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Abstract
The free closed semialgebraic set D f determined by a hermitian noncommutative
polynomial f ∈ Mδ(C<x, x∗>) is the closure of the connected component of
{(X , X∗) | f (X , X∗) � 0} containing the origin. When L is a hermitian monic
linear pencil, the free closed semialgebraic set DL is the feasible set of the linear
matrix inequality L(X , X∗) � 0 and is known as a free spectrahedron. Evidently
these are convex and it is well known that a free closed semialgebraic set is convex
if and only it is a free spectrahedron. The main result of this paper solves the basic
problem of determining those f for which D f is convex. The solution leads to an
efficient algorithm that not only determines if D f is convex, but if so, produces a
minimal hermitian monic pencil L such that D f = DL . Of independent interest is a
subalgorithm based on a Nichtsingulärstellensatz presented here: given a linear pencil
˜L and a hermitian monic pencil L , it determines if ˜L takes invertible values on the
interior of DL . Finally, it is shown that if D f is convex for an irreducible hermitian
f ∈ C<x, x∗>, then f has degree at most two, and arises as the Schur complement
of an L such that D f = DL .
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1 Introduction

Semidefinite programming (SDP) [52,69] is the main branch of convex optimization
to emerge in the last 25 years. Feasibility sets of semidefinite programs are given
by linear matrix inequalities (LMIs) and are called spectrahedra. We refer to the
book [8] for an overview of the substantial theory of LMIs and spectrahedra and the
connection to real algebraic geometry. Spectrahedra are now basic objects in a number
of areas of mathematics. They figure prominently in determinantal representations
[10,29,54,58,63], in the solution of the Kadison–Singer paving conjecture [51] and
the solution of the Lax conjecture [38,50].

One of the main applications of SDP lies in linear systems and control theory [61].
From both empirical observation and the textbook classics, one sees that many prob-
lems in this subject are described by signal flow diagrams and naturally convert to
inequalities involving polynomials in matrices. These polynomials depend only upon
the signal flow diagram and are otherwise independent of either the matrices or their
sizes. Thus, many problems in systems and control naturally lead to noncommutative
polynomials, or more generally rational functions and matrix inequality conditions.
This paper solves the basic problem of identifying those noncommutative rational
matrix inequalities that give rise to convex feasibility sets. For expository purposes,
the body of the paper presents a detailed proof of this fact for noncommutative poly-
nomials. The modifications needed to handle the more technically challenging case of
matrix rational functions are indicated in “Appendix A.”

The main results of the article are stated in this introduction. Following a review of
basic definitions including that of a free spectrahedron and free semialgebraic set in
Sect. 1.1, the three main results are presented in Sect. 1.2 followed by a guide to the
paper in Sect. 1.3.

1.1 Definitions

Let x = (x1, . . . , xg) denote freely noncommuting variables and x∗ = (x∗
1 , . . . , x

∗
g)

their formal adjoints. Let<x, x∗> denote the set of words in x and x∗ and C<x, x∗>
the free polynomials in (x, x∗) equal the finite C-linear combinations from<x, x∗>.
For a positive integer δ, the set of free polynomials with coefficients in Mδ(C) is
denoted Mδ(C<x, x∗>) and is naturally identified with the tensor product Mδ(C) ⊗
C<x, x∗>. The ring C<x, x∗> has a natural involution ∗ determined by sending the
variables x j to x∗

j , and vice versa, sending scalars to their complex conjugates and
( f g)∗ = g∗ f ∗ for f , g ∈ C<x, x∗>. An element f ∈ C<x, x∗> is hermitian if
f = f ∗. This involution, and the notion of a hermitian polynomial, naturally extends
to Mδ(C<x, x∗>).

An element f ∈ Mδ(C<x, x∗>) is a finite sum

f =
∑

w∈<x,x∗>
fww ∈ Mδ(C) ⊗ C<x, x∗> = Mδ(C<x, x∗>), (1)
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where fw ∈ Mδ(C). Given a g-tuple X = (X1, . . . , Xg) ∈ Mn(C)g , a word w ∈
<x, x∗> is evaluated at (X , X∗) in the natural way, resulting in an n × n matrix
w(X , X∗). The polynomial f of equation (1) is then evaluated at X as

f (X , X∗) =
∑

w∈<x,x∗>
fw ⊗ w(X , X∗) ∈ Mδ(C) ⊗ Mn(C) = Mnδ(C).

It is a standard fact that f is hermitian if and only if f ∗(X , X∗) = f (X , X∗)∗ for
each n and X ∈ Mn(C)g .

Affine linear polynomials play a special role. A monic (linear) pencil of size δ is
an element L of Mδ(C<x, x∗>) of the form

L(x, x∗) = Iδ − A
⊙

x − B
⊙

x∗ = Iδ −
g

∑

j=1

A j x j −
g

∑

j=1

Bj x
∗
j . (2)

In the case B = A∗, the pencil L is a hermitian monic (linear) pencil. The associated
spectrahedron1

DL(n) = {(X , X∗) ∈ Mn(C)2g : L(X , X∗) � 0}
is a convex semialgebraic set and is the closure of the connected set {(X , X∗) ∈
Mn(C)2g : L(X , X∗) � 0}. The union, over n, of DL(n) is a free spectrahedron,
denoted DL .

Given f ∈ Mδ(C<x, x∗>) with det f (0) �= 0 and a positive integer n, let K f (n)

denote the closure of the connected component of 0 of

{(X , X∗) ∈ Mn(C)2g : det f (X , X∗) �= 0}.
The free invertibility set K f associated to f is then the union, over n, of the K f (n).
By replacing f by f (0)−1 f we may, and usually do, assume that f (0) = I . A free
invertibility set K f is convex if each K f (n) is. If f = f ∗ is hermitian, then K f is a
free semialgebraic set that we denote here by D f . (Letting g = f ∗ f , we see that g is
hermitian with g(0) = I , andK f = Kg = Dg .) In particular, if L is a hermitianmonic
pencil, then DL is a convex free semialgebraic set. Questions surrounding convexity
of free semialgebraic sets arise in applications such as systems engineering and are
natural from the point of view of the theories of completely positive maps, operator
systems and matrix convex sets [19,56], and quantum information theory [9,33]. It is
known, [37,47], that K f is convex if and only if there is an hermitian monic pencil L
such that K f = DL .

1.2 Main Results

We are now ready to exposit our main results. Using the theory of realizations for
noncommutative rational functions [3,7,27,40,65], in Theorem 1.1 we explicitly and

1 For a square matrix T , the notation T � 0 indicates that T is positive semidefinite.
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constructively describe the structure of noncommutative matrix polynomials f whose
invertibility setK f is convex. Each δ × δ noncommutative polynomial or noncommu-
tative rational function r with r(0) = I has a noncommutative Fornasini–Marchesini
(FM) realization. Namely, there exists a positive integer d (the size of the realization),
a monic linear pencil with coefficients from Md(C), and c, b1, . . . , b2g ∈ Md×δ(C)

such that
r(x, x∗) = Iδ + c∗L(x, x∗)−1b, (3)

where b := ∑g
j=1(b j x j + bg+ j x∗

j ). A d × d linear pencil L as in (2) is irreducible
if A1, . . . , Ag, B1, . . . , Bg generate Md(C) as a C-algebra. For non-constant r , the
FM realization (3) is minimal if L has minimal size amongst all FM realizations of
r .2 Since any two minimal realizations are equivalent up to change of basis (see also
Remark 2.6 for details), Theorem 1.1 does not depend upon the choice of minimal
realization.

Theorem 1.1 Let f ∈ Mδ(C<x, x∗>) with f (0) = I . Let f −1 = I + c∗L−1b be a
minimal FM realization. After a basis change, we can assume that

L =
⎛

⎜

⎝

L1 � �

. . . �

L�

⎞

⎟

⎠
, (4)

with each Li either irreducible or an identity matrix.
Let ̂L be the direct sum of those irreducible blocks Li of L that are similar to a

hermitian monic pencil, and let

̂

L be the direct sum of the remaining L j . Then, the
following are equivalent:

(i) K f is convex;
(ii) K f is a free spectrahedron;
(iii) K f = K

̂L;

(iv)

̂

L is invertible on the interior of K
̂L .

Proof IfK f is convex, then it is a free spectrahedron (by [37]). Hence, (i) implies (ii) .
The converse is immediate. The equivalence of items (iii) and (iv) is straightforward.
Evidently item (iii) implies (ii) . The converse is proved in Sect. 4.1. �	

Theorem 1.1 implies that, for a monic linear pencil L , the invertibility set KL is
convex if and only if the semisimple part of a minimal size pencil L describing KL is
similar to a hermitian pencil.

A non-invertible element f ∈ Mδ(C<x, x∗>) with det f (0) �= 0 is an atom [14,
Section 3.2] if it does not factor; that is, it cannot be written as f1 f2 for non-invertible
f j ∈ Mδ(C<x, x∗>). Given f j ∈ Mδ j (C<x, x∗>) for 1 ≤ j ≤ t , the intersection
K := ⋂

j K f j is irredundant if K f j �
⋂

k �= j K fk for all j . Theorem 1.1 yields the
following striking result providing further evidence of the rigid nature of convexity
for free semialgebraic sets.

2 It is convenient to declare the size of a minimal realization for constant r to be 0.
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Corollary 1.2 Suppose f j ∈ Mδ j×δ j (C<x, x∗>) are atoms with f j (0) = I . If K :=
⋂

j K f j is irredundant, then K is convex if and only if each K f j is convex.

Proof See Sect. 4.1. �	
Theorem 1.1 leads to algorithms based on semidefinite programming. Note that

Part (2) of Corollary 1.3 asserts the existence of an effective version of the main result
of [37].

Corollary 1.3 Let f ∈ Mδ(C<x, x∗>)withdet f (0) �= 0begiven. There is an efficient
deterministic algorithm based on linear algebra and semidefinite programming (SDP)
to:

(1) check whether K f is convex;
(2) (in the caseK f is convex) compute a linear matrix inequality (LMI) representation

for K f ; that is, a hermitian monic pencil L (of minimal size) with K f = DL .

An SDP can be solved up to a given arbitrary precision in polynomial time [53, Section
6.4]. Thus in practice, our algorithm runs in polynomial time. The proof of (2) is based
on Theorem 1.1 (see Sect. 4.2), while the proof of (1) in Sect. 4.3 uses (2) and new,
of independent interest, (recursive) certificates for invertibility of linear pencils on
interiors of free spectrahedra.

Theorem 1.4 (Nichtsingulärstellensatz) Let L be a hermitian monic pencil, and let ˜L
be a not necessarily square affine linear matrix polynomial. Consider the set of all
matrices D,Ck, P0 such that P0 � 0 and

D˜L + ˜L∗D∗ = P0 +
∑

k

C∗
k LCk . (5)

(Such certificates can be searched for using semidefinite programming.)

(1) If the only solutions of (5) have P0 = 0 = Ck, then for some (X , X∗) in the interior
of DL , the matrix ˜L(X , X∗) is rank deficient;

(2) Otherwise let V = ker P0 ∩ ⋂

k kerCk.

