2 C�, let A.x/ D min¹i j x 2 Fiº; we call this the filtration level or
Alexander grading of x. Multiplication by U decreases the Alexander grading by one:

A.U � x/ D A.x/ � 1:
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By convention, A.0/ D �1. We may assume that C� is reduced, in the sense that for any
x 2 C�, àx D U � y C z, where A.z/ < A.x/; this implies that

rankFŒU � C
�
D dimF bHFK.Y;K/ D 2nC 1

for some n � 0. The manner by which knot Floer homology detects the genus [17, Theo-
rem 1.2] implies

Fg.K/�1 ¨ Fg.K/ D C
�; F�g.K/�1 � UC

�; F�g.K/ 6� UC
�:

Let C1 D C� ˝FŒU � F ŒU; U�1�, and extend the filtration to C1 accordingly. Suppose
that ¹x0; : : : ; x2nº is a basis for C� over F ŒU �; then ¹U ixk j k D 0; : : : ; 2n; i 2 Zº is a basis
for C1 over F . We may picture these basis elements living on the integer lattice in R2, with the
element U kx` at the point .�k;A.x`/ � k/. We refer to the coordinates in the plane as i and j ,
and we identify C� with the subcomplex C ¹i � 0º � C1 generated by the basis elements at
lattice points with i � 0. The complexes C ¹i � sº (s 2 Z) provide a second filtration on C�

and C1.
Let C v D C�=UC� and C h D F0.C

1/=F�1.C
1/, and let àv, àh denote the respec-

tive induced differentials. We refer to .C v; àv/ and .C h; àh/ as the vertical and horizontal
complexes, respectively.

The associated graded object of C� (with respect to the original filtration) is the free
F ŒU �-module

gr.C�/ D
M
i2Z

Fi=Fi�1;

with the induced multiplication by U . Note that the direct sum is as an F -vector space,
and not as an F ŒU �-module since multiplication by U decreases the filtration by one. For
x 2 C�, let Œx� 2 gr.C�/ denote the image of x in FA.x/=FA.x/�1. Note that ŒUx� D U Œx�.
A basis ¹x0; : : : ; x2nº for C� is called a filtered basis if ¹Œx0�; : : : ; Œx2n�º is a basis for gr.C�/
over F ŒU �. Any two filtered bases ¹x0; : : : ; x2nº and ¹x00; : : : ; x

0
2nº are related by a filtered

change of basis: if xi D
P
j aijx

0
j and x0i D

P
j bijxj , where aij ; bij 2 F ŒU �, then

A.aijx
0
j / � A.xi / and A.bijxj / � A.x

0
i / for all i; j .

In particular, if aij 6� 0 .mod UC�/, then A.x0j / � A.xi /, and similarly for bij .
A key tool for our main theorem (Theorem 1) is a formula which expresses bCFD.XK/

in terms of CFK�.Y;K/. The most useful way to express this formula is by picking a basis
for CFK�.Y;K/ and describing bCFD.XK/ in terms of this basis. To do this it will be useful to
have particularly nice bases for CFK�, whose definitions we now recall.

Definition 2.3. A filtered basis ¹�0; : : : ; �2nº for C� over F ŒU � is called vertically
simplified if, for j D 1; : : : ; n,

A.�2j�1/ � A.�2j / D kj > 0 and à�2j�1 � �2j .mod UC�/;

while for p D 0; 1; : : : ; n, we have
à�2p 2 UC�:

We say that there is a vertical arrow of length kj from �2j�1 to �2j and that �0 is the generator
of vertical homology.



140 Hedden and Levine, Splicing knot complements and bordered Floer homology

The name is motivated by the fact that in a vertically simplified basis the differential on
the vertical complex .C v; àv/ is particularly simple; indeed, in a vertically simplified basis àv

can be represented by a collection of vertical arrows which pair up the even and odd basis
elements, and where �0 has no incoming or outgoing arrows. Similarly, for the horizontal
complex we have

Definition 2.4. A filtered basis ¹�0; : : : ; �2nº for C� over F ŒU � is called horizontally
simplified if, for j D 1; : : : ; n,

A.�2j / � A.�2j�1/ D j̀ > 0 and à�2j�1 � U j̀ �2j .mod FA.�2j�1/�1/;

while for p D 0; 1; : : : ; n, we have

A.à�2p/ < A.�2p/:

We say that there is a horizontal arrow of length j̀ from �2j�1 to �2j and that �0 is the
generator of horizontal homology.

Lipshitz, Ozsváth, and Thurston showed that C� always admits both horizontally and
vertically simplified bases [10, Proposition 11.52]. Furthermore, for any vertically simplified
basis ¹�0; : : : ; �2nº and horizontally simplified basis ¹�0; : : : ; �2nº, the two unordered tuples
¹k1; : : : ; knº and ¹`1; : : : ; `nº are equal; this follows from the symmetry of knot Floer homol-
ogy under reversing the knot orientation [18, Section 3.5].

