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TOPOLOGICALLY SLICE KNOTS OF SMOOTH
CONCORDANCE ORDER TWO

MATTHEW HEDDEN, SE-G00O KiM & CHARLES LIVINGSTON

Abstract

The existence of topologically slice knots that are of infinite
order in the knot concordance group followed from Freedman’s
work on topological surgery and Donaldson’s gauge theoretic ap-
proach to four-manifolds. Here, as an application of Ozsvath and
Szabd’s Heegaard Floer theory, we show the existence of an in-
finite subgroup of the smooth concordance group generated by
topologically slice knots of concordance order two. In addition, no
nontrivial element in this subgroup can be represented by a knot
with Alexander polynomial one.

1. Introduction.

In [7] Fox and Milnor defined the smooth knot concordance group
C. Their proof that C is infinite quickly yields an infinite family of dis-
tinct elements of order two. Results of Murasugi [27] and Tristram [41]
demonstrated that C also contains a free summand of infinite rank. This
work culminated in Levine’s construction [22] of a surjective homomor-
phism ¢: C — G, where G is an algebraically defined group isomorphic
to the infinite direct sum Z> @ Zs° @ Z3°.

Classical surgery theory allowed Levine to prove that ¢ is an isomor-
phism in high (odd) dimensions. The first distinction between classical
and high-dimensional concordance was seen in the work of Casson and
Gordon [2], who showed that the kernel of ¢ is nontrivial; this was fol-
lowed by a proof by Jiang [21] that ker(¢) contains a subgroup isomor-
phic to Z*°. In [23] it was shown that ker(¢) also contains a subgroup
isomorphic to Zs°.

The work of Donaldson [4] and Freedman [8, 9] on smooth and topo-
logical 4-manifolds, respectively, revealed further subtlety present in
low-dimensional concordance. One can define a concordance group C*P
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in the topological, locally flat, category. The distinction between the
smooth and topological categories is highlighted by considering the ker-
nel of the natural surjection C — C!P. This kernel is generated by
topologically slice knots, and we denote it Crg. To underscore the im-
portance of Crg it should be mentioned that a single non-trivial ele-
ment in Crg implies the existence of a smooth 4-manifold homeomor-
phic, but not diffeomorphic, to R* [11, Exercise 9.4.23]. Several people,
including Akbulut and Casson, observed that the results of Donald-
son and Freedman can be used to produce non-trivial elements in Cprg
(see [3]), but until recently little was known about the structure of
Crs. Using techniques developed by Donaldson [4] and later enhanced
by Fintushel-Stern [6] and Furuta [10], Endo [5] proved that Crs con-
tains a subgroup isomorphic to Z> (see also [15, 16, 17] for other
constructions of infinite rank free subgroups). Techniques derived from
Heegaard Floer theory and Khovanov homology (specifically the Ras-
mussen invariant [40]) were used to show that Crg contains a summand
isomorphic to Z3 [24, 25, 26]. Recently that work has been superseded
by work of Hom [18] which applies a deep analysis of the structure of
Heegaard Floer complexes to construct a summand isomorphic to Z°.

With the abundance of 2—torsion in C, one might expect that Crg
likewise has such torsion. However, producing torsion classes in Crg is
quite difficult since one needs a manifestly smooth invariant to detect
them. Many of the known techniques for analyzing Crg, however, fail
at detecting torsion classes (for instance, the Ozsvath-Szabé [34] or
Rasmussen [40] concordance invariants). Our main result shows that
like the concordance group, Crg has an abundance of 2—torsion.

Theorem 1. Crg contains a subgroup isomorphic to Z3°.

We conjecture that, in line with Hom’s result, a summand isomorphic
to Z3° exists, but current tools seem insufficient to prove this.

Freedman’s work [8, 9] implied that all knots of Alexander polyno-
mial one are topologically slice, and these knots provided all the early
examples of nontrivial elements in Crg. However, in [16] it was shown
that Crg in fact contains a subgroup isomorphic to Z* with no nontriv-
ial element represented by a knot with Alexander polynomial one. Here
we extend this to 2—torsion. Let Ca denote the subgroup of C generated
by knots with Alexander polynomial one.

Theorem 2. The subgroup from Theorem 1 can be chosen so that no
nontrivial member is representable by a knot with Alexander polynomial
one. In particular, the group Crs/Ca contains a subgroup isomorphic
to Zs°.

This theorem can be strengthened by replacing the subgroup of knots
generated by Alexander polynomial one knots with the subgroup gen-
erated by knots with determinant one.
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To prove these theorems we consider knots K, as illustrated in
Figure 1. These knots are defined to be the boundaries of surfaces built
by adding two bands to a disk as shown: the bands are tied in knots
J and —J and have n and —n full twists, where n > 0. An important
special case occurs when U is the unknot, whereby Ky is the figure
eight knot. We have the following easy proposition:

Proposition 1.1. K, is negative amphicheiral (K, = —Kjp); in
particular, 2K 5, =0 € C. If Ji and J2 are concordant, then K, ,, and
K, n are concordant.

The amphicheirality of K, can be demonstrated just as for the case
J = U. Indeed, an isotopy to —Kj,, is obtained by pulling the bottom
band through the rectangular region and then rotating the knot 180°
about a vertical axis running down the center of the page. The second
part of the lemma follows from the fact that satellite operations descend
to concordance, and K, is a two-fold satellite operation with compan-
ions J and —J. The proposition allows for the immediate construction
of elements of order at most two in Cpg.

Corollary 1.2. For U the unknot, 2(K j,#Kyn) =0 € C. If J is
topologically slice, then the knot K j,# Ky, is topologically slice; that
is, Kjn#Kun € Crs.

/ N\
2

Figure 1

Let D denote the untwisted Whitehead double of the right-handed
trefoil knot, 75 3, and let Dy, denote kD. The knots Kp, ,# Ky, provide
the subgroups appearing in Theorem 1 and Theorem 2.

Theorem 3. There exists an infinite set of pairs of positive in-
tegers {(k,n)} with the property that the corresponding set of knots
{Kp, n#Kun} generates a subgroup of Crs and of Crs/Ca as described
in Theorems 1 and 2.

The proof of Theorem 3 is presented in Section 3 after necessary
background is given in Section 2. The proof depends on a detailed
analysis of the Heegaard Floer d-invariants of the branched cover of S3
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branched over Kp, ,. That analysis occupies Sections 4, 5 and 6. Some
of the most technical work has been placed in appendices.

Acknowledgements. We are indebted to the referees for their unusu-
ally thorough and thoughtful reading of the original manuscript. Their
contribution significantly enhanced the clarity and accuracy of the pre-
sentation.

2. Preliminary constructions

2.1. Algebraic slicing obstructions. The proofs of our main results
are based on considering two-fold branched covers of S® over K J.n, Which
we denote M (K j,). According to [1], M (K ;,) has a surgery descrip-
tion as illustrated in Figure 2, in which the meridian p is labeled for
later reference. In the diagram, J” denotes the orientation reverse of
J, and the meridian of the surgery curve is oriented consistently with a
choice of orientation for that curve. (In general, if a link is formed from
the Hopf link by tying a local knot K in one component, Ko in the
second, and then performing n; and ng surgery on the link, we denote
the resulting manifold S5, | (K1, K»).) If J is reversible, then M (K )
has the surgery description S§2n72n(—2J, 2J).

From this surgery description, a quick calculation yields a compu-
tation of the homology of M (K,). In particular, Hi(M(Ky)) is a
cyclic group of order 4n? 4 1. Notice that given the choice of generator
wof Hi(M(Kjy)), the identification with a cyclic group is canonical.
In particular, this observation along with Poincaré duality permits us to
identify H?(M (K ,)) with H?(M(Ky,,)) for all J. For emphasis and
for later reference we state this as a proposition.

Proposition 2.1. The choice of surgery description of M (K j,) pro-
vides a canonical isomorphism H*(M (K j,,)) 2 Hi(M(Kyn)) = Zgp241 -

1

@2
D

—2n 2n

Figure 2

As a special case, we note that M (Ky,,) is given by (4n® + 1)/2n—
surgery on the unknot: M(Ky,,) = L(4n? + 1,2n).
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If a knot K is slice with slice disk 2, then M (K) bounds the two-fold
branched cover of B* branched over the slice disk, W (F?). In this case
we have the following from [2].

Proposition 2.2. The homology groups H;(W (F?),Zs) = 0 for i >
1. The image I of the restriction map H*(W(F?)) — H*(M(K)) is
a subgroup of order satisfying |I1|> = |Hy(M(K))|. Furthermore, I
is self-annihilating with respect to the linking form. (Via duality, we

can view the linking form, usually defined on Hi(M(K)), as a form on
H*(M(K)).)

2.2. Slicing obstructions from Heegaard Floer theory. Heegaard
Floer theory associates a (filtered homotopy class of) chain complex
CF>(M,s) to a 3-manifold M with Spin® structure s. For a manifold
X, the set of Spin® structures, Spin®(X), is in bijection with elements
in H?(X), though not canonically so. However, associated to each s €
Spin¢(X), there is a first Chern class, c;(s) € H?(X), and in the case
that H?(X,Zy) = 0, the map:

c1 : Spin(X) — H*(X)

provides a bijection that is natural with respect to the transitive action
of H?(X) on both sides and with respect to pull-back; that is

1) c1(s + ) = c1(s) + 2a for all @ € H?(X), and

2) c1(i*s) = i*ci(s) for an embedding 7 : ¥ — X with trivial nor-
mal bundle. In particular, for the inclusion of a codimension zero
submanifold Y C X, or for Y C 90X, we have ¢;(s]y) = c1(s)|y.

Thus, in cases in which H?(X,Zs) = 0, via the Chern class we can
denote Spin® structures by s, for « € H?(X). There is an involution
on the set of Spin® structures called conjugation; the conjugate of s is
denoted 5 and one has 5, = §_,.

As described in greater detail in Section 4, there is an invariant
d(M,s), called the correction term, defined in terms of the filtered ho-
motopy type of CF*(M,s). It satisfies the following properties.

1) d(—M,s) = —d(M,s).
2) d(Ml#MQ,Bl#EQ) = d(Ml,ﬁl) + d(MQ,EQ).

3) d(M,s) =d(M,s).

The following theorem from [31] provides the obstruction we will use
to show that knots are not smoothly slice. (The use of d as a slicing
obstruction first appeared in [26], where it was applied only for the Spin
structure. In [12, 20] it was used in conjunction with a careful analysis
of Spin® structures to study concordance.)

