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Abstract

The free closed semialgebraic set Dy determined by a hermitian noncommutative
polynomial f € Ms(C<ux,x*>) is the closure of the connected component of
{(X,X*) | f(X,X*) > 0} containing the origin. When L is a hermitian monic
linear pencil, the free closed semialgebraic set Dy is the feasible set of the linear
matrix inequality L(X, X*) > 0 and is known as a free spectrahedron. Evidently
these are convex and it is well known that a free closed semialgebraic set is convex
if and only it is a free spectrahedron. The main result of this paper solves the basic
problem of determining those f for which Dy is convex. The solution leads to an
efficient algorithm that not only determines if Dy is convex, but if so, produces a
minimal hermitian monic pencil L such that Dy = Dy . Of independent interest is a
subalgorithm based on a Nichtsingulérstellensatz presented here: given a linear pencil
L and a hermitian monic pencil L, it determines if L takes invertible values on the
interior of Dy . Finally, it is shown that if D is convex for an irreducible hermitian
f € C<x, x*>, then f has degree at most two, and arises as the Schur complement
of an L such that Dy =Dy
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1 Introduction

Semidefinite programming (SDP) [52,69] is the main branch of convex optimization
to emerge in the last 25 years. Feasibility sets of semidefinite programs are given
by linear matrix inequalities (LMIs) and are called spectrahedra. We refer to the
book [8] for an overview of the substantial theory of LMIs and spectrahedra and the
connection to real algebraic geometry. Spectrahedra are now basic objects in a number
of areas of mathematics. They figure prominently in determinantal representations
[10,29,54,58,63], in the solution of the Kadison—Singer paving conjecture [51] and
the solution of the Lax conjecture [38,50].

One of the main applications of SDP lies in linear systems and control theory [61].
From both empirical observation and the textbook classics, one sees that many prob-
lems in this subject are described by signal flow diagrams and naturally convert to
inequalities involving polynomials in matrices. These polynomials depend only upon
the signal flow diagram and are otherwise independent of either the matrices or their
sizes. Thus, many problems in systems and control naturally lead to noncommutative
polynomials, or more generally rational functions and matrix inequality conditions.
This paper solves the basic problem of identifying those noncommutative rational
matrix inequalities that give rise to convex feasibility sets. For expository purposes,
the body of the paper presents a detailed proof of this fact for noncommutative poly-
nomials. The modifications needed to handle the more technically challenging case of
matrix rational functions are indicated in “Appendix A.”

The main results of the article are stated in this introduction. Following a review of
basic definitions including that of a free spectrahedron and free semialgebraic set in
Sect. 1.1, the three main results are presented in Sect. 1.2 followed by a guide to the
paper in Sect. 1.3.

1.1 Definitions

Let x = (x1, ..., xg) denote freely noncommuting variables and x* = (xf, ..., x;)
their formal adjoints. Let<x, x*> denote the set of words in x and x* and C<x, x*>
the free polynomials in (x, x*) equal the finite C-linear combinations from <x, x*>.
For a positive integer §, the set of free polynomials with coefficients in Ms(C) is
denoted Ms(C<x, x*>) and is naturally identified with the tensor product Ms(C) ®
C<x, x*>. The ring C<x, x*> has a natural involution * determined by sending the
variables x; to x%, and vice versa, sending scalars to their complex conjugates and
(fe)* = g*f*for f,g € C<x,x*>. An element f € C<x, x*> is hermitian if
f = f*. This involution, and the notion of a hermitian polynomial, naturally extends
to Ms(C<x, x*>).
Anelement f € Ms(C<ux, x*>) is a finite sum

f= > foweM;(C)®Cx<x,x*> =M;(C<x,x*>), (1)
WE<X,X* >
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where f,, € Ms(C). Given a g-tuple X = (X1,..., X,) € M,(C)%, a word w €
<x, x*> is evaluated at (X, X*) in the natural way, resulting in an n X n matrix
w(X, X*). The polynomial f of equation (1) is then evaluated at X as

fXCX =Y fu®@w(X, X*) € Ms(C) ® My (C) = Mys(C).

we<x,x* >

It is a standard fact that f is hermitian if and only if f*(X, X*) = f(X, X*)* for
eachn and X € M,,(C)8.

Affine linear polynomials play a special role. A monic (linear) pencil of size § is
an element L of Ms(C<ux, x*>) of the form

8 8
L(x,x")=1I;—AQx—BOx*=1Is— Y Ajxj— Y Bjx}. 2)
j=1 j=1

In the case B = A*, the pencil L is a hermitian monic (linear) pencil. The associated
spectrahedron’

Dr(n) = {(X, X*) € M,(C)* : L(X, X*) > 0}

is a convex semialgebraic set and is the closure of the connected set {(X, X*) €
M, (C)%¢ : L(X,X*) > 0}. The union, over n, of Dy (n) is a free spectrahedron,
denoted Dy,.

Given f € Ms(C<x, x*>) with det f(0) # 0 and a positive integer 7, let ICr(n)
denote the closure of the connected component of 0 of

(X, X*) € M, (C)% : det f(X, X*) # 0}.

The free invertibility set /Cy associated to f is then the union, over n, of the ICr(n).
By replacing f by £(0)~! f we may, and usually do, assume that f(0) = I. A free
invertibility set ICy is convex if each K¢ (n) is. If f = f* is hermitian, then K is a
free semialgebraic set that we denote here by D. (Letting g = f* f, we see that g is
hermitian with g(0) = I,and Ky = K, = Dy.) In particular, if L is a hermitian monic
pencil, then Dy is a convex free semialgebraic set. Questions surrounding convexity
of free semialgebraic sets arise in applications such as systems engineering and are
natural from the point of view of the theories of completely positive maps, operator
systems and matrix convex sets [19,56], and quantum information theory [9,33]. It is
known, [37,47], that K is convex if and only if there is an hermitian monic pencil L
such that Ky = Dy.

1.2 Main Results

We are now ready to exposit our main results. Using the theory of realizations for
noncommutative rational functions [3,7,27,40,65], in Theorem 1.1 we explicitly and

! Fora square matrix 7', the notation 7' > 0 indicates that 7 is positive semidefinite.
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constructively describe the structure of noncommutative matrix polynomials f whose
invertibility set IC s is convex. Each § x § noncommutative polynomial or noncommu-
tative rational function r with r(0) = I has a noncommutative Fornasini-Marchesini
(FM) realization. Namely, there exists a positive integer d (the size of the realization),
a monic linear pencil with coefficients from My (C), and c, by, ..., b2y € Myxs5(C)
such that

r(x,x*) =I5 + ¢*L(x, x*)"'b, (3)

where b := Zle(bjxj + bg+jx}). A d x d linear pencil L as in (2) is irreducible
if Ay,..., Ag, Bi,..., B, generate My (C) as a C-algebra. For non-constant r, the
FM realization (3) is minimal if L has minimal size amongst all FM realizations of
r.2 Since any two minimal realizations are equivalent up to change of basis (see also
Remark 2.6 for details), Theorem 1.1 does not depend upon the choice of minimal
realization.

Theorem 1.1 Let f € Ms(C<x, x*>) with f(0) = I. Let f~' =T +c¢*L™'bbea
minimal FM realization. After a basis change, we can assume that

t=| - .| @)

with each L' either irreducible or an identity matrix.
Let L be the direct sum of those irreducible blocks L' of L that are similar to a

hermitian monic pencil, and let L be the direct sum of the remaining L’. Then, the
following are equivalent:

(i) Ky is convex;
(ii) Ky is a free spectrahedron;

(i) Kr =Kz
(iv) L is invertible on the interior of Kz

Proof If KCr is convex, then it is a free spectrahedron (by [37]). Hence, (i) implies (ii) .
The converse is immediate. The equivalence of items (iii) and (iv) is straightforward.
Evidently item (iii) implies (ii) . The converse is proved in Sect. 4.1. O

Theorem 1.1 implies that, for a monic linear pencil L, the invertibility set Ky, is
convex if and only if the semisimple part of a minimal size pencil L describing Ky, is
similar to a hermitian pencil.

A non-invertible element f € Ms(C<ux, x*>) with det f(0) # 0 is an atom [14,
Section 3.2] if it does not factor; that is, it cannot be written as f f> for non-invertible
fi € Ms(C<x,x*>). Given f; € ng (C<x,x*>) for 1 < j < t, the intersection
K =, Ky, is irredundant if K7, & (;; Ky, for all j. Theorem 1.1 yields the
following striking result providing further evidence of the rigid nature of convexity
for free semialgebraic sets.

2 It is convenient to declare the size of a minimal realization for constant r to be 0.
FolCT
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Corollary 1.2 Suppose f; € Ms;xs5;(C<x, x*>) are atoms with f;(0) = 1. If K :=
N j Ky, is irredundant, then IC is convex if and only if each Ky, is convex.

Proof See Sect. 4.1. O

Theorem 1.1 leads to algorithms based on semidefinite programming. Note that
Part (2) of Corollary 1.3 asserts the existence of an effective version of the main result
of [37].

Corollary 1.3 Let f € Ms(C<ux, x*>) withdet f(0) # 0be given. There is an efficient
deterministic algorithm based on linear algebra and semidefinite programming (SDP)
to:

(1) check whether Ky is convex;
(2) (inthe case Ky is convex) compute a linear matrix inequality (LMI) representation
for K¢; that is, a hermitian monic pencil L (of minimal size) with Ky = Dy..

An SDP can be solved up to a given arbitrary precision in polynomial time [53, Section
6.4]. Thus in practice, our algorithm runs in polynomial time. The proof of (2) is based
on Theorem 1.1 (see Sect. 4.2), while the proof of (1) in Sect. 4.3 uses (2) and new,
of independent interest, (recursive) certificates for invertibility of linear pencils on
interiors of free spectrahedra.