Two particularly useful derivatives of the filtered chain homotopy type of C1 can be
expressed easily in terms of a vertical or horizontally simplified basis. The first is the Ozsváth–
Szabó concordance invariant [15, 25]. Denoted �.K/, this invariant is a homomorphism from
the smooth concordance group to the integers which bounds the smooth 4-genus:

j�.K/j � g4.K/:

In terms of a vertically simplified basis, we have

�.K/ D A.�0/;

while in terms a horizontally simplified basis we have

�.K/ D �A.�0/:

The latter equality again follows from the orientation reversal symmetry.
The second invariant we derive from C1 is Hom’s invariant �.K/ 2 ¹�1; 0; 1º, which

captures whether the four-dimensional cobordisms obtained by attaching two-handles to Y
along K induce nontrivial maps on Floer homology in certain Spinc-structures [8, Defini-
tion 3.1]. This invariant can also be expressed in terms of vertically and horizontally simplified
bases. Let Œ�0� denote the image of �0 in the vertical complex C v. Also, viewing �0 as an
element of C1, the chain � 00 D U

A.�0/�0 is in F0, so we may consider its image Œ� 00� in the
horizontal complex C h. Then:

� If �.K/ D �1, then àvŒ�0� ¤ 0 and àhŒ� 00� ¤ 0.

� If �.K/ D 0, then Œ�0� 2 ker àv X im àv and Œ� 00� 2 ker àh X im àh.

� If �.K/ D 1, then Œ�0� 2 im àv and Œ� 00� 2 im àh.
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The following proposition tells us that the change of basis passing between horizontally
and vertically simplified bases can be assumed to be relatively well-behaved.

Proposition 2.5. There exist filtered bases ¹�0; : : : ; �2nº and ¹�0; : : : ; �2nº for C�

over F ŒU � with the following properties:

(i) ¹�0; : : : ; �2nº is a vertically simplified basis.

(ii) ¹�0; : : : ; �2nº is a horizontally simplified basis.

(iii) If �.K/ D �1, then �0 D �1. If �.K/ D 0, then �0 D �0. If �.K/ D 1, then �0 D �2.

(iv) If

�p D

2nX
qD0

ap;q�q and �p D

2nX
qD0

bp;q�q;

where ap;q; bp;q 2 F ŒU �, then

ap;q D 0 whenever A.�p/ ¤ A.ap;q�q/,

and
bp;q D 0 whenever A.�p/ ¤ A.bp;q�q/.

In other words, each �p is an F ŒU �-linear combination of the elements �q that are the
same filtration level as �p, and vice versa.

Proof. According to Hom [7, Lemmas 3.2 and 3.3], we may find vertically and horizon-
tally simplified bases ¹�0; : : : ; �2nº and ¹�00; : : : ; �

0
2nº satisfying (iii) (with �i replaced by �0i ).

We shall modify the latter basis to produce a new basis ¹�0; : : : ; �2nº satisfying the conclusions
of the proposition.

As above, any two filtered bases are related by a filtered change of bases, so let

�p D

2nX
qD0

a0p;q�
0
q and �0p D

2nX
qD0

b0p;q�q

be filtered change of bases. That is, for all p; q 2 ¹0; : : : ; 2nº, we have

A.a0p;q�
0
q/ � A.�p/ and A.b0p;q�q/ � A.�

0
p/:

Let

bp;q D

´
b0p;q if A.b0p;q�q/ D A.�

0
p/;

0 if A.bp;q�q/ < A.�0p/;

and define

�p D

2nX
qD0

bp;q�q and �p D �
0
p � �p:

Note that A.�p/ D A.�0p/, while A.�p/ < A.�0p/. The change-of-basis matrix .bp;q/ is in
block-diagonal form (after reordering rows and columns according to filtration level), so its
inverse is as well. Thus the bases ¹�0; : : : ; �2nº and ¹�0; : : : ; �2nº satisfy (iv). Furthermore,
if i 2 ¹0; 1; 2º is the index for which �0 D �0i , then �i D �0i by construction, so (iii) also holds.
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It remains to show that the basis ¹�0; : : : ; �2nº is horizontally simplified. We have, for
any j D 1; : : : ; n,

à�2j�1 D à�02j�1 � à�2j�1
� à�02j�1 .mod FA.�0

2j�1
/�1/

� U j̀ �02j .mod FA.�0
2j�1

/�1/

D U j̀ �2j C U j̀�2j

� U j̀ �2j .mod FA.�2j�1/�1/;

where the last line follows from the fact that

A.U j̀�2j / D A.�2j / � j̀ < A.�
0
2j / � j̀ D A.�

0
2j�1/ D A.�2j�1/:

Likewise, for j D 0; 1; : : : ; n, we have

à�2j D à�02j C à�2j 2 FA.�0
2j
/�1;

as required.

