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Abstract
We explore a background-independent theory of composite gravity. The vacuum expectation
value of the composite metric satisfies Einstein’s equations (with corrections) as a consistency
condition, and selects the vacuum spacetime. A gravitational interaction then emerges in vacuum
correlation functions. The action remains diffeomorphism invariant even as perturbation theory is
organized about the dynamically selected vacuum spacetime. We discuss the role of nondynamical
clock and rod fields in the analysis, the identification of physical observables, and the generalization

to other theories including the standard model.
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I. INTRODUCTION

Diffeomorphism invariance is responsible for a number of conceptual and technical chal-
lenges for quantum gravity. The Hamiltonian in diffeomorphism-invariant theories vanishes
in the absence of a spacetime boundary, and is replaced by a constraint. In canonical quan-
tum gravity [1], the functional Schrédinger equation is replaced by the Wheeler-DeWitt
equation, which imposes the Hamiltonian constraint on states. The absence of an a prior:
notion of time evolution in such a description suggests a relational approach to dynamics in
which a clock is identified from within the system under investigation [2]. The challenge of
identifying a clock with which to describe dynamics in quantum gravity is the well-known
problem of time [3].

Also related to diffeomorphism invariance is the puzzle of identifying observables. It is
current wisdom that there are no local observables in a diffeomorphism-invariant theory.
Even scalars under diffeomorphisms, such as the curvature scalar, have a different profile if
spacetime points are dragged via a diffeomorphism. Integrals of suitable local operators [4],
or appropriately dressed operators [5], could serve as diffeomorphism-invariant observables as
long as contact can be made with the semiclassical world of our observations and experiments.
The concept of an observable is a semiclassical construct, and in a semiclassical context there
is less difficulty in defining local observables in a specified vacuum. Indeed, in a composite
gravity scenario the identification of the spacetime metric as a composite operator makes
possible well-defined correlation functions of local operators.

Perturbative approaches to quantum gravity, such as perturbative string theory, concern
fluctuations about a background spacetime that appears explicitly in the description of the
dynamics, for example in the action functional. Nonperturbative aspects of string theory
that are well understood, including the AdS/CFT correspondence, also contain a back-
ground spacetime in their description. In this sense, string theory in its present state is not
background-independent. Einstein’s equations (plus corrections) arise as a self-consistency
condition on the background spacetime, namely conformal invariance of the worldsheet field
theory. Analogously, despite the absence of conformal symmetry in the class of theories con-
sidered in this paper, cancellation of tadpoles will require that the vacuum spacetime satisfy
Einstein’s equations up to corrections. Also as in string theory, a gravitational interaction

emerges dynamically in a composite gravity scenario from fluctuations of the fundamental



degrees of freedom.

In composite gravity, the spacetime metric is identified as a composite operator that
depends on the elementary fields and their derivatives. The spacetime geometry is not
integrated over separately in the functional integral, but rather each configuration of the
fundamental fields corresponds to a unique metric at the classical level, one with no obvi-
ous relation to Einstein’s equations. In such a scenario, specifying the form of the vielbein
or metric in vacuum requires consideration of both short and long-distance physics. Both
the vacuum expectation value of the composite metric and correlation functions involving
the composite metric require regularization due to the products of fields at the same point
that define the composite metric. The vacuum expectation value of the composite metric is
dominated by ultraviolet regulator-scale physics but is determined everywhere in spacetime.
Hence, macroscopic diffeomorphisms act nontrivially on the short-distance contribution to
expectation values and correlation functions. Diffeomorphisms that transform the funda-
mental fields also transform the composite metric operator and its expectation value. The
gauge-fixing of diffeomorphisms is implemented not in the selection of field configurations
that contribute to the functional integral, but rather in the identification of the spacetime
metric as a function of the fundamental fields, and in the process of regularization when
specifying the vacuum metric. The vacuum provides a semiclassical description of space-
time, addressing the problem of time. Formally, we will introduce nondynamical clock and
rod fields to fix a coordinate basis in the vacuum spacetime. Local observables are well
defined in this semiclassical arena.