Theorem 1.4 (Nichtsingulirstellensatz) Let L be a hermitian monic pencil, and let L
be a not necessarily square affine linear matrix polynomial. Consider the set of all
matrices D, Cy, Py such that Py > 0 and

DL+ L*D*=Py+ ) CiLCy. 5)
k

(Such certificates can be searched for using semidefinite programming.)
(1) Ifthe only solutioniof(5) have Py = 0 = Cy, then for some (X, X*) in the interior
of Dy, the matrix L(X, X™*) is rank deficient;
(2) Otherwise let V = ker Py N[, ker Cx.
(a) IfV = {0}, thenz is full rank on int Dy.. _
(b) IfV # {0}, then L is full rank onint Dy, if and only if L|y is full rank on int Dy,
and the theorem now applies with L replaced by the smaller pencil L|y.

Proof See Proposition 4.3, Corollary 4.6 and its proof. O

For the special case of hermitian atoms with § = 1, the conclusion of Theorem 1.1
can be significantly strengthened as the final main result shows.

Theorem 1.5 Suppose f € C<x,x*> is a hermitian atom and f(0) > 0. If Dy
is proper and convex, then f is of degree at most two, is concave and is the Schur
complement of any minimal size hermitian monic pencil L satisfying Dy = Dy.

Proof See Sect. 3. O
FolM
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Theorem 1.5 settles [17, Conjecture 1.4]. In [68, Theorem 5.4], this result is further
extended to the case when f is not necessarily an atom, but D 7 is proper and convex
for all small ¢ > 0.

Noncommutative, or more accurately, freely noncommutative analysis has impli-
cations in the commutative setting, particularly for LMIs. Given a hermitian monic
pencil L the set Dy (1), level 1 of the free spectrahedron Dy, consisting of & € C#
such that L(&, €) > 0 is a spectrahedron [64]. Spectrahedra are currently of intense
interest in a number of areas; e.g., real algebraic geometry [8,48,62], optimization
[20,52,69] and quantum information theory [49,57]. Problems involving free spectra-
hedra are typically tractable semidefinite programming problems. Thus, elevating a
problem involving spectrahedra to its free analog often produces a tractable relaxation.
The matrix cube problem of [6,52] is a notable example of these phenomena [32,34].
See also [15,42]. Theorem 1.4 provides another example as it gives a computation-
ally tractable relaxation for the problem of determining whether a polynomial is of
constant sign on the interior of a spectrahedron.

1.3 Reader’s Guide

Section 2 contains background and some preliminary results on linear pencils, free
spectrahedra and realizations of noncommutative rational functions needed in the
sequel. The proof of Theorem 1.5 is given in Sect. 3, followed by the proof of Theo-
rem 1.1 and its corollary, Corollary 1.2, in Sect. 4.1. Corollary 1.3 and Theorem 1.4
are proved in the remainder of Sect. 4. Section 4.2 contains an algorithm that, for a
given noncommutative polynomial f with convex K, constructs a hermitian monic
pencil L with Dj = K. Indeed, up to similarity, L is extracted from the monic lin-
ear pencil L appearing in a minimal FM realization of f~!. Section 4.3 presents an
efficient algorithm for checking whether K is convex. It is based on (the proof of)
Theorem 1.1 and representation theory and produces a finite sequence of semidefinite
programs of decreasing size whose feasibility determines if K7 is convex. Section 5
presents several illustrative examples establishing optimality of our main results. Fur-
ther, Sect. 5.3 settles a conjecture from [17] on the degrees of atoms f with convex
K in the negative. In Sect. 6, we characterize hermitian monic pencils that can arise
in a minimal realization of a noncommutative polynomial; these pencils underpin our
constructions in Sect. 5. Finally, Sect. 7 provides a detailed analysis of factorizations
of hereditary noncommutative polynomials. As a consequence, an hereditary minimal
degree defining polynomial for a free spectrahedron is an atom and hence has degree
at most two, see Corollary 7.2.

2 Preliminaries

Let z = (21,...,2¢, Zg41s---522¢) = (X1,...,Xg, Y1, ...,y denote 2g freely
noncommuting variables. Replacing z,1; = y; with x;‘ identifies C<z> with
C<ux, x*>. On the other hand, elements f € C<z> are naturally evaluated at tuples
Z =(X,Y) € M,,(C)8 x M,(C)8 =M, (C)?8, whereas we evaluate f € C<ux, x*>

FoC'T
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at (X, X*) € M,,(C)?¢. The use of C<z> versus C<x, x*> only signals our intent on
viewing the domain of f as either M,,(C)?¢ or {(X, X*) : X € M,,(C)%} C M, (C)*8
respectively. Indeed, we can identify C<z> with C<x, x*> whenever we work with
attributes of free polynomials that are per se independent of evaluations. For exam-
ple, ring-theoretically there is no difference in using symbols zg, ; instead of x7¥
when talking about atomicity of polynomials. Therefore, the results and definitions
for matrix polynomialsinz = (zy, ..., z5), whose assumptions refer only to the struc-
ture, and not to evaluations, of polynomials, directly apply to matrix polynomials in
xl,...,xg,x]k,...,x;.

The free locus Z¢ of f € C<z>%%3 is the union, over n € N, of

Zi(n) = [(X, Y) € M, (C)%¢: det f(X,Y) = o] .

Assuming det f(0) # 0, as in the introduction, let Ky = (J,, K (n), where K 7 (n) is
the closure of the connected component of

{(X, X*) € My (C)%: det f(X, X*) # 0}

containing the origin.
For A = (Ay, ..., Ag) € Mgx(C)% and P € M,»;5(C), we write

8
A= (A},...,A).,  AOx:=) Ajxj,
j

8
AP :=(A(P,..., AP), kerA::ﬂkerAj.
j

For a hermitian monic pencil L = I —AOQx—A*Ox*set 3Dy (n) = Zr(n)NDyr(n)
and

DL = U DL (n).
neN

Observe that since L(0) > 0, it is easy to see that 9Dy (n) is precisely the topologi-
cal boundary of Dy (n). Furthermore, Dy (n) is the closure of its interior because of
convexity. A non-constant hermitian monic pencil L is minimal if it is of minimal
size among hermitian monic pencils L’ satisfying Dy, = Dy. If L and M are min-
imal and Dy = Dy, then L and M are unitarily equivalent. (See Proposition 2.2.)
It is convenient to declare that the minimal pencil for the largest free spectrahedron
D = {(X,X*): X € M,(©)*,n € N} is of size 0. Every free semialgebraic set
strictly contained in Dy is called proper.
EOE';W
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2.1 Free Loci and Spectrahedra

Forh,n € N, let 2™ = (.Qf”), e, .Q}(ln)) be an h-tuple of n x n generic matrices,
that is,

Qj('n) = (wjlj)zp

where wj,, for1 < j <hand 1 <1, j <n are commuting indeterminates.

Lemma 2.1 A linear pencil L = I — A © z is irreducible if and only if

(1) ker A = {0} and ker A* = {0}, and
(2) det L(£2™) is an irreducible polynomial for all n large enough.

Proof Assume L is irreducible. Thus, the A ;j have no common invariant subspace. In
particular, ker A = {0} and ker A* = {0}. Thus, (1) holds. The fact that (2) holds is
contained in [36, Theorem 3.4].

For the converse implication, assume L is not irreducible. So the A ; have an invari-
ant subspace, and L can be written in block form as

_(Li x
b= (b 0)
If the coefficients of L are jointly nilpotent, then ker A # {0}. If the coefficients of

L, are jointly nilpotent, then ker A* # {0}. Otherwise det L; (£2™) are non-constant
for all large n (cf. Remark 2.6(5) below), and hence

det L(2™) = det L1 (£2"™) det L, (£2™)

is not irreducible for large n. O

Note that every irreducible hermitian monic pencil is minimal. Two hermitian monic
pencils I5 _Z§=1 Ajxj— Z;f:] A%x?and I _Z§=1 Bjx; _Z§=1 B7x7 are unitarily
equivalent if there is a unitary matrix U such that UA; = B;U for1 < j < g.
Proposition 2.2 A minimal hermitian monic pencil is an orthogonal direct sum of
irredundant irreducible hermitian monic pencils. If L1 and L, are minimal hermitian
monic pencils with Dy, = Dy,, then Ly and L are unitarily equivalent.

— _ 8 . 8 * ok : i .
Prooi.r Let L = I . i1 Ajxj — 25 Ajx be a given hermitian monic
pencil. By an invariant subspace for L, we mean an invariant subspace for
{A1, ..., Ag, A’l‘, e, A;‘j}. Since L is hermitian, any invariant subspace for L is in

fact reducing. Hence, L = @; L', where each L is a hermitian monic pencil with no
nontrivial invariant (equivalently reducing) subspaces. Thus, each L/ is an irreducible
hermitian monic pencil.

If there is an i such that D;; C ﬂj#i Dy, then, setting M = GaljﬂLj it follows
that D)y = Dy and M has smaller size than L. Hence, if L is minimal, then L is
irredundant.

The last statement is [32, Theorem 1.2]. See also [15, Section 6]. O

Elol:;ﬂ
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Proposition 2.3 [36, Proposition 8.3] If L is a minimal hermitian monic pencil, then
0Dy (n) is Zariski dense in Zy (n) for all n large enough.
In particular, if f is a polynomial and 0Dy C Zy, then Z; C Zy.

Proposition 2.4 If f € Ms(C<z>) and det f(0) #£ O, then f is an atom if and only
ifdet £(£2"™) is an irreducible polynomial for all n large enough.