Proposition 2.3. Suppose (W, 1) is a Spin® four-manifold satisfying
H;(W,Q)=0,i>0, and M = OW. Then d(M,t|ps) = 0.
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Note. In the case that M3 is constructed as —n-—surgery on an oriented
knot K C S3, there is the following enumeration of Spin® structures on
M, parameterized by integers m with —n/2 < m < n/2 (see [33, Section
4] for details). If W denotes the four-ball with a two-handle added along
K with framing —n < 0, we let t,, denote the Spin® structure on W
satisfying (ci1(tm), [S]) +n = 2m, where [S] is the generator of Hy(W')
represented by an oriented Seifert surface for K, capped off with the
core of the two-handle. We denote by s,, the restriction of t,, to M.
This is well-defined whether n is odd or even. The Poincare dual of
c1(sm) satisfies PD(c1(s,,)) = 2m[u], where [u] € Hy(M) is the class
represented by the meridian of K.

3. Main theorem.

In Appendix C we use a theorem of Iwaniec to obtain a number
theoretic result.

Proposition 3.1. There exists an infinite set N of positive integers
greater than one such that for all n € N, 4n? + 1 is square free and
4n? + 1 is a product of at most two primes. Furthermore, for each
m,n €N, 4m? + 1 and 4n® + 1 are relatively prime.

The main results of this paper are consequences of the following the-
orem.

Theorem 3.2. For each n € N there is a positive integer k,, having
the following property: If n € N and L is any knot with |Hy(M(L))]
relatively prime to 4n® + 1, then Kp,, n# Kun# L is not slice.

Most important, as an immediate corollary we have the result that
implies Theorems 1, 2, and 3 of the introduction.

Corollary 3.3. For all nonempty finite subsets N' C N,

> (Kpy, n# Kun) ¢ Ca.

neN’
In particular, the set of knots {Kp, n»# Kun} generate a subgroup iso-
morphic to Z3° in Cts/Ca.
Proof Corollary 3.3. Suppose that ) \»(Kp, n# Kun)is concordant
to a knot K with Alexander polynomial one. Then we have
> nent (KD, m # Kun) # —K is slice. Let m be the least n € N and
let N be the set N7 with m removed. We can break up the connected
sum of knots as

(Kpy,,  # Kvum) # ( Z (Kpy,, n# Kun) # —K) )
neNH
At this point we can complete the proof by applying Theorem 3.2 with

L= ZnEN” (KDkn,n # KU,n) # -K. q.e.d.
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3.1. Proof of Theorem 3.2. The rest of this section presents the proof
of Theorem 3.2, calling upon results from later sections as needed. The
choice of k,, will be described in the context of the proof.

Abbreviate Kp, n, # Ky, by K, . Assuming that K, j # L is slice,
the manifold M (K, ) # M (L) bounds a rational homology ball W.
Since the orders of Hy (M (K, 1)) and Hi(M (L)) are relatively prime, it
follows that the image of H2(W) in H?(M (K, ;) # M (L)) 2 (Zyp241 &
Zgn241)®H?*(M (L)) contains a subgroup of the form M &0 where M C
Ligpz 1 ® Lyp2yq is a metabolizer for the linking form on Hy(M (K, 1)).
With this we can prove the following.

Lemma 3.4. If K,, ;. # L s slice, then for some metabolizer M of
the linking form on Hy(M (K, )) and for all (z1,22) € M,

d(M(Kpy,n),82) + d(M(Kyp),s2,) = 0.

Proof. It is immediate that d(M(Kp, n),5z) + d(M(Kuy),52,) +
d(M(L),s0) = 0. Notice that since L is assumed to be concordant
to —K,, , which is of order two, L is also of order 2. Because 2L is
slice, 2M (L) bounds a Zs—homology ball Z. The Spin structure on
Z restricts to the Spin structure on 2M (L). Thus, the Spin® structure
s0@so on M (L) # M (L) extends to Z. It follows that 2d(M (L), sg) = 0.

q.e.d.

We now must consider metabolizers for the linking form on (Zy,,2 +1)2.

Lemma 3.5. For a fized non-degenerate linking form on Zy, with
N square-free, each metabolizer for the double of this form on (Zy)? is
generated by an element (1,b) where 1 +b*> =0 mod N.

Proof. Recall first that a non-degenerate linking form on Zy is given
by an element o € Zy: lk(xz,y) = zay mod N, where o« and N are
relativity prime.

Since (Zy)? is of rank two, any metabolizer M is of rank at most two,
so is generated by two elements, {(a,b), (¢,d)}. Using Gauss-Jordan
elimination, we see it is generated by a pair of elements {(a,b), (0,¢)}.
If ¢ is nonzero it would have self-linking 0, which is impossible for a
non-degenerate form on Zy with N square-free.

Thus M is generated by a single element (a,b), so (a,b) is of order
N. If either a or b were divisible by some prime factor of /N, then some
multiple of (a, b) would be of the form (0, ¢) or (¢, 0) with ¢ nonzero. But
again, the existence of such an element is ruled out by N being square-
free and the form being non-degenerate. Since a must be relatively prime
to N, some multiple of (a,b) is of the form (1,’), and clearly ' # 0. In
fact, since (1,1') is in the metabolizer M, one has 1+ (V)2 =0 mod N,
as desired. q.e.d.

Combining Lemmas 3.4 and 3.5 yields the following.
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Lemma 3.6. If K,, ;. # L is slice, then for some b satisfying 1462 =0
mod 4n? + 1 and for all x, d(M(Kp, »n),5z) + d(M(Kyn), Spe) = 0.

Notice that in this statement the subscripts on the Spin¢ structures,
x and bz, are cohomology classes; the cohomology of the spaces are
identified using Proposition 2.1.

For our purposes, a change of signs will be convenient, as follows.

Lemma 3.7. If K,, ; # L is slice, then there is some b satisfying b* =
1 mod 4n? +1 such that for all x, d(M(Kp, n),5:) = d(M(Kyp), Spz)-

Proof. The knot Ky, is of order two: Ky, # Ky, is slice. Thus,
the previous argument shows that there is some o' satisfying 1 +52 =0
mod 4n? + 1 such that for all z, d(M (K ), $2) +d(M(Ky ), Spz) = 0.
Replacing = with bz from the previous lemma yields d(M (Kyp,), Spe) +
d(M(Kyp),8p:) = 0. The rest is arithmetic along with a renaming of
variables. q.e.d.

Completion of the proof of Theorem 3.2
According to Proposition 6.7, there is a specific Spin® structure s,
such that for all & with 0 <k < n/2,

d(M(Kp, n,50)) — d(M(Kyp,50)) = —2k.

Applying Lemma 3.7, for each k and some b satisfying 1 + b> = 0
mod 4n? 4 1, we have

A(M(Kyn), $50) — d(M(Kyn), 50) = —2k.

Since 4n? + 1 is the product of at most two primes, there are at most
four values of b mod 4n? + 1 for which > = —1 mod 4n® + 1. Thus,
the expression on the left of the equality can have at most four distinct
values. As long as n > 9 the set of integers in the interval 0 < k < n/2
contains at least five elements, so we can choose k so that the equality
is violated. Any such choice can serve as k.

4. Heegaard Floer complexes

The computation of the d-invariants of interest depends upon a de-
tailed understanding of related Heegaard Floer complexes. The main
result in this section is Theorem 4.2, the refiltering theorem, which de-
scribes the chain complex associated to the meridian of a knot K within
the manifold S \(K) in terms of the chain complex associated to K
within 3.

4.1. Three-manifold complexes. We let F denote the field with two
elements. As mentioned earlier, given a 3—manifold M with Spin® struc-
ture s, there is an associated Zfiltered Q-graded complex CF>°(M,s).
This complex is a free, finitely generated F[U,U~']-module, which is
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well-defined up to filtered chain homotopy equivalence. The filtration
of CF*(M,s) by subcomplexes is induced by a natural filtration of
F[U,U~'] by powers of U. More precisely, we can regard F[U, U] as
an (infinitely generated) F[U]-module in the obvious way. As such, it
has an exhaustive Z-indexed filtration by (free) F[U]-submodules

.. CU*F[U] c UM 'F[U] c U*?F[U] C ...,

and this filtration induces a Z-filtration of CF*°(M, s) by subcomplexes.
Thus the filtration level of a chain in CF*°(M, s), regarded as a sum of
Laurent polynomials in the basis elements, is given by the negative of
the minimum power of U which appears in this polynomial. The action
of U clearly lowers filtration level by one. It lowers grading by two.

Added notation permits the simple representation of subcomplexes;
for instance, we denote the subcomplex consisting of elements of filtra-
tion level at most n by CF'*°(M, 5)(;<n). With this we can define several
associated complexes,

CF™(M,s) = CF>(M,s) <0},

CF*(M,s) = CF*(M,s)/CF>(M,s)g <o,
and -
CF(M, 5) = CFOO(M, 5){@S0}/CFOO(M, 5){i<0}‘
There are corresponding homology groups, HF~ (M, s), HF* (M, s) and
HF(M,s).
There will also be situations in which we must shift the gradings of ele-
ments in these chain complexes. For instance, we will write CFT (M, 5)[€]

for the same complex as CF*(M,s), except with the homological grad-
ing of any element increased by ¢; that is,

CFf(M,s)[e] = CF (M,s),
for all *.

Definition 4.1. The d—invariant d(M,s) is given by
min{gr(a) | @« #0 € HE'(M,s) and o € Image U™ for all n > 0},

where gr(«) is the homological grading.

4.2. Knot complexes. A knot K C M induces a second Z-filtration
of the complex CF*(M,s), which thus becomes a Q-graded, Z & Z—
filtered complex. The U action respects the second filtration, lowering
this filtration by one as well. This doubly filtered complex is denoted
CFK*(M,K,s), and again there are associated subcomplexes such as
CFK*(M, K,5){i<m,j<n}- Asin the 3-manifold case, there are quotient
complexes CFK*(M,K,s) = CFK*(M,K,s)/CFK>*(M, K,s) <0}
and CFK(M,K,s) = CFK™®(M, K, s) (i< /CFK™®(M, K,5) (;0); ig-
noring the j filtration yields the corresponding complexes for (M, s).