(a) If V = {0}, then ˜L is full rank on intDL .
(b) If V �= {0}, then˜L is full rank on intDL if and only if˜L|V is full rank on intDL

and the theorem now applies with ˜L replaced by the smaller pencil ˜L|V .
Proof See Proposition 4.3, Corollary 4.6 and its proof. �	

For the special case of hermitian atoms with δ = 1, the conclusion of Theorem 1.1
can be significantly strengthened as the final main result shows.

Theorem 1.5 Suppose f ∈ C<x, x∗> is a hermitian atom and f (0) � 0. If D f

is proper and convex, then f is of degree at most two, is concave and is the Schur
complement of any minimal size hermitian monic pencil L satisfying D f = DL .

Proof See Sect. 3. �	
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Theorem 1.5 settles [17, Conjecture 1.4]. In [68, Theorem 5.4], this result is further
extended to the case when f is not necessarily an atom, butD f+ε is proper and convex
for all small ε > 0.

Noncommutative, or more accurately, freely noncommutative analysis has impli-
cations in the commutative setting, particularly for LMIs. Given a hermitian monic
pencil L the set DL(1), level 1 of the free spectrahedron DL , consisting of ξ ∈ C

g

such that L(ξ, ξ) � 0 is a spectrahedron [64]. Spectrahedra are currently of intense
interest in a number of areas; e.g., real algebraic geometry [8,48,62], optimization
[20,52,69] and quantum information theory [49,57]. Problems involving free spectra-
hedra are typically tractable semidefinite programming problems. Thus, elevating a
problem involving spectrahedra to its free analog often produces a tractable relaxation.
The matrix cube problem of [6,52] is a notable example of these phenomena [32,34].
See also [15,42]. Theorem 1.4 provides another example as it gives a computation-
ally tractable relaxation for the problem of determining whether a polynomial is of
constant sign on the interior of a spectrahedron.

1.3 Reader’s Guide

Section 2 contains background and some preliminary results on linear pencils, free
spectrahedra and realizations of noncommutative rational functions needed in the
sequel. The proof of Theorem 1.5 is given in Sect. 3, followed by the proof of Theo-
rem 1.1 and its corollary, Corollary 1.2, in Sect. 4.1. Corollary 1.3 and Theorem 1.4
are proved in the remainder of Sect. 4. Section 4.2 contains an algorithm that, for a
given noncommutative polynomial f with convex K f , constructs a hermitian monic
pencil ̂L with D

̂L = K f . Indeed, up to similarity, ̂L is extracted from the monic lin-
ear pencil L appearing in a minimal FM realization of f −1. Section 4.3 presents an
efficient algorithm for checking whether K f is convex. It is based on (the proof of)
Theorem 1.1 and representation theory and produces a finite sequence of semidefinite
programs of decreasing size whose feasibility determines if K f is convex. Section 5
presents several illustrative examples establishing optimality of our main results. Fur-
ther, Sect. 5.3 settles a conjecture from [17] on the degrees of atoms f with convex
K f in the negative. In Sect. 6, we characterize hermitian monic pencils that can arise
in a minimal realization of a noncommutative polynomial; these pencils underpin our
constructions in Sect. 5. Finally, Sect. 7 provides a detailed analysis of factorizations
of hereditary noncommutative polynomials. As a consequence, an hereditary minimal
degree defining polynomial for a free spectrahedron is an atom and hence has degree
at most two, see Corollary 7.2.

2 Preliminaries

Let z = (z1, . . . , zg, zg+1, . . . , z2g) = (x1, . . . , xg, y1, . . . , yg) denote 2g freely
noncommuting variables. Replacing zg+ j = y j with x∗

j identifies C<z> with
C<x, x∗>. On the other hand, elements f ∈ C<z> are naturally evaluated at tuples
Z = (X ,Y ) ∈ Mn(C)g ×Mn(C)g = Mn(C)2g , whereas we evaluate f ∈ C<x, x∗>
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at (X , X∗) ∈ Mn(C)2g. The use ofC<z> versusC<x, x∗> only signals our intent on
viewing the domain of f as either Mn(C)2g or {(X , X∗) : X ∈ Mn(C)g} ⊂ Mn(C)2g

respectively. Indeed, we can identify C<z> with C<x, x∗> whenever we work with
attributes of free polynomials that are per se independent of evaluations. For exam-
ple, ring-theoretically there is no difference in using symbols zg+ j instead of x∗

j
when talking about atomicity of polynomials. Therefore, the results and definitions
for matrix polynomials in z = (z1, . . . , zh), whose assumptions refer only to the struc-
ture, and not to evaluations, of polynomials, directly apply to matrix polynomials in
x1, . . . , xg, x∗

1 , . . . , x
∗
g .

The free locus Z f of f ∈ C<z>δ×δ is the union, over n ∈ N, of

Z f (n) =
{

(X ,Y ) ∈ Mn(C)2g : det f (X ,Y ) = 0
}

.

Assuming det f (0) �= 0, as in the introduction, let K f = ⋃

n K f (n), where K f (n) is
the closure of the connected component of

{

(X , X∗) ∈ Mn(C)2g : det f (X , X∗) �= 0
}

containing the origin.
For A = (A1, . . . , Ag) ∈ Md×e(C)g and P ∈ Me×δ(C), we write

A∗ := (A∗
1, . . . , A

∗
g), A

⊙

x :=
g

∑

j

A j x j ,

AP := (A1P, . . . , Ag P), ker A :=
g

⋂

j

ker A j .

For a hermitian monic pencil L = I − A
⊙

x− A∗ ⊙

x∗ set ∂DL(n) = ZL(n)∩DL(n)

and

∂DL =
⋃

n∈N
∂DL(n).

Observe that since L(0) � 0, it is easy to see that ∂DL(n) is precisely the topologi-
cal boundary of DL(n). Furthermore, DL(n) is the closure of its interior because of
convexity. A non-constant hermitian monic pencil L is minimal if it is of minimal
size among hermitian monic pencils L ′ satisfying DL ′ = DL . If L and M are min-
imal and DL = DM , then L and M are unitarily equivalent. (See Proposition 2.2.)
It is convenient to declare that the minimal pencil for the largest free spectrahedron
DI = {(X , X∗) : X ∈ Mn(C)n, n ∈ N} is of size 0. Every free semialgebraic set
strictly contained in DI is called proper.
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2.1 Free Loci and Spectrahedra

For h, n ∈ N, let Ω(n) = (Ω
(n)
1 , . . . ,Ω

(n)
h ) be an h-tuple of n × n generic matrices,

that is,

Ω
(n)
j = (ω j ıj )ıj ,

where ω j ıj for 1 ≤ j ≤ h and 1 ≤ ı, j ≤ n are commuting indeterminates.

Lemma 2.1 A linear pencil L = I − A
⊙

z is irreducible if and only if

(1) ker A = {0} and ker A∗ = {0}; and
(2) det L(Ω(n)) is an irreducible polynomial for all n large enough.

Proof Assume L is irreducible. Thus, the A j have no common invariant subspace. In
particular, ker A = {0} and ker A∗ = {0}. Thus, (1) holds. The fact that (2) holds is
contained in [36, Theorem 3.4].

For the converse implication, assume L is not irreducible. So the A j have an invari-
ant subspace, and L can be written in block form as

L =
(

L1 �

0 L2

)

.

If the coefficients of L1 are jointly nilpotent, then ker A �= {0}. If the coefficients of
L2 are jointly nilpotent, then ker A∗ �= {0}. Otherwise det Li (Ω

(n)) are non-constant
for all large n (cf. Remark 2.6(5) below), and hence

det L(Ω(n)) = det L1(Ω
(n)) det L2(Ω

(n))

is not irreducible for large n. �	
Note that every irreducible hermitianmonic pencil isminimal. Twohermitianmonic

pencils Iδ−∑g
j=1 A j x j−∑g

j=1 A
∗
j x

∗
j and Iδ−

∑g
j=1 Bj x j−∑g

j=1 B
∗
j x

∗
j are unitarily

equivalent if there is a unitary matrix U such that U A j = BjU for 1 ≤ j ≤ g.

Proposition 2.2 A minimal hermitian monic pencil is an orthogonal direct sum of
irredundant irreducible hermitian monic pencils. If L1 and L2 are minimal hermitian
monic pencils with DL1 = DL2 , then L1 and L2 are unitarily equivalent.

Proof Let L = Iδ − ∑g
j=1 A j x j − ∑g

j=1 A
∗
j x

∗
j be a given hermitian monic

pencil. By an invariant subspace for L , we mean an invariant subspace for
{A1, . . . , Ag, A∗

1, . . . , A
∗
g}. Since L is hermitian, any invariant subspace for L is in

fact reducing. Hence, L = ⊕i Li , where each Li is a hermitian monic pencil with no
nontrivial invariant (equivalently reducing) subspaces. Thus, each Li is an irreducible
hermitian monic pencil.

If there is an i such that DLi ⊆ ⋂

j �=i DL j , then, setting M = ⊕ j �=i L j it follows
that DM = DL and M has smaller size than L. Hence, if L is minimal, then L is
irredundant.

The last statement is [32, Theorem 1.2]. See also [15, Section 6]. �	
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Proposition 2.3 [36, Proposition 8.3] If L is a minimal hermitian monic pencil, then
∂DL(n) is Zariski dense in ZL(n) for all n large enough.

In particular, if f is a polynomial and ∂DL ⊆ Z f , then ZL ⊆ Z f .

Proposition 2.4 If f ∈ Mδ(C<z>) and det f (0) �= 0, then f is an atom if and only
if det f (Ω(n)) is an irreducible polynomial for all n large enough.

Proof The forward implication is [36, Theorem 4.3(1)]. For the converse, suppose f
factors as f = f1 f2, where the fi are non-invertible. By Remark 2.6(5) , det fi (Ω(n))

is non-constant for large n. But then det f (Ω(n)) is not irreducible for large n. �	
Proposition 2.5 Let f ∈ Mδ(C<x, x∗>) satisfy det f (0) �= 0, and let L be a hermi-
tian monic pencil.

(1) If Z f = ZL , then K f = DL .
(2) If L is minimal and K f = DL , then Z f ⊇ ZL .
(3) If f is an atom and L is minimal, then K f = DL implies Z f = ZL .

Proof To prove item (1) let (X , X∗) be a point in the connected component O of

{

(X , X∗) ∈ Mn(C)2g : det f (X , X∗) �= 0
}

containing the origin. Thus, there exists a path γ in O with γ (0) = 0 and γ (1) =
(X , X∗). If L(X , X∗) � 0, then there exists t ∈ (0, 1) such that det L(γ (t)) =
0, contradicting Z f = ZL . Therefore, L(X , X∗) � 0. A similar argument shows
L(X , X∗) � 0 implies (X , X∗) ∈ O. Taking closures obtains K f = DL .