Proof The forward implication is [36, Theorem 4.3(1)]. For the converse, suppose f
factors as f = fi f», where the f; are non-invertible. By Remark 2.6(5) , det f; (2™))
is non-constant for large n. But then det f(£2?) is not irreducible for large . O

Proposition 2.5 Let f € Ms(C<ux, x*>) satisfy det £ (0) # 0, and let L be a hermi-
tian monic pencil.

(D) IfZy = Z1, then Ky =Dy.
(2) If L is minimal and Ky = Dy, then Zy 2 Zj.
(3) If f is an atom and L is minimal, then Ky = Dy, implies Zy = Zj..

Proof To prove item (1) let (X, X*) be a point in the connected component O of
[(X, X*) € Mp(C)%: det f(X, X*) # 0}

containing the origin. Thus, there exists a path y in O with y(0) = 0 and y (1) =
(X, X™). If L(X, X*) % 0, then there exists r € (0, 1) such that det L(y(¢)) =
0, contradicting Zy = Z;. Therefore, L(X, X*) > 0. A similar argument shows
L(X, X*) > 0 implies (X, X*) € O. Taking closures obtains Ky = D..

Taking up items (2) and (3), suppose L is minimal. If £y = Dy, then they have the
same topological boundary. Since the topological boundary of K s (n) is contained in
Zy(n)and 9Dy (n) is Zariski dense in Z; (n) for large n by Proposition 2.3, Zy 2 Zj.
If also f is atom, then Z¢(n) is irreducible for large n by Proposition 2.4, and thus,
Zf =Z. O

2.2 Realization Theory

Let Ms(C£z>») denote the § x § noncommutative (nc) rational functionsinzy, ..., z;
[14,41,66]. Evaluations and the involution for polynomials naturally extend to
M;(C«z>) and Ms(C«x, x*3>), respectively. Both operations are entirely transpar-
ent for FM realizations (Eq. (3)), the realizations we use in this paper.

Remark 2.6 Realization theory in general has roots in automata theory [21,22,59,60]
and can be traced back further to [44], while FM realizations in the commutative setting
arise from control theory [23]. For later use we recall the following fundamental results
about minimal FM realizations. Each is an embodiment of a well-understood general
principle of realization theory for matrix functions in one (commutative) variable [4].
For the original statements and proofs, see [3,40,65].

FolCT
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(1) An FM realization I 4+ ¢*(I — A®z)~' (b O 2) of size d with c, bj € Myxs5(C)
is controllable if

span{A¥bju: w e <z>,1 < j < g,ueC}=C?,

and observable if
span{(A") cu: w € <z>,u € C°y =4,

Itis a fundamental result that a realization is minimal if and only if it is observable
and controllable. An immediate consequence, and one that is used here, is, for a
minimal realization,

cv=0andvekerA = v=0
and
vh=0andv ekerA* = v=0.

(2) The state space isomorphism theorem says minimal FM realizations are unique
up to an isomorphism (change of basis) between their state spaces. That is, if
I+ —AQ2) 'Oz and I +y*(I — BOz)~ (B Oz) are two minimal
FM realizations for the same rational function, then they have the same size, say
d, and there is d x d invertible matrix S such that SA = BS, Sb = B and
sl =y,

(3) Given a realization I 4+ ¢*(I — AQZ) L (hOz) there is a linear algebra
algorithm—an extension of the Kalman decomposition—that produces a min-
imal realization.

(4) Inthe classical (commutative) one-variable setting, if r(¢) = I4+¢c* (1 — A b
is aminimal FM realization, then the domain of r is precisely the set of ¢ for which
I —¢ Aisinvertible. In the present several variable noncommutative setting, while
there are some subtleties in the statement of the analogous result found in [40,65],
these results do justify calling the complement of Z; the domain of regularity of
the rational function with minimal realization r = I + ¢*L~'b.

(5) If r = I + ¢*L~'b is a minimal realization, then r is a polynomial if and only
if the coefficients of L are jointly nilpotent. Indeed, if r is a polynomial, then by
item (4) , Z;, = @. By [46, Proposition 3.3], Z; = & if and only the coefficients
of L are jointly nilpotent. The converse is immediate.

(6) Lastly,ifr =1+ ¢*L~'b is an FM realization, then

1

r ! =1—c*(I—(A-bc*)Oz) b (©6)

is an FM realization of ! by [3, Theorem 4.3]. Because the realizations (3) and

(6) are of the same size, (3) is minimal for r if and only if (6) is minimal for r—!.

FoC'T
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Proposition 2.7 Let f € Ms(C<z>) be non-constant with f(0) = I. If [ + c¢*L~'b
is a minimal FM realization of f~' with L = I — AQz, then

(1) det £(£2™) = det L(£2™) for all n.
If moreover § = 1, then

(2) ker A* = {0} and ker A = {0},
(3) L is irreducible if and only if f is an atom.

Proof (1) By the well-known determinantal identity det(M + wuv*) = det({ +
viM 1 u) det M for an invertible M,

det L(Z) det f(Z)~' = det ((L +bc*)(2))

forevery Z withdet f(Z) # 0. By Remark 2.6(5) , N; := A; —b;c*, the coefficients
of L + bc*, are the coefficients in a minimal realization of the polynomial f. By
Remark 2.6(5) , the N; are jointly nilpotent. Hence, det f (2™ = det L(£2™) for
all n.

(2)If 0 # v € ker A, then

Njv=—(c"v)bj,

and c*v € C\ {0} by Remark 2.6(1) . Hence, b; € ran N;. Since the N; are jointly
nilpotent, there exists a nonzero vector u such that u*N; = 0. Hence, u*b; = 0. By
Remark 2.6(1) , the FM realization Eq. (6) is not minimal, contradicting Remark 2.6(6)

A similar line of reasoning shows that ker A* = {0}. If v*A; = O and Nju = 0,
then —v*b;c*u = 0. By minimality, there is a k such that v*b; # 0. Hence, c*u = 0,
and thus, A ju = 0, contradicting minimality.

(3) Let f be an atom. By Proposition 2.4, det L(£2"™) = det f(£2™) is an irre-
ducible polynomial for all n large enough. Hence, L is irreducible by Lemma 2.1
and (2). Conversely, if L is irreducible, then det f(£27") = det L(£2™) is an irre-
ducible polynomial for all n large enough by Lemma 2.1. Therefore, f is an atom by
Proposition 2.4. O

3 Proof of Theorem 1.5

We start the proof of Theorem 1.5 with a lemma.

Lemma 3.1 Suppose v € C«x,x*> \ C is defined at the origin and v(0) = 1.
Assume that T is hermitian and v = 1 + c¢*L~'b is a minimal FM realization, where

b=73%; bixj + ZJZ;]x;k If L is irreducible and monic hermitian, say L = I —
AQOx — A* O x*, then there exists A € R\ {0} such that

bj =1Ajc and /b\j =AAjc forallj=1,...,8.
EOE';W
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Proof Since r is hermitian, the comparison of formal power series expansions of
1+ c¢*L~"band 1 +b*L~ ¢ yields

FArw(A, AB; = bf w(A, A*)Aje 7
FAfw(A, AHE; =B w(A, A%) Ajc 8)
c*Arw(A, A" b = b w(A, A*) A%c )

forallw € <x,x*>and 1 < j, k < g. Since L is irreducible, the matrices w(A, A*),
for w € <x, x*>, span My (C). It is easy to see that if vy, v, v3, v4 € cd satisfy

vViMvy = viMvs  forall M € My(C),

then vy and v3 are collinear, and v, and vy4 are collinear. Hence by (7),(8),(9) and the
fact that w(A, A*) span My (C), there exist A}k, X?k, )Lik € C such that

1 o 1
B}- = A Ajc, b =)ijA7§c

B =i}Aje, b= Ak (10)
by =13 A%, b =23 Af (11)

for all j, k. By minimality, there exists £ such that b, # 0 or be # 0. By symmetry,
we may assume by # 0.

Since by # 0, Eq. (10) implies A := )L; ¢ 7 01is independent of j. It also implies
Ajc # 0. Likewise, by Eq. (11), )‘32 is independent of j and )»35 = k}.z = ). By Eq.

(11), Zg = Mjc = XA;?C. Thus A € R\ {0}. Finally, from Eq. (10),1)/] = AAjc and
Ej = )»Ajc as desired. O

Proposition 3.2 Suppose f € C<x, x*> is a hermitian atom and f~' = 14+c*L~'b
is aminimal FM realization. If L is hermitian, then f is concave, has degree at most two
and is a Schur complement of L. Further, f(X, X*) > 0 ifand only if L(X, X™*) = 0.

Proof Since L is hermitian, it has the foom L = I — AQx — A*©x™. Since f
is an atom and the realization f —1 — | + ¢*L~'b is minimal, L is irreducible by
Proposition 2.7(3) . Since f is hermitian, so is f~'. Thus, by Lemma 3.1 we may
assume that

b=¢(AOx+A*"Ox"ec

for ¢ € {—1, 1}. By Remark 2.6(6) , f admits a minimal realization

-1
f= 1—SC*<I—A(I—£CC*)@x—A*(I—Scc*)@x*) (AOx+A*Ox"e. (12)
Elol:;ﬂ
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Since f is a polynomial, the A;(I — ecc™), A’J‘f(I — gcc™) are jointly nilpotent by
Remark 2.6(5) . In particular, they have a nontrivial common kernel. Since A}, Aj
generate My (C), it follows that P = I — ecc™ is singular, so in particular ¢ = 1. Since
also P is hermitian and a rank-one perturbation of the identity, it is an orthogonal
projection. After a unitary change of basis, we assume that P = 0@ I;_;. Let

o v*
AZ(wI)

be the decomposition of A with respect to this new basis. Then,

0v* " 0 u*
AP-(OZ), AP—<OA~*)

are jointly nilpotent, so A, A* are jointly nilpotent. Hence, Z“;Z j is nilpotent, and
thus, A = 0. It follows that AP, A*P are jointly nilpotent of order at most two and

-1
(1 — AU — cc®) Ox — A*(I — cc®) @x*)
=14+ A —cc*)Ox 4+ A*(I — cc*) O x*.

