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Abstract

Let CT be the subgroup of the smooth knot concordance group generated by topologically slice knots
and let C∆ be the subgroup generated by knots with trivial Alexander polynomial. We prove that CT /C∆
is infinitely generated. Our methods reveal a similar structure in the 3-dimensional rational spin bordism
group, and lead to the construction of links that are topologically, but not smoothly, concordant to boundary
links.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Donaldson’s landmark theorem [11] has an immediate corollary (first observed by Akbulut
and Casson, and appearing in [5]) that there are classical knots with trivial Alexander polynomial
that are not smoothly slice. A year after Donaldson’s work, Freedman [16,17] proved a 4-
dimensional topological surgery theorem for manifolds with fundamental group Z, implying
that a knot with trivial Alexander polynomial is in fact topologically (locally flat) slice. Thus the
natural map from the 3-dimensional smooth knot concordance group C to the topological (locally
flat) concordance group C top is not injective.
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This paper is concerned with the kernel of the map between the groups C and C top. Let
CT be the subgroup of C consisting of topologically slice knots and let C∆ ⊂ CT be the
subgroup generated by knots with trivial Alexander polynomial. Using gauge theoretic methods
of Furuta [20] and Fintushel and Stern [13], Endo [12] proved that C∆ contains an infinitely
generated subgroup. Based on Freedman’s work it seemed possible that C∆ = CT , or in other
words that every topologically slice knot is smoothly concordant to a knot with trivial Alexander
polynomial. This possibility was heightened by the observation by Cochran et al. [4], that many
potential counterexamples developed by Friedl and Teichner in [18,19] are in fact concordant
to knots with trivial Alexander polynomial. Our main result is that, to the contrary, there is a
substantial gap between these two subgroups of C.

Theorem A. CT /C∆ contains an infinitely generated free subgroup.

To put Theorem A in the context of known results on the structure of the knot concordance
group, we recall the following decomposition, parameterized by half-integers:

C∆ ⊂ CT ⊂ ∩ Ci ⊂ · · · ⊂ C1.5 ⊂ C1 ⊂ C A ⊂ C,

where C A is the concordance group of algebraically slice knots (that is, the kernel of Levine’s
classifying homomorphism [28]) and the Ci are the terms of the Cochran–Orr–Teichner
filtration [8].

Early work on concordance demonstrated that C is infinitely generated [14,28,35,45]. The
infinite generation of C A follows from the work of Casson and Gordon [3], as shown by
Jiang [26]. The infinite generation of C2/C2.5 was proved in [9] and the infinite generation of
Ci/Ci+.5 for all i was proved in [6] (see also [10] for the existence of elements of infinite
order in each of the quotients). Conjecturally, ∩ Cn = CT , but little progress has been made
in proving this. As mentioned above, in [12] it is shown that C∆ is infinitely generated. Thus the
non-triviality of the quotient CT /C∆, established in this paper, is at the heart of the distinction
between the smooth and topological category.

Summary. The proof of Theorem A has three parts: (1) developing an obstruction to a knot being
smoothly concordant to a knot with trivial Alexander polynomial; (2) constructing knots that
offer potential examples; and (3) explicitly computing the obstructions.

The first part of the proof of Theorem A occupies Sections 2 and 3. Section 2 reviews Spinc

structures on 3-manifolds. Section 3 describes basic properties of the Heegaard–Floer correction
term d(Y, s), which is a rational number associated to a 3-manifold Y equipped with a Spinc

structure s. This invariant, defined by Ozsváth and Szabó in [37], has been applied to study knot
concordance in [23,25,32]. Letting Σ (K ) denote the 2-fold branched cover of a knot K , we use
these basic properties of d to prove that a related invariant, d̄(Σ (K ), s), provides an obstruction
to K being concordant to a knot with trivial Alexander polynomial. A priori, demonstrating that
CT /C∆ is infinitely generated requires knowledge of our obstruction for all linear combinations
of knots in a proposed basis. Thus, a key aspect of this part of the proof is a careful analysis of
possible metabolizers for (Z/p2Z)n , which significantly reduces the amount of Floer theoretic
computation necessary.

The second part of the proof of Theorem A occupies Section 4. Here a family of knots {K p}

is constructed and the covers Σ (K p) are described as surgery on knots in S3. Fig. 1 illustrates
one example, the knot K3. In that figure, the knot J3 is the connected sum of two untwisted
Whitehead doubles of the trefoil knot: J3 = D(T2,3)#D(T2,3). For other values of p, all of
which are selected to be primes congruent to 3 modulo 4, there are p half-twists between the
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Fig. 1. A punctured Klein bottle whose boundary is the knot K3. The circle labeled J3 indicates that we tie a knot J3
into the band.

bands of the illustrated surface and Jp consists of (3p − 1)/4 copies of the untwisted double of
the trefoil. A relatively easy argument using Freedman’s result shows that K p is topologically
slice. An exercise in framed link descriptions of 3-manifolds then shows that Σ (K p) can be
described as surgery on a knot in S3. More precisely, Σ (K p) = S3

p2(L p); that is, by p2 surgery

on a knot L p ⊂ S3, where L p is the connected sum of the (p − 1, p)-torus knot with (3p − 1)/2
untwisted doubles of the trefoil.

The third part of the proof of Theorem A is the most technical, calling on precise estimates of
the value of the invariants d(Σ (K p), s) for appropriate Spinc structures. In Section 5 we review
the necessary background material from Heegaard–Floer homology. In Section 6 we carry out
the explicit estimates needed to obstruct the relevant knots from being concordant to knots with
trivial Alexander polynomial, completing the proof of Theorem A.

Section 7 applies the results of Section 2 and the calculations of Section 6 to study the
structure of 3-dimensional bordism groups. We let Ω denote either the 3-dimensional rational
Spin-cobordism group, ΩQ

Spin, or the 3-dimensional Z/2Z-homology bordism group ΩZ/2Z. In
each case, Ω contains a subgroup ΩT , defined to be the kernel of the homomorphism from
Ω to the corresponding topological cobordism group. It is also the case that Ω contains the
subgroup ΩI generated by homology spheres. By Freedman [15], ΩI ⊂ ΩT , and by Furuta [20],
ΩI ⊂ ΩZ/2Z is infinitely generated. Our techniques show that ΩT /ΩI is infinitely generated. Of
course it follows that ΩQ

Spin is infinitely generated, which apparently was not previously known.
As an additional consequence, we show the existence of 4-dimensional rational homology balls
that do not have pseudo-handlebody structures.

In Section 8 we take up the question of boundary links and link concordance, again with
regard to the difference between smooth and topological cobordisms. Cochran and Orr [7]
constructed 2-component links in S3 that are not concordant to boundary links, despite the fact
that all of their Milnor µ̄-invariants vanish. Generalizing observations made in [29], we construct
further examples: in this case the links have the remarkable property that they are topologically
concordant to boundary links (and thus all Milnor and Cochran–Orr invariants vanish) and yet
they are not smoothly concordant to boundary links.

2. Spinc structures and metabolizers for linking forms

Our concordance obstruction will come from an invariant of Spinc 3-manifolds. For these
purposes, the only relevant Spinc structures on a given 3-manifold, Y , are those which could



916 M. Hedden et al. / Advances in Mathematics 231 (2012) 913–939

extend over a putative 4-manifold W satisfying ∂W = Y . In this section, we clarify this extension
problem by connecting it with metabolizers for the linking form on Y .

Denote by Spinc(W ) the set of Spinc structures on a manifold, W . If Spinc(W ) is non-empty,
then it admits a free, transitive action by H2(W ; Z), which we denote z ·s for z ∈ H2(W ; Z), s ∈

Spinc(W ). The action affects the first Chern class by the rule c1(z · s) − c1(s) = 2z. Thus if
H2(W ; Z) has no 2-torsion, then the first Chern class establishes an injection

c1 : Spinc(W ) → H2(W )

with image the set of classes that restrict to w2(W )(mod 2). This map is natural with respect to
restriction: if Y ⊂ W then c1(s|Y ) = i∗c1(s), where i∗ is the restriction map on cohomology.

Let us now make the further simplifying assumptions that H2(W ; Z/2Z) = 0 and H1(∂W ;

Z/2Z) = 0. Under the Lefschetz and Poincaré duality isomorphisms H2(W ) ∼= H2(W, ∂W )

and H2(∂W ) ∼= H1(∂W ), the set of Spinc structures on ∂W that arise as the restriction of Spinc

structures on W correspond to

Im(H2(W, ∂W )
∂
−→ H1(∂W )).

This is precisely the kernel of the map i∗ : H1(∂W ) → H1(W ), induced by inclusion. Under-
standing this kernel can be aided significantly by an observation of Casson and Gordon [3].

To state their observation, recall that a subgroup M ⊂ H1(Y ) is called a metabolizer if

• |M |
2

= |T1(Y )|, where T1 denotes the torsion subgroup of H1(Y ; Z), and
• The Q/Z-valued linking form on H1(Y ; Z) is identically zero on M .