Taking up items (2) and (3) , suppose L is minimal. IfK f = DL , then they have the
same topological boundary. Since the topological boundary of K f (n) is contained in
Z f (n) and ∂DL(n) is Zariski dense inZL(n) for large n by Proposition 2.3,Z f ⊇ ZL .
If also f is atom, then Z f (n) is irreducible for large n by Proposition 2.4, and thus,
Z f = ZL . �	

2.2 Realization Theory

Let Mδ(C (<z )>) denote the δ×δ noncommutative (nc) rational functions in z1, . . . , zh
[14,41,66]. Evaluations and the involution for polynomials naturally extend to
Mδ(C (<z )>) and Mδ(C (<x, x∗ )>), respectively. Both operations are entirely transpar-
ent for FM realizations (Eq. (3)), the realizations we use in this paper.

Remark 2.6 Realization theory in general has roots in automata theory [21,22,59,60]
and can be traced back further to [44], while FM realizations in the commutative setting
arise from control theory [23]. For later usewe recall the following fundamental results
about minimal FM realizations. Each is an embodiment of a well-understood general
principle of realization theory for matrix functions in one (commutative) variable [4].
For the original statements and proofs, see [3,40,65].
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(1) An FM realization I + c∗(I − A
⊙

z)−1(b
⊙

z) of size d with c, b j ∈ Md×δ(C)

is controllable if

span{Awb ju : w ∈ <z>, 1 ≤ j ≤ g, u ∈ C
δ} = C

d ,

and observable if

span{(A∗)wcu : w ∈ <z>, u ∈ C
δ} = C

d .

It is a fundamental result that a realization is minimal if and only if it is observable
and controllable. An immediate consequence, and one that is used here, is, for a
minimal realization,

c∗v = 0 and v ∈ ker A ⇒ v = 0

and

v∗b = 0 and v ∈ ker A∗ ⇒ v = 0.

(2) The state space isomorphism theorem says minimal FM realizations are unique
up to an isomorphism (change of basis) between their state spaces. That is, if
I + c∗(I − A

⊙

z)−1(b
⊙

z) and I + γ ∗(I − B
⊙

z)−1(β
⊙

z) are two minimal
FM realizations for the same rational function, then they have the same size, say
d, and there is d × d invertible matrix S such that SA = BS, Sb = β and
c∗S−1 = γ .

(3) Given a realization I + c∗(I − A
⊙

z)−1(b
⊙

z) there is a linear algebra
algorithm—an extension of the Kalman decomposition—that produces a min-
imal realization.

(4) In the classical (commutative) one-variable setting, if r(ζ ) = I+ζc∗(I−Aζ )−1b
is aminimal FM realization, then the domain of r is precisely the set of ζ forwhich
I−ζ A is invertible. In the present several variable noncommutative setting, while
there are some subtleties in the statement of the analogous result found in [40,65],
these results do justify calling the complement of ZL the domain of regularity of
the rational function with minimal realization r = I + c∗L−1b.

(5) If r = I + c∗L−1b is a minimal realization, then r is a polynomial if and only
if the coefficients of L are jointly nilpotent. Indeed, if r is a polynomial, then by
item (4) , ZL = ∅. By [46, Proposition 3.3], ZL = ∅ if and only the coefficients
of L are jointly nilpotent. The converse is immediate.

(6) Lastly, if r = I + c∗L−1b is an FM realization, then

r−1 = I − c∗(I − (A − bc∗) ⊙

z
)−1b (6)

is an FM realization of r−1 by [3, Theorem 4.3]. Because the realizations (3) and
(6) are of the same size, (3) is minimal for r if and only if (6) is minimal for r−1.
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Proposition 2.7 Let f ∈ Mδ(C<z>) be non-constant with f (0) = I . If I + c∗L−1b
is a minimal FM realization of f −1 with L = I − A

⊙

z, then

(1) det f (Ω(n)) = det L(Ω(n)) for all n.

If moreover δ = 1, then

(2) ker A∗ = {0} and ker A = {0};
(3) L is irreducible if and only if f is an atom.

Proof (1) By the well-known determinantal identity det(M + uv∗) = det(I +
v∗M−1u) det M for an invertible M ,

det L(Z) det f (Z)−1 = det
(

(L + bc∗)(Z)
)

for every Z with det f (Z) �= 0. By Remark 2.6(5) , N j := A j −b j c∗, the coefficients
of L + bc∗, are the coefficients in a minimal realization of the polynomial f . By
Remark 2.6(5) , the N j are jointly nilpotent. Hence, det f (Ω(n)) = det L(Ω(n)) for
all n.

(2) If 0 �= v ∈ ker A, then

N jv = −(c∗v)b j ,

and c∗v ∈ C \ {0} by Remark 2.6(1) . Hence, b j ∈ ran N j . Since the N j are jointly
nilpotent, there exists a nonzero vector u such that u∗N j = 0. Hence, u∗b j = 0. By
Remark 2.6(1) , the FM realization Eq. (6) is notminimal, contradicting Remark 2.6(6)
.

A similar line of reasoning shows that ker A∗ = {0}. If v∗A j = 0 and N ju = 0,
then −v∗b j c∗u = 0. By minimality, there is a k such that v∗bk �= 0. Hence, c∗u = 0,
and thus, A ju = 0, contradicting minimality.

(3) Let f be an atom. By Proposition 2.4, det L(Ω(n)) = det f (Ω(n)) is an irre-
ducible polynomial for all n large enough. Hence, L is irreducible by Lemma 2.1
and (2). Conversely, if L is irreducible, then det f (Ω(n)) = det L(Ω(n)) is an irre-
ducible polynomial for all n large enough by Lemma 2.1. Therefore, f is an atom by
Proposition 2.4. �	

3 Proof of Theorem 1.5

We start the proof of Theorem 1.5 with a lemma.

Lemma 3.1 Suppose r ∈ C (<x, x∗ )> \ C is defined at the origin and r(0) = 1.
Assume that r is hermitian and r = 1 + c∗L−1b is a minimal FM realization, where

b = ∑

j

̂

b j x j + ∑

j
̂b j x∗

j . If L is irreducible and monic hermitian, say L = I −
A

⊙

x − A∗ ⊙

x∗, then there exists λ ∈ R \ {0} such that

̂

b j = λA jc and ̂b j = λA∗
j c f or all j = 1, . . . , g.
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Proof Since r is hermitian, the comparison of formal power series expansions of
1 + c∗L−1b and 1 + b∗L−1c yields

c∗Ak w(A, A∗)

̂

b j = ̂b∗
k w(A, A∗) A jc (7)

c∗A∗
k w(A, A∗)

̂

b j =

̂

b∗
k w(A, A∗) A jc (8)

c∗Ak w(A, A∗)̂b j = ̂b∗
k w(A, A∗) A∗

j c (9)

for all w ∈<x, x∗> and 1 ≤ j, k ≤ g. Since L is irreducible, the matrices w(A, A∗),
for w ∈<x, x∗>, span Md(C). It is easy to see that if v1, v2, v3, v4 ∈ C

d satisfy

v∗
1Mv2 = v∗

3Mv4 for all M ∈ Md(C),

then v1 and v3 are collinear, and v2 and v4 are collinear. Hence by (7),(8),(9) and the
fact that w(A, A∗) span Md(C), there exist λ1jk, λ

2
jk, λ

3
jk ∈ C such that

̂

b j = λ1jk A j c, ̂bk = λ1jk A
∗
kc

̂

b j = λ2jk A j c,

̂

bk = λ2jk Akc (10)

̂b j = λ3jk A
∗
j c, ̂bk = λ3jk A

∗
kc (11)

for all j, k. By minimality, there exists � such that

̂

b� �= 0 or ̂b� �= 0. By symmetry,
we may assumêb� �= 0.

Since ̂b� �= 0, Eq. (10) implies λ := λ1j� �= 0 is independent of j . It also implies

A∗
�c �= 0. Likewise, by Eq. (11), λ3j� is independent of j and λ3j� = λ1j� = λ. By Eq.

(11), ̂b� = λA∗
�c = λA∗

�c. Thus λ ∈ R \ {0}. Finally, from Eq. (10),

̂

b j = λA jc and
̂b j = λA∗

j c as desired. �	

Proposition 3.2 Suppose f ∈ C<x, x∗> is a hermitian atom and f −1 = 1+c∗L−1b
is aminimalFMrealization. If L is hermitian, then f is concave, has degree atmost two
and is a Schur complement of L. Further, f (X , X∗) � 0 if and only if L(X , X∗) � 0.

Proof Since L is hermitian, it has the form L = I − A
⊙

x − A∗ ⊙

x∗. Since f
is an atom and the realization f −1 = I + c∗L−1b is minimal, L is irreducible by
Proposition 2.7(3) . Since f is hermitian, so is f −1. Thus, by Lemma 3.1 we may
assume that

b = ε(A
⊙

x + A∗ ⊙

x∗)c

for ε ∈ {−1, 1}. By Remark 2.6(6) , f admits a minimal realization

f = 1−εc∗(I−A(I−εcc∗) ⊙

x−A∗(I−εcc∗) ⊙

x∗)−1
(A

⊙

x+A∗ ⊙

x∗)c. (12)
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Since f is a polynomial, the A j (I − εcc∗), A∗
j (I − εcc∗) are jointly nilpotent by

Remark 2.6(5) . In particular, they have a nontrivial common kernel. Since A j , A∗
j

generate Md(C), it follows that P = I −εcc∗ is singular, so in particular ε = 1. Since
also P is hermitian and a rank-one perturbation of the identity, it is an orthogonal
projection. After a unitary change of basis, we assume that P = 0 ⊕ Id−1. Let

A =
(

α v∗
u ˜A

)

be the decomposition of A with respect to this new basis. Then,

AP =
(

0 v∗
0 ˜A

)

, A∗P =
(

0 u∗
0 ˜A∗

)

are jointly nilpotent, so ˜A, ˜A∗ are jointly nilpotent. Hence, ˜A∗
j
˜A j is nilpotent, and

thus, ˜A = 0. It follows that AP, A∗P are jointly nilpotent of order at most two and

(

I − A(I − cc∗) ⊙

x − A∗(I − cc∗) ⊙

x∗)−1

= I + A(I − cc∗) ⊙

x + A∗(I − cc∗) ⊙

x∗.

Now (12) gives

f = 1 − c∗(I + A(I − cc∗) ⊙

x + A∗(I − cc∗) ⊙

x∗)(

A
⊙

x + A∗ ⊙

x∗)c

= 1 − c∗(A⊙

x + A∗ ⊙

x∗)c − c∗

(A
⊙

x + A∗ ⊙

x∗)(I − cc∗)(A⊙

x + A∗ ⊙

x∗)c.

Therefore, f has the form

f = 1 − (α
⊙

x + ᾱ
⊙

x∗) − (u
⊙

x + v
⊙

x∗)∗(u ⊙

x + v
⊙

x∗),

which is a Schur complement of

L = I −
(

α v∗
u 0

)

⊙

x −
(

ᾱ u∗
v 0

)

⊙

x∗.