Now (12) gives

f=1- c*(l + AU —cc®) Ox + A*(I — cc*)@x*)(A Ox + A*Ox*)c
=1-c*(AOx+A*Ox"c —c*
(AOx+A*OXx" U —ccH(AOx + A*OxM)c.
Therefore, f has the form

f=1—(@Ox+a0x") —wOx+vOxH*"wOx +v0Ox"),

which is a Schur complement of

o v* au* "

L_I_<u O)Ox—<v O>Ox .
In particular, f is concave, has degree at most two and f(X, X*) > 0 if and only if
L(X,X*) = 0. O

Proposition 3.3 Suppose f € C<x, x*> is a hermitian atom with f(0) = 1 and L is
a minimal hermitian monic pencil of size d > 1. If Dy = Dy, then L is irreducible
and there exists b, ¢ € C9 such that f_1 = I +c*L~ b is a minimal FM realization.

Proof Write L = I — AOQx — A* O x*. By Proposition 2.5(3) , Z; = Z. After
a unitary change of basis, we can assume that L equals a direct sum of irreducible
FoC
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hermitian monic pencils L', ..., L% Since L is minimal, the pencils LY, ..., Lt

pairwise unitarily non-similar by Proposition 2.2. Therefore,

are

Zrm)=ZLn)=Znm)U---UZ(n)

is a union of £ distinct hypersurfaces for large n by Lemma 2.1. Since f is an atom,
Proposition 2.7(3) implies £ = 1. Hence, L is irreducible.

Let f~! =1+ &*L~'b be a minimal FM realization. Since f is an atom, Lis
irreducible by Proposition 2.7(3) , and Z7 = Zy = Z; by Proposition 2.7(1) . By [46,
Theorem 3.11], the pencils L and L are of the same size d and there exists P € GL;(C)
such that L = P~'LP. Therefore, f —1 admits the minimal FM realization

Ft=1+cL7"p,
where b = Pb and ¢ = P—*¢. O

Combining Propositions 3.3 and 3.2, and using the fact that if D is convex, then
there is a minimal hermitian monic pencil L such that Dy = Dy [37], proves a bit
more than claimed in Theorem 1.5.

Corollary 3.4 Suppose f € C<x, x*> is a hermitian atom and f(0) > 0. If Dy is
proper and convex, then f has degree two and is concave.

Further, normalizing f(0) = 1, if L is a minimal hermitian monic pencil such that
Dy =Dy, then L is irreducible, f is a Schur complement of L and there exist vectors
¢, b1, ..., byg such that

fl=1+c¢L7p
is a minimal FM realization.

Remark 3.5 The properness in Corollary 3.4 ensures that a minimal hermitian monic
pencil for Dy has size at least 1, so Proposition 3.3 applies. For the description of
f € C<x, x*> satisfying f > 0 globally, see [45, Remark 5.1].

Remark 3.9 From the proof of Theorem 1.5, we also obtain a bound on d, the size of
L. Since A = 0, the lower right (d — 1) x (d — 1) entries in the C-algebra generated

by A and A* are spanned by § = {st* : s,¢ € {u1,...,ug,v1,...,v}}. Since L is
irreducible, this span is all of My_1(C) and hence (d — 1)2 is at most the maximal
cardinality of S, namely (2g)%. Hence, d < 2g + 1. O

4 Proof of Theorem 1.1 and Algorithms: Corollary 1.3

In this section, we prove Theorem 1.1 and explore algorithmic consequences. In par-
ticular, we present, stated as Corollary 1.3, a constructive version of the main result
of [37].

Elol:;ﬂ
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4.1 Proof of Theorem 1.1

It suffices to prove item (ii) implies item (iii). Let L be the pencil appearing in a
minimal FM realization for f “landlet L', ..., L¢ beits diagonal blocks as in (4).
By Remark 2.6(4) , Ky = Kr.. By assumption there exists a minimal hermitian monic
pencil L such that £; = Dj. By 0K (n), we denote the topological boundary of
K (n). Thus,

Z1(n) 2 9K (n) = 9Dy (n)

for every n.
For S € M,,(C)8, let Ezar denote its Zariski closure. For n sufficiently large,

Zr(n) 29K " =3Dzm) " = Zp(n)

by Proposition 2.3. Note that Z; (n) and Z7 (n) are hypersurfaces. Therefore, the set
of irreducible components of Z; (n) contains the set of irreducible components of
Z7(n). Since

ZL=ZL1U"'UZLZ

and the Z;:(n) are irreducible hypersurfaces for all n large enough by Lemma 2.1,
there exist indices 1 < i; < --- < iy < £ such that the Lk are pairwise non-similar
and

L) = 27 (n) = 2,0 () U+ U 2 (n) (13)

for all n large enough. Since L is minimal, it is (uptoaunitary change of basis) equal to a
direct sum of irredundant irreducible hermitian monic pencils Lk by Proposition 2.2.
Each of them corresponds to an irreducible component in (13) by Proposition 2.3.
Therefore, L =1 DD L’ and, after reindexing if needed, Z7 = Z;; for
k=1,...,s. Then, K, = Djx is convex for every k and therefore

Kr =Ky =()\Pix = Diig..als- (14)
k k

Moreover, L is similar to Lk by [46, Theorem 3.11].
Recall that L is the direct sum of irreducible blocks L* that are similar to a hermitian

monic pencil, and L is the direct sum of the rest. Then, every L't '* appears as a direct
summand in L. Now let L™ be an arbitrary pencil appearing in L. If it is not similar
to L for any k, then (13) implies

(KL € Kwn.
k

Hence, Ky = Dy holds by (14). O
FoE'ﬂ
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Remark 4.1 Given a factorization of f into atomic factors f = fi --- f; with f;(0) =
I, one can use the proof of Theorem 1.1 to identify those factors f; that determine
Ky.
By (13),

ZinmyU---UZi(n) S Zp(m)U---UZp(n).

for all n. Since Zy, (n) is an irreducible surface for large n by Proposition 2.4, there
existindices 1 < j; < --- < j; <t such that

Zip =2 fie
forallk =1, ..., s. Therefore
ICf = ﬂ ’Cf Jk
k
by (14) and Proposition 2.5(1) .
To find the indices jx, we first compute minimal realizations for f j_l =1+

Ccj L;lbj, and put each L into a block upper triangular form as in (4). For every j,
precisely one of the blocks on the diagonal of L is irreducible by Proposition 2.4.
Then, we compare these blocks to the pencils L' to determine j.

Proof of Corollary 1.2 (<) is trivial. For the converse, let f = [[; f; and consider a
minimal FM realization f~! = I 4-c*L~'b. After a basis change, we may assume that
L is of the form (4). As in Remark 4.1, for every i there exists j; such that Z;; = Zy, ,

whence ;i = K f;; - If some L' is not similar to a hermitian monic pencil, then L is
nontrivial and is invertible on int K7 by convexity of KC and Theorem 1.1. Hence, f;;
is redundant, contradicting the assumption. O

4.2 Finding an LMI Representation for a Convex /C;

The main result of [37] states that for a hermitian matrix polynomial f €
M;(C<x, x*>) with f(0) > 0, the set Kr(n) is convex for all n if and only if
Ky is a free spectrahedron. Actually, the version in [37] does this for hermitian f
with bounded K r. However, these two assumptions are redundant. Indeed, the former
can be enforced by replacing f by f* f. The alternative proof of [37, Theorem 1.4]
due to Kriel [47] is based on Nash functions in real algebraic geometry and the Fritz—
Netzer—Thom characterization [25] of free spectrahedra via operator systems theory.
It also works for unbounded Ky = D« .

4.2.1 Algorithm

We next explain how the machinery developed in this paper produces an explicit
minimal LMI representation for a convex K . This efficient algorithm only involves
linear algebra and semidefinite programming (SDP) [8,69].

Elol:;ﬂ
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(a)

(b)

(©)

(d)

(e)

Compute the minimal realization
I+c*L7'b

for f~!. To construct this realization, one uses the explicit state-space formulae,
c.f. [3, Section 4], for addition and multiplication to construct a realization for
f, applying the Kalman decomposition [3, Section 7] at each step to ensure
minimality. Lastly, the formula for inversion (6) yields a minimal realization
for f~!. This process only uses linear algebra, and minimization after every
step keeps the sizes of intermediate realizations from blowing up. Mathematica
notebooks with rudimentary programs for computing minimal realizations are
found in [30].

Next we find the Burnside decomposition [11, Corollary 5.23] of L into

where each L' is either irreducible or the identity. This decomposition can be
found using deterministic algorithms with polynomial time complexity. Let A be
the unital matrix subalgebra generated by the coefficients of L. One first computes
and mods out the radical of .4 (corresponding to the » entries) using the algorithm
in [16, Section 3]; then, the algorithm of [18, Theorem 3.5] is applied to find
the irreducible blocks L/. Alternatively, [13, Theorem 6] gives an algorithm for
decomposing A as a direct sum of minimal left ideals; after omitting the ideals
contained in the radical using a linear test [24, Corollary 4.3], the remaining
ideals are necessarily one-dimensional, and the union of bases of ranges of their
generators is a basis in which L has the desired block structure.

Considering only the irreducible blocks, choose one from each similarity class.
Note that checking similarity of linear pencils amounts to checking whether the
system of linear equations PL! = L/ P has an invertible solution P.