For the remainder of this section, choose vertically and horizontally simplified bases
¹ Q�0; : : : ; Q�2nº and ¹ Q�0; : : : ; Q�2nº for CFK�.Y;K/ satisfying the conclusions of Proposition 2.5
above.4) Assume that

Q�p D

2nX
qD0

Qap;q Q�q and Q�p D

2nX
qD0

Qbp;q Q�q; Qap;q; Qbp;q 2 F ŒU �;

and let
ap;q D Qap;qjUD0 and bp;q D Qbp;qjUD0:

According to [10, Theorem 11.27 and Theorem A.11], bCFD.XK ; �K/ is completely determined
by the lengths of the arrows (i.e., kj and j̀ ), �.K/, and the change-of-basis matrix .ap;q/, as
follows.

Theorem 2.6. With notation as above, bCFD.XK/ satisfies the following properties:

� The summand �0 bCFD.XK/ has dimension 2nC 1, with designated bases ¹�0; : : : ; �2nº
and ¹�0; : : : ; �2nº related by

�p D

2nX
qD0

ap;q�q and �p D

2nX
qD0

bp;q�q:

� The summand �1 bCFD.XK/ has dimension
Pn
jD1.kj C lj /C t , where t D 2 j�.K/j, with

basis
n[

jD1

¹�
j
1 ; : : : ; �

j

kj
º [

n[
jD1

¹�
j
1 ; : : : ; �

j

lj
º [ ¹�1; : : : ; �tº:

4) We use tildes for the generators of CFK�.Y;K/ in order to distinguish them from the corresponding
elements of bCFD.XK/.
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� For j D 1; : : : ; n, corresponding to the vertical arrow Q�2j�1 ! Q�2j of length kj , there
are coefficient maps

(2.9) �2j
D123
���! �

j
1

D23
���! � � �

D23
���! �

j

kj

D1
 ��� �2j�1:

� For j D 1; : : : ; n, corresponding to the horizontal arrow Q�2j�1 ! Q�2j of length lj , there
are coefficient maps

(2.10) �2j�1
D3
���! �

j
1

D23
���! � � �

D23
���! �

j

lj

D2
���! �2j :

� Depending on �.K/, there are additional coefficient maps

(2.11)

8̂̂̂̂
<̂
ˆ̂̂:
�0

D3
���! �1

D23
���! � � �

D23
���! �t

D1
 ��� �0; �.K/ > 0;

�0
D12
���! �0; �.K/ D 0;

�0
D123
���! �1

D23
���! � � �

D23
���! �t

D2
���! �0; �.K/ < 0:

We refer to the subspaces of bCFD.XK/ spanned by the generators in (2.9), (2.10), and (2.11)
as the vertical chains, horizontal chains, and unstable chain, respectively.5)

As described in [10, Lemma 11.40], bCFD.XK/ admits a grading by half-integers, taking
integer values on �0 bCFD.XK/ and non-integer values on �1 bCFD.XK/:

(2.12) �0 bCFD.XK/ D
M
s2Z

bCFD.XK ; s/ and �1 bCFD.XK/ D
M

s2ZC 1
2

bCFD.XK ; s/:

We refer to this grading as the Alexander grading. This is justified since there are canonical
identifications

�0 bCFD.XK/ Š bHFK.Y;K/ and �1 bCFD.XK/ Š bHFL.K/;

where the latter invariant is the longitude Floer homology [1]. Under these identifications the
grading on the summands of bCFD.XK/ agrees with the Alexander gradings on each of these
groups. Proposition 2.5 implies that the Alexander gradings (in bCFD.XK/) of �0; : : : ; �2n and
�0; : : : ; �2n are equal to the filtration levels (in CFK�.Y;K/) of Q�0; : : : ; Q�2n and Q�0; : : : ; Q�2n,
respectively, and that the change of basis is homogeneous. We denote the grading of a homo-
geneous element x by A.x/, and for each s 2 1

2
Z, let �sW bCFD.XK/! bCFD.XK ; s/ be the

projection map coming from (2.12). The Alexander grading on bCFD.XK/ will eventually
enable us to isolate certain pieces of the chain complex for a spliced manifold. As seen in [10],
the coefficient maps on bCFD.XK/ are all homogeneous with respect to A, with the following
degrees.

Coefficient map D1 D2 D3 D12 D23 D123

A-degree �
1
2

1
2

1
2

0 1 1
2

5) Note that our notation differs slightly from that of [10]: the generators �j1 ; : : : ; �
j
kj

are indexed in the
reverse order, as are �1; : : : ; �t in the case where �.K/ > 0.
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Note that bCFD.XK/ need not be bounded; for instance, ifK is the unknot, then bCFD.XK/
has a single generator �, with ı1.�/ D �12 ˝ � , and therefore

ık.�/ D �12 ˝ � � � ˝ �12 ˝ �; k � 1:

To avoid this issue, we may introduce a modified version of bCFK.XK/ when �.K/ D 0.6) Let
bCFD.XK/0 be just as in Theorem 2.6, except that the unstable chain in the �.K/ D 0 case is

replaced with

�0
D1
��! �1

D;
 �� �2

D2
��! �0:

The two generators �1 and �2 have Alexander grading �1
2

. It is easy to verify that bCFD.XK/0

is chain homotopy equivalent as a type-D module to bCFD.XK/.