Perturbation theory in the vacuum then proceeds via curved-space quantum field the-
ory methods, by way of which we will demonstrate the existence of an emergent long-range
gravitational interaction. We presume the existence of a physical ultraviolet regulator that
would complete this framework, but in the present work as a proxy for a physical regulator
we use dimensional regularization in the DeWitt-Schwinger representation of Green'’s func-
tions. The search for a quantum theory of gravity is replaced by the search for a physical
diffeomorphism-invariant regulator; there is no need to begin with the Einstein-Hilbert action
on the road to quantum gravity. We will briefly discuss possibilities for new short-distance
physics that could play the role of a physical regulator and complete this framework.

Over the years there have been a number of investigations of a diffeomorphism-invariant



scalar toy model described by the action,
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where we consider potentials V' (¢®) of the form,
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We write the dimensionful parameter Vj as the sum of three terms:
Vo= Vot AV + A (1.3)

The counterterm AV, will be chosen such that in the vacuum AV + (3m?¢?) = 0. The
constants Vj and A will be defined in the following section.

This action is reminiscent of the scalar part of the Dirac-Born-Infeld action describing
D-brane dynamics. If there is a physical ultraviolet regulator for the quantum field theory
with this action, then with a certain tuning of the constant part of V(¢*) the theory has
been demonstrated to include an emergent long-range gravitational interaction in Minkowski
space. The emergent gravitational interaction was anticipated [6, 7] by comparison with
Sakharov’s induced gravity [8]. In order to demonstrate the emergent gravitational interac-
tion, the analysis in Ref. [9] adds scalar clock and rod fields to the theory, which allowed for
a perturbative expansion about a Minkowski-space vacuum after a tuning of parameters. A
similar analysis demonstrated an emergent gravitational interaction in a theory with scalars
and fermions reminiscent of the supersymmetric D-brane action [10], and in a curved back-
ground perturbed about Minkowski space [11]. Ref. [12] explored nonlinear gravitational
self-interactions in the same theory, and also pointed out an interesting fact: a renormaliza-
tion that was introduced in order to cancel tadpole diagrams also rescaled the clock and rod
field configuration to zero. In hindsight the reason for this is clear: a spacetime-dependent
background for fields explicitly breaks diffeomorphism invariance. The clock and rod fields
serve as a tool for providing a description of the vacuum about which to consider fluctua-
tions, but ultimately they appear in the action only in terms which identically cancel one
another, and do not participate in the dynamics [13].

In this paper, we probe the theory by detuning the vacuum energy in order to understand

the selection of a self-consistent vacuum and the emergence of a long-range gravitational
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interaction in this more-general setting. We use the adiabatic expansion of curved-space
Green’s functions in the DeWitt-Schwinger proper-time representation in order to analyze
ultraviolet divergences in the correlation functions which, when regularized by dimensional
regularization as a proxy for a physical regulator, are responsible for an emergent long-range
gravitational interaction. Because the vacuum provides a spacetime background in which we
can calculate correlation functions, diffeomorphism invariance does not lead to difficulty in
the identification of observables.

In Section II we describe the toy model of composite gravity and calculate the vacuum
expectation value of the composite metric. In Section I1I we derive the emergent gravitational
interaction in correlation functions. In Section IV we discuss these results and comment
on quantum gravity corrections as 1/N corrections. We conclude in Section V with some

comments on implications of composite gravity for cosmology of the early universe.

II. THE MODEL

Similar to the relation between the Polyakov and Nambu-Goto formulations of the bosonic
string and as in the construction of Refs. [6, 7, 9], we note that that the action Eq. (1.1) is

equivalent to the action

1 N
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with the composite metric identified as,
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We have introduced the clock and rod fields XM, which appear in two terms that iden-
tically cancel one another in Eq. (2.2), generalizing a related procedure in Ref. [13]. The

clock and rod fields are nondynamical, but serve to define a coordinate basis for the vacuum



spacetime. We choose G ;n and X such that the vacuum spacetime metric in a coordinate

basis specified by X (z) takes the form,
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More precisely, we will choose G, (x) self-consistently as the regularized vacuum expecta-
tion value of the composite metric (g,,) in the coordinate basis determined by the clock
and rod fields X*(z). The vacuum metric G, () transforms covariantly under coordinate

transformations of the clock and rod fields. In the static-gauge basis normalized as,

| Vo+ A
M __ 0 M
0, XM =\ | 5757 /2_15# : (2.4)

G is chosen so that the regularized vacuum expectation value of the composite metric
is (gu) = Gun0,M6,N. The terms in brackets in Eq. (2.2) will collectively represent a
perturbation about the first term, as the would-be divergent vacuum expectation values of
the terms in brackets will cancel in the self-consistent vacuum spacetime.