In particular, f is concave, has degree at most two and f (X , X∗) � 0 if and only if
L(X , X∗) � 0. �	
Proposition 3.3 Suppose f ∈ C<x, x∗> is a hermitian atom with f (0) = 1 and L is
a minimal hermitian monic pencil of size d ≥ 1. If D f = DL , then L is irreducible
and there exists b j , c ∈ C

d such that f −1 = I +c∗L−1b is a minimal FM realization.

Proof Write L = I − A
⊙

x − A∗ ⊙

x∗. By Proposition 2.5(3) , Z f = ZL . After
a unitary change of basis, we can assume that L equals a direct sum of irreducible
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hermitian monic pencils L1, . . . , L�. Since L is minimal, the pencils L1, . . . , L� are
pairwise unitarily non-similar by Proposition 2.2. Therefore,

Z f (n) = ZL(n) = ZL1(n) ∪ · · · ∪ ZL� (n)

is a union of � distinct hypersurfaces for large n by Lemma 2.1. Since f is an atom,
Proposition 2.7(3) implies � = 1. Hence, L is irreducible.

Let f −1 = 1 + c̃∗
˜L−1

˜b be a minimal FM realization. Since f is an atom, ˜L is
irreducible by Proposition 2.7(3) , andZ

˜L = Z f = ZL by Proposition 2.7(1) . By [46,
Theorem3.11], the pencils L and˜L are of the same size d and there exists P ∈ GLd(C)

such that ˜L = P−1LP . Therefore, f −1 admits the minimal FM realization

f −1 = 1 + c∗L−1b,

where b = P˜b and c = P−∗c̃. �	
Combining Propositions 3.3 and 3.2, and using the fact that if D f is convex, then

there is a minimal hermitian monic pencil L such that D f = DL [37], proves a bit
more than claimed in Theorem 1.5.

Corollary 3.4 Suppose f ∈ C<x, x∗> is a hermitian atom and f (0) � 0. If D f is
proper and convex, then f has degree two and is concave.

Further, normalizing f (0) = 1, if L is a minimal hermitian monic pencil such that
D f = DL , then L is irreducible, f is a Schur complement of L and there exist vectors
c, b1, . . . , b2g such that

f −1 = 1 + c∗L−1b

is a minimal FM realization.

Remark 3.5 The properness in Corollary 3.4 ensures that a minimal hermitian monic
pencil for D f has size at least 1, so Proposition 3.3 applies. For the description of
f ∈ C<x, x∗> satisfying f � 0 globally, see [45, Remark 5.1].

Remark 3.6 From the proof of Theorem 1.5, we also obtain a bound on d, the size of
L . Since ˜A = 0, the lower right (d − 1) × (d − 1) entries in the C-algebra generated
by A and A∗ are spanned by S = {st∗ : s, t ∈ {u1, . . . , ug, v1, . . . , vg}}. Since L is
irreducible, this span is all of Md−1(C) and hence (d − 1)2 is at most the maximal
cardinality of S, namely (2g)2. Hence, d ≤ 2g + 1. �	

4 Proof of Theorem 1.1 and Algorithms: Corollary 1.3

In this section, we prove Theorem 1.1 and explore algorithmic consequences. In par-
ticular, we present, stated as Corollary 1.3, a constructive version of the main result
of [37].
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4.1 Proof of Theorem 1.1

It suffices to prove item (ii) implies item (iii). Let L be the pencil appearing in a
minimal FM realization for f −1, and let L1, . . . , L� be its diagonal blocks as in (4).
By Remark 2.6(4) ,K f = KL . By assumption there exists a minimal hermitian monic
pencil ˜L such that KL = D

˜L . By ∂KL(n), we denote the topological boundary of
KL(n). Thus,

ZL(n) ⊇ ∂KL(n) = ∂D
˜L(n)

for every n.

For S ⊆ Mn(C)g , let S
Zar

denote its Zariski closure. For n sufficiently large,

ZL(n) ⊇ ∂KL(n)
Zar = ∂D

˜L(n)
Zar = Z

˜L(n)

by Proposition 2.3. Note that ZL(n) and Z
˜L(n) are hypersurfaces. Therefore, the set

of irreducible components of ZL(n) contains the set of irreducible components of
Z

˜L(n). Since

ZL = ZL1 ∪ · · · ∪ ZL�

and the ZLi (n) are irreducible hypersurfaces for all n large enough by Lemma 2.1,
there exist indices 1 ≤ i1 < · · · < is ≤ � such that the Lik are pairwise non-similar
and

∂KL(n)
Zar = Z

˜L(n) = ZLi1 (n) ∪ · · · ∪ ZLis (n) (13)

for alln large enough. Since˜L isminimal, it is (up to aunitary changeof basis) equal to a
direct sum of irredundant irreducible hermitian monic pencils ˜Lk by Proposition 2.2.
Each of them corresponds to an irreducible component in (13) by Proposition 2.3.
Therefore, ˜L = ˜L1 ⊕ · · · ⊕ ˜Ls and, after reindexing if needed, Z

˜Lk = ZLik for
k = 1, . . . , s. Then, KLik = D

˜Lk is convex for every k and therefore

KL =
⋂

k

KLik =
⋂

k

D
˜Lk = D

˜L1⊕···⊕˜Ls . (14)

Moreover, Lik is similar to ˜Lk by [46, Theorem 3.11].
Recall that̂L is the direct sum of irreducible blocks Lk that are similar to a hermitian

monic pencil, and

̂

L is the direct sum of the rest. Then, every Lik appears as a direct
summand in ̂L . Now let Lm be an arbitrary pencil appearing in ̂L . If it is not similar
to Lik for any k, then (13) implies

⋂

k

KLik ⊆ KLm .

Hence, K f = D
̂L holds by (14). �	
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Remark 4.1 Given a factorization of f into atomic factors f = f1 · · · ft with f j (0) =
I , one can use the proof of Theorem 1.1 to identify those factors f j that determine
K f .

By (13),

ZLi1 (n) ∪ · · · ∪ ZLis (n) ⊆ Z f1(n) ∪ · · · ∪ Z ft (n).

for all n. Since Z f j (n) is an irreducible surface for large n by Proposition 2.4, there
exist indices 1 ≤ j1 < · · · < js ≤ t such that

ZLik = Z f jk

for all k = 1, . . . , s. Therefore

K f =
⋂

k

K f jk

by (14) and Proposition 2.5(1) .
To find the indices jk , we first compute minimal realizations for f −1

j = I +
c j L

−1
j b j , and put each L j into a block upper triangular form as in (4). For every j ,

precisely one of the blocks on the diagonal of L j is irreducible by Proposition 2.4.
Then, we compare these blocks to the pencils Lik to determine jk .

Proof of Corollary 1.2 (⇐) is trivial. For the converse, let f = ∏

i fi and consider a
minimal FM realization f −1 = I+c∗L−1b. After a basis change, wemay assume that
L is of the form (4). As in Remark 4.1, for every i there exists ji such thatZLi = Z f ji

,

whence KLi = K f ji
. If some Li is not similar to a hermitian monic pencil, then

̂

L is
nontrivial and is invertible on intK

̂L by convexity of K and Theorem 1.1. Hence, f ji
is redundant, contradicting the assumption. �	

4.2 Finding an LMI Representation for a ConvexKf

The main result of [37] states that for a hermitian matrix polynomial f ∈
Mδ(C<x, x∗>) with f (0) � 0, the set K f (n) is convex for all n if and only if
K f is a free spectrahedron. Actually, the version in [37] does this for hermitian f
with boundedK f . However, these two assumptions are redundant. Indeed, the former
can be enforced by replacing f by f ∗ f . The alternative proof of [37, Theorem 1.4]
due to Kriel [47] is based on Nash functions in real algebraic geometry and the Fritz–
Netzer–Thom characterization [25] of free spectrahedra via operator systems theory.
It also works for unbounded K f = D f ∗ f .

4.2.1 Algorithm

We next explain how the machinery developed in this paper produces an explicit
minimal LMI representation for a convex K f . This efficient algorithm only involves
linear algebra and semidefinite programming (SDP) [8,69].
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(a) Compute the minimal realization

I + c∗L−1b

for f −1. To construct this realization, one uses the explicit state-space formulae,
c.f. [3, Section 4], for addition and multiplication to construct a realization for
f , applying the Kalman decomposition [3, Section 7] at each step to ensure
minimality. Lastly, the formula for inversion (6) yields a minimal realization
for f −1. This process only uses linear algebra, and minimization after every
step keeps the sizes of intermediate realizations from blowing up. Mathematica
notebooks with rudimentary programs for computing minimal realizations are
found in [30].

(b) Next we find the Burnside decomposition [11, Corollary 5.23] of L into

L =
⎛

⎜

⎝

L1 � �

. . . �

L�

⎞

⎟

⎠
,

where each Li is either irreducible or the identity. This decomposition can be
found using deterministic algorithms with polynomial time complexity. LetA be
the unitalmatrix subalgebra generated by the coefficients of L . One first computes
and mods out the radical ofA (corresponding to the � entries) using the algorithm
in [16, Section 3]; then, the algorithm of [18, Theorem 3.5] is applied to find
the irreducible blocks L j . Alternatively, [13, Theorem 6] gives an algorithm for
decomposing A as a direct sum of minimal left ideals; after omitting the ideals
contained in the radical using a linear test [24, Corollary 4.3], the remaining
ideals are necessarily one-dimensional, and the union of bases of ranges of their
generators is a basis in which L has the desired block structure.

(c) Considering only the irreducible blocks, choose one from each similarity class.
Note that checking similarity of linear pencils amounts to checking whether the
system of linear equations PLi = L j P has an invertible solution P .

(d) Find all those Li that are similar to a hermitian monic pencil. This uses SDP.
Each solution to the feasibility semidefinite problem

Q � I , Q(Li )∗ = Li Q (15)

leads to a hermitian monic pencil ˜Li = Q− 1
2 Li Q

1
2 . If (15) is infeasible, then Li

is not similar to a hermitian monic pencil.
(e) The direct sum ˜L of the hermitian monic pencils ˜Li obtained in (d) satisfies

D
˜L = K f

by Theorem 1.1.
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(f) Using the minimization algorithm described in [32, Subsection 4.6], which uses
SDP to eliminate redundant blocks in ˜L , we can produce a minimal hermitian
monic pencil ̂L with D

̂L = K f .

4.3 CheckingWhetherKf is Convex

As a side product of Theorem 1.1 and the algorithm in Sect. 4.2, we obtain a procedure
for checking whether K f is convex.

Given f ∈ Mδ(C<x, x∗>) with f (0) = I , we construct the realization of f −1

and identify its irreducible blocks Li , choosing one from each similarity class. Let ̂L

be the direct sum of all the Li that are similar to a hermitian monic pencil, and let

̂

L
be the direct sum of the others. By Theorem 1.1, it suffices to present an algorithm for

checking whether property (iv) of Theorem 1.1 holds, that is, whether

̂

L is invertible
on the interior ofD

̂L . To this end, we first prove general statements about (rectangular)
affine linear pencils being of full rank on the interior of a free spectrahedron (see also
[26,45,55,67] for related results).