Lemma 2.7. For any knot K � S3, bCFD.XK/0 is bounded.

Proof. We must show that every sufficiently long composition of the coefficient maps
on bCFD.XK/ is zero. Note that the vertical chains are closed with respect to any of the coeffi-
cient maps: for any I 2 R,

DI .Span.�j1 ; : : : ; �
j

kj
// � Span.�j1 ; : : : ; �

j

kj
/:

Also, the only compositions of coefficient maps whose restrictions to Span.�j1 ; : : : ; �
j

kj
/ are

nonzero are Dm23 for m < kj . An analogous statement is true for the unstable chain when
�.K/ � 0. Therefore, for the purpose of boundedness, it suffices to consider only sequences of
coefficient maps made from the horizontal chains and from the unstable chain when �.K/ < 0.
Since these maps do not involveD1 or D12, they all increase the Alexander grading by 1

2
or 1.

Since the Alexander gradings of all elements are between �g.K/ and g.K/, this implies that
any composition of more than 4g coefficient maps is equal to zero.

3. Splicing knot complements

For any knots K1 � Y1 and K2 � Y2, note that the composition

�K2
ı r ı ��1K1

W àXK1
! àXK2

is orientation-reversing and takes a 0-framed longitude ofK1 to a meridian ofK2 and a merid-
ian of K1 to a 0-framed longitude of K2. The manifold gotten by gluing XK1

and XK2
via

�K2
ı r ı ��1K1

is thus precisely Y.K1; K2/, as defined in the introduction. Therefore, we have

cHF.Y.K1; K2// D H�.bCFA.XK1
; �K1

ı r/ Q̋ bCFD.XK2
; �K2

//:

(Henceforth, we suppress the parametrizations from the notation.) Since

bCFD.XK2
/ ' bCFD.XK2

/0

and the latter is bounded, there are homotopy equivalences

bCFA.XK1
/ Q̋ bCFD.XK2

/ ' bCFA.XK1
/ Q̋ bCFD.XK2

/0

' bCFA.XK1
/� bCFD.XK2

/0:

6) We are grateful to Jonathan Hanselman for pointing out this argument, which also appears in his
preprint [4].
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We obtain bCFA.XK1
/ by applying Theorem 2.2 to bCFD.XK1

/; we do not need to use the
bounded version.

Our strategy will be to describe, for any knot K in an L-space homology sphere Y , the
behavior of those elements of bCFD.XK/ and bCFD.XK/0 that come from the part of knot Floer
homology in lowest Alexander grading, bHFK.Y;K;�g.K//. We will then use Theorem 2.2 to
describe the corresponding elements of bCFA.XK/. The tensor products of these elements will
give rise to the homology classes in

H�.bCFA.XK1
/� bCFD.XK2

/0/

needed for Theorem 1.
Assume, for the duration of this section, that we have bases ¹ Q�0; : : : ; Q�2nº, ¹ Q�0; : : : ; Q�2nº

for CFK�.Y;K/ just as in Theorem 2.6. We begin by considering the basis elements that have
Alexander grading equal to �g.K/.

By the definitions of vertically and horizontally reduced bases, for any j 2 ¹1; : : : ; nº,
neither Q�2j�1 nor Q�2j can have Alexander grading equal to�g.K/, since that would require Q�2j
or Q�2j�1 to have Alexander grading less than �g.K/. Furthermore, if K is a nontrivial knot
andA. Q�0/D�g.K/, then �.K/D�g.K/ and �.K/D�1, since Q�0 is congruent moduloUC�

to a linear combination of Q�1; : : : ; Q�2j�1. Likewise, ifA. Q�0/D�g.K/ < 0, then �.K/D g.K/
and �.K/ D 1.

Lemma 3.1. IfA. Q�2j�1/ D �g.K/ and j̀ D 1, then Q�2j is congruent modulo UC� to
a linear combination of Q�0; Q�2; Q�4; : : : ; Q�2n. Furthermore, the coefficient of Q�0 is zero unless
�.K/ D �g.K/C 1 and g.K/ > 1.

Proof. For p D 0; : : : ; 2n, let O�p and O�p respectively denote the images of Q�p and Q�p
in C v D C�=UC�. The elements O�0; O�2; : : : ; O�2n generate the cycles for àv, so we must
show that àv O�2j D 0, i.e., à Q�2j 2 UC�. When j̀ D 1, the definition of a horizontally simpli-
fied basis says that A. Q�2j / D A. Q�2j�1/C 1 and à Q�2j�1 D U Q�2j C �, where A.�/ < �g.K/.
The fact that O�2j�1 is in the minimal Alexander grading on C�=UC� implies that � D Uı for
some ı with A.ı/ � �g.K/. We have

0 D à2 Q�2j�1 D U à Q�2j C à� D U.à Q�2j C àı/;

and since multiplication by U is injective, à Q�2j D àı. Now, since C� is reduced, it follows
that àı D U˛ C ˇ, where A.ˇ/ < A.ı/ � A. Q�2j�1/, and therefore ˇ D U
 as above. Thus
we have à Q�2j D U.˛ C 
/, as required.