Find all those L that are similar to a hermitian monic pencil. This uses SDP.
Each solution to the feasibility semidefinite problem

0x1, QLY =L'Q (15)
leads to a hermitian monic pencil L= Q_% L Q%. If (15) is infeasible, then L'

is not similar to a hermitian monic pencil.
The direct sum L of the hermitian monic pencils L' obtained in (d) satisfies

Dy =Ky
by Theorem 1.1.

FolCT
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(f) Using the minimization algorithm descgbed in [32, Subsection 4.6], which uses
SDP to elimillgte redundant blocks in L, we can produce a minimal hermitian
monic pencil L with D7 = K.

4.3 Checking Whether /Cis Convex

As aside product of Theorem 1.1 and the algorithm in Sect. 4.2, we obtain a procedure
for checking whether K is convex.

Given f € Ms(C<x, x*>) with f(0) = I, we construct the realization of f -1
and identify its irreducible blocks L', choosing one from each similarity class. Let L

be the direct sum of all the L/ that are similar to a hermitian monic pencil, and let L
be the direct sum of the others. By Theorem 1.1, it suffices to present an algorithm for

checking whether property (iv) of Theorem 1.1 holds, that is, whether L is invertible
on the interior of Dy . To this end, we first prove general statements about (rectangular)
affine linear pencils being of full rank on the interior of a free spectrahedron (see also
[26,45,55,67] for related results).

For the rest of this section, let L be a d x d hermitian monic pencil, and let L be
a § x ¢ affine linear pencil (in x and x*). Assume § > ¢ and consider the following
system:

(DL)=Py+ Y CfLCr, Py>=0 (16)
k

for some D € M;5(C), Ck € My (C) and Py € M (C), where (M) = (M + M*)
denotes the real part of a square matrix M. (If 6 < ¢ we simply replace L by Z*.)
Note that D = 0, Py = 0, C;, = 0 is a trivial solution. We mention that (16) is related
to the notion of a L-real left module of [35].

Lemma 4.2 Let § > ¢. If there exists a solution of (16) satisfying

ker Py N () ker Cx = {0}, (17)

k
then L(X, X*) is full rank for every X satisfying L(X, X*) > 0.
Proof Suppose (16) holds and X € M,,(C)8 satisfies L(X, X*) > 0. If (DZ)(X, X*)
v = 0 for v € C*", then (16) together with Py > 0 and L(X, X*) > 0 imply
(Ph®@DHv =0, (Cyx®Iv=0 forallk.

Therefore, v = 0 by Eq. (17). Hence, (DL)(X X*) is positive definite, so
(DL)(X X*) is invertible. Consequently, L(X X*) has full rank. O
Proposition 4.3 Let § > ¢. If every solution of (16) satisfies

Py=0, Cy=0 forallk,

thenthere exists X € Mmax{d,¢}(C)® suchthat L(X, X*) > 0 andker Z(X, X*) #£ {0}.
Fol:'ﬂ
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Before proving Proposition 4.3, we introduce some notation. Let = max{d, ¢}.
For ¢ = 0,1,2,, let V¢, € M,;(C<x, x*>) denote the subspace of polynomials of
degree at most ¢, and let

S= ZL?‘Li:L,- evl},

L

C=1> CiLCy: Gy € den(C)} ;

k

y_ [(PL+LEf L°E;
DL 0

> : D1, E1 € Mgxs(C), Dy, Ez € M(ng)xa((c)}-

Also let Vg C V), be the R-subspace of hermitian matrix polynomials. Both C and S
are convex cones in V;‘, and U is a subspace in V. Observe that

D\L) L*D3
UNVi = {<(D;Z) 0 2) : D € My5(C), D € M(n_g)xg((C)}

andd = UN Vlz“) +iUN V;). Using the standard argument involving Caratheodory’s
theorem on convex hulls [5, Theorem 2.3], it is easy to show that C + S is closed in
Vf; see e.g. [31, Proposition 3.1].

Lemma 4.4 Keep the notation from above. If every solution of (16) satisfies
Py=0, Cy=0 forallk,

then U N (C + S) = {0}.

Proof Suppose
(DiL) L*D* C*
( DL - ZL;fL,- +Xk: ch L(Ck C)) (18)
1

for D1 € Mxs(C), D2 € My_e)xs(C), Li € V1, Ck € Myxe(C) and C; €
M x(n—¢)(C). By looking at the degrees on both sides, we obtain L; € Vj; let us
write

Seiti= ()

Therefore, (Dlz) satisfies (16), so p; = 0 and Cy = 0 by the hypothesis. Moreover,
p2 = 0 by positive semidefiniteness. Finally, since L is monic, (18) implies p3 = 0
and C; = 0. O
FoC
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To prove Proposition 4.3, we require a version of the Gelfand—Naimark—Segal
(GNS) construction. Given a Hilbert space H, let B(H) denote the (bounded linear)
operators on H.

Lemma 4.5 Suppose A : Vo — C is a positive linear functional in the sense that
A Sf*f) > O forall f € Vi \ {0}. Thus, the resulting scalar product {fi, f2); =
)L(fz*fl) on V1 makes V1 a Hilbert space and Vo C V) is a subspace. Let w : V| —
Vo = M,,(C) denote the orthogonal projection. Fora € M,,(C), let £, € B(Vy) denote
the map f + af, and let Y; € B(Vy) denote the map f +— mw(x; f). Then,

(1) £ = tax;

@) Y1f =0 f)

(3) £aY; =YL, (and hence KaYl’f = Y;‘ﬁa);

(4) there is a unitary mapping U : C" ® C" — Vy such that U, U =a ® I;

(5) thereexists X; € My(C) suchthatU*Y;U = IQX j, andif L = C+Zj Ajxj+
Zj Bjxj is an affine linear pencil of size n, then

ULX, XU* =tc+ Y LaYj+ Y LpY}.
j j

Proof The proofs of the first three items are straightforward. To prove (4), since |y,
is a linear functional on M,,(C) = V), there is a matrix P € M;(C) such that A(f) =
tr(Pf). Further, since X is positive, P is positive definite. Define U by U (1 ® v) =

uv' P~7 and extend by linearity. By the definition of (-, -);,
1 1
(UG @ v), Utz @ ) = 4 (uzvh P2 up P3)
t 1 _1 t\*
_ ((ulle )PP~ % (uavh) ))
= tr(uivi(v3)'u3) = (ur, uz) (v, v2),

so U is unitary. Similarly, for a € M, (C),

(U €U @ v1), (2 ® v2)) = tr ((aun)v} P~ PP 3 (u20h)"))
= (aur, u2) (v, v2)

=((@a® U @), uz  v2).

Since Y; commutes with each ¢, it follows that U * Y;U commutes with each
a ® I. Hence, there is a X; € M,;;(C) such that U*YjU = I ® X, and hence,
Uu*y ]’.‘U =I1®X }k Finally, observe that

Aj®X;=(A; @ DI ® X)) =U*ty,Y;U

and analogously B; ® X;.‘ = U*lp; Y;‘U. O

FoC'T
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Proof of Proposition 4.3 By Lemma 4.4,/ N (C+S) = {0}. Since C + S is also closed
and convex and since U is a subspace, by [43, Theorem 2.5] there exists an R-linear
functional Ag : Vg — R satisfying

20 ((CHSN\(0) =Rag, AU NV = {0}

We extend Ag to A : V» — C by
1 N . 1 "
)L(f)=)»0<§(f+f ))‘H)»o(?(f—f ))-
l

Note that A vanishes on U. Since A(S \ {0}) = R., A is a positive functional, so
Lemma 4.5 apphes we assume the notation therein.

Write L = C+ZA X+ ZBx forCAJ,B € M;sx(C). For D €
M) x (841—¢) (©), let

Fp :=UMD L&) X, XNU* = Lpcen+ Y lnienYit D todenY):
; -
(19)
the second equality in (19) holds by Lemma 4.5(5). Let u denote I, & 0 € M,,(C)
considered as a vector in ). Then

Fpu = (KD(C@I) + ZED(A a0 Y T ZZD(B ®O)Y*)

J J
= (D(E ®NUIB0) + Y DA; @0 ®O0)x;+ Y D(B; ®0)I & O)x;)
J J
=1(D(L®0)).

Hence for every f € ),
(Fpu, f)i = (DL ®0), f)i = A(f* DL ©0)) =0,
since f*D(Z @ 0) € U. Thus, Fpu = 0 for all D € M, (54y—¢)(C). Consequently,
(LehHX,XUu=0
and hence ker Z(X, X*) #£ {0}

Now fix 0 # v € Vyp = M,;;(C) and choose an isometry V : C? — C" such that

Vo £ 0. L=1+Y A, x,+2 A%x*, then

UV ® DLX, XY(VF @ D)U™ = byye + Y yav-Yj+ 3 LyayeY]
j j '
FoE'ﬂ
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by Lemma 4.5(5), and thus,
(U(VRDLX, X (V*Q D)U*v,v)) = (m(VLV*V),v)y = A(W*VLV*V) >0

since v*V LV*v € C is nonzero. It follows that L(X, X*) is positive definite. O

Corollary 4.6 Let L be a d x d hermitian monic pencil. Ifz is a 8§ x ¢ affine linear
pencil such that L(X, X*) is full rank for every X in the interior of Dy (max{d, 8, €}),
then L is full rank on the interior of Dp.

The proof of Corollary 4.6 given below, while not the most efficient, yields an
algorithm presented in Sect. 4.3.1.