In these terms, we have the following [3].

Proposition 2.1. If W is a compact 4-manifold with H2(W ; Z/2Z) = 0 and H1(∂W ; Z/2Z) =

0, then the set of Spinc structures on ∂W that extend to Spinc structures on W correspond via c1
and Poincaré duality to a metabolizing subgroup M ⊂ H1(∂W ).

In the special case that Y is a Z/2Z-homology 3-sphere,1 then it admits a unique spin
structure; denote by s0 the Spinc structure corresponding to this spin structure. This notation
extends to the other Spinc structures as follows.

Definition 2.2. For Y a Z/2Z-homology sphere, and m ∈ H1(Y ; Z), let sm be the unique Spinc

structure satisfying P D[c1(sm)] = 2m.

Comments. In many cases, we will consider manifolds with H1(Y ) cyclic, explicitly identified
with Z/pZ for some p. In these cases we refer to Spinc structures by sm , with m ∈ Z/pZ. The
factor of two appears in our notation in order to simplify some of the exposition regarding the
Heegaard–Floer complexes that appear later. Note, however, that for Z/2Z homology spheres,
multiplication by two is an isomorphism of H1(Y ) that leaves all subgroups invariant.

3. The Heegaard–Floer correction term d as a concordance obstruction

In this section, we define an invariant that serves as an obstruction for a knot to be concordant
to a knot with Alexander polynomial one. We then proceed to determine sufficient conditions,

1 Throughout we will say that an n-manifold is an R-homology sphere (ball) if it has the same homology with R-
coefficients as the n-sphere (ball).
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in terms of our obstruction, for a collection of knots to be linearly independent (over Z) in the
quotient group CT /C∆; see Theorem 3.6. In light of Proposition 2.1, it is perhaps unsurprising
that deriving these conditions requires some analysis of linking forms and their metabolizers. We
relegate the bulk of this algebra to the Appendix.

To a Spinc 3-manifold, (Y, s), Ozsváth and Szabó associate a rational-valued invariant,
d(Y, s) ∈ Q, called the correction term. The definition comes from grading information in
their Heegaard–Floer homology theory, and is reviewed in Section 5. For now, we need only
the following two properties, which correspond to Theorems 4.3 and 1.1 of [37], respectively.

1. (Additivity) d(Y #Y ′, s#s′) = d(Y, s)+ d(Y ′, s′); that is, d is additive under connected sums.
2. (Vanishing) Suppose (Y, s) = ∂(W, t), where W is a Q-homology ball and t is a Spinc

structure on W that restricts to s on Y . Then d(Y, s) = 0.

Our obstruction is defined as a difference of correction terms.

Definition 3.1. For Y a Z/2Z-homology sphere, define d̄(Y, s) = d(Y, s)− d(Y, s0), where d is
the Ozsváth-Szabó correction term and s0, as above, is the unique spin structure on Y .

We have the following vanishing theorem for d̄ .

Theorem 3.2. Let P be a finite set of (distinct) odd primes. Suppose that W is a Z/2Z-
homology 4-ball and ∂W = #p∈P Yp # Y1, where

• pk H1(Yp) = 0 for each p ∈ P and some k > 0.
• Y1 is a Z-homology 3-sphere.

Then for each p ∈ P, there is a metabolizer Mp ⊂ H1(Yp) for which d̄(Yp, sm p ) = 0 for all
m p ∈ Mp.

Proof. Proposition 2.1, together with the vanishing property of the correction terms, shows that
H1(∂W ) possesses a metabolizer M , satisfying

d(∂W, sm) = 0 for all m ∈ M.

There is a decomposition of M as a direct sum ⊕p∈P Mp, where Mp is a metabolizer for H1(Yp)

and, in particular, is p-torsion.
For each p ∈ P we can gather all but the p-summand of ∂W to write ∂W = Yp # Z p.

Now, given m p ∈ Mp, consider m = m p ⊕ 0 ∈ H1(∂W ) = H1(Yp) ⊕ H1(Z p). Then
d(∂W, sm p⊕0) = 0 by the considerations above. Additivity shows that

d(Yp, sm p )+ d(Z p, s0) = 0.

But this holds for any m p ∈ Mp; that is, d(Yp, sm p ) is independent of the choice of m p ∈ Mp. It
follows that d̄(Yp, sm p ) = 0 for all m p ∈ Mp, as desired. �

By using branched covers, the theorem yields the desired concordance obstruction.

Corollary 3.3. Let K ⊂ S3 be a knot with pk H1(Σ (K )) = 0 for some k, where Σ (K ) is the 2-
fold branched cover of K. Suppose that K is concordant to a knot K ′, satisfying ∆K ′(t) = 1.
Then there exists a metabolizer M ⊂ H1(Σ (K )) such that d̄(Σ (K ), sm) = 0, for all m ∈ M.

Proof. Let W be the 2-fold branched cover of B4 branched over a slice disk for K # − K ′. Then
∂W = Yp # Y1 where Yp = Σ (K ) and Y1 = Σ (−K ′). Since W is a Z/2Z-homology ball and
Y1 is a homology sphere (as follows from ∆K ′(t) = 1) the previous theorem applies. �
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Corollary 3.4. Let K = #p∈P K p#K1 be a connected sum of knots satisfying
• pk H1(Σ (K p)) = 0 for each p in a set of primes, P, and some k,
• H1(Σ (K1)) = 0.

Suppose K is slice. Then for each p ∈ P, there is a metabolizer Mp ⊂ H1(Σ (K p)) for which
d̄(Σ (K p), sm p ) = 0 for all m p ∈ Mp.

Proof. The proof is much like the previous argument, grouping together all Σ (Kq) for q ≠ p,
since this space will be a Z/pZ-homology sphere. �

In the next section, we construct a family of knots, {K p}, which we would like to show
are linearly independent in CT /C∆. By definition, this means that no Z-linear combination
K = Σ n p K p is equal to zero or, equivalently, is concordant to a knot with Alexander polynomial
one. Note the sum is in concordance; for instance, −3K means the connected sum of three copies
of the mirror of K with reversed orientation.

In pursuit of such independence, the previous corollary reduces the problem to showing
that for every n ≠ 0 and metabolizer M ⊂ H1(Σ (nK p)), there is some m ∈ M with
d̄(Σ (nK p), sm) ≠ 0. In order to reduce this further, to the case that n = 1, we have the following
theorem. The proof (compare [30,31]) represents a significant algebraic detour, and is left to the
Appendix.

Theorem 3.5. Suppose p is a prime satisfying p ≡ 3 mod 4. If K satisfies H1(Σ (K )) = Z/p2Z
and there is a metabolizer for M ⊂ H1(Σ (nK )) for which d̄(Σ (nK ), sm) = 0 for all m ∈ M,
then d̄(Σ (K ), spk) = 0 for all k.

Combining this with the work above, we immediately have the following theorem.

Theorem 3.6. Suppose that {K p} is a collection of knots indexed by the set of primes p ≡

3 mod 4. Suppose further that H1(Σ (K p)) = Z/p2Z, and that for each p, d̄(Σ (K p), spk) ≠ 0
for some k. Then no Z-linear combination of the knots in {K p} is concordant to a knot with trivial
Alexander polynomial.

In Section 6 we show that a family of topologically slice knots constructed in the next section
satisfy the hypotheses, thus demonstrating the truth of Theorem A.

4. The knots K p

In this section, we construct an infinite family of topologically slice knots. These knots will be
used with Theorem 3.6 to prove Theorem A. The details of the construction were motivated by
a desire to find knots whose 2-fold branched covers are realized by surgery on knots in S3 with
computable Floer invariants. As discussed in Section 5, these knot Floer homology invariants can
be used to determine the correction terms.

Fig. 1 illustrates a knot K3 in the family of knots {K p}, where p is a prime satisfying
p ≡ 3 mod 4 and Jp is the connected sum of (3p − 1)/4 positive-clasped, untwisted Whitehead
doubles of the right-handed trefoil knot. The orientation-preserving band in the non-orientable
surface Fp bounded by K p is untwisted and has the knot Jp tied in it.

Proposition 4.1. K p is topologically locally flat slice.

Proof. The surface Fp is a punctured Klein bottle. The core of the left band of Fp is a simple
closed curve α, which represents the knot Jp. Since the neighborhood of α is an untwisted
annulus and Jp is topologically slice by Freedman’s theorem (untwisted doubles have trivial
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Fig. 2. Surgery diagram of Σ (K p).

Fig. 3. Surgery diagram of Σ (K p) as p2-surgery on Tp−1,p#Jp#J r
p .

Alexander polynomial), Fp can be surgered in B4 along α. Performing this surgery on the
punctured Klein bottle yields a disk. �

For q ∈ Z, let S3
q (K ) denote the manifold obtained by q-surgery on a knot K ⊂ S3.