For the rest of this section, let L be a d × d hermitian monic pencil, and let ˜L be
a δ × ε affine linear pencil (in x and x∗). Assume δ ≥ ε and consider the following
system:

(D˜L) = P0 +
∑

k

C∗
k LCk, P0 � 0 (16)

for some D ∈ Mε×δ(C),Ck ∈ Md×ε(C) and P0 ∈ Mε(C), where (M) = 1
2 (M +M∗)

denotes the real part of a square matrix M . (If δ < ε we simply replace ˜L by ˜L∗.)
Note that D = 0, P0 = 0, Ck = 0 is a trivial solution. We mention that (16) is related
to the notion of a ˜L-real left module of [35].

Lemma 4.2 Let δ ≥ ε. If there exists a solution of (16) satisfying

ker P0 ∩
⋂

k

kerCk = {0}, (17)

then ˜L(X , X∗) is full rank for every X satisfying L(X , X∗) � 0.

Proof Suppose (16) holds and X ∈ Mn(C)g satisfies L(X , X∗) � 0. If (D˜L)(X , X∗)
v = 0 for v ∈ C

εn , then (16) together with P0 � 0 and L(X , X∗) � 0 imply

(P0 ⊗ I )v = 0, (Ck ⊗ I )v = 0 for all k.

Therefore, v = 0 by Eq. (17). Hence, (D˜L)(X , X∗) is positive definite, so
(D˜L)(X , X∗) is invertible. Consequently, ˜L(X , X∗) has full rank. �	
Proposition 4.3 Let δ ≥ ε. If every solution of (16) satisfies

P0 = 0, Ck = 0 for all k,

then there exists X ∈ Mmax{d,ε}(C)g such that L(X , X∗) � 0 andker˜L(X , X∗) �= {0}.
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Before proving Proposition 4.3, we introduce some notation. Let η = max{d, ε}.
For � = 0, 1, 2,, let V� ⊆ Mη(C<x, x∗>) denote the subspace of polynomials of
degree at most �, and let

S =
{

∑

i

L∗
i Li : Li ∈ V1

}

,

C =
{

∑

k

C∗
k LCk : Ck ∈ Md×η(C)

}

,

U =
{(

D1˜L + ˜L∗E∗
1

˜L∗E∗
2

D2˜L 0

)

: D1, E1 ∈ Mε×δ(C), D2, E2 ∈ M(η−ε)×δ(C)

}

.

Also let Vh
2 ⊆ V2 be the R-subspace of hermitian matrix polynomials. Both C and S

are convex cones in Vh
2 , and U is a subspace in V2. Observe that

U ∩ Vh
2 =

{(

(D1˜L) ˜L∗D∗
2

D2˜L 0

)

: D1 ∈ Mε×δ(C), D2 ∈ M(η−ε)×δ(C)

}

andU = (U∩Vh
2 )+i(U∩Vh

2 ). Using the standard argument involving Caratheodory’s
theorem on convex hulls [5, Theorem 2.3], it is easy to show that C + S is closed in
Vh
2 ; see e.g. [31, Proposition 3.1].

Lemma 4.4 Keep the notation from above. If every solution of (16) satisfies

P0 = 0, Ck = 0 for all k,

then U ∩ (C + S) = {0}.
Proof Suppose

(

(D1˜L) ˜L∗D∗
2

D2˜L 0

)

=
∑

i

L∗
i Li +

∑

k

(

C∗
k

C ′∗
k

)

L
(

Ck C ′
k

)

(18)

for D1 ∈ Mε×δ(C), D2 ∈ M(η−ε)×δ(C), Li ∈ V1, Ck ∈ Md×ε(C) and C ′
k ∈

Md×(η−ε)(C). By looking at the degrees on both sides, we obtain Li ∈ V0; let us
write

∑

i

L∗
i Li =

(

p1 p2
p∗
2 p3

)

.

Therefore, (D1˜L) satisfies (16), so p1 = 0 and Ck = 0 by the hypothesis. Moreover,
p2 = 0 by positive semidefiniteness. Finally, since L is monic, (18) implies p3 = 0
and C ′

k = 0. �	
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To prove Proposition 4.3, we require a version of the Gelfand–Naimark–Segal
(GNS) construction. Given a Hilbert space H , let B(H) denote the (bounded linear)
operators on H .

Lemma 4.5 Suppose λ : V2 → C is a positive linear functional in the sense that
λ( f ∗ f ) > 0 for all f ∈ V1 \ {0}. Thus, the resulting scalar product 〈 f1, f2〉λ :=
λ( f ∗

2 f1) on V1 makes V1 a Hilbert space and V0 ⊆ V1 is a subspace. Let π : V1 →
V0 = Mη(C) denote the orthogonal projection. For a ∈ Mη(C), let �a ∈ B(V0) denote
the map f �→ a f , and let Y j ∈ B(V0) denote the map f �→ π(x j f ). Then,

(1) �∗
a = �a∗ ;

(2) Y ∗
j f = π(x∗

j f );
(3) �aY j = Y j�a (and hence �aY ∗

j = Y ∗
j �a);

(4) there is a unitary mapping U : C
η ⊗ C

η → V0 such that U∗�aU = a ⊗ I ;
(5) there exists X j ∈ Mη(C) such thatU∗Y jU = I⊗X j , and if L = C+∑

j A j x j+
∑

j B j x∗
j is an affine linear pencil of size η, then

UL(X , X∗)U∗ = �C +
∑

j

�A j Y j +
∑

j

�Bj Y
∗
j .

Proof The proofs of the first three items are straightforward. To prove (4), since λ|V0

is a linear functional on Mη(C) = V0, there is a matrix P ∈ Mη(C) such that λ( f ) =
tr(P f ). Further, since λ is positive, P is positive definite. Define U by U (u ⊗ v) =
uvtP− 1

2 and extend by linearity. By the definition of 〈·, ·〉λ,

〈U (u1 ⊗ v1),U (u2 ⊗ v2)〉λ = λ
(

(u2v
t
2P

− 1
2 )∗u1vt1P− 1

2

)

= tr
(

(u1v
t
1P

− 1
2 )P(P− 1

2 (u2v
t
2)

∗)
)

= tr(u1v
t
1(v

∗
2)

tu∗
2) = 〈u1, u2〉 〈v1, v2〉,

so U is unitary. Similarly, for a ∈ Mη(C),

〈U∗�aU (u1 ⊗ v1), (u2 ⊗ v2)〉λ = tr
(

((au1)v
t
1P

− 1
2 )P(P− 1

2 (u2v
t
2)

∗)
)

= 〈au1, u2〉 〈v1, v2〉
= 〈(a ⊗ I )(u1 ⊗ v1), u2 ⊗ v2〉.

Since Y j commutes with each �a , it follows that U∗Y jU commutes with each
a ⊗ I . Hence, there is a X j ∈ Mη(C) such that U∗Y jU = I ⊗ X j , and hence,
U∗Y ∗

j U = I ⊗ X∗
j . Finally, observe that

A j ⊗ X j = (A j ⊗ I )(I ⊗ X j ) = U∗�A j Y jU

and analogously Bj ⊗ X∗
j = U∗�Bj Y

∗
j U . �	
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Proof of Proposition 4.3 By Lemma 4.4, U ∩ (C+S) = {0}. Since C+S is also closed
and convex and since U is a subspace, by [43, Theorem 2.5] there exists an R-linear
functional λ0 : Vh

2 → R satisfying

λ0 ((C + S) \ {0}) = R>0, λ0(U ∩ Vh
2 ) = {0}.

We extend λ0 to λ : V2 → C by

λ( f ) = λ0

(

1

2
( f + f ∗)

)

+ iλ0

(

1

2i
( f − f ∗)

)

.

Note that λ vanishes on U . Since λ(S \ {0}) = R>0, λ is a positive functional, so
Lemma 4.5 applies; we assume the notation therein.

Write ˜L = ˜C + ∑

˜A j x j + ∑

˜Bj x∗
j for ˜C, ˜A j , ˜Bj ∈ Mδ×ε(C). For D ∈

Mη×(δ+η−ε)(C), let

FD := U (D (˜L⊕ Iη−ε)(X , X∗))U∗ = �D(˜C⊕I ) +
∑

j

�D(˜A j⊕0)Y j +
∑

j

�D(˜Bj⊕0)Y
∗
j ;

(19)
the second equality in (19) holds by Lemma 4.5(5). Let u denote Iε ⊕ 0 ∈ Mη(C)

considered as a vector in V0. Then

FDu =
⎛

⎝�D(˜C⊕I ) +
∑

j

�D(˜A j⊕0)Y j +
∑

j

�D(˜Bj⊕0)Y
∗
j

⎞

⎠ u

= π

⎛

⎝D(˜C ⊕ I )(I ⊕ 0) +
∑

j

D(˜A j ⊕ 0)(I ⊕ 0)x j +
∑

j

D(˜Bj ⊕ 0)(I ⊕ 0)x∗
j

⎞

⎠

= π(D(˜L ⊕ 0)).

Hence for every f ∈ V0,

〈FDu, f 〉λ = 〈D(˜L ⊕ 0), f 〉λ = λ( f ∗D(˜L ⊕ 0)) = 0,

since f ∗D(˜L ⊕ 0) ∈ U . Thus, FDu = 0 for all D ∈ Mη×(δ+η−ε)(C). Consequently,

(˜L ⊕ I )(X , X∗)U∗u = 0

and hence ker˜L(X , X∗) �= {0}.
Now fix 0 �= v ∈ V0 = Mη(C) and choose an isometry V : C

d → C
η such that

V ∗v �= 0. If L = I + ∑

j A j x j + ∑

j A
∗
j x

∗
j , then

U ((V ⊗ I )L(X , X∗)(V ∗ ⊗ I ))U∗ = �VV ∗ +
∑

j

�V A j V ∗Y j +
∑

j

�V A∗
j V

∗Y ∗
j

123



596 Foundations of Computational Mathematics (2021) 21:575–611

by Lemma 4.5(5), and thus,

〈U ((V ⊗ I )L(X , X∗)(V ∗ ⊗ I ))U∗v, v〉λ = 〈π(V LV ∗v), v〉λ = λ(v∗V LV ∗v) > 0

since v∗V LV ∗v ∈ C is nonzero. It follows that L(X , X∗) is positive definite. �	

Corollary 4.6 Let L be a d × d hermitian monic pencil. If ˜L is a δ × ε affine linear
pencil such that ˜L(X , X∗) is full rank for every X in the interior ofDL(max{d, δ, ε}),
then ˜L is full rank on the interior of DL .

The proof of Corollary 4.6 given below, while not the most efficient, yields an
algorithm presented in Sect. 4.3.1.