Proof Without loss of generality, suppose § > ¢ and let 0 = max{d, 8}.
Given n < § and L, an affine linear pencil of size § x n such that L(X X*) is full
rank for each X in the interior of Dy (o), consider solutions to the system (16), i.e.,

(DL)=Py+ Y CiLCr. Py>0, (20)
k

and denote V = ker PyN[ ), ker Cx € C".1If, for each solution, V = C" (equivalently
Py = 0, Cx = 0), then there exists X € M, (C)8 such that L(X, X™) > O and
ker L(X X*) # {0} by Proposition 4.3, contradicting the assumption on L. Hence,
there is a solution with dim(V') < n.

We now argue by induction that, with § fixed, for each n < § and each § x 7 affine
linear pencil L’ such that L'(X, X*) is full rank for every X in the interior of Dy (o),
we have L’ is full rank on the interior of Dy .

In the case n = 1, there is a solution to the system (16) with 0 = dim(V) < n = L.
By Lemma 4.2, we conclude that L is full rank on the interior of Dy (o). Hence, the
result holds for n = 1.

Recall that ¢ < § and suppose the result holds for each n < €. Let Lbead x¢
affine linear pencil that is full rank on the interior of Dy (c). As seen above, there is
a solution D of (16) with n = dim(V) < ¢. In the case n = 0, just as before, an
application of Lemma 4.2 completes the proof. Accordingly, we assume 0 < 7 < é.
Let L’ denote the § x n pencil whose coefficients are the restrictions of the coefficients
of LtoV.LetX satisfy L(X, X™*) > 0 and suppose Z(X, X*)(u+u') =0foru e V+
and ¥’ € V. Thus,

(u+u) (DLYX, Xu+u)=0

and hence, by Eq. (20),

* (Po +> c;:Lck> u=0.
k
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Thus, u € V and therefore u = 0. Consequently I?(X, X*y' = Z(X, X*u' = 0.
Therefore, for each X in the interior of Dy,

ker L(X, X*) # {0} < kerL'(X, X*) # {0}. 1)

In particular, by assumptionif X is in the interior of Dy (o), thsn ker Z(X, X*) ={0}.
Hence, the same is true of ~L’. By the induction hypothesis, L’ is of full rank on the
interior of Dy . Therefore, L is of full rank on the interior of Dy, by (21). O

4.3.1 Algorithm

Let L be a d x d hermitian monic pencil and let L be a § x ¢ affine linear pencil.
Following the proof of Corollary 4.6, we describe an algorithm for checking whether
L is of full rank on the interior of L.

Step 1. Solve the following feasibility SDP:

tr((DL)(0)) = 1

(DL) = Py + ZC,’;LC;C for some Cy, Py, with Py > 0. (22)
k

We note that (22) is a SDP. Indeed, the first equation is simply a linear constraint,
and the second equation can be rewritten as a semidefinite constraint using (localized)
moment matrices; see e.g. [12,57] for details.

Step 2. If (22) is infeasible, then L (X, X*) is not of full rank for some X in the
interior of Dy, by Proposition 4.3.

Step 3. Otherwise, we have a solution with V := ker Py N[, ker Cx C C°.

Step 3.1 1f V = (0), then L is of full rank on the interior of Dy by Lemma 4.2.

Step 3.2. If ¢/ = dim V > 0, then let L' be the § x &’ affine linear pencil whose
coefficients are the restrictions of coefficients of L to V. Then, L is of full rank on the
interior of Dy if and only if L’ is of full rank on the interior of D;. Now we apply
Step 1 to L’; since L’ is of smaller size than L, the procedure will eventually stop.

5 Examples

We say that a hermitian f € C<x, x*> with f(0) = 1 is a minimal degree defining
polynomial for Dy if degh > deg f for every hermitian 7 € C<x, x*> such that
Dy = Dj. In this section, we present examples of hermitian polynomials f such that
Dy is a free spectrahedron, f is a minimal degree defining polynomial for Dz, and
f is of degree more than two. By Theorem 1.5 such an f necessarily factors, even
if Dy corresponds to an irreducible pencil. The construction of such f relies on the
following lemma.

Lemma 5.1 Suppose f1,s € C<x, x*> are atoms and L is a hermitian monic pencil.
If
(1) s(0) =1= f1(0) and deg f1 > 2;
EOE';W
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(2) Z4 = 21, and thus, Ky, = Dr;

(3) s is hermitian;

@) fis =sf;

(5) s(X, X*) > O0forall (X, X*) €Dy,
then f = fis is hermitian and Dy = Dy. Furthermore, a minimal degree defining
polynomial for Dy has degree at least 1 + deg f1.

Proof The polynomial f is hermitian by items (3) and (4) , and Dy = D;, holds
by item (2) and (5) . Now let 4 be an arbitrary hermitian polynomial satisfying
Dy = Dy. Let L denote a minimal hermitian monic pencil such that Dy = Dy.
By Lemma 2.5(2) 2, 2 Zj. Since Ky = Dy, fi is an atom and L is minimal,
Zy = Zy. Thus, Z;, 2 Zy,. Since fi is an atom, & has an atomic factor of degree
deg f1 by [36, Theorem 4.3(3)]. Thus, the degree of & exceeds two by item (1) . Hence,
h is not an atom by Theorem 1.5. It follows that degh > 1 + deg f7. O

Remark 5.2 In general, Corollary 1.2 implies that f € C<x, x*> with f(0) # 0
has convex K if and only if it admits a complete factorization f = so 151 - - fese,
where KC 7, are convex (such fi are characterized in Sect. 6) and sp - - - 5¢ is invertible

on Ky, = K.

For the rest of this section, let g = 1 and x = x7.

5.1 Example of Degree 4

Let
* * * * 1 *
fi=14+x4+x"—2xx" — (x + x5 )xx", s:l—l—i(x—l—x)
and
I+x+x* 0 x
L = 0 1 x
x* x* 1

Let us sketch how to verify the assumptions of Lemma 5.1. Clearly, s is an atom and
items (1) and (3) of Lemma 5.1 hold. Using standard realization algorithms (e.g. as
in [3]), one checks that L appears in a minimal realization of fl_l. Moreover, a direct
computation shows that L is irreducible. Hence, f; is an atom by Proposition 2.7(3)
, and item (2) holds by Proposition 2.7(1) . Next, item (4) is straightforward to
verify. Finally, for every (X, X*) € Dy we have I + X + X* > 0 and consequently
I+1(X+Xx* > 0,s0item (5) holds.

By Lemma 5.1, f = fis is hermitian with Dy = Dy, and f is a minimal degree
defining polynomial for D since deg f = 4 = deg f1 + 1. Note that

{(X,X"): f(X,X") =0} # D,
in this case.

FoC'T
e,
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5.2 Example of Degree 5 or 6

Let

fi=1—(x4x%) —2(x +x% = 2x*x + (x + x> + 2(x + x*)%x*x,
s=1—(x+x%)2

and

1—%(x+x*) —V2(x + x*) %(x—i—x*) x*

I - —V2(x + x%) 1 0 0
- %(x—i—x*) 0 1 —%(x +x*) —x*
X 0 —X 1

As in the previous example the only item of Lemma 5.1 that is not simple to verify
is (5) . Observe that the upper 2 x 2 block of L depends only on the hermitian variable
h = x + x*. The same holds for s = 1 — k2. Hence, it suffices to see that s > 0 on
Dy (1), which is true since

1-4 —V2p 2
det 7 >0 1—p2>0
e(—ﬁp 1 )— = P>

for p € R.If f = fis, then Dy is a free spectrahedron domain whose minimal degree
defining polynomial has degree at least 5. Note that deg f = 6, but we do not know
whether f is a minimal degree defining polynomial.

Of course, by taking a Schur complement of L we obtain a quadratic 2 x 2 non-
commutative polynomial ¢ with D, = Dy.:

* *

4= 1—%‘—%—2x2—*2xx*—3x*x—2(x*)2 %—i—%—*}—x*x .
5+ 5 +x*x -5 -5 —x*x

5.3 High Degree Atoms with Convex /Cs

In the previous two subsections, we obtained atoms fj of degree 3, 4 with convex

K s, in agreement with the degree at most four conclusion of the main result of [17].

Nevertheless, it is easy to construct examples of such polynomials f of high degree.
For example, let

F=1440 +x5) +20% + (@52 — xx® — Tax*(x + x¥) — 4x*x(x + x¥)
—xx*(x% 4+ ()?) + 2xx* (x4 xFx) (x + x).
FoL Tl
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That £y = Dy, where

l—x—x*x —x—x* x —x X+ x*

x* 1 0 0 0 0
I = —x—x* 01l4+x+x*—x x —x —x*
o x* 0 —x* 1 0 0 ’
—x* 0 x* 0 1 0
x+x* 0 —x—x* 0 0 1+4+2x+2x*

can be checked using realization theory.

5.4 Counterexample to a One-Term Positivstellensatz

One might hope that for polynomials whose semialgebraic sets are spectrahedra, there
exists a one-term Positivstellensatz (cf. [31, Theorem 1.1]), meaning: if Dy = Dy for
a hermitian polynomial f with f(0) > 0 and a d x d hermitian monic pencil L, then
there exists W € Myx4(C<x, x*>) such that

LIQf=fd --df=W'LW. (23)

We note that such a conclusion holds for f that are real parts of a noncommutative
analytic function under natural irreducibility and minimality assumptions on L. For
a proof, we refer the gentle reader to [2], where this fact is exploited to character-
ize bianalytic maps between free spectrahedra. However, with Example 5.1 we shall
demonstrate that (23) does not hold in general.
Let us assume the notation of Example 5.1 and suppose there exists W €

C<x, x*>3%3 guch that

f00

0f0=WLW. (24)

00 f

Let 2 and Y™ be g-tuples of n x n generic matrices and consider evaluations of
£, W, Lat (22", ™). Taking determinants of both sides of (24) gives

3
(det £, T<">)) = det W5, T™) det L™, T det W(2™, ¥ ™),
Since det L(2™, ™) = det f1(2™, r™),

<det ™, T(")))z (dets(.Q("), T(")))3 — det WH(Q®, v ™) det w( 2™, 1 ™).
(25)
Recallthats = 1+%(x +x*),s0 p = det (2@ T™)isanirreducible polynomial for
all n € N. Therefore, it divides det W* (2™, Y or det W (2™, T ™) by (25). But
s is a hermitian polynomial, so p divides det W* (227, 1) and det W (2™, v ™).
Therefore, the left-hand side of (25) is divisible by p3 but not by p*, while the highest
power of p dividing the right-hand side of (25) is even, a contradiction.
Elol:;ﬂ
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5.5 High Degree Matrix atoms Defining Free Spectrahedra

It is fairly easy to produce examples of irreducible hermitian matrix polynomials
F of arbitrary high degree such that DF is a free spectrahedron. For example, let
p € Ms(C<x, x*>) \ Ms(C) be arbitrary and let

I 0 X
F=|01 p

Then, deg F = 2deg p and det F (2™, ™) = det(I — 7™ 2™) is irreducible for
all n € N, so F is an atom. Further, Dr = Dj_*, is a free spectrahedron.