Proposition 4.2. The 2-fold branched cover Σ (K p) = S3
p2(2Jp#Tp−1,p), where Tp−1,p is the

(p − 1, p)-torus knot. In particular, H1(Σ (K p)) = Z/p2Z, and hence K p has non-trivial
Alexander polynomial.

Proof. According to [1], the 2-fold branched cover of K p, Σ (K p), is given by the surgery
diagram illustrated in Fig. 2. There are −p full twists between the components of the 2-
component link shown, and the surgery coefficients are 0 and −1. The notation J r denotes
the knot J with its string orientation reversed. Since doubled knots are reversible, in our case
J r

= J .
If an unknotted component of a surgery diagram of a 3-manifold has framing −1, that

component can be removed, with the effect of putting a full twist in the curves that pass through it
and increasing their framings by the square of the linking number with the unknotted component.
(This procedure is referred to as blowing down the −1.) In the present case, the result is the
surgery diagram given in Fig. 3. �

The result of [43] that we will use to compute d(S3
q (K ), sm) requires that q ≥ 2g3(K ) − 1.

The following lemma verifies that this condition is satisfied.
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Lemma 4.3. The 3-genus of Tp−1,p#Jp#J r
p is p2

+1
2 .

Proof. We have g3(Tp−1,p) =
(p−2)(p−1)

2 . Since Jp =
3p−1

4 D(T2,3) and g3(D(T2,3)) = 1, we
have

g3(Tp−1,p#Jp#J r
p) =

(p − 2)(p − 1)
2

+
3p − 1

2
=

p2
+ 1
2

. �

5. Background on Heegaard–Floer homology

In this section, we collect some basic facts about Ozsváth and Szabó’s Heegaard–Floer
homology invariants. Our main purpose is to introduce the algebraic structures inherent in the
theory. These structures will subsequently be exploited, both to define the correction terms used
for our concordance obstruction and to aid in its calculation. Details regarding the invariants used
here can be found in [38,40,37]. Throughout, we let F = Z/2Z denote the field with 2 elements.
Many of the chain complexes and homology groups in what follows have gradings; these are
indicated by subscripts when we discuss groups in a single grading and are omitted otherwise.

5.1. The chain complexes and the definition of d

In [38], Ozsváth and Szabó associate various chain complexes to a pair, (Y, s), consisting of
an oriented Q-homology sphere, Y , and a Spinc structure s (invariants are defined for arbitrary
3-manifolds, but those of rational homology spheres will be sufficient for our applications).
As input, the theory takes a pointed Heegaard diagram for Y consisting of a surface Σ of
genus g, together with two g-tuples of attaching curves, α⃗, β⃗, and a distinguished basepoint
in their complement, z. By taking the g-fold symmetric product of the diagram one arrives at
a 2g-dimensional (complex) manifold, together with two g-dimensional submanifolds, denoted
Tα,Tβ . The basepoint leads to a complex hypersurface, Vz , consisting of those unordered g-
tuples of points on Σ , at least one of which is z.

The most general Heegaard–Floer complex is denoted C F∞(Y, s). It is generated by pairs,
[x, i], where x ∈ Tα ∩ Tβ is an intersection point, i ∈ Z is an integer, and sz(x) = s (the
basepoint induces a map sz : Tα ∩ Tβ → Spinc(Y )). Roughly speaking, the boundary operator
counts pseudo-holomorphic disks in the symmetric product that connect x to y. The integer keeps
track of the algebraic intersection number of such disks with the hypersurface, Vz . By identifying
[x, i] with U−i

· x, the chain groups can be thought of more algebraically as the free F[U,U−1
]

module generated by intersection points of Tα and Tβ . Here U is a formal polynomial variable,
and under this correspondence we have U i

·[x, j] = [x, j−i]. The complex is relatively Z-graded
by the formula

gr([x, i])− gr([y, j]) = µ(φ)+ 2(i − j),

whereµ(φ) denotes the Maslov index of any Whitney disk connecting x to y. With this formula, it
is clear that the variable U (respectively U−1) carries a grading of −2 (respectively 2). Moreover,
the complex can be endowed with an absolute grading, which takes values in r +Z, where r ∈ Q
is a fixed (dependent only on s) rational number. This grading, which we denote gr , is defined in
the spirit of index theory for 4-manifolds with boundary, [2] and considers characteristic numbers
of a Spinc cobordism between (Y, s) and the 3-sphere. For details on the absolute grading,
see [42,37].
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We denote the homology of the above complex by H F∞(Y, s). By itself, this invariant is
rather uninteresting, as indicated by the following theorem

Theorem 5.1 ([39, Theorem 10.1]). Let Y be a rational homology three sphere. Then

H F∞(Y, s) ∼= F[U,U−1
],

for any Spinc structure, s.

The theory becomes more interesting when one notices that C F∞(Y, s) has a distinguished
subcomplex, consisting of pairs [x, i] with i < 0. We denote this subcomplex by C F−(Y, s). That
this is a subcomplex follows from the fact that pseudo-holomorphic disks intersect Vz positively,
when transverse. We have the corresponding short exact sequence

0 → C F−(Y, s) → C F∞(Y, s) → C F∞(Y, s)/C F−(Y, s) → 0. (5.1)

The quotient complex, which we henceforth denote by C F+(Y, s), is generated by pairs [x, i]
with i ≥ 0.

There is a fourth complex, denoted C F(Y, s), which frequently appears. It can be described as

the complex ker{C F+ ·U
→ C F+

}. Perhaps more concretely, it is the complex generated by pairs
[x, 0], whose boundary operator counts holomorphic disks that miss the hypersurface.

Theorem 1.1 of [38] indicates that the homology of all four of these chain complexes are
invariants of the pair, (Y, s). That is, they are independent of the many choices involved in the
construction: for example the Heegaard diagram, the almost complex structure on the symmetric
product, and the basepoint. Note that all four groups are naturally modules over F[U ], and the
module structure is also an invariant of (Y, s). Of course it follows from the definitions that H F∞

is also a module over F[U,U−1
], and that the module structure on H F is trivial (in the sense

that U acts as zero).
Theorem 5.1 allows the definition of a numerical invariant, the so-called “correction term”

or d-invariant, of a Spinc 3-manifold. Appropriately interpreted, this invariant serves as our
concordance obstruction (see Definition 3.1 above).

Definition 5.2.

d(Y, s) = min
α≠0∈H F+(Y,s)

{gr(α) | α ∈ Im U k, for all k ≥ 0}

Note that d(Y, s) is a rational number, in general. The additivity and vanishing properties of d
mentioned in Section 3 follow immediately from Theorems 4.3 and 1.1 of [37], respectively.

We conclude this subsection with an example.

Example: the 3-sphere. Examining the standard genus one Heegaard diagram for the 3-sphere
allows one to compute its Floer homology directly. We have the following isomorphisms of
F[U ] modules, where the grading of the element 1 ∈ F[U ] is equal to 0, and U carries (as above)
a grading of −2. Note that S3 carries a unique Spinc structure, so we suppress this from the
notation.

H F∞(S3) ∼= F[U,U−1
]

H F+(S3) ∼= F[U,U−1
]/U · F[U ]

H F−(S3) ∼= U · F[U ]H F(S3) ∼= F[U ]/U · F[U ] ∼= F
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Moreover, the long exact sequence of F[U ]-modules coming from the short exact sequence
Eq. (5.1) becomes

0 → U · F[U ] → F[U,U−1
] → F[U,U−1

]/U · F[U ] → 0,

and the map H F(S3) → H F+(S3) is injective.
Note that 1 ∈ H F+(S3) is in the image of U k for all k ≥ 0, and has grading 0. Thus

d(S3) = 0.

5.2. Knot Floer homology and surgery on knots

The discussion of the last section implies that C F∞(Y, s) is naturally a Z-filtered chain
complex. Indeed, the subcomplexes U d

·C F−(Y, s) are the corresponding terms in this filtration.
Equivalently, the filtered subcomplexes are those generated by pairs [x, i] satisfying i < −d ,
where d ∈ Z.

A knot K ⊂ Y induces a second filtration on C F∞(Y, s), whose construction we briefly
describe. For our purposes, it will be sufficient to consider the case of knots in the 3-sphere,
K ⊂ S3, and henceforth we deal exclusively with this special case.

Given K ⊂ S3, the second filtration of C F∞(S3) arises by consideration of a doubly-
pointed Heegaard diagram adapted to the knot. This is a Heegaard diagram with basepoints z
and w for which K can be realized as the union of two arcs tα ∪ tβ , where tα (respectively
tβ ) is properly embedded in the handlebody specified by α⃗ (respectively β⃗), and both arcs have
common boundary consisting of z ∪ w.