362 M. HEDDEN, S.-G. KIM & C. LIVINGSTON

Figure 3 illustrates the complexes for the unknot and the (2, 5)—torus
knot in S3. (For alternating knots K, CFK*>(S3, K) is determined sim-
ply from the Alexander polynomial [30].) The dots represent elements
in a filtered F—basis and the line segments indicate components of the
boundary operator. Sometimes we will not need to include arrows on
the segments; the fact that the boundary map cannot increase either fil-
tration and 9% = 0 will make the direction unambiguous in most of the
examples we consider. The gradings are not indicated in the diagram;
the coordinates in the diagram correspond to the filtration, as follows:
the vertical and horizontal axes in bold separate elements of filtration
levels —1 and 0. That is, the dot just above and to the right of the origin
has filtration level (0,0). The action of U shifts the diagram down and
to the left by one.

Convention. In all the cases we consider, CF K> (M, K,s) is filtered
chain homotopy equivalent to C ®p F[U,U~!] for some finite Z @ Z—
filtered F—complex C'. We will simplify our diagrams and illustrate only
C, leaving out all of its U translates.

FEFSE S
CFK>(S3,U) CFK>(S% Tys)

Figure 3

4.3. Gradings. To this point we have not described how the homologi-
cal grading is determined. Rather than review this aspect of the theory,
we refer the interested reader to [31, 35] for definitions and details.
For our purposes, the following elementary observation will be particu-
larly useful: the value of d(M,s) can be used to determine the gradings
of elements in CFK*(M, K,s). We illustrate this with an important
example.

In the special case of S3 there is only one Spin® structure, denoted sg.
We have HF1(S3,50) = F[U,U~1]/UF[U] and by definition d(S3,s0) =
0. For example, in the complex CFK™*(S3, Ty 5,50) (constructed from
the complex illustrated on the right in Figure 3 by quotienting by all
elements to the left of the vertical axis), we see that the non-trivial
homology class with least grading is represented by the cycles living in
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filtration levels (0,2),(1,1), and (2,0). Thus, all of these have grading
0.

4.4. Meridians of knots in surgered manifolds. Let S3 /(K de-
note the manifold constructed as —N surgery on K C 5% and let u de-
note the meridian of K, viewed as a knot in S3 /(K). The work of [14]
can be extended to show that for each Spin® structure s,,, the complex
CFK®>(S? \(K), 1, 51) is isomorphic to CFK>(S3, K), but endowed
with a different Z & Zfiltration and an overall shift in the homological
grading. We state the result for a knot in a general 3—manifold.

Notation Notice that until now, Spin® structures were denoted s,
where a € H?(M). Here they have been denoted s, with m an integer
(viewed, modulo N, in Z/NZ), according to the convention described
in the note at the end of Section 2.2.

Theorem 4.2 (Refiltering Theorem). Suppose N > 2g(K). For
m in the interval

[(=N+1)/2] <m < [N/2],
the complex CFK* (Y3 (K), 1, 5m) is isomorphic to CFK>® (Y3, K)[e1]

as an unfiltered complez, where [e1] denotes a grading shift that depends
only on m and N. Given a generator {[z,i,j]} for CFK>(Y3 K),
the Z & 7 filtration level of the same generator, viewed as a chain in
CFK>™(Y3\(K), it,5m), is given by:

N I (X1 if 7>14+m,
fm([x,Z,J])—{U_mJ_m_l] if j<i+m.

Before discussing its proof, we illustrate this theorem in Figure 4, which
shows for all N > 8 the complexes CFK>®(S3 \(K), i, 5m) for K = U
and K = =Ty 5, with —3 < m < 4. We show only the F-subcomplex
that generates the full complex over F[U, U~1].

Proof. The theorem refines [14, Theorem 4.1] in two directions:

1) [14, Theorem 4.1] determines the Z—filtered chain homotopy type
of C/'FT((SiN(K), i, 5m). Here we seek to understand the Z & Z—
filtered chain homotopy type of CFK* (Y3, (K), f1,5m).

2) [14, Theorem 4.1] applies for N > 0. We wish to show that
N = 2¢g(K) suffices.

The first refinement is an immediate extension of the proof from [14],
so we do not belabor the details here. To begin, we note that the dif-
ference between S? and a general 3-manifold is merely notational. The
key idea from [14] was to observe that with the addition of another
basepoint, the natural Heegaard diagram for —N-framed surgery on
K could be made to represent the knot p C Y_n(K). The proof of
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m=20
m=4
v
v
m=20
/
m=4

Figure 4

[33, Theorem 4.1] shows that the Z-filtered chain homotopy type of
CF>*(Y_N(K),sp) is determined by that of CF K> (Y, K). This implies
that the chain homotopy type of CF~(Y_n(K),8m), CFT(Y_N(K),5m),
and ﬁ'(Y_N(K),sm) are also determined by CF K> (Y, K), as they are
sub, quotient, and subquotient complexes of the filtration, respectively.
Now the meridian p C Y_y(K) induces an additional Zfiltration of any
of these complexes, and [14, Theorem 4.1] determined that in the case

of CF (Y_n(K),S8m), the additional Z-filtration consists of two steps:
0C CFK>™(Y,K){i>0,j=m} € CFK*(Y, K) {min(i,j—m)=0}

where the subquotient on the right was identified with CF (YonN(K),5m)
by [33, Theorem 4.1]. Strictly speaking, the proof of [14, Theorem 4.1]
only dealt with the case of positive framed surgery explicitly, leaving the
case of negative framings to the reader. The analogous proof for neg-
ative framings yields the two-step filtration above, and the extension
to CFK® follows easily from the same proof. (It is worth noting that
the formula from [14, Theorem 4.1] was actually for the filtration in-
duced by p”, the meridian of K with reversed orientation. The formula
above is for the meridian with its standard orientation.) To be more pre-
cise, [33, Theorem 4.1] identifies CF>°(Y_n(K), 6,,) with CFK*(Y, K)
via a chain map which was denoted ®. This isomorphism of chain
complexes respects the F[U, U~!]-module structure of both complexes,
and hence one of the Z-filtrations. The additional Z-filtration on
CF>®(Y_N(K),$,) induced by u can be determined in exactly the same
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manner as it was determined for the case of CF (Y_N(K),S,) in [14],
yielding the statement of the theorem. In both cases, the key lemma is
[14, Lemma 4.2], which identifies the Z-filtration induced on any given
i =constant slice in CF>*(Y_y(K),s,,) with a two step filtration as
above.

For the second refinement, recall that the proof of [14, Theorem 4.1]
relies on making the surgery parameter large enough so that an entire
Spin® equivalence class of generators for Y_n(K) is supported in the
winding region (by definition, we say that a generator is supported in
the winding region if it is represented by a k—tuple of intersection points
which contains a point in the region shown in [14, Figure 13]). This is
achieved by a pigeonhole argument: there are only finitely many Spin®
equivalence classes that can be represented by the finitely many gener-
ators not supported in the winding region, and increasing /N increases
the number of Spin® structures without bound. Once we have an entire
Spin® equivalence class supported in the winding region, we can appeal
to the technique of “moving the basepoint.” In the present context this
means moving the placement of the meridian and nearby collection of
basepoints throughout the winding region; see [14, Theorem 4.3]. This
technique allows us to use the single Spin® equivalence class of inter-
section points which is supported in the winding region to represent all
|H1(Y)| - N different Spin® structures on Y_x(K) (for a manifold with
b1(Y) > 0, |[H1(Y)| should be replaced by the number of Spin® struc-
tures on Y represented by the diagram). Thus the question is reduced to
finding a topological interpretation for the number of Spin® classes rep-
resented by generators which are not supported in the winding region.
We will henceforth refer to such generators as exterior.

To achieve a bound for the number of Spin® classes represented by
exterior generators, we use a particular Heegaard diagram which is
adapted to a Seifert surface for K with genus g. A similar Heegaard
diagram appears in the proof of the adjunction inequality [33, Theo-
rem 5.1]; such a diagram is constructed explicitly in [32, Lemma 7.3]
and [28, Proof of Theorem 2.1]. The diagram consists of a quadruple,

(Ek‘)o_z — {ala "’aak})g: {Blv "'75[6—1’//17)‘}’ {w UZ})v

where (2,&, 5\ p) and (2,&, 5\ \) are Heegaard diagrams for Yp(K)
and Y, respectively, and {w U z} specifies K on the latter diagram. The
key features of the diagram are that

e There is a domain P with
OP = aip U

such that P U {Disk bounded by «y} is isotopic to the chosen
Seifert surface.
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e The only a curves which intersect P are oy and oy, ..., gy, where
g, as above, is the genus of K (= genus of P).

Now we observe that the diagram

(Zkao_z = {ab ...,Odk},g: {517 "'7676—17)\_1\7}7 {U)})

specifies Y_n(K), where A~V is a simple closed curve isotopic to the
resolution of N parallel copies of the reversed meridian u” and one copy
of X\. Furthermore, with an additional point 2z’ the diagram specifies
the knot u C Y_n(K). As above, the generators of CFK*(Y_n(K), i1)
arising from this diagram are split according to whether they are sup-
ported in the winding region or are exterior. The exterior generators
are characterized by the fact that the point of intersection occurring on
A~ lies outside the winding region (recall that a generator is a k-tuple
of intersection points between o and [ curves, with each a and § curve
appearing exactly once; thus A= is used exactly once by any k-tuple
comprising a generator). The exterior generators are in bijection with
generators for the Heegaard diagram of Yy(K) (the diagram with \ as
the last curve). Our bound of 2¢g(K) in the theorem will be attained
if we can argue that the total number of Spin® equivalence classes rep-
resented by the exterior points is less than |Hq(Y)|-2g. This follows
from the key properties of our Heegaard diagram. Indeed, recall the
first Chern class formula [32, Proposition 7.5]:

(4.1) (1(sw(x)), [P)) = e(P) +2 ) nyi(P).
T, €X

Here, x is a k—tuple generating a Heegaard Floer complex, [P] € Hs is
the second homology class obtained by capping off the boundary compo-
nents of a periodic domain, e(P) is the Euler measure of P (which agrees
with the Euler characteristic for periodic domains with all multiplicities
zero or one) and ng, (P) is the average of the local multiplicities of P in
the four regions surrounding an intersection point x;. For our particular
Heegaard diagram for Y{(K), the right-hand side of 4.1 becomes:

—2g + 2#{x; € interior(P)} + 2,

where —2g¢ is the Fuler characteristic of P. The additional +2 term
comes from the fact that «aj and A do not intersect and must each
contain an x; € x. Since «y and A are on the boundary of P, each of
these two x; have ng, (P) = 1/2. Finally, the fact that there are only
2g other a curves which intersect P and that any k—tuple comprising
a generator must use one of these a curves for the intersection point
x; C A implies that

0 < 2#{x; € interior(P)} < 2(2g — 1),
thus showing that
—29+2 < (c1(sw(x)), [P]) < 29.
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Now the fact that (c1(s,(x)),[P]) is an even integer which vanishes
if ¢1(8y,(x)) is torsion implies that there are at most |Hi(Y)| - 2¢g dis-
tinct Spin® equivalence classes represented on the Heegaard diagram for
Yo(K), and hence the same bound exists for the number of exterior
intersection points. This completes the proof. q.e.d.