Proof Without loss of generality, suppose δ ≥ ε and let σ = max{d, δ}.
Given η ≤ δ and ˜L, an affine linear pencil of size δ × η such that ˜L(X , X∗) is full

rank for each X in the interior of DL(σ ), consider solutions to the system (16), i.e.,

(D˜L) = P0 +
∑

k

C∗
k LCk, P0 � 0, (20)

and denote V = ker P0∩⋂

k kerCk ⊆ C
η. If, for each solution, V = C

η (equivalently
P0 = 0, Ck = 0), then there exists X ∈ Mσ (C)g such that L(X , X∗) � 0 and
ker˜L(X , X∗) �= {0} by Proposition 4.3, contradicting the assumption on ˜L . Hence,
there is a solution with dim(V ) < η.

We now argue by induction that, with δ fixed, for each η ≤ δ and each δ × η affine
linear pencil L ′ such that L ′(X , X∗) is full rank for every X in the interior of DL(σ ),
we have L ′ is full rank on the interior of DL .

In the case η = 1, there is a solution to the system (16) with 0 = dim(V ) < η = 1.
By Lemma 4.2, we conclude that ˜L is full rank on the interior of DL(σ ). Hence, the
result holds for η = 1.

Recall that ε ≤ δ and suppose the result holds for each η < ε. Let ˜L be a δ × ε

affine linear pencil that is full rank on the interior of DL(σ ). As seen above, there is
a solution D of (16) with η = dim(V ) < ε. In the case η = 0, just as before, an
application of Lemma 4.2 completes the proof. Accordingly, we assume 0 < η < ε.
Let˜L ′ denote the δ×η pencil whose coefficients are the restrictions of the coefficients
of˜L to V . Let X satisfy L(X , X∗) � 0 and suppose˜L(X , X∗)(u+u′) = 0 for u ∈ V⊥
and u′ ∈ V . Thus,

(u + u′)∗(D˜L)(X , X∗)(u + u′) = 0

and hence, by Eq. (20),

u∗
(

P0 +
∑

k

C∗
k LCk

)

u = 0.
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Thus, u ∈ V and therefore u = 0. Consequently ˜L ′(X , X∗)u′ = ˜L(X , X∗)u′ = 0.
Therefore, for each X in the interior of DL ,

ker˜L(X , X∗) �= {0} ⇐⇒ ker˜L ′(X , X∗) �= {0}. (21)

In particular, by assumption if X is in the interior ofDL(σ ), then ker˜L(X , X∗) = {0}.
Hence, the same is true of ˜L ′. By the induction hypothesis, ˜L ′ is of full rank on the
interior of DL . Therefore, ˜L is of full rank on the interior of DL by (21). �	

4.3.1 Algorithm

Let L be a d × d hermitian monic pencil and let ˜L be a δ × ε affine linear pencil.
Following the proof of Corollary 4.6, we describe an algorithm for checking whether
˜L is of full rank on the interior of L .

Step 1. Solve the following feasibility SDP:

tr((D˜L)(0)) = 1

(D˜L) = P0 +
∑

k

C∗
k LCk for some Ck, P0, with P0 � 0. (22)

We note that (22) is a SDP. Indeed, the first equation is simply a linear constraint,
and the second equation can be rewritten as a semidefinite constraint using (localized)
moment matrices; see e.g. [12,57] for details.

Step 2. If (22) is infeasible, then ˜L(X , X∗) is not of full rank for some X in the
interior of DL by Proposition 4.3.

Step 3. Otherwise, we have a solution with V := ker P0 ∩ ⋂

k kerCk � C
ε.

Step 3.1 If V = (0), then ˜L is of full rank on the interior of DL by Lemma 4.2.
Step 3.2. If ε′ = dim V > 0, then let ˜L ′ be the δ × ε′ affine linear pencil whose

coefficients are the restrictions of coefficients of ˜L to V . Then, ˜L is of full rank on the
interior of DL if and only if ˜L ′ is of full rank on the interior of DL . Now we apply
Step 1 to ˜L ′; since ˜L ′ is of smaller size than ˜L , the procedure will eventually stop.

5 Examples

We say that a hermitian f ∈ C<x, x∗> with f (0) = 1 is a minimal degree defining
polynomial for D f if deg h ≥ deg f for every hermitian h ∈ C<x, x∗> such that
D f = Dh . In this section, we present examples of hermitian polynomials f such that
D f is a free spectrahedron, f is a minimal degree defining polynomial for D f , and
f is of degree more than two. By Theorem 1.5 such an f necessarily factors, even
if D f corresponds to an irreducible pencil. The construction of such f relies on the
following lemma.

Lemma 5.1 Suppose f1, s ∈ C<x, x∗> are atoms and L is a hermitian monic pencil.
If

(1) s(0) = 1 = f1(0) and deg f1 > 2;
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(2) Z f1 = ZL , and thus, K f1 = DL;
(3) s is hermitian;
(4) f1s = s f ∗

1 ;
(5) s(X , X∗) � 0 for all (X , X∗) ∈ DL ,

then f := f1s is hermitian and D f = DL . Furthermore, a minimal degree defining
polynomial for D f has degree at least 1 + deg f1.

Proof The polynomial f is hermitian by items (3) and (4) , and D f = DL holds
by item (2) and (5) . Now let h be an arbitrary hermitian polynomial satisfying
Dh = D f . Let ˜L denote a minimal hermitian monic pencil such that D

˜L = DL .
By Lemma 2.5(2) Zh ⊇ Z

˜L . Since K f1 = D
˜L , f1 is an atom and ˜L is minimal,

Z f1 = Z
˜L . Thus, Zh ⊇ Z f1 . Since f1 is an atom, h has an atomic factor of degree

deg f1 by [36, Theorem 4.3(3)]. Thus, the degree of h exceeds two by item (1) . Hence,
h is not an atom by Theorem 1.5. It follows that deg h ≥ 1 + deg f1. �	
Remark 5.2 In general, Corollary 1.2 implies that f ∈ C<x, x∗> with f (0) �= 0
has convex K f if and only if it admits a complete factorization f = s0 f1s1 · · · f�s�,
where K fk are convex (such fk are characterized in Sect. 6) and s0 · · · s� is invertible
on

⋂

k K fk = K f .

For the rest of this section, let g = 1 and x = x1.

5.1 Example of Degree 4

Let

f1 = 1 + x + x∗ − 2xx∗ − (x + x∗)xx∗, s = 1 + 1

2
(x + x∗)

and

L =
⎛

⎝

1 + x + x∗ 0 x
0 1 x
x∗ x∗ 1

⎞

⎠ .

Let us sketch how to verify the assumptions of Lemma 5.1. Clearly, s is an atom and
items (1) and (3) of Lemma 5.1 hold. Using standard realization algorithms (e.g. as
in [3]), one checks that L appears in a minimal realization of f −1

1 . Moreover, a direct
computation shows that L is irreducible. Hence, f1 is an atom by Proposition 2.7(3)
, and item (2) holds by Proposition 2.7(1) . Next, item (4) is straightforward to
verify. Finally, for every (X , X∗) ∈ DL we have I + X + X∗ � 0 and consequently
I + 1

2 (X + X∗) � 0, so item (5) holds.
By Lemma 5.1, f = f1s is hermitian with D f = DL , and f is a minimal degree

defining polynomial for D f since deg f = 4 = deg f1 + 1. Note that

{(X , X∗) : f (X , X∗) � 0} �= DL

in this case.
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5.2 Example of Degree 5 or 6

Let

f1 = 1 − (x + x∗) − 2(x + x∗)2 − 2x∗x + (x + x∗)3 + 2(x + x∗)2x∗x,
s = 1 − (x + x∗)2

and

L =

⎛

⎜

⎜

⎝

1 − 1
2 (x + x∗) − √

2(x + x∗) 1
2 (x + x∗) x∗

−√
2(x + x∗) 1 0 0

1
2 (x + x∗) 0 1 − 1

2 (x + x∗) − x∗
x 0 − x 1

⎞

⎟

⎟

⎠

.

As in the previous example the only item of Lemma 5.1 that is not simple to verify
is (5) . Observe that the upper 2×2 block of L depends only on the hermitian variable
h = x + x∗. The same holds for s = 1 − h2. Hence, it suffices to see that s > 0 on
DL(1), which is true since

det

(

1 − ρ
2 −√

2ρ
−√

2ρ 1

)

≥ 0 �⇒ 1 − ρ2 > 0

for ρ ∈ R. If f = f1s, thenD f is a free spectrahedron domain whose minimal degree
defining polynomial has degree at least 5. Note that deg f = 6, but we do not know
whether f is a minimal degree defining polynomial.

Of course, by taking a Schur complement of L we obtain a quadratic 2 × 2 non-
commutative polynomial q with Dq = DL :

q =
(

1 − x
2 − x∗

2 − 2x2 − 2xx∗ − 3x∗x − 2(x∗)2 x
2 + x∗

2 + x∗x
x
2 + x∗

2 + x∗x 1 − x
2 − x∗

2 − x∗x

)

.

5.3 High Degree Atoms with ConvexKf

In the previous two subsections, we obtained atoms f1 of degree 3, 4 with convex
K f1 in agreement with the degree at most four conclusion of the main result of [17].
Nevertheless, it is easy to construct examples of such polynomials f of high degree.

For example, let

f = 1 + 4(x + x∗) + 2(x2 + (x∗)2) − xx∗ − 7xx∗(x + x∗) − 4x∗x(x + x∗)
−xx∗(x2 + (x∗)2) + 2xx∗(xx∗ + x∗x)(x + x∗).
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That K f = DL , where

L =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 − x − x∗ x −x − x∗ x −x x + x∗
x∗ 1 0 0 0 0

−x − x∗ 0 1 + x + x∗ −x x −x − x∗
x∗ 0 −x∗ 1 0 0

−x∗ 0 x∗ 0 1 0
x + x∗ 0 −x − x∗ 0 0 1 + 2x + 2x∗

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

can be checked using realization theory.

5.4 Counterexample to a One-Term Positivstellensatz

One might hope that for polynomials whose semialgebraic sets are spectrahedra, there
exists a one-term Positivstellensatz (cf. [31, Theorem 1.1]), meaning: ifD f = DL for
a hermitian polynomial f with f (0) > 0 and a d × d hermitian monic pencil L , then
there exists W ∈ Md×d(C<x, x∗>) such that

Id ⊗ f = f ⊕ · · · ⊕ f = W ∗LW . (23)

We note that such a conclusion holds for f that are real parts of a noncommutative
analytic function under natural irreducibility and minimality assumptions on L . For
a proof, we refer the gentle reader to [2], where this fact is exploited to character-
ize bianalytic maps between free spectrahedra. However, with Example 5.1 we shall
demonstrate that (23) does not hold in general.

Let us assume the notation of Example 5.1 and suppose there exists W ∈
C<x, x∗>3×3 such that

f 0 0
0 f 0
0 0 f

= W ∗LW . (24)

Let Ω(n) and Υ (n) be g-tuples of n × n generic matrices and consider evaluations of
f ,W , L at (Ω(n), Υ (n)). Taking determinants of both sides of (24) gives

(

det f (Ω(n), Υ (n))
)3 = detW ∗(Ω(n), Υ (n)) det L(Ω(n), Υ (n)) detW (Ω(n), Υ (n)).