The data above allows us to define a complex C F K ∞(K ), freely generated as an F[U,U−1
]-

module by triples [x, i, j], i, j ∈ Z satisfying a homotopy-theoretic constraint:

⟨c1(s(x)), [S]⟩ + 2(i − j) = 0.

Here c1(s(x)) is the Chern class of a Spinc structure associated to x on S3
0(K ) (the manifold

obtained by zero surgery on K ), and [S] ∈ H2(S3
0(K ); Z) is the class that arises from extending a

Seifert surface by the meridional disk of the surgery torus. The boundary operator on C F K ∞(K )
is defined as before, except that now the second index keeps track of the intersection number of
holomorphic disks with the hypersurface Vw, specified by the additional basepoint. Forgetting j ,
we are left with C F∞(S3), and positivity of intersections ensures that the projection [x, i, j] →

j provides it with a second Z-filtration.
Thus C F K ∞(K ) is a Z ⊕ Z-filtered chain complex; that is, a chain complex C∗, together

with a map F : C∗ → Z ⊕ Z satisfying F(∂x) ≤ F(x), where ≤ is the standard partial order on
Z ⊕ Z. Theorem 3.1 of [40] shows that the Z ⊕ Z-filtered chain homotopy type of C F K ∞(K )
is an invariant of the isotopy class of K .

Much of the power of an invariant that takes values in the Z ⊕ Z-filtered chain homotopy
category lies in our ability to derive further invariants by considering the homology of sub and
quotient complexes. For instance, we can consider the subcomplex

C∗{max(i, j − m) < 0} ⊂ C F K ∞(K )

generated by triples [x, i, j] satisfying max(i, j − m) < 0. The homology of this subcomplex
is also an invariant of K . The corresponding quotient complex is generated by triples satisfying
max(i, j − m) ≥ 0, and is denoted C∗{max(i, j − m) ≥ 0}. We will suppress K from the
notation for complexes derived from C F K ∞(K ) whenever the particular knot is clear from the
discussion.
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In the present context, the importance of these knot invariants comes from the following
theorem, which indicates that they can be identified with the Floer homology of manifolds
obtained by surgery on K . To make this precise, denote by sm ∈ Spinc(S3

q (K )) the unique
Spinc structure that extends over the 2-handle cobordism induced by q-surgery on K , to a Spinc

structure, tm satisfying:

⟨c1(tm), [S]⟩ + q = 2m.

Notice that if we denote the restriction of tm to S3
q (K ) by sm , then ⟨c1(sm), [µ]⟩ = 2m mod q,

where µ is the meridian of K . Thus, P D(c1(sm)) = 2[µ]. It follow that this labeling is consistent
with that of Definition 2.2, if we identify H1(S3

q (K )) with Z/qZ using µ as the generator of
Z/qZ.

In terms of this labeling of Spinc structures, we have

Theorem 5.3 ([40, Theorem 4.4]). Let K ⊂ S3 be a knot of Seifert genus g3(K ) = g, and let q
be a positive integer such that q ≥ 2g − 1. Then for all m satisfying |m| ≤

1
2 (q − 1), we have a

chain homotopy equivalence of graded complexes over F[U ],

C F+
∗ (S

3
q (K ), sm) ≃ C∗+s(q,m){max(i, j − m) ≥ 0},

where the grading shift s(q,m) is given by the following formula

s(q,m) =
−(2m − q)2 + q

4q
.

6. Computing d̄(S3
p2(Tp−1, p# Jp# J r

p))

In this section we turn to the computation of the concordance obstruction for our family of
knots. Having identified the branched double cover of these knots with the manifolds obtained
by p2 surgery on the knot

L p := Tp−1,p#Jp#J r
p = Tp−1,p#

3p − 1
2

D(T2,3)

(see Proposition 4.2) we will accomplish this task by analyzing C F K ∞(L p) and using
Theorem 5.3 to extract the correction terms necessary for d̄ .

Before going further, we describe some aspects of the computation in more detail.
Theorem 5.3 allows us to compute H F+(S3

p2(L p), s) completely in terms of C F K ∞(L p).

Furthermore, a Künneth theorem for knot Floer homology says that C F K ∞(K1#K2) ∼=

C F K ∞(K1) ⊗ C F K ∞(K2). Thus it suffices, in principle, to know C F K ∞(D(T2,3)) and
C F K ∞(Tp−1,p). The former invariant was studied in [24], while the latter was determined
in [41]. While this appears to complete the picture, two issues make the situation more subtle.

The first issue is that the size of the chain complex grows very quickly with p; a minimal

generating set for C F K ∞(L p) as an F[U,U−1
] module consists of (2p − 3)(15)

3p−1
2 elements.

Such a complex is somewhat unwieldy to work with in the context of Theorem 5.3. The second
issue is that the results of [24] leave an ambiguity in the full nature of C F K ∞(D(T2,3)): the
results of [24] only determine differentials in C F K ∞ that drop one or the other of the filtration
indices, and not differentials that drop both.

In light of this, we found it convenient to distill only the properties of C F K ∞(L p) necessary
for the computation of a single d̄ invariant which, by Theorem 3.6, is sufficient for the topological
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applications. As it turns out, this requires far less information than the full Z ⊕ Z-filtered chain
homotopy type of C F K ∞(L p), and we hope that similar methods can be exploited to compute
the correction terms in other situations when chain complexes become complicated or are only
partially known.

6.1. Understanding C F K ∞(Tp−1,p)

With the general strategy in place, we begin by studying the complex of the torus knot
Tp−1,p. The filtered chain homotopy type of this complex is determined by the main theorem
in [41]. For the specific case of Tp−1,p, the complex can also easily be understood from the
definition, as Tp−1,p admits a genus one doubly-pointed Heegaard diagram. For such knots, the
methods developed in Section 6.2 of [40] (and further exploited in [22]) allow one to compute
the differential on C F K ∞ via the Riemann mapping theorem.

For our purposes, it will be most convenient to use Theorem 1.2 of [41] to understand
the structure of C F K ∞(Tp−1,p). While the full Z ⊕ Z-filtered chain homotopy type of
C F K ∞(Tp−1,p) can be determined from this theorem, it is stated as a result about the knot Floer

homology groups. Recall that these groups, denoted H F K ∗(K , j) are the associated graded
groups of the subquotient complex C{i = 0} ⊂ C F K ∞(K ), equipped with the Z-filtration
[x, 0, j] → j .

To state the theorem, let

∆K (t) =

j=g
j=−g

a j · t j

denote the Alexander polynomial, normalized so that a j = a− j and ∆K (1) = 1. Let

n−k < · · · < nk,

denote the sequence of integers, j , for which a j ≠ 0. Under the assumption that some positive
framed surgery on K produces a lens space (or, more generally, an L-space), Theorem 1.2 of [41]
indicates that this sequence determines the knot Floer homology groups.

More precisely, we have H F K (K , j) = 0 unless j = ns for some s, in which case
H F K (K , ns) ∼= F. Moreover, the homological grading of H F K (K , ns) is given by an integer
δs , determined by the formulas (for l ≥ 0):

δk−2l = −2
2l−1
j=0

(−1) j
· nk− j , (6.1)

δk−2l−1 = δk−2(l+1) + 1. (6.2)

Note that we have expressed Ozsváth and Szabó’s recursive formula for δi in closed form, and
that δk = 0 since the summation in this case is vacuous.

We now use this theorem to extract the properties of C F K ∞(Tp−1,p) needed for our
application. To be more precise, when we refer to the chain complex C F K ∞(K ) of a given
knot, we really refer to the Z ⊕ Z-filtered chain homotopy type of C F K ∞(K ). As such, we will
always work with a representative for this type that is reduced, in the sense of [44, Section 4].
This means that the differential on C F K ∞(K ) strictly lowers the (i, j) filtration. The existence
of such a representative for any Z ⊕ Z-filtered chain homotopy type follows in exactly the same
manner as the proof of [44, Lemma 4.5].
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For the reader unfamiliar with the Floer homology of torus knots, it may be enlightening
to skip the proof of the following proposition on first reading and proceed to the discussion
immediately following it. There, we give a more conceptual description of the chain complexes
that guided the statement and proof of the proposition.

Proposition 6.1. Consider the chain complex C F K ∞
∗ (Tp−1,p), for p odd. Then

• Any chain [x, i, j] ∈ C F K ∞

0 (Tp−1,p) satisfies i + j ≥
p2

−2p+1
4 .

• Any chain [x, i, j] ∈ C F K ∞

1 (Tp−1,p) satisfies i + j ≥
p2

−1
4 .

• There exists a cycle

x, p2

−4p+3
8 ,

p2
−1
8


that is homologous to a generator of H F∞

0 (S3) ∼= F.