We will be interested in the ultraviolet divergences in vacuum expectation values. We cal-
culate the regularized divergences by way of an adiabatic expansion in the DeWitt-Schwinger
representation of curved-space Green’s functions. To perturb about the vacuum, we intro-

duce the vacuum spacetime into the action Eq. (1.1) by analogy with Eq. (2.2):
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In the functional integral we can fix a coordinate basis for the vacuum spacetime by substi-
tuting for the clock and rod fields a profile X (z), or equivalently by integrating over the
nondynamical clock and rod fields X (z) and inserting a gauge-fixing delta function with

trivial Fadeev-Popov determinant. For example, we write the partition function as,

7 = /DXM(:c)/D(b“(x) ) (XM — /g;z—t/\la;” x“) : (2.6)

The integral over XM is trivial, as the action is independent of X*. However, this manipu-

lation facilitates a perturbative expansion in which the vacuum spacetime metric is specified
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in a fixed coordinate basis. The profile for the clock and rod fields in Eq. (2.6) sets the
vacuum expectation value of the composite metric g, to Gan9,'9,Y. Any configuration
of the clock and rod fields without critical points where det (@LX M ) = (0 can be transformed
to the configuration fixed by the delta function in Eq. (2.6) by an invertible coordinate
transformation.

We are aided by previous calculation of the regularized effective action for free fields in

curved spacetime backgrounds. The effective action Weg defined by,
/ D eiSireclum 9] — iWettlom] (2.7)

where
1 m? o
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a=1 a=1
determines connected correlation functions of products of the curved-space free-field energy-

momentum tensor, which in the background specified by G, takes the form,

N
T = (aﬂgz)a L, — %GW <aa¢“ n® — m2¢“¢“)>. (2.9)
a=1

Tadpoles attached to Feynman diagrams contributing to correlation functions arise from
either (¢?) = iGp(x,z) or (9,6(x)d,¢(x)). The scalar tadpole iGp(x,z) can be regular-
ized by dimensional regularization by keeping D # 4 and extracting poles in D — 4. The
divergences depend on the curvature tensor and its derivatives.

The Green’s function satisfies the equation,

1
l9()]

where [ is the curved-space d’Alembertian, O = ¢V, V,. In the DeWitt-Schwinger proper

(O+m?Gp(z,2") = — o) (x — '), (2.10)

time representation, the Green’s function takes the form [17],
Gr(x, ') :/ ds G25(x, 25 is), (2.11)
0

with an adiabatic expansion (an expansion in derivatives of the background metric) given
by

Az, z") 1
(4m)D/2 " (is)D/2

GP3(w,2;is) = g im*s+o/(2is) Z a;(x,2')(is) (2.12)

Jj=0



where o(x, ') is the geodetic squared distance between = and 2’ in the background spacetime,

and A(x,z’) is the Van Vleck determinant

Al o) = _ det(9,0,0(, I/)) (2.13)

g(x)g(x')

The Seeley-DeWitt coefficients a; can be solved for recursively using Eqn. (2.10) with
aop(z,2’) = 1. We will ultimately be concerned with the limit in which both arguments
are evaluated at the same point. The first three a;(x) = a;(z, ), which depend on the

curvature tensor and its derivatives, have the values [14]

ap(xz) =1
a(r) = R (2.14)
a2(x) = 755 B Ryps — 155 B Ry + 550R + 5 R2.

The effective action for the free theory in the curved-space vacuum was studied in the
adiabatic expansion by Christensen [15], Bunch [16], and others. The calculation of the
effective action proceeds by identifying the adiabatic coefficients in an expansion based on

the DeWitt-Schwinger proper time representation [17],

dD —im?Z2s -
Weff—/2(47r>D/2\/_(zs)”D/26 F(x,is), (2.15)

with
F(x,is) Z ag(z (2.16)

The coefficients ay(x) were calculated in Ref. [15], given by Eq. (2.14). Integrating Eq. (2.15)

over s, the adiabatic expansion of the effective action takes the form [16]:

Wet (9] = N/de lg] [ D/ZZak D%F(k—D/Z)], (2.17)

The three coefficients ag, a; and as multiply divergences from I'(k — D/2) as d — 4, while
the remaining terms in the expansion of the effective action are finite in the same limit.