Furthermore, if O�2j has a O�0 component, then the Alexander grading of O�0—which by
definition is �.K/—is equal to �g.K/C 1, and �.K/ D 1 since O�0 has an incoming horizontal
arrow. The fact that g.K/ > 1 then follows from Lemma 3.2 below.

Lemma 3.2. If Y is an L-space homology sphere, and K � Y is a knot with g.K/ D 1
and �.K/ D 0, then �.K/ D 0.

Proof. Suppose, toward a contradiction, that �.K/ D 1. We may find horizontally and
reduced bases ¹�0; : : : ; �2nº and ¹�0; : : : ; �2nº satisfying the conclusions of Proposition 2.5;
in particular, �0 D �2. Since g.K/ D 1, the horizontal arrow from �1 to �2 has length 1,
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which means that A.�1/ D �1 and à�1 D U�0 C 
 , where A.
/ < �1. As above, we have

 D Uı for some ı with A.ı/ � �1 since there are no chains with U power zero having
Alexander grading less than �g D �1. Now the filtration levels of �0 and each of the �2j�1
are strictly greater than �1, because the vertical differential decreases the Alexander grading
and A.�0/ D �.K/ D 0. It follows that �1 is in the span of ¹�2; : : : ; �2nº, so there exist ele-
ments �; ˛ such that à� D �1 C U˛. Hence,

0 D à2� D à�1 C U à˛ D U.�0 C ı C à˛/;

so, by the injectivity of multiplication by U ,

à˛ D �0 C ı:

If we write ı D a0�0C� � �Ca2n�2n, where ai 2 F ŒU �, the fact that A.ı/ � �1 implies that a0
and a1; a3; : : : ; a2n�1 must be divisible by U . Setting

˛0 D ˛ C

nX
jD1

a2j �2j�1;

we see that
à˛0 � �0 .mod UC�/;

which means that �0 is in the image of the vertical differential, a contradiction.
If �.K/ D �1, we reduce to the previous case by considering the mirror K in place

of K.

We now return to the bordered invariants. For a nontrivial knot K, let

BK D bCFD.XK ;�g.K//:

Note that
BK Š bHFK.Y;K;�g.K//;

and it is generated by some subset of ¹�2j j j D 1; : : : ; nº, along with �0 if �.K/ D �g.K/;
it is also generated by some subset of ¹�2j�1 j j D 1; : : : ; nº, along with �0 if �.K/ D g.K/.
Let �B D ��g denote the projection onto BK .

Additionally, note that bCFD.XK ;�g.K/C12/ is generated by the elements �j1 , �j1, and�1
that are “adjacent” to the generators of bCFD.XK ;�g.K// in the vertical, horizontal, and
unstable chains. To be precise, let

VK D subspace generated by ¹�j1 j A. Q�2j / D �g.K/º; and �1 if �.K/ D �g.K/;

and

HK D subspace generated by ¹�j1 j A. Q�2j�1/ D �g.K/º; and �1 if �.K/ D g.K/:

Clearly, bCFD.XK ;�g.K/C 1
2
/ D VK ˚HK . Furthermore, VK and HK each have the

same rank as BK ; indeed, the restrictions ofD123 andD3 to BK gives isomorphisms from BK
to VK and HK , respectively. Let �V W bCFD.XK/! VK and �H W bCFD.XK/! HK be the
composition of ��gC1=2 with projection onto the appropriate factors.
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In bCFD.XK/0, let B 0K , V 0K , and H 0K be defined identically, except that HK also includes
�1 and �2 in the case where g.K/ D 1 and �.K/ D 0.

The next two propositions describe all of the differentials into and out of BK and VK , as
well as their counterparts in bCFD.XK/0. (The subspaceHK turns out not to be as useful for the
present purposes.)

Proposition 3.3. Let K be a nontrivial knot with genus g > 0 in an L-space homology
sphere, and consider the subspace BK � bCFD.XK/ as described above.

(i) Elements of BK have no incoming coefficient maps of any type. More precisely, for
each I 2 R, we have �B ıDI D 0.

(ii) If I1; : : : ; Ir 2 R are such that the restriction of DIr
ı � � � ıDI1

to BK is nontrivial,
then:

(a) I1 D 3 or 123.
(b) If I1 D 123 and r > 1, then I2 D 23.
(c) If I1 D 3 and r > 1, then I2 D 2 or 23; if I2 D 2 and r > 2, then I3 D 123.

The same is true for B 0K � bCFD.XK/0.