Since det L(Ω(n), Υ (n)) = det f1(Ω(n), Υ (n)),

(

det f1(Ω
(n), Υ (n))

)2 (

det s(Ω(n), Υ (n))
)3 = detW∗(Ω(n), Υ (n)) detW (Ω(n), Υ (n)).

(25)
Recall that s = 1+ 1

2 (x+x∗), so p = det s(Ω(n), Υ (n)) is an irreducible polynomial for
all n ∈ N. Therefore, it divides detW ∗(Ω(n), Υ (n)) or detW (Ω(n), Υ (n)) by (25). But
s is a hermitian polynomial, so p divides detW ∗(Ω(n), Υ (n)) and detW (Ω(n), Υ (n)).
Therefore, the left-hand side of (25) is divisible by p3 but not by p4, while the highest
power of p dividing the right-hand side of (25) is even, a contradiction.
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5.5 High DegreeMatrix atoms Defining Free Spectrahedra

It is fairly easy to produce examples of irreducible hermitian matrix polynomials
F of arbitrary high degree such that DF is a free spectrahedron. For example, let
p ∈ Mδ(C<x, x∗>) \ Mδ(C) be arbitrary and let

F =
⎛

⎝

I 0 x
0 I p
x∗ p∗ I + p∗ p

⎞

⎠ .

Then, deg F = 2 deg p and det F(Ω(n), Υ (n)) = det(I −Υ (n)Ω(n)) is irreducible for
all n ∈ N, so F is an atom. Further, DF = D1−x∗x is a free spectrahedron.

6 Classifying Hermitian Flip-Poly Pencils

A by-product of investigations in earlier sections is a description of hermitian monic
flip-poly pencils, which helped us construct Examples 5.1, 5.2 and 5.3. Since it is of
independent interest, we present it here in more detail.

A d × d monic pencil L = I − A
⊙

x is called flip-poly [36, Section 5.3] if

A j = N j + v j u
∗

where the N j are jointly nilpotent d × d matrices and u, v j ∈ C
d . Such pencils are

important for distinguishing free loci of polynomials among all free loci.

Proposition 6.1 [36, Corollary 5.5] The set of free loci of polynomials coincides with
the set of free loci of flip-poly pencils.

In this section we further examine the structure of hermitian flip-poly pencils.
If L = I − A

⊙

x − A∗ ⊙

x∗ is a d × d flip-poly pencil, then by the defini-
tion above there exist jointly nilpotent matrices N1, . . . , Ng, Ñ1, . . . , Ñg and vectors
u, v1, . . . , vg, ṽ1, . . . , ṽg such that

A j = N j + v j u
∗, A∗

j = Ñ j + ṽ j u
∗.

The following folklore statement is a consequenceofEngel’s theorem [39,Corollary
3.3] and the Gram–Schmidt process.

Lemma 6.2 Given jointly nilpotent matrices, there is an orthonormal basis in which
they are simultaneously strictly upper triangular.

After a unitary change of basis (which preserves the hermitian property of L), we
can therefore assume that N j , Ñ j are strictly upper triangular matrices. For every j ,

0 = A j − (A∗
j )

∗ = N j + v j u
∗ − Ñ∗

j − uṽ∗
j ,
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or equivalently,
N j − Ñ∗

j = uṽ∗
j − v j u

∗. (26)

On the left-hand side of (26), there is a matrix with diagonal identically 0. Looking at
the right-hand side of (26), we then obtain

uk ṽkj = ukvkj , (27)

for every 1 ≤ j ≤ g and 1 ≤ k ≤ d, where vk denotes the kth component of v.
Conversely, let u, v1, . . . , vg ∈ C

d be arbitrary. Next we choose ṽ1, . . . , ṽg that
satisfy Eq. (27). Observe that this can always be done: if uk �= 0, then ṽkj is determined

by uk and vkj ; and if uk = 0, then we can choose an arbitrary value for ṽkj . Then, the
matrices uṽ∗

j − v j u∗ have diagonals identically 0. Hence by declaring N j to be the
strictly upper triangular part of uṽ∗

j −v j u∗, we obtain matrices A j = N j +v j u∗ such
that L = I − A

⊙

x − A∗ ⊙

x∗ is flip-poly.
Thus, we derived the following result.

Proposition 6.3 Let L = I − A
⊙

x − A∗ ⊙

x∗. Then, L is flip-poly if and only
if there exist vectors u, v1, . . . , vg such that, after a unitary change of coordinates,
A j = N j + v j u∗, with N j being the strictly upper triangular part of the matrix
uṽ∗

j − v j u∗, where ṽ j is a vector satisfying

ṽkj = ukvkj

uk
for uk �= 0.

Remark 6.4 Note that vectors ṽ j in Proposition 6.3 are uniquely determined if all the
entries of u are nonzero. Furthermore, if one is only interested in symmetric pencils,
i.e., hermitian pencils with real entries, then the form of L can be further simplified
when u ∈ (R \ {0})d . Namely, in this case one has ṽ j = v j for all j . Moreover, since
matrices uv∗

j − v j u∗ are skew-symmetric, it follows by (26) that A j = A∗
j for all j .

Thus in this situation, one has L = I − A
⊙

(x + x∗) for symmetric A j ; in particular,
DL is unbounded. Of course, in general not every symmetric flip-poly pencil is of this
form, see Examples 5.1 and 5.2. �	

7 Hereditary Polynomials

We say that a noncommutative polynomial f is hereditary if it is a linear combination
of words uv with u ∈ <x∗> and v ∈ <x>. Furthermore, f is truly hereditary if it
is not analytic or anti-analytic, i.e., f /∈ C<x> ∪ C<x∗>. Hereditary polynomials
arise naturally in free function theory [28]; they are a tame analog of free real analytic
functions. For example, the composite of an analytic polynomial (with no x∗) with an
hermitian pencil, a heavily studied class of objects in the geometry of free convex sets
(cf. [2]), is hereditary. Similarly, the hereditary functional calculus [1] is a powerful
tool in operator theory and complex analysis.

In this section, we prove the following.
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Theorem 7.1 Let f be a hereditary polynomial and f (0) = 1. Then, f admits a
unique factorization

f = phq, p(0) = h(0) = q(0) = 1, (28)

with p anti-analytic, q analytic, and h a truly hereditary atom or constant. If f is
moreover hermitian, then q = p∗ and h = h∗.

The normalization p(0) = h(0) = q(0) = 1 is only required to avoid “uniqueness
up to scaling.”Before giving a proof of Theorem7.1,we record the following corollary.

Corollary 7.2 Any hereditary minimal degree defining polynomial for a free spectra-
hedron is an atom and hence has degree at most 2.

Proof Let f be hereditary and minimal degree defining polynomial for D f , and let
D f = DL for a minimal hermitian monic pencil L . Therefore, ∂DL ⊆ Z f and
hence ZL ⊆ Z f by Proposition 2.3. Furthermore, after a unitary change of basis we
can assume that L = L1 ⊕ · · · ⊕ L�, where the Li are pairwise non-similar irre-
ducible hermitian pencils. Observe that for each i and large enough n, the polynomial
det Li (Ω(n), Υ (n)) is irreducible by Proposition 2.4 and cannot be independent of
Ω(n) or Υ (n) by [46, Proposition 3.3], where Ω(n) and Υ (n) are g-tuples of n × n
generic matrices corresponding to evaluating variables x and x∗, respectively, in an
involution-free way.

By Theorem 7.1, f = a∗ha, where a is analytic (contains only variables x), and h
is a hermitian hereditary atom. Since

ZL1 ∪ · · · ∪ ZL� = ZL ⊆ Z f = Za ∪ Zh ∪ Za∗ ,

for each i and large enough n, the irreducible polynomial det Li (Ω(n), Υ (n)) divides
one of the polynomials det a∗(Υ (n)), det h(Ω(n), Υ (n)) or det a(Ω(n)). By the previous
paragraph, it cannot divide the first one or the last one, so ZLi ⊆ Zh . Since h is an
atom it follows that ZLi = Zh . Because the Li are pairwise non-similar irreducible
pencils, we necessarily have � = 1, so L is irreducible. Therefore, Dh = DL by
Proposition 2.5(3) . Thus, h is concave of degree at most two by Theorem 1.5. Finally,
since f is of minimal degree, a = 1 and f = h. �	
Corollary 7.3 If q ∈ C<x> and Dq+q∗ is a free spectrahedron, then deg(q) ≤ 1.

Proof Observe that q+q∗ is an atom inC<x, x∗> for every non-constant q ∈ C<x>.
Therefore, q + q∗ is of degree at most 2 and concave by Theorem 1.5, so

q + q∗ = α + � −
∑

k

�∗
k�k

for some α > 0 and linear polynomials �, �k ∈ C<x, x∗>. If some �k is nonzero, then
� − ∑

k �∗
k�k has a term of the form αx j x∗

j or αx∗
j x j with α < 0. On the other hand,

there are no mixed terms in q + q∗, so we conclude that �k = 0 for all k. Therefore,
q is affine linear. �	
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7.1 Proof of Existence of the Factorization (28)

Lemma 7.4 Suppose f is hereditary and f = pq. If p /∈ C<x∗>, then q ∈ C<x>.
If f = a∗hb and a, b ∈ C<x>, then h is hereditary.

Proof To prove the first statement, suppose p /∈ C<x∗> and q /∈ C<x>. Write,
p = ∑

pαα and q = ∑

qββ. There exists a word α′ and a j such that α′ contains
x j and pα′ �= 0; and there is a word β ′ and a k such that β ′ contains x∗

k and qβ ′ �= 0.
Without loss of generality, we may assume that the (total) degrees of α′ and β ′ are
maximal with these properties. Now,

f =
∑

γ

⎛

⎝

∑

αβ=γ

pαqβ

⎞

⎠ γ.

Let � = α′β ′ and note that this word is not hereditary. Thus,

∑

αβ=�

pαqβ = 0.

It follows that there exists words σ and τ such that (σ, τ ) �= (α′, β ′), pσ �= 0, qτ �= 0
and � = στ = α′β ′. It follows that either α′ properly divides σ on the left, in which
case σ contains x j and |σ | > |α′|, contradicting the choice of α′; or βm properly
divides τ on the right, in which case τ contains x∗

k and |τ | > |β ′|, contradicting the
choice of β ′.