5. The complex CFK>(S? \(—2Dy),2Dy)

In general, the computation of the d-invariant of surgery on a knot
K C Y from CFK*®(Y,K,s) can be rather challenging; identifying
patterns among the values that arise for various values of s is even more
subtle. If the surgery coefficient is appropriately large, however, there
are significant simplifications. This section describes the general theory
and demonstrates that in our setting the simplifications that arise from
the large surgery assumption do apply.

To be more specific, in [33, Theorem 4.1] it was shown that the com-
plex CFK®(S3, K) determines CF*(S3,(K),s,,) for N > 2¢(K) — 1,
with a similar result proved for null-homologous knots in arbitrary 3—
manifolds. In [38, Theorem 4.1] this was generalized to rationally null-
homologous knots, in which case CF*(Yy(K), 6,,,) depends on the com-
plexes CFK™ (Y3 K,/ ) for specified classes s/ ,. However, the gen-
eralization of [38] did not specify how large the framing parameter had
to be in order to apply the result. Rather, it simply showed that for
sufficiently large framings such a formula exists, and then a more gen-
eral formula was proved which holds for arbitrary framings in terms of a
mapping cone complex. In our situation we will apply a special case of
the results of [38], taking advantage of the fact that Y = S3, (—2Dy,),
and that we are performing 2n—surgery on a knot formed as the con-
nected sum of a knot in S with the meridian of —2D;,. While we utilize
the full mapping cone complex, our surgery parameters are chosen so
that they will be large enough for the simpler formula to hold. This
will manifest itself in a collapse of the mapping cone complex to a single
term. In general, “large” should be taken to mean: “large in comparison
to the Thurston norm of the complement.”

Here is the statement of the result we need. The exact correspondence
between the Spin® structures s,, and s/ , is implicit in the proof but is
not needed in our application of the theorem.

Theorem 5.1. Let Ko C Y = S3(Ki) be a knot of the form
uF KL where p is the meridian of K1 and Kb is a knot in S3. For any
N > max(29(K}) + 2,29(K1)), there is an enumeration of Spin® struc-
tures on YN (K2), {5m}_n2j2<m<n2/2, such that CF*(Yn(K2),sp) is
1somorphic to

CFKOO(SEN(Kl)v K275;n/)/CFKOO(SEN(K1)7 K275/m’){i<07j<m} [6]
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Elements in the above quotient withi = 0,7 <m andi < 0,7 = m are at
filtration level 0 in CF*(Yn(K3),6m); these represent ﬁ(YN(KQ),Em).
The induced map U lowers filtration level by 1. The grading shift, €, is
a function of m and N, and in particular, the grading shift does not
depend on K.

Applying this theorem to the relevant manifolds yields the following
corollary:

Corollary 5.2. For any 0 < k < n/2, there is an enumeration of
Spin® structures on M(Kp, n), {Sm}_an2<m<an2 for which the complex
CFY(M(Kp, n),5m) is isomorphic to

CFKOO(SEQn(_QDk)? M#2Dk75;n’)
CFK>(53,,(=2Dy), uy#2Dy, 8., ) {i<0.j<m}
with filtration, grading shift, and F[U]-module structure as in Theorem
5.1.

),

Proof. The manifold M (Kp, ,) is obtained by performing 2n-surgery
on u#2Dy, C S3,, (—2Dy). Thus we need only verify that

2n > max(29(2Dy) + 2,29(—2Dy,)),

provided that 0 < k < n/2. Both 2Dj, and —2Dj, have genus 2k, being
the connected sum of 2k copies of the Whitehead double, a genus one
knot. q.e.d.

The rest of this section is devoted to proving Theorem 5.1.

5.1. Heegaard diagrams, Spin® structures, homology and sur-
gery. Our computation of HF* (M, s) relies on results of [38], in which
the general problem of computing the Heegaard Floer homology of ratio-
nal surgery on a knot in a rational homology sphere is studied. Although
the manifolds we consider are in some respects fairly simple, in order to
apply [38] it is essential to review some of the foundations.

The manifold M we are considering is formed by surgery on a link
(K',K) C 83 constructed from the Hopf link by placing local knots in
each component. More specifically, M is given by —N surgery on K’
followed by N surgery on K. Thus, our approach to computing the
Heegaard Floer homology of M is to view it as formed by performing
N surgery on knot K, viewed as a knot in Y = S3 \(K’). We begin
by considering surgery on the Hopf link, in which case Y = $3 \(U) =
—L(N,1) and M = L(N? + 1, N). We then move to the more general
case, encompassing the situation in which the components are knotted.

5.2. Lens space Heegaard diagram. As a starting point, we con-
sider lens spaces —L(N, 1). On the left in Figure 5 is a doubly pointed
Heegaard diagram for Y = —L(2,1), which we use to illustrate the
general construction.
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i) z o z
« B «

Figure 5. Doubly pointed Heegaard diagram

In the lens space, the surface ¥ = T2 represented by this diagram
bounds solid tori U, and Ug in which the curves o and 3 bound embed-
ded disks, respectively. If we let 7, be an arc from w to z on ¥ missing
« that is pushed into U, (except at its endpoints) and let 73 be an arc
from z to w on ¥ missing 8 pushed into Ug, the union of 7, and 7g
forms an oriented knot K in Y. Notice that once isotoped into U,, K
represents the core of U,.

The meridian to K we denote p. The complement of K in U, is
homeomorphic to T2 x I with H; (U, \ K) generated by p and the curve
m illustrated on the right in Figure 5. Notice that H; (Y \ K) is generated
by © and m, subject to the relations Nm — p = 0. This is shown on the
left in Figure 6, which illustrates the solid torus U,. Note that in the
figure, K has not yet been isotoped into U,,.

Figure 6. Surgery diagram of lens space L(5,2)

5.3. Relative Spin® structures. Associated to each intersection point,
xo or x1 in the figures and {zg, 1, ...,zny_1} for general —L(N, 1), there
is a relative Spin® structure s, .(z;) € Spin°(Y, K). The differences be-
tween these satisfy
(5.1)

Suw 2 (Tit1) — Sw s (7;) = PDe(2s, 2:11)] € HA (Y \vK,0) = H*(Y,K)
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where
HI(Z \ {wa})_» ~ Hl(Y\I/K)

Span & + Span (3
is the class represented by a path that travels from x; to z;41 along «
and then from x;41 to z; along 5. As seen from the figure, this curve is
isotopic to m in Y \ vK. (In all these equations, i € Z/NZ.)

There is a natural map, called the filling map, Gy k: Spin(Y, K) —
Spin®(Y’) which satisfies

Gyx(E+Fk)— Gyx(€) =uk),
where k € H?(Y, K). If K" denotes the orientation reverse of K, then
Gy (§) — Gy, (€) = —PDIK].

e(xi, wip1) €

Comment. As described by Turaev [42], Spin® structures on a closed
manifold correspond to equivalence classes of nonvanishing vector fields,
where two are equivalent if homotopic off a ball. In the case that K C Y
is an oriented knot, a relative Spin® structure corresponds to a nonvan-
ishing vector field on Y \ vK which points outwards on the boundary.
The map G is given in terms of a canonical extension of a vector field
from Y \ vK to Y. See [38, Section 2.2] for a further discussion.

5.4. Yn(K). We are interested in performing N surgery on K. To be
clear about framings, in Figure 6 a push-off of K, K, is illustrated.
The surgered manifold, Y (K) is built by removing a neighborhood of
K and replacing it with a solid torus so that K, bounds a meridianal
disk in that solid torus. Note that H;(Yyx(K)) is generated by p and m
subject to the relations Nm — u = 0 and m 4+ Ny = 0. For instance in
the illustrated case, with N = 2, we get Hy(Yn(K)) = Z/5Z. (In fact,
Yo(K) = L(5,2).) In general, for N surgery on K in —L(N,1) we end
up with L(N? +1,N) = —L(N? +1,N).

5.5. The structure of CFK>(Y, K). To each relative Spin® structure
¢ € Spin“(Y, K), there is an associated doubly filtered chain complex
CFK>(Y, K,§) generated by triples [x, 1, j] satisfying
(5.2) Sw,z(X) + (i = j) - PD[p] = €.
Here, x € T, NTg is an intersection point of the Lagrangian tori in the
symmetric product of a Heegaard diagram (X, e, 3, z,w), and i, j € Z.
For instance, in the case of Y a lens space as above, we have illustrated
examples in Figure 7. In the figure, x can denote any of the x; coming
from the Heegaard diagram in Section 5.2. The value of £ is written
beneath each of the complexes. (The shading in these diagrams becomes
relevant later.)

Every relative Spin® structure is of the form s, .(zo) + kPD[m]| for
some k € Z, and this provides a correspondence between Spin¢(Y, K)
and Z. Since pu = Nm, the set of relative Spin® structures associated to
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x X1 =
2] T
€
sw,z() — PD[y] Sw,z(T) sw,z(2) + PD[y] sw,z(x) + 2PD[y]

Figure 7. CFK*(Y,K)

each z; is a coset of NZ C Z. Also, since s, . (i) — Sy, (x0) = iPD[m],
for different x; the sets are distinct cosets.

5.6. Enumerating relative Spin® structures for the manifolds at
hand. We now move to our particular setting, in which ¥ = $3 \/(K’)
is a manifold constructed as surgery on a knot K’ C S and K C Y is
a knot of the form u#J, where y is the meridian of K’ and J C S3.
Relative Spin® structures will play a central role in the surgery formula
which will be used to compute the Floer homology of Y (K). We discuss
them now.

The manifold Yy (K) contains a knot, which we also denote K, in-
duced by the surgery: K is simply the core of the solid torus. There are
two surjective filling maps to consider:

Gy (k) ¢ Spin®(Yn(K), K) — Spin“(Yn (K))
and
Gy i : Spin(Y, K) — Spin“(Y).
There is a canonical diffeomorphism
Yn(K)\vK —- Y \vK

that provides an identification between Spin®(Yy(K), K) and Spin®(Y,
K), with which we subsequently conflate elements in the two sets.
We will primarily think in terms of Spin®(Y, K), and the important
point will be to understand the images of this H?(Y, K)-torsor under
GYN(K),K and GYJ(.