Proof. Since p2
− p + 1 surgery on Tp−1,p is a lens space [36], we can employ Ozsváth and

Szabó’s theorem to compute the knot Floer homology groups. To begin, recall that

∆Tp−1,p (t) = t−g
·
(t (p−1)p

− 1)(t − 1)

(t p−1 − 1)(t p − 1)
,

where g =
(p−2)(p−1)

2 denotes the Seifert genus of Tp−1,p. This can be rewritten as

∆Tp−1,p (t) = tg
·


1 −

p−2
l=1

t−p(l−1)−1
+

p−2
l=1

t−l(p−1)


.

(To demonstrate this equality, multiply by (t p−1
− 1)(t p

− 1). The first sum, when multiplied
by (t p

− 1), becomes telescoping and collapses, as does the second sum when multiplied by
(t p−1

− 1).)
It follows that the sequence of integers corresponding to t powers with non-vanishing

coefficient can be expressed as the union of two sequences:

nk−2l = g − l(p − 1) l = 0, . . . , p − 2

nk−2l−1 = g − lp − 1 l = 0, . . . , p − 3.

Here, k is easily seen to equal p −2, as there are 2p −3 non-vanishing coefficients in ∆Tp−1,p (t).
Straightforward algebra determines the gradings {δs} from the {ns}:

δk−2l = −l(l + 1) l = 0, . . . , p − 2

δk−2l+1 = −l(l + 1)+ 1 l = 1, . . . , p − 2.

As above, {ns, δs} determine the knot Floer homology groups. Up to Z ⊕ Z-filtered chain
homotopy equivalence, these groups generate C F K ∞(K ) as an F[U,U−1

]-module. That is, we
have identifications

H F K ∗(K , j) ∼= C∗{0, j} ∼= C∗−2n{−n, j − n}, (6.3)

for all j, n, ∗, where the first isomorphism holds since we work with a reduced representative for
C F K ∞, and the second isomorphism is induced by the action of U n . Now a basis for the knot
Floer homology groups yields chains

[xs, 0, ns] s = −p + 2, . . . , p − 2

satisfying

gr([xs, 0, ns]) = δs .
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Eq. (6.3) shows that these chains generate C F K ∞(Tp−1,p). Since we wish to understand
C F K ∞

0 , it suffices to identify the chains U n
· [xs, 0, ns] with grading zero. We have

gr(U n
· [xs, 0, ns]) = −2n + δs,

from which it follows that

U−
l(l+1)

2 · [xk−2l , 0, nk−2l ] l = 0, . . . , p − 2

generate C F K ∞

0 . But these chains satisfy

i + j = l(l + 1)+ nk−2l = g + l2
− lp + 2l.

Recalling that g =
(p−2)(p−1)

2 , it follows that the sum is bounded below (as l varies) by p2
−2p+1

4 ,
as claimed.

The second part of the lemma follows in the same manner. This time, we find that

U−
l(l+1)

2 [xk−2l+1, 0, nk−2l+1] generate C F K ∞

1 , with filtration values satisfying:

i + j = l(l + 1)+ nk−2l+1 = g + l2
− l(p − 1)+ p − 1.

Here, the minimum value of p2
−1
4 occurs when l =

p−1
2 .

As for the last part of the proposition, we claim that every chain in C F K ∞
ev (Tp−1,p) is non-

trivial in H F∞(S3). Granting this, the proof is finished: the chain in C F K ∞

0 corresponding to

l =
p−3

2 is easily seen to have the desired filtration values.
To prove the claim, first note that it is enough to prove it for Cev{i = 0}; that is, for the chains

in C F K ∞
ev identified with the even graded knot Floer homology groups. This follows from the

action of F[U,U−1
] on C F K ∞. Hence it remains to show that each of the p − 1 chains above,

[xk−2l , 0, nk−2l ], represent non-trivial classes in H F∞(S3) ∼= F[U,U−1
].

To see this, pick any [xk−2l , 0, nk−2l ] and consider the diagram of chain complexes and chain
maps

C F K ∞(Tp−1,p)π
< [xk−2l , 0, nk−2l ] >

i1
−−−−−→ C{max(i, j − nk−2l ) = 0}

i2
−−−−−→ C{max(i, j − nk−2l ) ≥ 0}

Here, the lower left complex is the complex generated by [xk−2l , 0, nk−2l ], i1 is its inclusion
into the subquotient complex indicated, i2 is the subsequent inclusion into the quotient complex,
and π is the projection of C F K ∞ onto the quotient.
(Note: It may not be evident at this point that the map i1 is a chain map. This depends on the
observation that ∂[xk−2l , 0, nk−2l ] = 0 in the quotient complex C{max(i, j − nk−2l) = 0}. This
observation is explained in the proof below that (i1)∗ is injective.)

Taking homology, we claim this diagram becomes

F[U,U−1
]π∗

F (i1)∗
−−−−→ F (i2)∗

−−−−→ F[U,U−1
]/U · F[U ]

where (i1)∗ is an isomorphism, (i2)∗ is an injection, and π∗ is surjective.
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Write N = p2
− p +1. That (i2)∗ is injective follows from the fact that i2 is chain homotopic,

up to an overall grading shift, to the inclusionC F(S3
N (Tp−1,p), snk−2l ) ↩→ C F+(S3

N (Tp−1,p), snk−2l ),

by Theorem 5.3 (since C F is the kernel of U ), together with the fact that S3
N (Tp−1,p) is an L-

space (and hence the map is isomorphic to the corresponding map H F(S3) → H F+(S3), up to
a grading shift).

Similar considerations show that π∗ is surjective; this time Theorem 5.3 shows that π∗ is chain
homotopic to the map H F∞(S3

N (Tp−1,p)) → H F+(S3
N (Tp−1,p)), which, since S3

N (Tp−1,p) is
an L-space, is isomorphic to the corresponding map for S3.

Finally, to see that (i1)∗ is injective (and therefore an isomorphism), we first note that
[xk−2l , 0, nk−2l ] has strictly larger grading than every other chain in C{max(i, j − nk−2l) = 0},
and hence cannot become a boundary under i1. Similarly, ∂ ◦ i1 ≡ 0 for grading reasons: If
0 < l < p − 2, then all other chains have grading at least 3 less than xk−2l , and hence there are
no non-trivial differentials emanating from xk−2l . For l = 0, ∂i1(xk) = 0 as well, since i1(xk)

is the only chain in C{max(i, j) = nk} with grading zero, but the homology of this complex is
isomorphic to H F(S3) (which is supported in grading zero). A similar argument applies in the
case that l = p − 2.

By tracing the homology class generated by [xk−2l , 0, nk−2l ] into

H∗(C F K ∞(Tp−1,p)) ∼= H F∞(S3) ∼= F[U,U−1
],

through the second diagram, we see that it represents a non-trivial class, as claimed. This
completes the proof of the proposition. �

The structure of C F K ∞(Tp−1,p) is perhaps best understood through an example, which we
include for the reader’s convenience. Fig. 4 illustrates a specific subcomplex of C F K ∞(T4,5),
shown in the (i, j)-filtration plane. We denote this subcomplex by C(4, 5). Letters represent
chains (over F = Z/2Z) and an arrow between letters indicates that the terminal chain appears
in the boundary of the initial. The element represented a is at filtration level (−3, 3) and has
grading −6. The full complex C F K ∞(T4,5) is generated by C(4, 5) as an F[U,U−1

]-module;
that is, C F K ∞(T4,5) = C(4, 5)⊗F F[U,U−1

]. Thus the full complex has a copy of C(4, 5)
corresponding to each integer, with each copy specified by the filtration (n, n) of the chain
coming from the translate of d . The transformation U k acts on the total complex by translation
by (−k,−k).

The chain complex for the (p − 1, p) torus knot is similar. Again, there is a distinguished
subcomplex generating C F K ∞(Tp−1,p) whose shape resembles a staircase. Instead of 7 chains,
the general staircase is comprised of 2p − 3 chains. The first step down has length p − 2.
Subsequent steps decrease in length by one until arriving at the final step, whose length is one.
The width of the steps follows a similar pattern, beginning with an arrow of width one. As one
travels down the staircase, subsequent arrows increase in width by one. That this subcomplex
generates C F K ∞(Tp−1,p) as an F[U,U−1

]-module follows from Theorem 1.2 of [41].
Returning to the special case of T4,5, we point out that the homology of the subcomplex

C(4, 5) is F, generated by a (or c, e, or g). Thus we have

H∗(C F K ∞(Tp−1,p)) ∼= F[U,U−1
],

as expected (C F K ∞ is, after all, a filtered version of C F∞(S3)). The grading of e was
determined in the course of the proof of the preceding lemma (where e was called [x−1, 0,−2]).
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Fig. 4. A Z ⊕ Z-filtered subcomplex of C F K ∞(T4,5) that freely generates it as an F[U,U−1
] module.

There, the grading was shown to be δ−1 = −6. Since arrows decrease the grading by one, this
determines the grading on the complex completely.