6 Classifying Hermitian Flip-Poly Pencils

A by-product of investigations in earlier sections is a description of hermitian monic
flip-poly pencils, which helped us construct Examples 5.1, 5.2 and 5.3. Since it is of
independent interest, we present it here in more detail.

A d x d monic pencil L = I — A O x is called flip-poly [36, Section 5.3] if

Aj=Nj+vju*

where the N; are jointly nilpotent d x d matrices and u, v; € C4. Such pencils are
important for distinguishing free loci of polynomials among all free loci.

Proposition 6.1 [36, Corollary 5.5] The set of free loci of polynomials coincides with
the set of free loci of flip-poly pencils.

In this section we further examine the structure of hermitian flip-poly pencils.
IfL =1—-A0x — A*Ox™ is a d x d flip-poly pencil, then by the defini-
tion above there exist jointly nilpotent matrices N, ..., Ng, N Ly vvns N ¢ and vectors
U, V1, ..., Vg, V1,..., Uy such that

Aj=Nj+vju*, Ajf:](’j—i-f)ju*.

The following folklore statement is a consequence of Engel’s theorem [39, Corollary
3.3] and the Gram—Schmidt process.

Lemma 6.2 Given jointly nilpotent matrices, there is an orthonormal basis in which
they are simultaneously strictly upper triangular.

After a unitary change of basis (which preserves the hermitian property of L), we
can therefore assume that N, N; are strictly upper triangular matrices. For every j,

0=A; — (A)* = Nj +vju* — N — ud?,
EOE';W
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or equivalently, ~
Nj— N} =ud} —vju”. (26)
On the left-hand side of (26), there is a matrix with diagonal identically 0. Looking at

the right-hand side of (26), we then obtain
k _ o ka.k
;= ukvy, (27)

forevery 1 < j <gand1 < k <d, where v¥ denotes the k' component of v.
Conversely, let u, vy, ..., v, € C? be arbitrary. Next we choose vy, ..., Uy that
satisfy Eq. (27). Observe that this can always be done: if u* # 0, then ﬁ? is determined

by uF and vlj‘-; and if uF = 0, then we can choose an arbitrary value for f)’]‘.. Then, the
matrices uﬁj — vju* have diagonals identically 0. Hence by declaring N; to be the
strictly upper triangular part of u9% — v;u*, we obtain matrices A; = N; 4+v;u* such
that L=1— AOx — A* © x* is flip-poly.

Thus, we derived the following result.

Proposition6.3 Let L = [ — AQx — A*Ox*. Then, L is flip-poly if and only
if there exist vectors u, vy, ..., Vg such that, after a unitary change of coordinates,
A; = N; + vju*, with N; being the strictly upper triangular part of the matrix
uf);‘f —vju*, where V; is a vector satisfying

uk

k= — foruk £ 0.
u

= (- |
<=

Remark 6.4 Note that vectors v; in Proposition 6.3 are uniquely determined if all the
entries of u are nonzero. Furthermore, if one is only interested in symmetric pencils,
i.e., hermitian pencils with real entries, then the form of L can be further simplified
when u € (R \ {0})?. Namely, in this case one has ¥ j = v; for all j. Moreover, since
matrices uv;’.‘ — vju* are skew-symmetric, it follows by (26) that A; = Aj for all j.
Thus in this situation, one has L = I — A O(x + x*) for symmetric A ;> in particular,
Dy is unbounded. Of course, in general not every symmetric flip-poly pencil is of this
form, see Examples 5.1 and 5.2. O

7 Hereditary Polynomials

We say that a noncommutative polynomial f is hereditary if it is a linear combination
of words uv with 4 € <x*> and v € <x>. Furthermore, f is truly hereditary if it
is not analytic or anti-analytic, i.e., f ¢ C<x> U C<x*>. Hereditary polynomials
arise naturally in free function theory [28]; they are a tame analog of free real analytic
functions. For example, the composite of an analytic polynomial (with no x*) with an
hermitian pencil, a heavily studied class of objects in the geometry of free convex sets
(cf. [2]), is hereditary. Similarly, the hereditary functional calculus [1] is a powerful
tool in operator theory and complex analysis.
In this section, we prove the following.

Elol:;ﬂ

@ Springer Lﬁjog



Foundations of Computational Mathematics (2021) 21:575-611 603

Theorem 7.1 Let f be a hereditary polynomial and f(0) = 1. Then, f admits a
unique factorization

f=phqg, p0)=h0)=q0) =1, (28)

with p anti-analytic, q analytic, and h a truly hereditary atom or constant. If f is
moreover hermitian, then ¢ = p* and h = h*.

The normalization p(0) = h(0) = ¢(0) = 1 is only required to avoid “uniqueness
up to scaling.” Before giving a proof of Theorem 7.1, we record the following corollary.

Corollary 7.2 Any hereditary minimal degree defining polynomial for a free spectra-
hedron is an atom and hence has degree at most 2.

Proof Let f be hereditary and minimal degree defining polynomial for D, and let
Dy = Dy for a minimal hermitian monic pencil L. Therefore, 0D, € Z; and
hence Z; C Z; by Proposition 2.3. Furthermore, after a unitary change of basis we
can assume that L = L' @ --- & L%, where the L' are pairwise non-similar irre-
ducible hermitian pencils. Observe that for each i and large enough n, the polynomial
det L' (2™, ™) is irreducible by Proposition 2.4 and cannot be independent of
2 or 7™ by [46, Proposition 3.3], where 2™ and T are g-tuples of n x n
generic matrices corresponding to evaluating variables x and x*, respectively, in an
involution-free way.

By Theorem 7.1, f = a*ha, where a is analytic (contains only variables x), and h
is a hermitian hereditary atom. Since

Zp U UZp ZZLEZfZZaUZhUZa*,

for each i and large enough n, the irreducible polynomial det LM ™)y divides
one of the polynomials det a* (7 ™), det h(2™, T ™) or det a(£2™). By the previous
paragraph, it cannot divide the first one or the last one, so Z;; € Zj,. Since & is an
atom it follows that Z;; = Zj. Because the L' are pairwise non-similar irreducible
pencils, we necessarily have ¢ = 1, so L is irreducible. Therefore, D, = D by
Proposition 2.5(3) . Thus, /4 is concave of degree at most two by Theorem 1.5. Finally,
since f is of minimal degree, a = 1 and f = h. O

Corollary 7.3 If g € C<x> and Dy~ is a free spectrahedron, then deg(q) < 1.

Proof Observe that ¢ +¢* is an atom in C<x, x*> for every non-constantg € C<x>.
Therefore, g + ¢* is of degree at most 2 and concave by Theorem 1.5, so

g+q =a+l—) il
k

for some @ > 0 and linear polynomials ¢, £; € C<x, x*>.If some ¢ is nonzero, then
€ — > £itx has a term of the form axjx or arx7x; with & < 0. On the other hand,
there are no mixed terms in ¢ + ¢*, so we conclude that £; = O for all k. Therefore,
q is affine linear. O

EOE';W
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7.1 Proof of Existence of the Factorization (28)

Lemma 7.4 Suppose f is hereditary and f = pq. If p ¢ C<x™>, then g € C<x>.
If f =a*hband a,b € C<x>, then h is hereditary.

Proof To prove the first statement, suppose p ¢ C<x*> and ¢ ¢ C<x>. Write,
p =) peaand g = ) gpp. There exists a word ' and a j such that o’ contains
xj and py # 0; and there is a word A" and a k such that B’ contains x; and gg # 0.
Without loss of generality, we may assume that the (total) degrees of «’ and B’ are
maximal with these properties. Now,

F=Y"1>" pags| v

v \eB=y

Let I' = o/B’ and note that this word is not hereditary. Thus,

Z Paqp = 0.

ap=I"

It follows that there exists words o and t such that (o, ) # (&, 8'), po #0, g: # 0
and ' = o7 = o’B’. It follows that either o’ properly divides o on the left, in which
case o contains x; and |o| > |&'|, contradicting the choice of «'; or B, properly
divides t on the right, in which case 7 contains x; and |t| > | 8’|, contradicting the
choice of B’.