Since H*(Y,K) = 7Z, we can (non-canonically) pick an affine iso-
morphism which enumerates the relative Spin® structures on Y \ vK
by integers (or elements in H%(Y, K)). For our purposes, it will be
most convenient to pick an enumeration that is compatible with the
previously established affine isomorphism Spin®(Y) & Z/NZ =2 H?(Y)
implicit in the statement of the refiltering theorem; that is, we first
enumerate elements in Spin°(S? \ (K’),u) to be compatible with our
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enumeration of Spin® structures on S° \,(K’), and we then use this to
induce an enumeration for Spin®(S? \ (K'), u#.J).

To make this precise, recall that the refiltering theorem determines
the Z @ Zfiltered homotopy type of CF>(S3 \/(K'), f1,5m), where sy,
indicates a specific absolute Spin® structure on S \(K') =Y and m €
Z/NZ. As in the last section, associated to a relative Spin® struc-
ture £ € Spin“(Y, u), we obtain a complex CFK> (Y, u, &) generated
by triples satisfying (5.2). We pick an identification of Spin®(Y, ) with
7. so that the m-th relative Spin® structure, which we hereafter denote
t,, € Spin“(Y, ), or occasionally by m € Z, has infinity complex given
by the refiltering theorem; that is,

CFE®(Y, p,t,) = CFK®(Y, i, 5n), for [(-N+1)/2] <m < |N/2],

where on the left we have the infinity complex associated to a relative
Spin® structure and on the right the filtered complex associated to the
absolute Spin® structure labeled s,, by the refiltering theorem. Equation
(5.2) then determines the infinity complex for the remaining relative
Spin® structures (outside the interval of the theorem) by the equation:

CEFK™(Y, pt, 4 xn) = CEFK™(Y, i, £,,){0, =k},

where {0, —k} indicates that we have shifted the j—filtration down by
k. Finally, we observe that having picked an affine isomorphism

Spin“(Y, u) = H*(Y, p) = Z,
we subsequently obtain an affine isomorphism
Spin®(Y, p#J) = H*(Y, p#tJ) = Z,

via the natural isomorphism H2(Y,u) & H2(Y, u#.J).

With our convention in hand, we hereafter regard relative Spin® struc-
tures as integers, or as elements in H?(Y, K). Similarly, we regard abso-
lute Spin® structures on Y or Yy (K) as elements in H?(Y) = Z/NZ or
H?(Yn(K) =2 7Z/(N? 4 1)Z, respectively. Our convention is compatible
with the filling maps, in the sense that they are now identified with the
corresponding restriction maps on cohomology:

H*(Yn(K),K) — H*(Yn(K))

and
H*(Y,K) — H*(Y).

To illustrate these principles, and for use in the next section, let s be
some fixed Spin® structure on Yy (K). Now define S(s) = G;}\ll( K) (8).
We have that S(s) = {t,; (n241);} for j € Z and some k, 0 < k < N2
Moreover, for each fixed value of k, there exists an s € Spin®(Yy(K))
such that t, € S(s).
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5.7. The mapping cone. HF'(Yy(K),s) can be computed as the

homology of a mapping cone complex built from CFK>(Y, K) via a

construction of Ozsvath and Szabd which we now recall. We use the

notation of [37, 38] and refer the reader there for more details.
Letting S = S(s) be as above, there are complexes

AH(Y, K) = Bees AL (Y, K),

By (Y, K) = ®eesB{ (Y, K).
Here
A;(K K)=CFK>(Y,K, f){max(i,j)zo},
and
B (Y, K) = CF*(Y,Gyk(§)).
We can write
CFH(Y,Gyk(§) = OFK>(Y, K, &) (>0,

where in the term on the right of the equality, K has provided a filtration
of B (Y, K).
There are maps:

v ALY, K) = B (Y, K)
and
(Y, K).

The map v is given by the projection map onto the quotient com-
plex of AQ(Y, K) consisting of triples [x,i,j] with i > 0, the so-called
vertical complex. The map h is more subtle. Interchanging the roles
of ¢ and j replaces K with K", its reverse. The associated filling map
for K" is denoted Gy gr. Because of the string reversal, Gy g-(§) =
Gy k(§) + PD(K). Thus, if we simply take the quotient corresponding
to the horizontal projection, the target of this chain map is a complex
homotopy equivalent to CE1(Y,Gy k(¢) + PD(K)). The map hg’ is
given by horizontal projection, followed by this chain homotopy equiv-
alence.

We now want to consider the set S(s) in terms of Spin® structures on
Y. To do so we write

+. 4+ +
hﬁ : AS (VK) — B§+PD[KA]

S(s) = {i‘k+(N2+1)j}jeZ

for some fixed k satisfying 0 < &k < N 2 This set can be partitioned
according to its N possible images in Spin®(Y) under the filling map
Gy k. Let 0 <1 < N —1. Then S can be written as

U ({i[j(N2+1)+(z_k)N]N+z}jeZ)-
0<I<N—1
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Recalling that ;1 = Nm, this can be rewritten as

U ({+ GO+ 1)+ (1= k)NIPD(u)}jez) -
0<I<N-1

Deriving the following formula is rather delicate, but its validity is easily
checked:
I+ [j(N*4+1)+ (I —k)NJN =1 mod N
and
14+ [j(N*4+ 1)+ (I —k)N]N =k mod N? + 1.

5.8. Reduction to a finite complex. From this discussion it is ap-
parent that, in general, the mapping cone complex is fairly complicated.
In this subsection we observe that it always reduces to a complex that
is a quotient of a finite dimensional complex over F[U, U~!]. In the next
subsection we observe that in our special case the complex reduces to a
single A¢ term.

Consider the complexes A = $A; and B = & B;, joined by the chain
map D as illustrated below. We denote the mapping cone complex of D
by C. Since CFK® is finitely generated over F[U, U~!], it follows that
v: A; = B; is an isomorphism for all large i, and h: A; — B;11 is an
isomorphism as i goes to negative infinity. The diagram below presents

A_s Ao A4 Ag Ay Ao

AN N N AN

B_o B4 By By By B3

1R
1R

1%
1%

In this example, we have the following subcomplex, C' = A’ ® B':

A_3 A_2 Al A2
B_o B_4 By Bo BB

The restriction of D to this subcomplex, which we denote D’, induces
an isomorphism D) : H,(A") — H.(B'). Injectivity is evident; surjec-
tivity follows from the fact that for each x in the right portion of the
complex, (hov~1)¥(x) = 0 for some k. Similarly, for each x in the left
portion of the complex, (vo h™")¥(x) = 0 for some k. There is a long
exact sequence

— H.(B') = H.(C') = H.(A") —
with connecting homomorphism given by D’. Thus, H,.(C') = 0.
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Consider next the short exact sequence 0 — C' — C — C/C’ — 0;
it leads to a long exact sequence, and we see that H,(C/C') = H,(C).
That is, the homology of C is the homology of the complex

Ay Ag

N\

By

Notice that had h: A_; — By also been an isomorphism in this
example, then the complex would have reduced to a single term, Ag.
This occurs in the cases of lens spaces that arise in our work, L(N? +
1, N). We will see in the next section that this total collapse also occurs
for our manifolds M.

5.9. General complete collapse of the mapping cone complex.
In the case of lens spaces constructed as surgery on the unknot, the
CF K™ complexes which arise are all of the form (C®pF[U, U~1]){0, k;},
where C' is a 1-dimensional doubly filtered F vector space generated by
a single vector x; at filtration level (0,0). The shift {0,k;} is a j—
filtering shift of k; for appropriate integers k;. It thus follows quickly
that there is an a such that v; is an isomorphism for all ¢ > a and h;
is an isomorphism for all ¢ < a — 1. This explains our comment above
that for lens spaces there is a complete collapse of the (A, B) mapping
cone complex to a single A;.

In the more general situation that appears for our M, the CFK*
complexes which arise are of the form (C; @p F[U, U~1]){0, k;} for finite
dimensional doubly filtered F—chain complexes C; which are no longer
1-dimensional (here 7 =4 mod n for some n). In particular, the CF K>
complexes are not restricted to a single diagonal. Instead, they lie in a
band; in Figure 8 we illustrate a case in which the band is of height six.

Notice that in the example illustrated in Figure 8, the vertical quo-
tient is not an isomorphism, but the horizontal quotient is. In general,
one of the two maps will be an isomorphism unless the origin is con-
tained in the band. Furthermore, if this band is shifted up (by —2 or
more) then h continues to be an isomorphism, and if it is shifted down
by seven or more, the vertical map becomes an isomorphism.

Recall now that in our decomposition AJ (Y, K) = @gesAg(Y, K) we
have

S= U {u+UWO+1)+ (- k)NPD()}jez) -
0<I<N—1

In order to state the next result, let the width w(C') of a doubly
filtered complex be defined as: w(C') = max(i—j)—min(i—j)+1, where
the minimum and maximum are taken over all pairs (i, j) such that there
is a nontrivial filtered generator of filtered degree (7, j). Roughly, w(C)
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Figure 8

represents the width of the narrowest U—invariant band which contains
the full complex. The width determines the Thurston norm of the knot
complement [29, 36].

Theorem 5.3 (Collapse Theorem). Suppose that for each §; €
Spin“(Y, K) with 0 < I < N — 1, the complez C = CFK*(Y,K,{)
satisfies w(C) < N. Then the mapping cone complex A — B that
determines HF T (Yn(K),s) collapses to a single A; for some i.

Proof. Recall that as in Section 5.7, k is a specified fixed integer,
0 <k < N2 For simplicity, denote CFK>(Y, K, ,){0, s} max(i,j)>0} by
Aj(s) for 0 <1 < N — 1 where, as above, {0, k} indicates that we have
shifted the doubly filtered complex up by k. Then the A; that occur are
ordered as follows if we begin with [ =0 and j = 0:

AN (N +1+EN),AY(EN), AL ((k — 1)N), ...,

Ay ((E4+1—=N)N), A(kN —1— N?), ...
Notice that the shifts increase by N, or when going from A’ _; to Af,
by N + 1. It follows that at most one of A; is in a band which includes
the origin, with all greater A; being in bands below the origin and all
lesser A; being in bands above the origin. Thus the complex collapses
to a single A;, as desired. q.e.d.