The second statement can be proved in a similar fashion. Sketching the argument,
write

h =
∑

hββ

and, arguing by contradiction, suppose there is a β ′ such that hβ ′ �= 0 has an x to the
left of an x∗. Let α′ and γ ′ denote maximum degree terms in a∗ and b. It follows that
α′β ′γ ′ must appear in a∗hb (and has largest degree amongst words in a∗hb containing
an x to the left of an x∗), and thus, f is not hereditary. �	
Proof of existence in Theorem 7.1 The hereditary polynomial p factors as

f = q0q1q2 . . . qsqs+1, qk(0) = 1,

where q0 = 1 = qs+1 and, for each 1 ≤ j ≤ s, the factor q j is an atom.
Suppose, without loss of generality, that f /∈ C<x>. There is an 1 ≤ r ≤ s
such that qr+1 · · · qs+1 ∈ C<x>, but qrqr+1 · · · qs+1 /∈ C<x>. By Lemma 7.4,
q0q1 · · · qr−1 ∈ C<x∗> as f = (q0q1 · · · qr−1) (qr · · · qs+1) is hereditary. Thus,
f = a∗hb, where a = (q0q1 · · · qr−1)

∗, qr+1 · · · qs+1 ∈ C<x> and h = qr . By the
other half of Lemma 7.4, qr is hereditary and the proof is complete. �	
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7.2 Proof of Uniqueness of the Factorization (28)

Proving uniqueness requires background from Cohn [14] which we now introduce.
Let q1, q2, q̂1, q̂2 ∈ C<x> and suppose

q1q2 = q̂1q̂2. (29)

If

q1C<x> +q̂1C<x> = C<x>, C<x> q2 + C<x> q̂2 = C<x>,

then (29) is called a comaximal relation [14, Section 0.5]. If, moreover, q1, q2, q̂1, q̂2
are atoms and

q1C<x> ∩ q̂1C<x> is a principal right ideal in C<x>,

then (29) is called a comaximal transposition [14, Section 3.2].
Next, q1, q̂2 are stably associated [14, Section 0.5] if

Id ⊗ q̂2 = P(Id ⊗ q1)Q,

for some d ∈ N and P, Q ∈ GLd+1(C<x>).

Proposition 7.5 [14, Proposition 0.5.6] q1 and q̂2 are stably associated if and only if
they appear in a comaximal relation (29) for some q2, q̂1.

Finally, a factorization f = f1 · · · f� in C<x> is complete [14, Section 3.2]
if the fk are atoms. Two complete factorizations of f are identified if their factors
only differ up to scalars. Note that a noncommutative polynomial can admit distinct
complete factorizations, e.g.

(1 + x1x2)x1 = x1(1 + x2x1).

However, this relation is a comaximal transposition. In fact, the following holds.

Proposition 7.6 ([14, Proposition 3.2.9]) Given two complete factorizations of a poly-
nomial, one can pass between them by a finite sequence of comaximal transpositions
on adjacent pairs of atomic factors (in particular, they have the same length).

Let us illustrate what is meant by a finite sequence of comaximal transpositions.
To say that q1q2q3q4 is a complete factorization that can be transformed to a different
factorization by applying comaximal transpositions on positions (2, 3), (3, 4) and
(1, 2) (in this order) means there exists q̂2, q̂3,̂q̂3,̂q̂2 such that

q1q2q3q4 = q1q̂2q̂3q4 = q1q̂2̂q̂3q̂4 = q̂1̂q̂2̂q̂3q̂4,
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where

q2q3 = q̂2q̂3, q̂3q4 = ̂q̂3q̂4, q1q̂2 = q̂1̂q̂2

are comaximal transpositions.

Lemma 7.7 Suppose �h = f1 f2 is a comaximal relation where � ∈ C<x∗>, h is
hereditary, f1, f2 ∈ C<x, x∗> and all are normalized to equal 1 at the origin. Then,
f1, f2, h ∈ C<x∗>.
Analogously, if hr = f1 f2 is a comaximal relation with r ∈ C<x> and h heredi-

tary, then f1, f2, h ∈ C<x>.

Proof By Proposition 7.5, � and f2 are stably associated. Then by the definition of
stable associativity, there exists α ∈ C \ {0} such that

det �(Υ (n)) = αn det f2(Ω
(n), Υ (n))

for all n ∈ N, where Ω(n) and Υ (n) are tuples of n × n generic matrices. By [36,
Proposition 5.11], f2 ∈ C<x∗>. But f1 f2 = �h is hereditary, so f1 ∈ C<x∗> and
consequently h ∈ C<x∗>. �	
Proof of uniqueness in Theorem 7.1 Suppose f = phq = p̂̂hq̂ are two factorizations
as in Theorem 7.1. Let

p = p1 · · · pk, p̂ = p̂1 · · · p̂
̂k, q = q1 · · · q�, q̂ = q̂1 · · · q̂

̂�

be complete factorizations (with factors equal to 1 at the origin). Then

p1 · · · pkhq1 · · · q� = p̂1 · · · p̂
̂k
̂hq̂1 · · · q̂

̂�. (30)

and by Proposition 7.6 we can pass from the left-hand side to the right-hand side
of (30) by a series of comaximal transpositions. The heart of the proof is that there
cannot be any transposing around the “middle” factor h unless it is trivial. Since f
and all the factors p, q, h are normalized to equal 1 at 0, we can apply Lemma 7.7 to
conclude the proof: for if we can transpose pkh, then h ∈ C<x∗> and so h = 1 since
h is truly hereditary, likewise for hq1. When h is not trivial, comaximal transpositions
can therefore only occur among the first k − 1 factors and last � − 1 factors of the
left-hand side in (30). However, these comaximal transpositions preserve p1 · · · pk
and q1 · · · q�. Thus, we conclude that p1 · · · pk = p̂1 · · · p̂

̂k and q1 · · · q� = q̂1 · · · q̂
̂�.

Therefore, p = p̂ and q = q̂ , and consequently h = ̂h.
The last part of Theorem 7.1 is a direct consequence of the uniqueness. �	

A Modification of the Theory: Rational Functions

For the reader familiar with nc rational functions as found in [14,40], we point out that
Theorem 1.1 extends tomatrix noncommutative rational functions in a straightforward
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way. Assume r ∈ C (<x, x∗ )>δ×δ is regular at the origin (that is, 0 is in the domain of
r) and r(0) = I . Then, we define Kr = ⋃

n Kr(n), where Kr(n) is the closure of the
connected component of

{

(X , X∗) ∈ Mn(C)2g : r is regular at (X , X∗) and det r(X , X∗) �= 0
}

containing the origin.
Now let I + c∗L−1b be a minimal FM realization for r ⊕ r−1 ∈ C (<x )>2δ×2δ .

Using Remark 2.6(4) we observe that ZL is precisely the set of all (X , X∗) for which
either r is not defined at (X , X∗) or r is regular at (X , X∗) and det r(X , X∗) = 0. By
comparing this observation with the definition of Kr, we see that

Kr = KL . (31)

Now we apply the proof of Theorem 1.1 to L .
Likewise, from (31) we deduce that Corollary 1.3 holds for rational functions r.

This leads to improvements and strengthening of recent positivity results for non-
commutative rational functions [45,55]. For instance, a rational function r is positive
definite on the interior of DL if and only if r(0) � 0 and ˜L is invertible on intDL ,
where ˜L is the minimal pencil in an FM realization of r ⊕ r−1. The latter condition
can be efficiently checked by the algorithm of Sect. 4.3.

In [55], Pascoe gives a Positivstellensatz certifyingwhen a noncommutative rational
function r that is defined on DL , is positive semidefinite on DL . For bounded DL our
algorithms provide means of verifying whether r is defined on DL . Let ˜L be the
minimal pencil in an FM realization of r. Then, ˜L is invertible on DL if and only if
there is ε > 0 such that ˜L˜L∗ − ε is invertible on intDL , and this is something that can
be checked with a sequence of SDPs (cf. Sect. 4.3).

We conclude with a variant of Theorem 1.5 for rational functions. McMillan degree
[40] of a rational function is the size of the linear pencil in its minimal FM realization.
Lemma A.2 asserts that, given L a minimal hermitian monic pencil L , there exists a
hermitian s ∈ C (<x, x∗ )> such thatKs = DL . We say that a hermitian r ∈ C (<x, x∗ )>

is minimal (McMillan) degree defining for DL if Kr = DL and the McMillan degree
of r is smallest amongst all hermitian s such that Ks = DL .

Proposition A.1 Let r = r∗ ∈ C (<x, x∗ )> be regular at the origin and r(0) = 1.
Suppose thatKr is a free spectrahedronDL for an irreducible hermitian monic pencil
L. If r is minimal McMillan degree defining for DL , then either r or r−1 is concave
or convex with the pencil in its minimal FM realization being equal to L.

Lemma A.2 Suppose L is an irreducible hermitian monic pencil of size d and 0 �= ĉ ∈
C
d is of norm < 1. Settinĝb = Ac

⊙

x + A∗c⊙

x∗ and r̂ = 1 + ĉ∗L−1
̂b,

Kr̂ = DL ,

r̂−1 is defined on intDL and r̂∗ = r̂.
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Proof Since the converse of Lemma 3.1 evidently holds, r∗ = r. By Remark 2.6(6)
we have r̂−1 = 1 − ĉ∗L−1× ̂b, where L× = L +̂b̂c∗. Since L is irreducible and ĉ �= 0
and̂b �= 0, the realization r̂ = 1 + ĉ∗L−1

̂b is observable and controllable, and thus
minimal by Remark 2.6(1) . Consequently, r̂−1 = 1 − ĉ∗L−1× ̂b is also minimal. The
pencil L× is invertible on intDL because

(I − ĉ̂c∗)(L +̂b̂c∗) = (I − ĉ̂c∗)̂ĉc∗ + (I − ĉ̂c∗)L(I − ĉ̂c∗).

By the definition of Kr̂, we have

Kr̂ = KL⊕L× ,

so invertibility of L× on intDL implies

Kr̂ = DL .

Furthermore, the domain of r̂−1 is the complement of ZL× by Remark 2.6(4) , so r̂−1

is defined on intDL . �	
Proof of Proposition A.1 Let L = I−A

⊙

x−A∗ ⊙

x∗ be of sized. Let r = 1+c∗
˜L−1b

be a minimal realization. Hence, r−1 = 1−c∗
˜L−1× b, where˜L× is the pencil appearing

in Remark 2.6(6) , is a minimal realization for r−1. Since Kr = DL , the topological
boundary of DL is contained in

{(X , Y ) : r is undefined at (X , Y )} ∪ {(X , Y ) : r−1 is undefined at (X , Y )} = Z
˜L ∪ Z

˜L× .

Since L is an irreducible hermitian monic pencil, it is minimal. Thus, by Proposi-
tion 2.3, ZL ⊆ Z

˜L ∪ Z
˜L× . Since L is irreducible, either ZL ⊆ Z

˜L or ZL ⊆ Z
˜L× .

Without loss of generality suppose ZL ⊆ Z
˜L (otherwise replace r by r−1). Since L

is irreducible, up to similarity (change of basis), ˜L has the form (4), where one of the
blocks equals L . On the other hand, by Lemma A.2, the size of ˜L is no larger than
the size of L . Hence, ˜L is similar to L and we may assume, by modifying c,b and A
appropriately, that ˜L = L . Therefore, as L is an irreducible hermitian monic pencil,

r = 1 + λc∗L−1(Ac
⊙

x + A∗c⊙

x∗) = 1 + λ(c∗L−1c − c∗c)

for some λ ∈ R \ {0} by Lemma 3.1. Since L is monic and hermitian, r is concave or
convex (depending on the sign of λ). �	
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