Expanding in powers of (D — 4), the poles in the effective action take the form [16]:

1 1 AmP aq 2mP=2q,
iv. — N dD - -
Wa / v |g|{ (47T)D/2D—4{D(D—2) D2 +GQH
1 1 4mP mP2R
= N [ dP — — 2.18
J @ ‘9‘{ (Am)P7 D1 [D<D—2> 30— 2) *” (2.18)
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The pole terms in (7,,) = out{0]7,|0)in/out (0]0)in are then,
2
2 Wi
Vgl 99" (2)

D-2
= o () [0+ 2 (R~ 1G] + AT, 220

(Tow) = (2.19)

9ap :GaB

(4m)P2 D — 4\ D(D - 2) 6
where A(7,,) contains the four-derivative terms from variation of a(z), which we record

here for completeness [16]:

1 1 1 1 1
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@nP2 D—4 |90 ™ T35 gy | (221)

1
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7 .

1 1
®H,, = §RaﬁRaﬁ G — 2R Roypy + Ry — OR,,, — 5 GwOR (2.22)

We will be most concerned with the terms up to adiabatic order 2, i.e. the terms arising
from a¢ and ay, and from now on we will drop terms arising from a,. The corrections are
interesting from a cosmological perspective, but our immediate interest is in the emergent
gravitational interaction and dynamical selection of the vacuum, which are not sensitive to
these corrections as long as the curvature of the vacuum spacetime is small compared to m?.

We can obtain the scalar tadpole directly or from the effective action using,
2 Weg

~ T o

where we treat m? as a source for the operator (—¢?/2). The terms to second order in the

(9%) = (2.23)

adiabatic expansion are,

(0%) =

1 N 4mP D2
m {mQ— } (2.24)

(4m)P12 D — 4 (D —2)

Comparison with the trace of Eq. (2.20) demonstrates that, to second adiabatic order,
(Th) =m*(¢%). (2.25)

To calculate the regularized divergence in the remaining tadpole (0,¢(x)0,¢(x)), we use,

0,9 00 = Ty — Dg“_”2 (T2 —m?¢?). (2.26)
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From Eq. (2.25) we then have, at the same order,

(0u00,0) = (Twv)

1 N 4mP-2 ) D 1
= (47T)D/2 D—4 <D<D — 2)) |:m G,w + g (R,“, — §G#VR) . (2‘27)

The condition (T},,) = (Tw) + Vi G = 0, which includes the bare vacuum energy contri-
bution from Eq. (2.1), determines the self-consistent vacuum metric G,,. We note that in
our organization of the perturbative expansion of correlation functions, from the form of the

action Eq. (2.5), the (0,¢ 0,¢) tadpole always appears in the combination,

2

(0:60,0) = 55 (Vo + 8) Gy

Cancellation of the tadpole to second adiabatic order then requires:

1 N 4mP—2
(A2 D— 4\ D(D 2

D 2
)) {mQG’“’ + = (B = 5GwR) | — 5—5 (Vo +A) G =0.

6 D—2
(2.28)

Choosing

1 N 2 ,

cancels the term in the tadpole proportional to m”. What remains of the tadpole cancellation
condition is Einstein’s equation with cosmological constant determined by A:

1 N mP—2
(4m)P/2 D — 4 3

) (Ruw — 3GuwR) = AG . (2.30)

Eq. (2.30) receives four-derivative corrections from the Seeley-DeWitt coefficient ay that we
dropped for simplicity of presentation, but it is straightforward to include those terms in
the analysis. We identify an effective Planck constant that we will see also determines the
strength of the emergent gravitational interaction:

1 N (mD_2> VD

M D72 — .
(M) (4m)P2D—4\ 3 62

(2.31)

As in Ref. [9], we also note that the tadpole $m?(¢*) appears in combination with AV
in the action Eq. (1.2). It follows from the trace of Eq. (2.30) that the curvature scalar is

independent of x, and we can fix the counterterm

AV = —4m(8) = ~3(T%) = — 522 (Vo + A). (2:32)
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In this case tadpoles are cancelled by the constant terms in the potential V(o).