We now have all the pieces necessary to prove Theorem 5.1:

Proof of Theorem 5.1. Given that N is greater than 2¢(K;), we are
able to apply the refiltering theorem (Theorem 4.2) to prove that the
complex CFK*(S? (K1), p,6) has width at most two for any s €
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Spin‘(S? (K1)). The Kiinneth theorem for the knot Floer homology
of connected sums ([33, Theorem 7.1] c.f. [38, Theorem 5.1]) implies

CFK>(S2 N (K1), u# K5, 5)

= CFKOO(SEN(Kl)a ,U’vﬁ) ® CFKOO(Sga Ké)a
for any knot K} C S® and any s € Spin(S® \(K1)). Now [36, Theorem
1.2] implies that the width of CFK>(S3, K}) is equal to 2g(K}%) + 1,
and a simple exercise gives the addition formula, w(C ® Ca) = w(C}) +
w(Cs)—1. Thus the width of the complex for Ko = u# K} C S (K1) =
Y is at most 2g(K}) + 2.

Thus, according to the collapse theorem (Theorem 5.3), for each Spin©
structure s on Yy (K3), the homology CFT(YyN(K3),s) is given by a
single complex A;. This complex is of the form C*/ C{Of <0,j<0} where
C* is the complex CFK*(Y, Ko,s’) shifted down by some parameter
m, —N?/2 < m < N?/2, and where s’ is some Spin® structure on Y.
Alternatively, it is the quotient

CFKOO(Y, Kz,ﬁl)/CFKOO(Y, K2,5/){i<0,j<m}.

The gradings are shifted, but the shift is independent of the choice of
K and KJ.

The action of U is to shift downward along the diagonal. Thus, the
kernel of the U action is precisely the set of elements at filtration level
0 as described in the statement of Theorem 5.1. q.e.d.

6. Computations

6.1. Knot complexes. For a given n and k£ we have defined Kp, , to
be the knot shown in Figure 1, with the knot J given by kD (where D
continues to denote the positive-clasped untwisted Whitehead double of
the right-handed trefoil). In this case, M (Kp, ) is given as (—2n,2n)—
surgery on the link formed from the Hopf link by replacing the first
component with —2kD and the second component by 2kD; see Figure 2.
As mentioned earlier, n will be in the set N described in Proposition 3.1
and Proposition C.1. For each n we will choose a value for k, denoted
kn, selected to satisfy certain properties. A key result, which follows
from the work in Appendices A and B, is the following.

Proposition 6.1.

e The chain complex CFK*(S3, D) is filtered chain homotopy equiv-
alent to the chain complex CFK*(S%,Th3) ® A, where A is an
acyclic complex. If [x,1,7] is a filtered generator of CFK*(S3, D),
then |i — j| < 1.

o The chain complex CFK ™ (S3, Dy,) is filtered chain homotopy equi-
valent to the chain complex CFK*°(S3, Ty o11)® A, where A is an
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acyclic complex. If [x,1, 7] is a filtered generator of CFK*>(S3, Dy,),
then |i — j| < k.

Proof. The first statement of the proposition expands on the compu-
tation of C/FT((S?’,D) given in [14]. Its proof occupies Appendix A.
The second statement of the proposition follows from the relationship
between CFK®(S3, Ty 3)®% and CFK>(S%, T +1) described in The-
orem B.1. q.e.d.

We next compute the knot Floer complex of the meridian of the
connected sum of 2k copies of the mirror of the doubled trefoil, in the
space formed by surgery upon this connected sum.

Theorem 6.2. For 2n > 4k and —n+ 1 < m < n, the doubly fil-
tered complex CFK®(S3,, (—=2Dy,), 11, 8) is chain homotopy equivalent
to the complex Cop jpm = (T ® A) @pF[U, U] where A is a finitely gen-
erated acyclic complex and T has one generator at filtration level (0,0)
or (0,—1). More precisely, the generator of T has filtration level (0,0)
if m < =2k or m odd < 2k, and has filtration level (0,—1) if m > 2k
or m even > —2k. For any filtered generator [z,i,7], |i — j| < 1.

Proof. The theorem will be a direct application of the refiltering the-
orem (Theorem 4.2) together with the previous proposition. To begin,
note that since the genus of —2Dy, is 2k, we can use the refiltering theo-
rem provided that 2n > 4k (as assumed). Applying the tensor product
to the formula given in Proposition 6.1, we prove in the appendix (The-
orem B.1) that there is a (Z @ Zfiltered) chain homotopy equivalence

CFK>(S%,2kD) ~ CFK™(S% Ty4.11) @ A

where A is an acyclic complex. Recalling that CFK*>(S3, —K) =
CFK®>(S3 K)*, we obtain a corresponding decomposition for the mir-
rors:
CFK™(S3, —2kD) ~ CFK>(S% Ty 4p41) ® A*.
Applying the refiltering theorem then gives a decomposition
CFE™(525,(=2D), pt,5m) = CFK™(525, (= Toak 1), :5m) © A',

where A’ is an acyclic complex concentrated on one or both of the
diagonals mentioned in the theorem (note that, by an abuse of notation,
 is the meridian to —2D; and —T5 4541 on the left and right sides of
the equivalence, respectively). Precisely, A’ is the Z & Zfiltered chain
complex which results from the refiltration of A*.

Thus it remains to understand the result of applying the refilter-
ing theorem to the CFK(S3, —T5 4+1). For reference, the figure il-
lustrates the complexes associated to 155,759, and —To9. Applying
Theorem 4.2, one sees that for each Spin® structure s,,, the complex
CFK>(S2,, (—Toakt1), i1, 5m) is given by a complex concentrated on
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the diagonal and one below the diagonal. We wish to understand this
complex better.

zﬂ'ﬂ P
CFK>(S%, Tyo)

Figure 9

For example, Figure 10(a) provides an illustration of the complex
CFK(S3,,(~Ts9), it,5-3), in which we have labeled two of the gener-
ators z and y. Replacing y with « + y gives a filtered change of basis,
and the new complex is as shown in Figure 10(b). Notice that this has
introduced an acyclic piece. Repeating the process yields the complex
illustrated in Figure 10(c). Applying this simplification in general shows
that for each m, the complex CFK>(S3, (—T5 a+1), i, 5m) splits as a
direct sum of an acyclic complex (necessarily on the two stated diago-
nals) plus a complex of the form T®@ F[U, U~!], where T is a single gen-
erator of the stated filtration (in fact the complex is filtered homotopy
equivalent to T ® F[U,U~1]). This completes the proof of Theorem 6.2.

A A *
“ - “ - "
% *e
< Y “
(a) (b)z=z+y (c)T®A
Figure 10
q.e.d.

We next want to consider the second component of the link. This
is obtained from the meridian of the first component by forming the
connected sum with a knot whose C'FFK™ is identical, modulo acyclic
summands, to 75 444+1. Moreover, the complex for the meridian, modulo
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acyclic summands, is simply that of the unknot with a filtration shift.
Given these observations, the following result is immediate.

Theorem 6.3. For 2n > 4k and for —m + 1 < m < n, we have
CFK™>(S%,,(=2Dy), u#2Dj, 5m)i; = CFK™ (S Ty sk +1)ij—5 © A,

with A an acyclic complex. Here, § = 0 if m < —2k or m odd < 2k;
0 = —114m > 2k orm even > —2k. Cycles representing nontrivial
classes of grading 0 are located at filtration levels i + j = 2k + 6. For
any filtered generator [x,i,j], |i — j| <2k + 1.

We will need to compare this with the case of J the unknot, for which
the computation is simpler. The result is as follows.

Theorem 6.4. For 2n > 3 and for —n + 1 < m < n, we have
CFK™(S2,,(~U), u#U, 1) ; = CFK™(S®,U); j_s.

Here, 6 =0 if m <0 and § = —1 if m > 0. The cycle representing a
nontrivial homology class is at filtration level (0,9).

6.2. d—invariants and acyclic summands. As already seen, many
of the complexes that arise have included acyclic summands. We will
need to see that these summands do not affect the computations of the
relevant d-invariants. Rather than present the most general theorem
concerning acyclic summands, we will restrict ourselves to a simpler
setting for which the proof is more straightforward.

Let D be a free, finitely generated F[U, U~ !]-chain complex that is
Q-graded. Moreover, suppose that D has a distinguished basis, and is
Z-filtered (by subcomplexes) by the corresponding distinguished F[U]-
submodules

... CU*F[U] c UF'F[U] c U*2F[U] C ...

Thus the action of U lowers filtration level by one. Assume that it lowers
grading by two. We let d(D) denote the least grading of a nontrivial
homology class z € H(D/D;o) where z is in the image of U* for all
k; here U* is viewed as an endomorphism of H(D/D;~o). (If such an
element does not exist, then d(D) = —o0.)

A particular example can be built from a finitely generated acyclic F—
chain complex A which is filtered and graded: regard a filtered generator
x of A as a monomial x @ U~ Filtration of x) 5nq form the F[U, U]~
complex A = A® F[U,U!], so that A ® 1 has the same filtration and
grading as A, and U acts on the right, decreasing filtration level by one
and grading by two. Write A, = A ® U*. Thus an element in Aj has
filtration level equal to the filtration level of the corresponding element

in A, shifted down by k.

Proposition 6.5. If D' =2 D & A with D and A as above, then
d(D') =d(D).
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Proof. Forming the quotient complex of A with the subcomplex A~ =
A; <o of elements with filtration level less than 0 yields a complex AT =
A/A~. This complex decomposes over F as & Ax/(Ar NA7).

Since A is finitely generated, there is an N such that: (1) if £ > N,
then (AxNA") = Ag; and (2) if K < —N, then (AxNA~ = 0). Recalling
that A is acyclic, we see that for all k with |k| > N, the homology group
H(Ag/(ArN A7) =0.

The action of U maps H(Ax/(Ar NA7)) to H(Ak41/(Ag+1 NAT)).
The only possible nontrivial elements in the homology of A/ A~ are
sums of elements in H(Ag+1/(Ak+1 NA7)) for |k| < N. But no such
element can be in the image of U?" since it would then be in the image
of an element in H(Ay/(AxN.A™)), for some k < —N, and we have seen
these groups are trivial.

Given this, we see each nontrivial elements of H(D'/D’ ) that is in
the image of U* for arbitrarily large k is also in the image of an element
of H(D/D<y). q.e.d.

6.3. Computations of d—invariants. We need to compute the differ-
ence of d-invariants, d(M(Kp, n),sn) —d(M(Kyy),s,), for any k with
0 < k < n/2. Recall that the manifold M(Kp, ) is also denoted by
S gn.on(—2Dy, 2Dy,).