An alternative, and often convenient, method for determining the grading follows from the
observation that U−3

· a generates H∗(C{i = 0}) ∼= H F∗(S3) ∼= F. Since this latter group is
supported in degree zero, and since U carries a grading of −2, it follows that a has grading −6.

6.2. Example: computing d(S3
25(T4,5), sm)

To indicate the general route to the correction terms through knot Floer homology, we now
compute d-invariants for surgery on the (4, 5) torus knot. We restrict our attention to Spinc

structures, sm , for m = 0, 5 and 10.
According to Theorem 5.3, in order to find d(S3

25(T4,5), s0) we consider the quotient complex
C{max(i, j) ≥ 0}. The homology of this quotient is isomorphic to F[U,U−1

]/U · F[U ], with 1
represented by the cycle a (or any cycle homologous to it). Since U± carries a grading of t2, it
follows that a represents the element of least grading in C{max(i, j) ≥ 0} that is in the image
of U k for all k ≥ 0. As a chain in C F∞(S3), the discussion above showed that gr(a) = −6.
Viewed as a chain in C F+(S3

25(T4,5), s0) under the isomorphism of Theorem 5.3, the grading of

a must be shifted down by −(2m−q)2+q
4q , where m = 0 and q = 25. Simplifying, we see that

d(S3
25(T4,5), s0) = −6 −


−(0 − 25)2 + 25

4 · 25


= 0.

The same approach calculates d(S3
25(T4,5), s5). Here we examine the quotient complex

C{max(i, j − 5) ≥ 0}. The only chains in C(4, 5) contained in this quotient are d, e, f ,
and g. By themselves, these chains do not yield non-trivial homology classes, as e is the
boundary of d which, in turn, is homologous to g. Similarly, the part of U−1

· C(4, 5) contained
in C{max(i, j − 5) ≥ 0} does not carry non-trivial homology classes. On the other hand,
U−2

· C(4, 5) is entirely contained within C{max(i, j − 5) ≥ 0}, and hence its homology
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contributes to the homology of the quotient. Indeed, we have

H∗(C{max(i, j − 5) ≥ 0}) ∼= F[U,U−1
]/U−1F[U ],

and a representative for the class U−2 is provided by the cycle U−2
·a. As a chain in C F∞(S3)we

have gr(U−2a) = 4+gr(a) = 4−6 = −2. Shifting this grading by s(q, p) with p = 5, q = 25
yields

d(S3
25(T4,5), s5) = −2 −


−((2)(5)− 25)2 + 25

4 · 25


= 0.

Finally, we perform the same analysis to determine d(S3
25(T4,5), s10). The first translate of

C(4, 5) that generates non-trivial homology classes in the relevant quotient is U−3C(4, 5), and
we see that

C{max(i, j − 10) ≥ 0} ∼= F[U,U−1
]/U−2F[U ],

with U−3 represented by the chain U−3
· a. Applying the shift yields

d(S3
25(T4,5), s10) = gr(U−3a)−


−((2)(10)− 25)2 + 25

100


= 6 − 6 + 0 = 0.

That all these turn out to be 0 is expected, since S3
25(T4,5) is the 2-fold branched cover of a

smoothly slice knot and hence bounds a rational homology ball. (The slice knot giving rise to
S3

25(T4,5) through its branched double cover is the knot obtained by our construction, replacing
each Whitehead double in K5 with an unknot.)

6.3. Dealing with the doubled summand

As mentioned in the beginning of this section, we will understand the Floer complex of
L p = Tp−1,p# 3p−1

2 D(T2,3) by a Künneth-type theorem for connected sums. To use this, we
must understand the key aspects of C F K ∞(D(T2,3)). We remind the reader that C F K ∞ denotes
a particular reduced chain complex representing the Z ⊕ Z-filtered chain homotopy type, and
that D(K ) is the untwisted, positive-clasped, Whitehead double of K . We have an analogue of
Proposition 6.1 for the Whitehead double.

Proposition 6.2. The chain complex C F K ∞
∗ (D(T2,3)) satisfies the following:

• Any chain [x, i, j] ∈ C F K ∞

0 (D(T2,3)) satisfies i + j ≥ 1.
• Any chain [x, i, j] ∈ C F K ∞

1 (D(T2,3)) satisfies i + j ≥ 2.
• There exist cycles [x, 0, 1], [y, 1, 0] ∈ C F K ∞

0 (D(T2,3)) that are homologous to a generator
of H F∞

0 (S3) ∼= F.

Proof. The proof relies on the results of [24]. Applied to the Whitehead double, Theorem 1.2
of [24] shows that

H F K ∗(D(T2,3), j) ∼=


F2
(0) ⊕ F2

(−1) j = 1
F3
(−1) ⊕ F4

(−2) j = 0
F2
(−2) ⊕ F2

(−3) j = −1.

The subscripts in the groups refer to the gradings.
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Up to Z⊕Z-filtered chain homotopy equivalence, a basis for the above groups forms a basis for
C F K ∞(D(T2,3)) as an F[U,U−1

]-module; see Eq. (6.3). Henceforth we let C F K ∞(D(T2,3))

denote this particular representative of the chain homotopy equivalence class. Since the variable
U carries homological degree −2 and Z ⊕ Z filtration (−1,−1), we see immediately that
any chain [x, i, j] ∈ C F K ∞

0 (D(T2,3)) satisfies i + j ≥ 1. Indeed, the only chains in
C F K ∞

0 (D(T2,3)) are supported in filtration levels (1, 0), (0, 1), and (1, 1). This proves the
first part of the proposition. The second part follows similarly: the only chains in C F K ∞

1 are
supported in filtration levels (1, 2), (1, 1), and (2, 1).

To prove the last part, consider the subcomplex C{i < −d} ⊂ C F K ∞. Forgetting the
additional Z-filtration induced by the knot, we have a chain homotopy equivalence C{i < −d} ≃

U d
·C F−(S3), where the latter is the subcomplex in the natural filtration of C F∞(S3) described

in the first paragraph of Section 5.2. The map induced on homology by the inclusion

ι : U d
· C F−(S3) → C F∞(S3),

is easily seen to be injective; indeed, it is given by

(ι)∗ : U d+1
· F[U ] ↩→ F[U,U−1

].

Since 1 ∈ F[U,U−1
] is the unique class in H F∞

0 (S3), it follows that the subcomplex
U−1

· C F−(S3) ≃ C{i < 1} ⊂ C F K ∞ contains a cycle homologous to the generator of
H F∞

0 (S3). It follows immediately from the description of the knot Floer homology given above,
however, that the only chains in

C{i < 1} = C{i ≤ 0} ⊂ C F K ∞(D(T2,3))

with homological grading zero have filtration level (0, 1). Thus there exists a cycle [x, 0, 1] ∈

C F K ∞

0 (D(T2,3)) which is homologous to a generator of H F∞

0 (S3) ∼= F, as claimed.
To obtain the other cycle [y, 1, 0], it suffices to recall that there is a Z ⊕ Z-filtered

chain homotopy equivalence between C F K ∞(D(T2,3)) and the complex obtained from it by
interchanging the roles of i and j , see [40, Section 3.5, Propositions 3.8, 3.9]. �

6.4. Essential properties of C F K ∞
∗ (Tp−1,p# 3p−1

2 D(T2,3))

The following theorem combines Propositions 6.1 and 6.2 to extract the key features of the
chain complex for L p.

Theorem 6.3. 1. There is an equivalence of Z ⊕ Z-filtered chain complexes

C F K ∞


Tp−1,p#

3p − 1
2

D(T2,3)


≃ C F K ∞(Tp−1,p)⊗Z[U,U−1] C F K ∞(D(T2,3))

⊗
3p−1

2 .

2. Any chain [x, i, j] ∈ C F K ∞

0


Tp−1,p# 3p−1

2 D(T2,3)


satisfies i + j ≥
p2

+4p−1
4 .

3. There exists a cycle

x, p2

−1
8 ,

p2
+8p−1

8


∈ C F K ∞

0


Tp−1,p# 3p−1

2 D(T2,3)


whose homology

class generates H F∞

0 (S3) ∼= F.

Proof. According to Theorem 7.1 of [40], the chain complex associated to the connected sums
of knots is the filtered tensor product of the complexes associated to the constituent knots. The
first statement is a direct application of this theorem.
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The second statement follows from the first, together with Propositions 6.1 and 6.2. More
precisely, any chain in the filtered tensor product can be decomposed as a sum

Σlψ
l
0 ⊗ θ l

1 ⊗ · · · ⊗ θ l
3p−1

2

where ψ l
0 ∈ C F K ∞(Tp−1,p) and θ l

j ∈ C F K ∞(D(T2,3)). Restricting attention to C F K ∞

0 , we
find that each term in the sum satisfies

0 = gr


ψ l

0 ⊗ θ l
1 ⊗ · · · ⊗ θ l

3p−1
2


= gr(ψ l

0)+ gr(θ l
1)+ · · · + gr


θ l

3p−1
2


.