Under these circumstances, we also have (7,,) + (Vo + AV, +A)G,, = 0. In other words,
cancellation of tadpoles in this theory is tantamount to vanishing of the expectation value of
the full energy-momentum tensor including the vacuum energy contributions from Eq. (2.1).
This ensures that the short-distance physics does not generate a nonvanishing total energy-
momentum tensor, which would break the diffeomorphism invariance of the classical theory.

This is why Eq. (2.30) determines the self-consistent vacuum spacetime.

III. THE EMERGENT GRAVITATIONAL INTERACTION

We now consider the four-point correlation function of scalar fields in the self-consistent
vacuum with spacetime metric G, selected to enforce the condition (7},,) = 0 via Eq. (2.30).
We expand the action Eq. (2.1), writing the composite metric operator as ¢, = G + hy.

The action takes the form,
1
S = /dD:c G| (1+ h“——h haﬁ+§(hg)2+~~>

1 al -
% {i(G“”—h"”th“,th-i-“')(;Q@“&@a) _%_§;m2¢a¢a:|’ (3.1)

where indices are raised and lowered by G, and normal ordering is meant to indicate that
the expectation value of the operator has been subtracted off, e.g. : ¢*(x) := ¢*(x) — (¢*(x)).
We expand the composite metric g, = G + hy from Eq. (2.2) in powers of 1/(Vy + A),

which gives

1 1 \?
hw = ———=P, T, +O( ) 3.2
W (Vo +A) P . Vo + A (3:2)
where
« 1 (0% (0% (6%
P, = 3 [(D/2-1)(5,%6,0 +6,%6,0) — GG*]. (3.3)

With h,,, ~ O(1/(Vo + A)), the relevant terms in the action for calculation of the four-point
function may be written,

N

_ D VE)+A 1 woa 1 2. jaqa .
S—/dx ‘G|<D/2 + = E 1 0"9"0,,0" a§12m.¢¢.
1 1 Vo+A 2
_ _pr. - uaVB__w/aﬁ
2h T 4D/2—1<h h Qh h )G#VGQ5>}+(’)(1/(%+A))). (3.4)
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To order 1/(Vp+A), collecting terms in the action Eq. (3.4) then gives a tree-level interaction
of the form,

1
Lint = -1 prves . T o2 Tap (3.5)

(Vo +4)
In the large-N limit, where N is the number of scalar fields, the leading Feynman diagrams
representing the four-point correlation function of ¢ fields are displayed in Fig. 1. Each
interaction vertex includes a factor of 1/(Vy + A), which we recognize from Sec. II as being
of order 1/N. Quantum gravity corrections are higher-order in 1/N, as we will discuss in

Sec. IV.

FIG. 1: Contributions to the scalar 4-point function. (a) Diagrams that contribute at leading

order in 1/N. (b) The equivalent recursive representation.
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We write the correlation function to leading order in 1/N in the form

(O T{" (1) ()¢ (w3) (wa)e' | 4725} J0) =
/dDyldD?/Q \G(yl)G(yg)I E;w(ﬂﬁl, T2, yl)iAWaB(yl, yz)Ea,B(l“s, T4, yz)
(3.6)
where the external factors £, (x1, z2,y:) are defined as the connected correlation function

Eul/(xh To, Y1) = <¢a(x1)¢a(x2)7:tl/(yl)>con' (3.7)

The recursion relation represented by Fig. 1b takes the form,

/dDyldD?h |G(y1)G(y2)| E,Lw(xlax%yl)iAuyaB(yhyQ)Eaﬂ(xiiax%yQ) =
[ G Byl 22,)145 () Eu . 4.1)

+ /dDyldDy2dDy3\/’G(yl)G(%)G(?B)‘ E;w<x1ax2>yl)

X {K“"An(yl,y2)iAAmﬁ(y2,y3) Eop(xs, 24,9s3) (3.8)