In the following theorem we use ¢; to denote a grading shift. As
stated in the theorem, these are homological invariants that depend on
the value of n, but are independent of the particular knots chosen. Thus,
the values of € in the first two equations and in the last two equations are
equal and their particular values irrelevant. For this reason we denote
them simply by €1 and e3. We also include in the statement the number
d(S3,50) despite it equalling 0; this highlights the role of the d-invariant
of the base space in which the knot lies.

Theorem 6.6. For any 0 < k < n/2

) 0=d(S%5,(—2D4),5_n) — d(S>,50) — €1

) =d(S%,,(~U),5_,) — d(S? 50) — 1

) =2k =d(5%,,5,(—2Dy,2Dy),5,) — d(S% 5, (—=2Dy),5_y) — €2
) = d(Si2n,2n(_U7 U),sn) — d(Si%(—U),s_n) — €2,

where so is the unique spin structure on S® and €; are grading shifts.
The grading shifts €; are homological invariants [31] and hence (6.1)
and (6.3), respectively, have the same grading shifts e; and ez as (6.2)
and (6.4), respectively.

Proof. Ozsvéath and Szabé [33, Corollary 4.2] showed that for a knot
K in S? and | — 2n| > 2¢(K) — 1, the complex CF* (53, (K),s_,) is
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filtered chain homotopic to
CFK>®(S%, K)/CFK™(5% K){icouj<—nylel,

where the grading shift e is d(S3,50) + €1 according to [31]. (The value
of €1 can be computed explicitly, but we do not need its exact value in
our computations.)

Proposition 6.1 along with Proposition 6.5 allows us to replace —2Dy
with =75 4+1. We see that in the complex CFK>(S3, —T5 4541) the
cycle at filtration level (0, —2k) is the cycle of grading zero having the
least j—filtration among all grading zero cycles, and all cycles of grading
less than zero have ifiltration less than zero. Since —2k > —n, the
cycle at filtration level (0, —2k) lives and all the cycles of grading less

than zero vanish in the quotient. See Figure 11 for the case —n = —4
and k= 1.

Lo i Y Y o °
BEEEN Iz‘tﬁ?‘ 77777777777777777777777777777777 i
REREEN i..ﬁlﬁ ”””””””””””””””””” §
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I«:.‘f ,,,,,, I N T b i S S
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Figure 11

This shows the identity d(S3,,(—2Dy),5_,) — d(S3,50) —€1 = 0. A
similar argument shows d(S3,, (=U),s_,) — d(S%,50) — €1 = 0. These
two identities give rise to Equation 6.1. Equation 6.2 is similar.

By Theorem 6.3, noting n > 2k, we can identify
CFE™(S%,,(=2Dy), u#2Dy, 5n)ij = CFK™(S%, Ty g 41)i 1 © A,

where the complex A is acyclic complex. Stated otherwise, the com-
plex CFK>(S3,, (—2Dy), 2Dy, sy) is filtered chain homotopic to the
complex CFK>(S3, Ty 41) with j-filtration shifted downward by one
plus an acyclic complex A. Combining this with Theorem 5.1 and using
Proposition 6.5 to eliminate the acyclic summand from the computation,
we have that the d-invariant associated to CFT(S?,, », (—2Dy,2Dy),
s,) is equal to that of

CFE™ (S, Ty ap41)ij+1/CFK® (5%, Ty ap11)i j11{i<0, j<0} €],
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where € = d(S3,, (—2D},),s,) + €z for some ez independent of T k41
The cycles = at filtration level (i,2k —i — 1), 0 < i < 2k, are all of the
grading zero cycles in CFKOO(Sg,TQ’4k+1)i7j+1. It is easy to see that
the cycles U¥z at filtration level (i, —i' — 1), —k <4’ < k, have grading
—2k and none of them vanish in the quotient, while at least one of U¥ z

vanishes in the quotient if ' > k. See Figure 12 for the case n = 4 and
k =

Figure 12

This implies Equation 6.3. Combining Theorems 6.4 and 5.1, a similar
argument as done above provides the proof of Equation 6.4. q.e.d.

Combining the equations in Theorem 6.6 immediately yields the fol-
lowing proposition, which was the key step in the completion of the
proof of Theorem 3.2 at the end of Section 3.

Proposition 6.7. d(M(Kp, n),5n) — d(M(Kyy),sn) = —2k.

Appendix A. The infinity complex of the Whitehead doubled
trefoil

Let D denote the positive-clasped untwisted Whitehead double of the
right-handed trefoil. In this appendix we prove:

Proposition 6.1. The chain complex CFK*(S3, D) is chain homotopy
equivalent to the chain complexr CFK®(S3,To3) @ A, where A is an
acyclic complex. The presence of the acyclic summand does not change
the width:

w(CFK>(S®, D)) = w(CFK>(S* Ty 3)).

In order to prove this proposition, we need the following well-known
lemma about how a basis change affects the two-dimensional diagram
of a knot Floer complex. See [14, Lemma 6.1] for instance.
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Lemma A.1. Let C, be a knot Floer complex with a two-dimensional
arrow diagram D given by an F-basis. Suppose that x,y are two basis
elements of the same grading such that each of the i and j filtrations of
x 15 not greater than that of y. Then the basis change given by 1y = y+=x
gives rise to a diagram D’ of C, which differs from D only at y and x
as follows:

e Fuvery arrow from some z toy in D adds an arrow from z to x in
D/

e Every arrow from x to some w in D adds an arrow from y' to w
. /
in D"

Proof. First note that this basis change does not alter the grading or
double filtrations. If 9z = y + « for z,a € Cy, then 9z = ¢/ + 2 + a,
which shows that every arrow from z to y should add an arrow from z
to x. Since dy' = Oy + Oz, every arrow from z should add an arrow
from 3. See Figure 13 for an example. q.e.d.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 13. The figure represents the effect of a filtered
basis change to a portion of a Z @ Zfiltered chain com-
plex over F.

Proof of Proposition 6.1. Theorem 1.2 of [14] shows that

Fi_yy ©Ff), J=1

4 3 C_
Fé‘” S Fg_l), ] =0
Flg) OFy, =1

0, otherwise.

HFK.(D,j) =
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We assign F-bases to each summand in the direct sum decomposition
as follows:

o <U1,U2>@<CC1,ZL'2>, ]: 1
HFK*(Dhj) = <2}171}27U37U4>@<y17y27y3>7 .]:0
(w1, w2) ® (21, 22), Jj=-1

Following Rasmussen [39, Lemma 4.5] (or [14, Lemma 5.3]), HFK, (D)
is chain homotopy equivalent to CFK (D). Thus we can assume that
CFK™(D)o; = HFK (D, j) and CFK*(D);; = U~ CFK™(D)o;_; =
@(*,gi(D,j — ). If necessary, we put the grading in the superscript
of the generator; for instance, 72 denotes the grading 2 generator among
U'xy for i € Z. See Figure 14 for an example.

First note that there are no components of boundary maps between
generators of the same (7, j)filtration since they would be reduced in

HFEK «(D, 7). If we denote the vertical, horizontal, and diagonal com-
ponents of the boundary map 0 of CFK*(D) by dv, 0, and Jp,
respectively, then 9 = 0y + 0y + 0p. We will determine 0 by first
determining dy, then Jy, and lastly Op.

p) P P P
Note that IF%O) = F_n = F%_Q)v or, (w1, m2) =% (Y1, Y2, y3) — (21, 22)

is a chain subcomplex of CFK (D) since O lowers the grading by one.
Since ?IF(S?’) = F(g), by changing basis we may assume that dy (v1) =
v (y1) = Oy (21) = Oy (22) = 0, Oy (z2) = y1, Ov (y2) = 21, and Iy (y3) =
z9. See Figure 14(b).

We will find 0y (u1), which must lie in (v1, vo, vs, v4, 21, 22). If Oy (u1) =
az) +bze € (21, z2) for a,b € F, then uj + ay; + bys represents a nontriv-
ial element of grading —1 in HF (53), which is impossible. Thus dy (u1)
must have a nontrivial component in (vq, v, v3,v4), which may be as-
sumed to be vy by changing the basis for (v, ve,vs,v4). If Oy (u1) =
v1 + azy + bzg, then the change of basis v = v1 + az1 + bzy gives rise
to dy(u1) = v} and dyv] = dyvi, as in Lemma A.1. So we may as-
sume that dyu; = vy and similarly that Oyus = vy. The image of
(v3,v4) under Jy should be equal to (w,ws) since ﬁ’(S:)’) = Z in
which vs,v4, w1 and we should vanish. So {9y (v3), 0y (v4)} is a basis
for (w1, ws) and we may assume that w; = Oy (v3) and wy = Ay (v4).
The vertical components of the boundary maps are all determined as
shown in Figure 14(c).

Next, we will determine the horizontal components of the boundary
map of CFK*(D), whose columns look like those illustrated in Fig-
ure 14. We will argue that the complex will have a two-dimensional
illustration described in Figure 15. By analogy with the vertical case,

note that (z1, z9) Ll (Y1, Y2, Y3) % (x1,x2) is a chain subcomplex S of
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Figure 14

CFK™(D)yj<0y/ CFK®(D){;<0y, since 0 lowers the degree by one. Ob-
serve as well that for any s € 5, elements with grading one lower than s
are either to the left or below and hence ds = dys 4+ ds. In particular
there are no diagonal components of the boundary maps restricted to
S. This ir/nl)lies that 0z1 = dyx1 = 0 and dxe = Jyxs = Y1

Since HF(5%) = F ) is isomorphic to

H, (CFK™(D){j<0/ CFE™(D)yj<oy)

we may choose an F-basis {z1, 22} so that dg(z1) = 0. To keep the same
vertical description as in Figure 14(c), we adjust the basis for (ya,ys)
accordingly. Observe that 0zs is the source of no diagonal arrows, since
elements with grading one lower are located only to the left. So we have
0z9 € (y1,y2,ys3). If Ozo is of the form yo + B for S € (y1,ys), then
0 = 0%2 = Oyo + 08 = 21 + Opys + 0B, which, on the other hand,
can never be zero since dgys € (x1,x2), 08 € (Qy1,0ys) € (22,21, T2),
and z; does not belong to (x1,x2, z2). Thus y2 does not appear in 9zs.
Similarly, y3 does not appear in dzs, and thus 0zs must be y;.
Similarly, grading considerations and the fact that the homology of
the quotient CFK*(D){j<m)/ CFK™(D){j<my is F(ay,) implies that
On(y2,y3) = (x1,x2). If Ogys is of the form xy + axy for a € F, then
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y2 = (O + Ov)y2 = x2 + azx1 + 21 and 0 = 0%yy = I(w2 + az1 + 21) =
y1 # 0, which is impossible. Thus we have dgys = z1. Then Ogys
should be of the form x9 + axy. By the change of basis x}, = x9 + axy
we may assume Jgys = To.