We may further assume that each of the chains, ψ l
0, θ

l
j takes grading values in the set {−1, 0, 1},

with the added restriction that the number of chains with grading +1 is the same as the number
with −1. This follows from the U action on the tensor product, since we may write any individual
θ with |gr(θ)| > 1 as U kθ ′ where gr(θ ′) ∈ {−1, 0, 1}. Propositions 6.1 and 6.2 give bounds
for the filtration indices associated to any chain with grading 0, 1, and this yields bounds for
chains with grading −1 as well. Indeed, any chain C F K−1(D(T2,3)) satisfies i + j ≥ 0 and any

chain C F K−1(Tp−1,p) satisfies i + j ≥
p2

−9
4 , since such chains can be expressed as U · ρ for

ρ ∈ C F K ∞

1 . Additivity of the filtration under tensor product now implies the desired bound.
For the third statement, the desired generator is formed as the tensor product of the

cycle

x, p2

−4p+3
8 ,

p2
−1
8


∈ C F K ∞

0 (Tp−1,p) from Proposition 6.1, p copies of the cycle

[x, 0, 1] ∈ C F K ∞

0 (D(T2,3)) and p−1
2 copies of the cycle [y, 1, 0] ∈ C F K ∞

0 (D(T2,3)) from
Proposition 6.2. �

6.5. Computing d

The work of the previous subsections was aimed at the following non-vanishing theorem for
the d̄-invariant.

Theorem 6.4. With the notation above, d(S3
p2(L p), s0) ≤ −p−1 and d(S3

p2(L p), sp) ≥ −p+1.

In particular, d̄(S3
p2(L p), sp) ≥ 2.

Proof. By Theorem 6.3, all chains in C F K ∞

0 (L p) have (i, j)-filtration indices satisfying i + j ≥

p2
+4p−1

4 . This holds, in particular, for any cycle θ homologous to a generator of H F∞

0 (S3). For

each such cycle, it follows that U
p2

+4p+3
8 θ has filtration level satisfying i + j ≥ −1. Thus

U
p2

+4p+3
8 θ has one of i or j nonnegative, so that U

p2
+4p+3

8 θ ∈ C{max(i, j) ≥ 0} and can be
viewed as a homology class in H F+(S3

p2(L p), s0) under the identification given by Theorem 5.3.

By equivariance of C F K ∞ with respect to the action of F[U,U−1
], we see that U

p2
+4p+3

8 θ is a
cycle whose homology class generates the summand of H F∞(S3) in grading

gr


U

p2
+4p+3

8 θ


= −2 ·

p2
+ 4p + 3

8
+ gr(θ) = −

(p + 1)(p + 3)
4

+ 0.

Such a cycle is in the image of U i for all i , so that if we view it as a (non-zero) homology class in
H F+(S3

p2(L p), s0), its grading gives an upper bound for d(S3
p2(L p), s0). This grading, in turn,
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is determined by the degree shift formula to be −
(p+1)(p+3)

4 −
−p2

+1
4 = −p − 1.


Here we use

m = 0 and q = p2 to compute the degree shift, −p2
+1

4


.

For the second statement, consider the generator ρ = U
p2

−1
8 ·


x, p2

−1
8 ,

p2
+8p−1

8


, where

x, p2
−1
8 ,

p2
+8p−1

8


is given by the third statement in Theorem 6.3. Observe that

ρ = [x, 0, p] ∈ C{max(i, j − p) ≥ 0}

whereas

U k
· ρ = [x,−k, p − k] ∈ C{max(i, j − p) < 0},

for all k > 0. By equivariance, ρ is in the image of U i for all i ≥ 0. Moreover, the first
observation above, together with Theorem 5.3, allows us to view ρ as a homology class in
H F+(S3

p2(L p), sp).

Now this class may be zero. Indeed, while [ρ] is non-zero in H F∞(S3) it could be a boundary
in the quotient complex C{max(i, j − p) ≥ 0}. The algebraic mechanism by which this could
occur is illustrated in the example of Section 6.2. There, the cycle e generated H F∞

−6(S
3), but

was null-homologous in the quotient complex used for the computation of d(S3
25(T4,5), s5).

On the other hand, since C F K ∞ is finitely generated as an F-module for any fixed degree,
we know that for all ∗ ≫ 0,

C∗{max(i, j − p) ≥ 0} ∼= C F∞
∗ (S3),

Hence [U−kρ] is a non-trivial homology class in either group for sufficiently large k > 0. It
follows that

min{gr(U−kρ) | [U−kρ] ≠ 0 ∈ H F+(S3
p2(L p), sp)}

is well-defined and equals d(S3
p2(L p), sp). The second observation above shows that [U k

· ρ] =

0 ∈ H F+(S3
p2(L p), sp) for all k > 0, so that the grading of ρ, shifted by the quantity s(p2, p),

provides a lower bound for d(S3
p2(L p), sp). Explicitly, we have

gr(ρ)− s(p2, p) = −2 ·
p2

− 1
8

−
−p2

+ 4p − 3
4

= −p + 1,

and we see that d(S3
p2(L p), sp) ≥ −p + 1, as claimed. �

Given the result of Theorem 6.4 that d̄(S3
p2(L p), sp) ≥ 2, we have now completed the final

details for the proof of Theorem A as outlined in the introduction.

7. Rational homology cobordisms

The study of knot concordance is closely related to the study of homology cobordism of
rational homology spheres. To make this formal, denote by ΩQ

spin the group of smooth spin
Q-homology 3-spheres, modulo smooth spin Q-homology cobordisms. For any prime-power
pk , there is a homomorphism C → ΩQ

spin induced by taking pk-fold branched covers (see
[23, Section 2] for a discussion of the spin structure) and many invariants of knot concordance
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(such as the ones used in this paper) factor through these maps. From this point of view, integral
homology spheres are analogous to knots with Alexander polynomial 1.

As an alternative, the 2-fold branched cover of a knot K is a Z/2Z-homology sphere. If we
denote by ΩZ/2Z the group of Z/2Z-homology spheres modulo Z/2Z-homology cobordism, the
corresponding homomorphism maps C → ΩZ/2Z.

For the remainder of this section, we use Ω to denote either of ΩQ
spin or ΩZ/2Z.

In either case, Ω contains a subgroup generated by integral homology spheres. We denote this
subgroup ΩI . Recall that Freedman’s simply-connected surgery theory implies that any element
in Ω represented by an integral homology sphere bounds a topological homology ball, and thus
ΩI is in the kernel of the homomorphism Ω → Ω top, where Ω top denotes the corresponding
topological cobordism group. Denote this kernel by ΩT . Thus ΩI ⊂ ΩT .

By analogy with the question of whether a topologically slice knot is smoothly concordant to
a knot of polynomial 1 (that is, does C∆ = CT ?), we may ask whether ΩI = ΩT . Theorem A
provides a negative answer, which we may state in the following terms.

Theorem 7.1. ΩT /ΩI contains an infinitely generated free subgroup, where Ω = ΩQ
spin or

Ω = ΩZ/2Z.

Proof. The 2-fold branched cover of any knot, Σ (K ), is a Z/2Z-homology ball, and thus also a
rational homology ball. Since K p is topologically slice, the 2-fold branched cover of B4 over the
slice disk is a Z/2Z-homology ball, and thus also a rational homology ball. This cover, and its
boundary Σ (K p), have unique spin structures. Hence, for all p, Σ (K p) represents a class in ΩT .
The proof of Theorem A shows that no linear combination of the Σ (K p) together with an integral
homology sphere is trivial in Ω . Thus, {Σ (K p)}p∈P form an infinite linearly independent set in
ΩT /ΩI (here P is, as before, the set of primes congruent to 3 modulo 4). �

The rational homology balls bounded by the double branched covers Σ (K p) are interesting
from the point of view of 4-dimensional handlebody theory. It follows from Cerf theory that a
compact 4-manifold M that has a handlebody structure is smoothable; a weaker structure on M is
discussed in [27, Problem 4.74] and is sometimes called a pseudo-handlebody structure. This is
a decomposition of M = M0 ∪Σ ∆ where M0 is smooth (and hence has a handle decomposition
relative to its boundary) and ∆ is contractible. Examples of manifolds without such structures
were constructed by Stong and Taylor; see, for example, the discussion after [27, Problem 4.74].
Theorem 7.1 gives rise to further examples of such manifolds.

Proposition 7.2. Suppose that W is a topological rational homology ball and that ∂W is not
smoothly rationally homology cobordant to an integral homology sphere. Then W does not have
a pseudo-handlebody structure.

Corollary 7.3. Let Wp be the 2-fold cover of B4, branched along the topological slice disk for
K p. Then Wp does not have a pseudo-handlebody structure.