The first term on the right-hand-side is the tree-level amplitude, with

1
AP = g (D2 = GG+ GG) = G (3.9)

while the kernel K", (y;,y2) corresponds to the portion of the right-hand side in Fig. 1b
that connects to the shaded blob, and is determined by the connected correlation function

of a product of two energy-momentum tensors in the curved-space vacuum:

K/uj)\n (3/17 y2) = iAOMVpa (?/1) <7;U (y1)7-)\fﬁ (y2)>con- (310)

We determine the correlator (7,,(y1) Tax(¥2))con from the second variation of the effective

action:

s 0 w(y) = YEWEW)
(i ) (i ) W 00 = Y2 T @) Tt B11)
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This gives,
1 1 4ANmP
(4m)P/12 D —4 D(D — 2)
1 1 4NmP-2
(4m)P/2 D —43(D — 2)

<7:w (%) 7-aﬁ<y)>con =

(GuaGVﬁ + GraGus — GuwGag )

+ Dyvas |87 (z —y)

AME

Vi
= [(—0 (GuaGup + GuGra — GuuGag) + D-2)

D/2—1)

DMVﬂéﬂ(I) 5P (z—y),

(3.12)

where Mp was defined in Eq. (2.31), and D44 is the linearized gravitational wave oper-

ator in the curved background with metric G, which in D = 4 has the form [18],

1 1
D'wjaﬁ Ei (GuaGVﬂD — §G#VGQ5D + R“aGyﬁ + RyaG#@

1
— QGW,RQB + QR;Luaﬁ - RGuaGl,g + QRG“VGQB).

We then find the kernel from Eq. (3.10),
Wl

Kuu/\f;(yl’ y2) = {Z—

woSv v oSp
(%+A>2(6A5n+6)\65)

4ME2
(D —2)

Rearranging the recursion relation Eq. (3.8), we have

/ APy /1G] Enn (1, 23, )i AL () En (3, 24, y) —

%,
D D . . 0 173V
[ @0 TG Bl )11 = s )t

AME 2
(D=2

AR () me@l)} 5P) (1 — ).

Z'AOMVpona)\ﬁ(y1>:| i AN (y,, Yo)Eap(z3, T4, y2).

From the explicit form of Af*” we find,

(Vo +A)
(D/2—1)

Using this we can rewrite Eq. (3.15) as

/ 0Py /1G] B (1, 2, )i AL By, 24, y) =

1
(GoAGoi + GpGox — GpoGin) A = 3 (6%,0%, + 0"\ 0") .

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

N vpo 4A 1
/ dPy1d%y2 /|G (1) G (ye) | Bu(w1, 22, 41)iAd"” { D2 (GMG(M - iapoam)
AMP ™ ,
- (D i Q)D””M(yl) 1AM (y1,y2) Eap (w3, 74, Y2).-
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The recursion relation will be satisfied if the amplitude A*%(y;, 1) is a solution to the
equation,

(D —2)
5965 +6062) 6P (o — ). (3.18)

Dpa)\ls(y1> iA}muB(yl) 92)

o5

1
(Gp)\GUH - _GpJGA/@) -
1 1

BNVEDIE 0

This is the equation for the Green’s function of the linearized Einstein equations in the
vacuum spacetime with cosmological constant A [18]. Hence, we have found that the four-
point amplitude, summed over the chains of bubbles in Fig. 1, contains the spin-2 prop-
agator of a graviton in the vacuum spacetime with cosmological constant. Note that the
gauge-dependent part of the amplitude decouples when attached to the covariantly-conserved
energy-momentum tensor from the interaction vertex attached to the external lines. We con-
clude that a gravitational interaction emerges from local interactions between the ¢ bosons.

This is our main result.