To complete the analysis of 9 we must consider the w, v and u gen-
erators. The argument is similar to what we have done already. First
notice that these elements might not generate a subcomplex of the hori-
zontal complex; O (w ) could contain terms of the form 7~ ! (which are
at the same j ﬁltratlon level but at i— ﬁltratlon two lower) A change of
basis, adding some of the elements ack ! to some of the v -1 , eliminates
this possibility, at the expense of perhaps adding dlagonal maps. Since
the change of basis combines elements at different i—filtration levels, the
vertical map is unchanged. Thus, we can assume that the w,v and u
generate a subcomplex of the horizontal complex which is complemen-
tary to the subcomplex generated by the z,y, and z generators. Using
the fact that 92(ul ') = 0 we conclude that 9y must vanish on the v}
and v}.

Using the known homology of the horizontal complex (in particular,
that the horizontal homology at j—filtration level 0 is generated by a
single element at grading 0, and thus a z;) we can conclude that 9y maps
the subgroup generated by v§ and v} isomorphically to the subgroup
generated by “1_1 and u, ! and similarly for their U translates.

A change of basis among the u; and ug generators ensures each vs
maps to the corresponding u; and each v4 maps to a corresponding us.
A change of basis among the vy and vg elements reestablish that Oy
maps each u! and uj to a vy~ D and v, ! respectively. That O*(ul) =0
implies that w! maps horizontally to a corresponding v

At this pomt we have a diagram for CFK*°(D) as in Figure 15 with
only vertical and horizontal components of the boundary maps shown.

Finally, we will deal with the diagonal components of the boundary
maps. As mentioned earlier, due to grading constraints there are no
diagonal maps coming from the x, y, or z generators, while there may
be diagonals going in. On the other hand, there are no diagonal maps
going into the u, v, or w generators. All possible cases of diagonal maps
are: (1) from u’s to x’s, (2) from v’s to y’s, and (3) from w’s to z’s.
This implies that the complex T' generated by x1, y2 and z; is indeed a
subcomplex of CFK*°(D).

We will show that filtered basis changes can eliminate all the di-
agonal arrows going into 7. Then CFK®(D) splits into F[U, U] ®
T and a subcomplex A. Note that F[U,U~!] ® T is isomorphic to
CFK*°(T(2,3)) and A is acyclic (that is, H,(A) = 0). This follows from
[32, Section 10], which showed HF>°(S3) = F[U,U~!] and HF>(S3) =
H.(CFK*(D)) = H,(F[U,UY ®T) as F[U,U~!]-modules.
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Figure 15

First, we show that dv; and dve cannot include ys. Note that they
have zero vertical and horizontal components. If dvy = yo + ay1 + bys
for a,b € F, then 0 = 0%v; = x1 + 21 + bxy + bzy which cannot be zero
for any a,b. So there are no arrows from vy or vy to yo.

We claim that, for any a,b € F and 7 = 1, 2, the following are equiv-
alent:

1) Opu; = axy + bxo
2) Opvit2 = ays + bys + cy; for some c € F
3) dpw; = az1 + bzs.

We prove the claim only for ¢ = 1; almost the same argument applies
to ¢ = 2. Let Opuy = axi + bxy, Opvs = c1y1 + cays + c3ys, and
Opwy = dyz1 + dazo for a,b, c,,d, € F. The constraint 9? = 0 gives rise
to the equalities

0 = 0%v3 = I(u1 + w1 + c1y1 + c2y2 + c3Y3)
= (Ul +ax; + bxg) + (1)1 +diz1 + dQZQ) + 02(1’1 + 21) + Cg(xg -+ 2’2)
= (a + CQ)JJ1 + (b + 03)332 + (dl + 62)21 + (dz + 63)22.

Thus a = ¢ = dy and b = c3 = ds.
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Suppose a = 1 for i = 1. Let vj = vy + 21 and w] = w1 + ya.
Then all arrows going into v or w; come from w1, wi or vy and hence
we need to check the boundaries of uj, vs, w] and vj: du; = v} + b,
Jvg = uy +wy+bys+cy1, Owy = dwi+0y2 = (v1+21+bz2)+(x1+21) =
v1 + bze, and Jv] = dvy + dx1 = 0. With these new basis elements v
and w) there are no diagonal components from wug,v3, w; to z1,ys2, z1.
A similar argument works for us, v4, ws. Thus T' can be assumed to be
a direct summand as desired. q.e.d.

We remark that a similar process of changing bases as in the previous
proof can be used to prove that CFK (S, D) is isomorphic to the
complex in Figure 15. Since this result is unnecessary for our purposes
or any foreseeable applications to concordance we leave it as an exercise
for the interested reader.

Appendix B. CFK>(S3 Ty o+1)

Theorem B.1. CFK™(S3, T, 3)% = CF K> (5%, Ty9+1)® A where
A is acyclic. The presence of the acyclic summand does not change the

width:
W(CFK™®(S% Thopt1)) = w(CFK™®(S®, Th o 41))-
Proof. The proof is by induction. We show that
COFK™(S% Tyor1) ® OFK™(S% To3) = CFK™®(S?, Tyopy3) @ A.

The complex CFK>(S3, Ty 9x11) has filtered generators at grading
0: [x,4,j] where i >0, j > 0 and i + j = k. There are also generators
at grading level 1, [y,7,j] with i > 1,7 > 1 and i+ j = k+ 1. The
boundary map is given by J[y,i,j] = [x,i — 1, j] + [x,4,7 — 1]. (Notice
that the symbols x and y do not correspond to intersection points in a
Heegaard diagram. The i and j denote the filtration levels.)

In order to distinguish the complex for 75 3, we replace x and y with 2
and w, so that the complex is generated by [z,0,1], [z, 1,0], and [w, 1, 1].

The tensor product CFK>(S3, To9k+1) ® CFK>(S3, T53) has gen-
erators of type z ® z at grading level 0, z ® w and y ® z at grading level
1, and y ® w at grading level 2. In total there are 3(2k + 1) generators.

We now make a basis change, replacing certain generators with their
sums with other generators, relabeled as indicated:

o [0,0,7] @ [w,1,1] > [2,3,5] @ [, 1,1] + [y, + 1,41 @ [2,0,1] =
forall 0 <i < k.

o [1,i,j]®][z,1,0] = [z,i,j]®[z,1,0]+[z,i+1,j —1]®][z,0,1] = S,
forall 0 <i < k.

forall 0 < i <k.
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Now we isolate out acyclic pieces, using the following four observa-
tions.

d a([yv’%]]@[ 71¢1]) [ '—1,j]®[w,1,1]—|—[:L‘,2',j—1]®[w,1,1]+
[y,Z]] [Za ,1]"’[2/,2]]@[2,1,0]2042',1%—’71'.

L4 8041 1 :8([1‘,2 ]@[U},l,l] [y,z ]] [270a 1]) [ -1 ]]®
[2,0,1] + [z,i — ] 2,1,0] + [z, ]®[270,1]+[$,Z,J 1®
[2,0,1] = [x,z—lg]@[z 0]—}—[:6,@,] 1] ®[2,0,1] = Bi—1.

° a%':[%i*l ]}®[27170]+[$a2a] ]®[Z7170]+[ 71]®
[2,0,1] +[z,4,j — 1] ®[2,1,0] = [z,i—1,j]® [Z,l,O]Jr[%%J*l]@
[Zv 07 1] = ﬁi*l'

e 931 =0.
From this we see that there is an acyclic summand
.. 0, 0
<[y7/L7j] & [’U), ]-7 1]> — <Oéi—17’)’z'> — </81> .

For instance, see Figure 16 for the case k = 2.

CFKOO(SB, (T2’5) X CFKOO(SS,Tgﬁg) CFKOO(SB,TQj) D A

Figure 16. Notation: z;zy = [z,i,k —i| ® [2,i,1 — ],
rowy = [zyi,k — i @ [w, 1, 1], yize = [y,0,k+1—1] ®
(2,4, 1 =7, yiwy = [y, i, k+1—i]®[w,1,1], oy = 25w +
Yi+120, Bi = Tiz1 + Tiy120, and y; = y;21 + wiws.

There are k such summands, with a total rank of 4k. The original
complex had rank 3(2k 4+ 1) = 6k + 3. Thus, splitting off the acyclic
summands leaves a complex of rank 2k+3. Generators for a complement
to the acyclic summand are given by the set {[z,1, j] ® [z,0,1], [y,7,j] ®
[2,0,1]} and two more elements, [z, k,0]® [w, 1, 1] and [z, k, 0] ® [z, 1, 0].
Finally, we note that this is a subcomplex of the desired isomorphism
type, as follows from three simple observations: d([z,,j]®]|z,0,1]) =0,
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I[y,1,7] ® [2,0,1]) = [z,i — 1,j] ® [2,0,1] + [z,4,5 — 1] ® [2,0,1] and
Iz, k,0] ® [w,1,1]) = [z, k,0] ® [2,0,1] + [z, k,0] ® [z, 1,0]. q.e.d.

Note that similar computations have recently appeared in [13].

Appendix C. Number theoretic results

Theorem C.1. There is an infinite set N of natural numbers {n;}
satisfying:

1) For all n;, 4”12 + 1 > 9 and is either prime or the product of two
distinct primes; thus 4n22 + 1 is square free;

2) The values {4n? + 1} are pairwise relatively prime.

Proof. A theorem of Iwaniec [19] states that if G(n) = an® +bn+c
is an irreducible integer polynomial with @ > 0 and ¢ =1 mod 2, then
there exist infinitely many n such that G(n) has at most two prime
factors, counted with multiplicity. We will apply this for G(n) of the
form 4A%n?+1, for appropriate values of A > 0. Notice that any G(n) of
this form is never a perfect square (for any n > 0). Thus, by Iwaniec’s
theorem we have that for an infinite set of positive n, G(n) is either
prime or a product of two distinct primes. In particular, it is square
free.

The n; are defined inductively, starting with ny = 2, so 4n? +1 = 17
is prime. Suppose that for all ¢ < k, values of n; have been selected so
as to satisfy the conditions of the theorem. Let A denote the product
of all 4”12 + 1,4 < k. Apply Iwaniec’s theorem to choose an N so that
4A%2N? 41 is the product of at most two prime factors. No prime factor
of the 4"12 +1, i < k, can divide this number, so 44%2N? 4 1 is relatively
prime to 4n? + 1 for all i < k. Let n = AN. q.e.d.
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