Proof. The proofs for BK and B 0K are identical, so we consider only BK .
The first statement follows immediately from Theorem 2.6 and the fact that BK does not

contain elements of the form �2j for j D 1; : : : ; n, and does not contain �0 if �.K/ � 0 (the
only cases where �0 has an incoming coefficient map).

For the second statement, note that D1 and D12 restricted to BK are both zero, so we
may reduce to the two cases where I1 D 3 or 123, which we treat separately.

In the case where I1 D 123, we consider the vertical basis for BK . If �2j 2 BK , where
j 2 ¹1; : : : ; nº, then the only nonzero sequence of coefficient maps coming from �2j and
starting with D123 is the vertical chain

�2j
D123
���! �

j
1

D23
���! � � �

D23
���! �

j

kj
:

If �0 2 bCFD.XK ;�g/, then �.K/ D �g.K/ < 0, so the unstable chain provides the sequence

�0
D123
���! �1

D23
���! � � �

D23
���! �2g

D2
���! �0;

with at least one D23. Thus, the only I such that DI ıD123jBK
can be nonzero is I D 23.

In the case where I1 D 3, we use the horizontal basis. If �0 2BK , then �.K/D g.K/ > 0,
so the unstable chain provides the sequence

�0
D3
���! �1

D23
���! � � �

D23
���! �2g :

If �2j�1 2 bCFD.XK ;�g/, the horizontal chain from �2j�1 to �2j provides the sequence

�2j�1
D3
���! �

j
1

D23
���! � � �

D23
���! �

j

j̀

D2
���! �2j :

Thus, it remains to consider the case where j̀ D 1. Lemma 3.1 says that �2j is a linear combi-
nation of �2; �4; : : : ; �2n, along with �0 provided that �.K/ D �g.K/C 1 and g.K/ > 1, and
onlyD123 is nonzero on these elements (via corresponding vertical or unstable chains). Hence,
the only I such that DI ıD2 ıD3jBK

can be nonzero is I D 123, as required.
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Proposition 3.4. Let K be a nontrivial knot with genus g > 0 in an L-space homology
sphere, and consider the subspace VK � bCFD.XK/ as described above.

(i) The only possible nonzero sequences of coefficient maps into VK areD123 andD1. More
precisely, if �V ıDIr

ı � � � ıDI1
¤ 0, then r D 1 and I1 D 123 or 1.

(ii) If the restriction of DIr
ı � � � ıDI1

to VK is nontrivial, then I1 D 23.

The same is true for V 0K � bCFD.XK/0.

Proof. By Theorem 2.6, the only coefficient maps whose image have nonzero projection
to VK are D1 and D123. Furthermore, the only nonzero contribution to �V ıD1 comes when
A. Q�2j / D �g.K/ and kj D 1, in which case D1.�2j�1/ D �

j
1 . It remains to verify that �2j�1

has no incoming coefficient maps coming from the horizontal or unstable chains. If �2i has
a nonzero �2j�1 component, thenA.�2i / D A.�2j�1/ D �g.K/C1 andA.�2i�1/ D �g.K/,
so by Lemma 3.1, �2i is in the span of �0; �2; : : : ; �2n, a contradiction. Likewise, if �0 has
a nonzero �2j�1 component, then �.K/ D �A.�0/ D g.K/ � 1 and �.K/ D �1, so g.K/ > 1
by Lemma 3.2, hence �.K/ > 0. The unstable chain then gives �0 an outgoing differential,
namely

�0
D3
��! �1;

not an incoming one. This concludes the proof of the first statement.
The second statement follows Proposition 3.3 and the fact that D123jBK

WBK ! VK is
an isomorphism.

Next, we use the algorithm of Theorem 2.2 to give analogous results for bCFA.XK/.
We view bCFA.XK/ as having the same underlying vector space as bCFD.XK/, with A1-mul-
tiplications given by Theorem 2.2. We may then think of BK , VK , and HK as subspaces
of bCFA.XK/.

Proposition 3.5. Let K be a nontrivial knot with genus g > 0 in an L-space homology
sphere, and consider the subspace BK � bCFA.XK/ as described above.

(i) Elements of BK have no incoming multiplications of any type. More precisely, for
any a1; : : : ; ak 2 A, the composition �B ımkC1. � ˝ a1 ˝ � � � ˝ ak/ is trivial.

(ii) If I1; : : : ; Ir are elements of R such that the restriction of mrC1. � ˝ �I1
˝ � � � ˝ �Ir

/

to BK is nonzero, then:

(a) If I1 D 123, then r � 2 and I2 D 2.

(b) If I1 D 3, then r � 3, I2 D 2, and I3 D 1 or 12.