IV. DISCUSSION
A. Higher variations of the effective action

There is one subtlety in the above calculation that we clarify here. We used the relation
between the connected correlator (7,,(x)7a5(Y))con and the second-order terms in the ex-
pansion of Weg with respect to h,, = g — G,. The subtlety is that the expansion in A,
does not correspond directly to variations with respect to g"”. The second variation of the

effective action with respect to h*" is,

(imet) (i) [ [ 2o
po( o
- [e=uiZS (i) [t () P
= VI (72 (0 Tes ) — (Tl Tas0)
S GG Do it (Vo))
¢ [ D¢ ei5rree

[ D g(w) 0°g™ (w)
_z/d w< 5 7;5(w)> ST () R () (4.1)
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In the last term of Eq. (4.1) we use,
g = G = B R+ O(R), (4.2)

where indices are raised and lowered with G,. In the next-to-last term of Eq. (4.1) we use
Eq. (2.27) to obtain,

1
5 (Valo)Toa(w) ) = =367 =) Vgl g (@) Tia(w) + 925(0) o (). (43)

5gro(2) gPU

Then it is straightforward to see that the last two terms of Eq. (4.1) cancel, leaving,

(<ismoc) (g ) [ [poese] = i 7 s 00

B. Quantum gravity corrections

We organized the calculation by way of an expansion in 1/N in order to identify the
emergent gravitational interaction, but N need not be large for the existence of the spin-
2 graviton state. We can identify quantum gravity corrections as 1/N corrections. For
this purpose, we draw the interaction vertex as in Fig. 2a. Factors of N come from loops
and from the vertex, which includes a factor of 1/(Vo + A) ~ O(1/N). Any insertion of
the interaction vertex in a Feynman diagram comes with additional diagrams in which the
wiggly vertex is replaced by a chain of loops as in Fig. la. Then, for example, the 1/N-
suppressed contribution to the four-point function in Fig. 2b we recognize as belonging to
a two-graviton box correction to the correlation function. Quantum gravity corrections are
suppressed at large N, as also follows from the fact that the derived Planck mass Mp in

Eq. (2.31) is proportional to N.

C. A comment on the number of degrees of freedom

The theory we have analyzed is defined as a diffeomorphism-invariant theory of N scalar
fields ¢®. In D dimensions, it would seem that D of these degrees of freedom should be
nondynamical, fixed by a gauge-fixing of the coordinates. However, in the present approach,
D clock and rod fields X were introduced in Eq. (2.2) in order to fix a coordinate basis

in which the vaccum spacetime metric is specified, and the composite metric is gauge-fixed
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FIG. 2: Quantum gravity corrections. (a) The wiggly line at the T}, — T, vertex indicates that
any insertion of the vertex comes together with the sum of loops that gives rise to the graviton prop-
agator. (b) Diagrams of higher-order in 1/N are quantum gravity corrections involving composite

gravitons in loops.

when defined in terms of the fundamental fields. All of the fields ¢* are dynamical in this
theory.

The clock and rod fields are indeed nondynamical, but in a stricter sense than being con-
strained by gauge-fixing: The clock and rod fields do not contribute to the action defining
the theory. They are not just nondynamical, they are unphysical. Instead, a term involv-
ing the clock and rod fields was added to and then subtracted from the composite metric
appearing in the action in order to enable a perturbative expansion about the curved-space
vacuum. Subtracting off the contribution of the clock and rod fields also served to cancel
a tadpole involving derivatives of the physical fields ¢ in the composite metric, in analogy
with a related analysis in Ref. [13]. The cancellation of this divergent tadpole was necessary
for consistency of the perturbative expansion in this approach. In this theory, restoration of
diffeomorphism invariance by decoupling the clock and rod fields is tantamount to normal
ordering of derivative terms in the composite metric.

A curious corollary of this observation regards the same theory with N = D scalar
fields. On the one hand, the theory is topological in the sense that the only diffeomorphism-
invariant information in the field configuration is the number of critical points at which
det (0¢*/0x*") = 0 and the value of the fields at those points. On the other hand, expand-
ing about the vacuum-expectation-value of the composite metric defined in terms of those
fields, the above analysis demonstrates that the regularized topological theory contains a

composite graviton state and an emergent gravitational interaction, albeit with potentially

17



large quantum gravity corrections, as this theory is far from the large- N limit.