The second statement can be proved in a similar fashion. Sketching the argument,
write

h=7 hsp

and, arguing by contradiction, suppose there is a 8 such that hg # 0 has an x to the
left of an x*. Let &’ and ¥’ denote maximum degree terms in a* and b. It follows that
o’ By’ must appear in a*hb (and has largest degree amongst words in a*1b containing
an x to the left of an x*), and thus, f is not hereditary. O

Proof of existence in Theorem 7.1 The hereditary polynomial p factors as

f=qq192...95qsv1, q(0) =1,

where qo = 1 = gy41 and, for each 1 < j < s, the factor g; is an atom.
Suppose, without loss of generality, that f ¢ C<x>. Thereisan 1 < r < s
such that g,+1---¢gs+1 € C<x>, but ¢,qr4+1---¢s+1 ¢ C<x>. By Lemma 7.4,
q0q1 -+ qr—1 € C<x*> as f = (qoq1--qr—1) (gr - - - gs+1) is hereditary. Thus,
f = a*hb, where a = (qoq1 - qr—1)*, ¢r+1-+-qgs+1 € C<x> and h = g,. By the
other half of Lemma 7.4, g, is hereditary and the proof is complete. O
Elol:;ﬂ
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7.2 Proof of Uniqueness of the Factorization (28)

Proving uniqueness requires background from Cohn [14] which we now introduce.
Let g1, g2, 1, ¢» € C<x> and suppose

9192 = q1q2- (29)
If
q1C<x>+q1C<x> = C<x>, C<x>qgr +C<x>qp = C<x>,

then (29) is called a comaximal relation [14, Section 0.5]. If, moreover, g1, ¢2, 41, §2
are atoms and

q1C<x> N g1 C<x> is a principal right ideal in C<x>,

then (29) is called a comaximal transposition [14, Section 3.2].
Next, g1, ¢» are stably associated [14, Section 0.5] if

Li®q=P(s®q1)0,

forsome d € Nand P, Q € GLy41(C<x>).

Proposition 7.5 [14, Proposition 0.5.6] q1 and ¢, are stably associated if and only if
they appear in a comaximal relation (29) for some q3, q.

Finally, a factorization f = fj--- f; in C<x> is complete [14, Section 3.2]
if the f; are atoms. Two complete factorizations of f are identified if their factors
only differ up to scalars. Note that a noncommutative polynomial can admit distinct
complete factorizations, e.g.

(1 4+ x1x2)x1 = x1(1 + x2x1).

However, this relation is a comaximal transposition. In fact, the following holds.

Proposition 7.6 ([14, Proposition 3.2.9]) Given two complete factorizations of a poly-
nomial, one can pass between them by a finite sequence of comaximal transpositions
on adjacent pairs of atomic factors (in particular, they have the same length).

Let us illustrate what is meant by a finite sequence of comaximal transpositions.
To say that g1g2g3q4 is a complete factorization that can be transformed to a different
factorization by applying comaximal transpositions on positions (2, 3), (3,4) and
(1, 2) (in this order) means there exists g2, 43, 273, /q’Z such that

91929394 = Q1924394 = 91929344 = §1q29 34
EOE';W
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where

@93 =03, $ea=4q3qs G192 =419,
are comaximal transpositions.

Lemma 7.7 Suppose th = f| f> is a comaximal relation where £ € C<x*>, h is
hereditary, f1, f» € C<x, x*> and all are normalized to equal 1 at the origin. Then,
f1, o, h € C<x™>.

Analogously, if hr = f1 f» is a comaximal relation with r € C<x> and h heredi-
tary, then f1, fo,h € C<x>.

Proof By Proposition 7.5, ¢ and f; are stably associated. Then by the definition of
stable associativity, there exists @ € C \ {0} such that

det£(Y™) = " det (2™, ™)

for all n € N, where 2™ and ™ are tuples of n x n generic matrices. By [36,
Proposition 5.11], f» € C<x™>. But f] fo = £h is hereditary, so f; € C<x*> and
consequently 1 € C<x*>. O

Proof of uniqueness in Theorem 7.1 Suppose f = phq = phq are two factorizations
as in Theorem 7.1. Let

o~

P=pi- Pk P=DP1DPp 4=q1 4, §=q1qp
be complete factorizations (with factors equal to 1 at the origin). Then
pr---pihqi---qe = Pi---prhqi - Gp. (30)

and by Proposition 7.6 we can pass from the left-hand side to the right-hand side
of (30) by a series of comaximal transpositions. The heart of the proof is that there
cannot be any transposing around the “middle” factor 4 unless it is trivial. Since f
and all the factors p, g, h are normalized to equal 1 at O, we can apply Lemma 7.7 to
conclude the proof: for if we can transpose pyh, then h € C<x*> and so h = 1 since
h is truly hereditary, likewise for 2g1. When £ is not trivial, comaximal transpositions
can therefore only occur among the first k — 1 factors and last £ — 1 factors of the
left-hand side in (30). However, these comaximal transpositions preserve pp - -- pk
and g1 - - - g¢. Thus, we conclude that py -+ - px = p1---prandgi---q¢ =q1--- ;-
Therefore, p = p and ¢ = g, and consequently 1 = .

The last part of Theorem 7.1 is a direct consequence of the uniqueness. O

A Modification of the Theory: Rational Functions

For the reader familiar with nc rational functions as found in [14,40], we point out that

Theorem 1.1 extends to matrix noncommutative rational functions in a straightforward
Elo [y
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way. Assume r € C£x, x*3%%9 is regular at the origin (that is, 0 is in the domain of
r) and r(0) = /. Then, we define K = | J,, KCr-(n), where Ky (n) is the closure of the
connected component of

{(X, X*) € M,,(C)?8: ris regular at (X, X*) and detr(X, X*) # O}

containing the origin.

Now let I + ¢*L~'b be a minimal FM realization for r @ r~! € C4x328%2,
Using Remark 2.6(4) we observe that Z; is precisely the set of all (X, X™*) for which
either r is not defined at (X, X™) or r is regular at (X, X*) and detr(X, X*) = 0. By
comparing this observation with the definition of I, we see that

Kr=Kr. (31)

Now we apply the proof of Theorem 1.1 to L.

Likewise, from (31) we deduce that Corollary 1.3 holds for rational functions r.
This leads to improvements and strengthening of recent positivity results for non-
commutative rational functions [45,55]. For instance, a ratlonal function r is positive
deﬁmte on the interior of Dy if and only if r(0) > 0 and L is invertible on int Dy,
where L is the minimal pencil in an FM realization of r @ r~'. The latter condition
can be efficiently checked by the algorithm of Sect. 4.3.

In [55], Pascoe gives a Positivstellensatz certifying when a noncommutative rational
function r that is defined on Dy , is positive semidefinite on Dy . For bounded~ Dy our
algorithms provide means of verifying whether r is defined on Dy. Let L be the
minimal pencil in an FM realization of r. Then, L is invertible on Dy if and only if
there is ¢ > 0 such that LLL* — ¢ is invertible on int Dy, and this is something that can
be checked with a sequence of SDPs (cf. Sect. 4.3).

We conclude with a variant of Theorem 1.5 for rational functions. McMillan degree
[40] of a rational function is the size of the linear pencil in its minimal FM realization.
Lemma A.2 asserts that, given L a minimal hermitian monic pencil L, there exists a
hermitian s € C€x, x*3 such that g = Dy . We say that a hermitianr € C€x, x*>
is minimal (McMillan) degree defining for Dy, if K = Dy, and the McMillan degree
of r is smallest amongst all hermitian s such that g = Dy..

Proposition A.1 Let v = 1™ € C«x, x*> be regular at the origin and v(0) =

Suppose that ICy is a free spectrahedron Dy, for an irreducible hermitian monic pencil

L. If v is minimal McMillan degree defining for Dy, then either v or v~ is concave

or convex with the pencil in its minimal FM realization being equal to L.

LemmaA.2 Suppose L is an irreducible hermitian monic pencil ofstze dand0 #7¢ e
C4 is of norm < 1. Settmgb = AcOx + A*cOx* andT = 1 +¢*L~1D,

K# =Dy,

T is defined on int Dy, andT* =T.
Fol:"ﬂ
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Proof Since the converse of Lemma 3.1 evidently holds, r* = r. By Remark 2.6(6)
we haveT ! = 1 —’C*L;lﬁ, where L, = L + bc*. Since L is irreducible andc # 0
and b # 0, the realizationT = 1 + *L~"b is observable and controllable, and thus
minimal by Remark 2.6(1) . Consequently, T=' = 1 — ?"L;rl; is also minimal. The
pencil L is invertible on int Dy because

(I — G +bc*) = (I — T + (I — C*)L(I — ).
By the definition of /s, we have

7+ =KroL,»

so invertibility of Ly on int Dy implies

Furthermore, the domain of T~ is the complement of Z; by Remark 2.6(4) , soT !

is defined on int Dy . O

Proof of Proposition A.1 LetL = I—A O x—A* O x*beof sized. Letr = 1+c*L~'b
be a minimal realization. Hence,r~! = 1 — c*z; 'b, where L, is the pencil appearing
in Remark 2.6(6) , is a minimal realization for r—1. Since Ky = Dy, the topological
boundary of Dy, is contained in

{(X,Y): risundefined at (X, Y)}U{(X,Y): r~! is undefined at X, V)}=Z7 U ZZX'

Since L is an irreducible hermitian monic pencil, it is minimal. Thus, by Proposi-
tion 2.3, Z; € Zz U ZZX' Since L is irreducible, either Z; € Zj or Z; C ZZX.
Without loss of generality suppose Z; € Z7 (otherwise replace r by r~1). Since L
is irreducible, up to similarity (change of basis), L has the form (4), where one of the
blocks equals L. On the other hand, by Lemma A.2, the size of L is no larger than
the size of L. Hence, L is similar to L and we may assume, by modifying ¢, b and A
appropriately, that L = L. Therefore, as L is an irreducible hermitian monic pencil,

r=1+Ar*L  (AcOx + A*cOx*) = 1+ A(c*L™'¢c — c¢*¢)

for some A € R\ {0} by Lemma 3.1. Since L is monic and hermitian, r is concave or
convex (depending on the sign of A). O
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