Proof. This proposition follows by applying Theorem 2.2 to the results of Proposi-
tion 3.3. For any I1; : : : ; Ir 2 R with I1 � � � Ir alternating and last.Ii / > first.IiC1/ for all i ,
we have

mrC1. � ˝ �I1
˝ � � � ˝ �Ir

/ D D�.Jj / ı � � � ıD�.J1/;

where .J1; : : : ; Jj / D ‰.I1 � � � Ir/. If the restriction ofmrC1. �˝�I1
˝� � �˝�Ir

/ to BK or VK
is nonzero, the sequence .�.J1/; : : : ; �.Jj // must satisfy the conclusions of Proposition 3.3.
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Specifically:

� If I1 D 123, then �.J1/ D 3 and �.J2/ D 2, so Proposition 3.3 says that j > 2 and
J3 D 123. Hence I1 � � � Ir D 12321 : : : , so I2 D 2.

� If I1 D 3, then �.J1/ begins with 1, so Proposition 3.3 says that �.J1/ D 123 and
�.J2/ D 23 if j > 1. Hence I1 � � � Ir D 321 or 32121 : : : , so I2 D 2 and I3 D 1 or 12.

The proof is complete.

A similar argument shows the following proposition.

Proposition 3.6. Let K be a nontrivial knot with genus g > 0 in an L-space homology
sphere, and consider the subspace VK � bCFA.XK/ as described above.

(i) The only possible nonzero A1-multiplications into VK are m4. � ˝ �3 ˝ �2 ˝ �1/ and
m2. � ˝ �3/. More precisely, if �V ımrC1. � ˝ �I1

˝ � � � ˝ �Ir
/ ¤ 0, then either r D 1

and I1 D 3, or r D 3 and .I1; I2; I3/ D .3; 2; 1/.

(ii) If the restriction of mrC1. � ˝ �I1
˝ � � � ˝ �Ir

/ to BK is nonzero, then I1 D 2.

Proof of Theorem 1. Let K1 � Y1 and K2 � Y2 be two nontrivial knots in L-space
homology spheres. The Alexander gradings on bCFA.K1/ and bCFD.K2/0 give a direct sum
decomposition of bCFA.XK1

/� bCFD.XK2
/0 as a vector space,

bCFA.XK1
/� bCFD.XK2

/0 D
M
s2Z

Cs;

where

Cs D
M
t2 1

2
Z

bCFA.XK1
; t /˝I

bCFD.XK2
; s � t /0:

Note that

C�g.K1/�g.K2/ D BK1
˝ B 0K2

and

C�g.K1/�g.K2/C1 D .VK1
˝ V 0K2

/˚ .VK1
˝H 0K2

/˚ .HK1
˝ V 0K2

/˚ .HK1
˝H 0K2

/

˚ .BK1
˝ bCFD.XK2

;�g.K2/C 1/
0/

˚ .bCFA.XK1
;�g.K1/C 1/˝ B

0
K2
/:

We claim that the direct summands B D BK1
˝ B 0K2

and V D VK1
˝ V 0K2

, each of dimen-
sion dim bHFK.Y1; K1;�g.K1// � dim bHFK.H2; K2;�g.K2//, both survive in the homology
of bCFA.XK1

/� bCFD.XK2
/0, which will prove that

dimHF.Y.K1; K2// � 2 dim bHFK.Y1; K1;�g.K1// � dim bHFK.H2; K2;�g.K2// � 2;

as required.
To see that the differential on bCFA.XK1

/� bCFD.XK2
/0 is identically zero on B , we

simply note that there do not exist I1; : : : ; Ir 2 R satisfying the conclusions of the second
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parts of Propositions 3.3 and 3.5 simultaneously. Thus, for any x 2 BK1
and y 2 B 0K2

,

à�.x ˝ y/ D
X

I1;:::;Ir2R

mrC1.x ˝ �I1
˝ � � � ˝ �Ir

/˝ .DIr
ı � � � ıDI1

/.y/ D 0:

(Here mrC1 denotes an A1-multiplication on bCFA.XK1
/, while DI1

; : : : ;DIr
denote coeffi-

cient maps on bCFD.XK2
/0.) Furthermore, the first parts of Propositions 3.3 and 3.5 imply that

the composition of à� with the projection onto B coming from the direct sum decomposition
is zero. Thus, B survives in homology.

The proof for V is similar, using Propositions 3.4 and 3.6. Just as above, the restriction
of à� to V vanishes. Furthermore, if x 2 bCFA.XK1

/ and y 2 bCFD.XK2
/0 are two elements

such that à�.x˝y/ has nontrivial projection to V , there must be I1; : : : ; Ir that simultaneously
satisfy the first parts of Propositions 3.4 and 3.6, but clearly this is impossible.

4. Examples

Let L and R denote the left- and right-handed trefoils in S3, respectively. For each of
these knots, CFK� has a basis that is simultaneously horizontally and vertically simplified (up
to permuting elements). The invariants bCFD.XL/ and bCFD.XR/ are as follows.