D. Generalization to other theories

Here we analyzed a scalar toy model, which allowed us to elucidate the dynamical selec-
tion of the vacuum spacetime and the emergent gravitational interaction in this framework.
However, presuming a physical ultraviolet regulator, the generalization to theories whose
low-energy description is that of a given field theory coupled to gravity has been suggested
before [9, 20]. To summarize the algorithm, with the benefit of our present understanding
of the decoupling of the clock and rod fields from the dynamics: Beginning with a Lorentz-

invariant quantum field theory,

e Minimally couple the theory to a spacetime specified by a metric g, or vielbein €}, in

a theory with fermions.

e Identify the composite metric g,,, or vielbein e up to local Lorentz transformations,
in terms of the fundamental fields by solving the constraint 7,, = 0. In general this

cannot be done analytically.

e Add and subtract the background vielbein £ = (0,XM) EY; to the composite vielbein
operator in analogy with Eq. (2.2) in order to organize a perturbative expansion about

the vacuum.

e Determine the vacuum spacetime self-consistently by imposing (7., [E};, ®]) = 0 in the

vacuum, where ® represents the fundamental fields in the theory.

This procedure gives rise to a diffeomorphism-invariant theory which, when expanded about
the vacuum, includes the original Lorentz-invariant theory in the low-energy effective de-
scription. Due to diffeomorphism invariance, we expect the theory so defined to contain an
emergent gravitational interaction in the self-consistent vacuum. In a particular generaliza-
tion with scalars and fermions, with effective cosmological constant A tuned to zero, the

emergent gravitational interaction was analyzed in an analogous way in Ref. [10].
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V. CONCLUSIONS

We have demonstrated that a diffeomorphism-invariant scalar theory with an ultraviolet
regulator has a self-consistent vacuum spacetime determined by Einstein’s equations with
higher-derivative corrections, and an emergent gravitational interaction in the background
of the vacuum spacetime. The construction is diffeomorphism invariant, and nonlinear grav-
itational self-interactions arise as in Ref. [12]. It should be straightforward to generalize this
analysis to an arbitrary theory with fermions and gauge fields. Beginning with an arbitrary
field theory in curved spacetime, the composite vielbein in this approach is determined (up to
local Lorentz transformations) as a function of the fields by the condition 7),,[e,*, ®] = 0 as
an operator equation, where e is the composite vielbein and ® represents the fundamental
fields in the theory.

We introduced nondynamical clock and rod fields, which provide a coordinate basis with
which to describe the vacuum spacetime. Adding terms with derivatives of the clock and
rod fields to the action, with field-space metric of the same form as the vacuum spacetime
metric, permits a perturbative expansion about the vacuum. However, subtracting those
same terms from the action then precisely cancels a tadpole that would otherwise contribute
to the vacuum expectation value of the energy-momentum tensor, in conflict with a basic
principle of this approach to quantum gravity.

For ease of discussion we dropped higher-derivative corrections in the effective action and
correlation functions. Including those corrections would modify both Einstein’s equations for
the vacuum spacetime, and the kernel of the recursion relation that we used to determine the
four-point correlation function. With the ultraviolet regulator held fixed, the corrections to
the low-energy effective description are important at curvatures large compared to m2. The
analogy of these corrections to a more realistic scenario that incorporates the standard model
particle content would be relevant for early cosmology and other circumstances involving
strong gravitational effects.

To serve as a complete quantum theory of gravity, this approach requires a physical
regulator rather than dimensional regularization, point splitting, or the like. In an earlier
work it was suggested that a stochastic evolution of fields might provide the fundamental

description of a theory of this type, and the discreteness of the stochastic process would
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provide the ultraviolet regulator [20]. A precise formulation and simulations of such a theory
would shed light on the dynamical evolution of generic states relative to the fiducial clock and
rod fields. Note that the existence of a tentative physical regulator does not automatically
imply a smooth semiclassical description of the theory, a difficult lesson that was learned in
the context of the dynamical triangulations approach to quantum gravity [21, 22].

Finally, we note that if gravitation is an emergent interaction not present at short dis-
tances, then the equilibrium configuration of an initially dense state may be homogeneous
and isotropic, rather than clumped as it would be under the influence of gravitation. If we
erroneously assume that gravitation exists as a fundamental interaction at short distances
then a homogeneous, isotropic state would appear to have an anomalously small entropy
[23]. Hence, composite gravity, and emergent gravity scenarios more generally, may explain
the past hypothesis by replacing the requirement of a low-entropy initial state with one of
high density or temperature. Possible implications of a gravitational phase transition for

early-universe cosmology would be interesting to explore.
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