�1

�2 �0

�

�

�1

�2

D3

oo

D2

oo

D1

��

D123

OO

D123

TT

D23

__

D2jj

bCFD.XL/

�0 �1

�2

�

�

�1

�2

D3oo
D2oo

D1

��

D123

OO

D3

jj
D23

__

D1

��

bCFD.XR/

According to Theorem 2.2, bCFA.XR/ is as follows (using capital Greek letters to avoid confu-
sion when we take tensor products below).

„0 „1

„2

K

ƒ

M1

M2

�1oo
�2oo

�3

��

�3;�2;�1

OO

�1

kk

�2;�1

__

�3

��

�23

��

�123

xx

�12

xx

�12;�1

ll

We may use these results to compute the tensor product complexes bCFA.XR/�bCFD.XL/
and bCFA.XR/� bCFD.XR/, illustrated in Figures 1 and 2. In each of these figures, the two
homology classes provided by the proof of Theorem 1 are indicated in boldface.
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„0�1

„0�2 „0�0

ƒ�2

ƒ�

ƒ�

ƒ�1

„1�1

„1�2 „1�0

K�2

K�

K�

K�1

„2�1

„2�2 „2�0

M1�2

M1�

M1�

M1�1

M2�2

M2�

M2�

M2�1

rr

ii

pp

ii

		��

��

wwvvvv

gg

Figure 1. The tensor product complex bCFA.XR/�bCFD.XL/.

„0�0 „0�1

„0�2

ƒ�

ƒ�2

ƒ�1

ƒ�

„1�0 „1�1

„1�2

K�

K�2

K�1

K�

„2�0 „2�1

„2�2

M1�

M1�2

M1�1

M1�

M2�

M2�2

M2�1

M2�

oorr

ss
ii

uu

��

		





��

uu ww

gg WW

Figure 2. The tensor product complex bCFA.XR/�bCFD.XR/.
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From these complexes, it is easy to verify that

dim cHF.Y.R;L// D dimH�.bCFA.XR/� bCFD.XL// D 9

and
dim cHF.Y.R;R// D dimH�.bCFA.XR/� bCFD.XR// D 7:

Since Y.L;L/ D �Y.R;R/, we also have

dim cHF.Y.L;L// D 7:

The reader is encouraged verify these results in another way by computing bCFA.XL/ and
evaluating its box tensor product with bCFD.XL/ and bCFD.XR/.

5. Future directions

We conclude by discussing the prospects for generalizing Theorem 1 to manifolds
obtained by splicing knots in arbitrary homology spheres, which would prove Conjecture 2.
IfK is a knot in a homology sphere Y , the proof of Theorem 2.6 given in [10] can be adapted to
give a description of bCFD.XK/ in terms of CFK�.Y;K/, with multiple unstable chains when Y
is not an L-space. However, the structure of the unstable chains depends on the isomorphism
induced on homology by a certain chain homotopy equivalence

J W .C h; àh/! .C v; àv/

that arises in the course of the proof, and this isomorphism is not a priori determined merely
by CFK�.X;K/. Furthermore, even though .C h; àh/ and .C v; àv/ are filtered chain homotopy
equivalent, the map J need not be a filtered chain homotopy equivalence. In particular, an
unstable chain may connect a horizontal generator �0 and a vertical generator �0 with the
property that A.�0/ ¤ �A.�0/.

As a result, Propositions 3.3 through 3.6 no longer hold when Y is not an L-space. For
example, let Y be the manifold obtained by C1 surgery on the left-handed trefoil L (i.e., the
Brieskorn sphere �†.2; 3; 7/), and let K be the core of the surgery torus. Note that XK D XL
as smooth manifolds with boundary, but the parametrization �K differs from �L by a longitu-
dinal Dehn twist. Thus,

bCFD.XK ; �K/ ' 1CFDA.��1� /� bCFD.XL; �L/;

where 1CFDA.��1
�
/ is one of the Dehn twist bimodules computed in [11, Section 10.2]. By

evaluating this tensor product and simplifying, the reader may verify that bCFD.XK ; �K/ has
the following form.

�1

�2

�2 �1

�0�

�

�1

�2

D3

oo

D2

oo

D1

��

D123

OO

D123

YY

D2
ee

D12

__

D2

YY

D123
ee
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Here, �0, �2, and �0 are the generators of vertical homology, and �0, �1, and �2 are the
generators of horizontal homology. The only generator in Alexander grading �1 is �1. Notice
that D2 ıD123.�1/ and D12 ıD2 ıD3.�1/ are both nonzero (and distinct), contrary to Pro-
position 3.3. Furthermore, by Theorem 2.2, the corresponding generator in bCFA.XK/ has
outgoing m4. � ˝ �3 ˝ �2 ˝ �12/ and m3. � ˝ �123 ˝ �2/ multiplications, contrary to Propo-
sition 3.5. Therefore, when K1 and K2 are knots in arbitrary homology spheres, the subgroup

BK1
˝ BK2

� bCFA.XK1
/� bCFD.XK2

/

does not necessarily survive in homology, unlike in our proof of Theorem 1. A different strategy
will thus be required for a proof of Conjecture 2.
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