8. Boundary links

Our techniques also apply to understanding an important issue that arises in the theory of link
concordance. Recall that a link L = L1 ∪ · · · ∪ Lk is called a boundary link if its components
bound disjoint Seifert surfaces. It is well-known that not every link is concordant to a boundary
link. The methods for demonstrating this [7,21,29,33,34] typically show that a given link is not
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Fig. 5. The link L p = K p ∪ α.

Fig. 6. L̂ p = K p# − K p ∪ α ∪ β.

topologically (locally flat) concordant to a boundary link. As in knot concordance, this raises the
question addressed in this section: is every link that is topologically concordant to a boundary
link in fact smoothly concordant to a boundary link? The 2-component link L p illustrated in
Fig. 5, where −p denotes half twists between the bands, provides a counterexample.

Theorem 8.1. For any p ≡ 3 mod 4, the 2-component link in Fig. 5 is topologically slice (and
hence concordant to a boundary link) but not smoothly concordant to a boundary link.

The proof requires some preparatory material.

Lemma 8.2. Suppose that a link L = (L1, L2) ⊂ S3
× {1} is concordant to a boundary link

L ′
= (L ′

1, L ′

2) ⊂ S3
× {0} via a concordance C ∼= C1 ⨿ C2 ⊂ S3

× [0, 1]. Let Σ ′

i be disjoint
Seifert surfaces for L ′

1, L ′

2, and let Σi = Ci ∪L ′
i
Σ ′

i . Finally, view B4 as the union along S3
×{0}

of S3
× [0, 1] with a 4-ball, and view all of the surfaces just described as embedded in B4. Then

the map H1(Σ1) → H1(B4
− Σ2) induced by inclusion is trivial.

This follows from the fact that curves on Σ ′

1 ⊂ S3
× {0} have trivial linking number with L ′

2.

Proof of Theorem 8.1. For simplicity the link will simply be referred to as L = K ∪ α. To see
that L is a topologically slice link, perform the band move indicated by the dotted line in Fig. 5.
After that band move, K has become two parallel copies of J with linking number 0, separated
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Fig. 7. Concordance to a boundary link, with one component filled in by a slicing disk.

from α by a 2-sphere. The band gives rise to a genus 0 cobordism in S3
× [0, 1] from K to the

two parallel copies of J . Moreover, this cobordism is disjoint from α × [0, 1]. Glue a 4-ball to
S3

× [0, 1] as above, and recall that J is chosen to be topologically slice, so that we can cap off
both copies of J with slice disks, and α×{0} with a disk as well, to give a topological slice for L .

Suppose that L is smoothly concordant to a boundary link, by a concordance C = CK ∪ Cα .
Let r be a reflection of S3, and let −C be the image of C under r × idI : S3

× I . Remove open
tubular neighborhoods of embedded arcs in S3

× [0, 1] on CK and r(CK ) running from S3
× {0}

to S3
× {1}. Gluing the complements of these arcs together along the boundaries of the tubular

neighborhoods gives a concordance from the 3-component link L̂ p drawn in Fig. 6 to a boundary
link.

To complete the proof of the theorem, we show that L̂ p is not concordant to a boundary link. If
L̂ p were concordant to a boundary link, then the component of the boundary link corresponding
to (the slice knot) K p# − K p would be slice. Attach a 4-ball to the S3

× I containing the
concordance, and add on a slicing disk to that component, yielding a slicing disk D for K p#−K p
in B4. The knots α and β bound disjoint surfaces in the complement of D, and according to
Lemma 8.2 the inclusions of these surfaces in B4

−D induce trivial maps in H1. This is illustrated
schematically in Fig. 7.

Let W be the 2-fold branched cover of B4, branched along D; this is a rational ho-
mology ball and its boundary is Σ (K p# − K p), which is diffeomorphic to the con-
nected sum Σ (K p)# − Σ (K p). Since H1(Σ (K p# − K p)) ∼= Zp2 ⊕ Zp2 , we know that
ker


H1(Σ (K p# − K p)) → H1(W )


has order p2. To determine this kernel more precisely, ob-

serve that by Lemma 8.2, H1 of the surfaces bounded by α and β becomes trivial in B4
− D,

so those surfaces lift to W . In particular, the inverse image of α consists of two curves, each of
which is null-homologous in W , and similarly for β. Let us write α̃ for one of those lifts, and β̃
for one of the lifts of β.

A surgery picture for Σ (K p# − K p) is obtained from a copy of the diagram in Fig. 2 for
Σ (K p), together with its reflection. The curve α̃ appears as a meridian of the −1 framed un-
knot; when that unknot is blown down to produce Fig. 3, α̃ twists p times around the knot
Tp−1,p#Jp#J r

p . Similarly, β̃ twists p times around −(Tp−1,p#Jp#J r
p). Since H1(Σ (K p# −

K p)) is generated by the meridians of those two knots, it follows that α̃ and β̃ generate
ker


H1(Σ (K p# − K p)) → H1(W )


∼= Zp ⊕ Zp.

Writing, as before si ⊕ s j for the Spinc structure corresponding to the element (i, j) ∈

H1(Σ (K p# − K p)), we see that d(Σ (K p)# − Σ (K p), spi ⊕ spj ) = 0 for all i, j . But

d(Σ (K p)# − Σ (K p), spi ⊕ spj ) = d(Σ (K p), spi )− d(Σ (K p), spj ).
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Taking j = 0, we see that d̄ vanishes on the subgroup pZ/p2Z. This contradicts Theorem 6.4,
and hence the theorem is proved. �
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Appendix. Metabolizers for (Z/ p2Z)n and d̄

Let M ⊂ H1(nYp) ∼= (Z/p2Z)n be a subgroup of order pn on which d̄ vanishes. We let Mp =

{m ∈ M | pm = 0}. To each m = p(m1, . . . ,mn) ∈ Mp we have a relation


d̄(Yp, spmi ) = 0.
Our goal is to show that these relations are sufficient to conclude d̄(Yp, skp) = 0 for all k. We
state this as a theorem, the proof of which occupies this appendix.

Theorem A.1. Let M ⊂ H1(nYp) ∼= (Z/p2Z)n be a metabolizer, and suppose that d̄(nYp, sm)

= 0 for all m ∈ M. Then d̄(Yp, si p) = 0 for all i .

A.1. Special elements in the metabolizer

We begin by showing that any metabolizer contains element of a special type.

Theorem A.2. If M ⊂ (Z/p2Z)n has order pn , then it contains an element of the form
z = (b1, b2, . . . , bn) where at least n/2 of the bi are equal to p ∈ Z/p2Z and all bi are multiples
of p.

Proof. Any generating set for M must have at least n/2 elements. (This holds whether n is even
or odd.) Let a minimal generating set for M consist of elements vi , 1 ≤ i ≤ N . After perhaps
rearranging the order of the summands of (Z/p2Z)n , a change of generating sets (corresponding
to performing row operations in the Gauss–Jordan algorithm) yields generators of the form

wi = (0, . . . , 0, wi,i , 0, . . . , 0, wi,N+1, . . . , wi,n), 1 ≤ i ≤ N ,

where wi,i ≠ 0 and if wi,i is a nonzero multiple of p, then so are all wi, j .
Multiplying each wi by an appropriate element of Z/p2Z we get a set of elements zi ∈ M ⊂

(Z/p2Z)n of the form zi = (0, . . . , 0, p, 0, . . . , 0, wi,N , . . . , wi,n), 1 ≤ i ≤ N , where now each
wi, j is divisible by p. (If any of the multipliers is a multiple of p, this set will no longer generate
M .) Finally, let z be the sum of the zi , giving us the element z = (p, p, . . . , p, bN+1, . . . , bn)

where each entry of z is a multiple of p. �
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A.2. The relations space for d̄(Yp, spmi )

To simplify notation we write d̄i = d̄(Yp, spi ) for 1 ≤ i ≤
p−1

2 . Recall that p ≡ 3 mod 4, and

thus p = 2q + 1 for some odd q . It follows that p−1
2 = q is an integer. Let R = {(α1, . . . , αq) ∈

Qq
|

αi d̄i = 0}. Note that unless all d̄i = 0,R is a (q − 1)-dimensional subspace of Qq .

Each element in Mp determines an element in R. We denote this map (not a homomorphism)
by ψ :

ψ(p(m1, . . . ,mn)) = (α1, . . . , αq),

where α j is the number of mi = ± j mod p.
If we view the integers {1, . . . , q} as representatives of the multiplicative group Z∗

p/{±1}, (a
cyclic group of order q) then a multiplicative generator of Z∗

p, say a, gives a cyclic permutation
of {1, . . . , q} of order q . For example, if p = 23 then 5 generates Z∗

23. Multiplying the elements
of L = {1, . . . , 11} by 5 and, if need be multiplying by −1 to arrive at elements in L , gives a
map of order 11.

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) → (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55)

≡ (5, 10,−8,−3, 2, 7,−11,−6,−1, 4, 9)

The resulting permutation in cyclic notation is:

(1, 5, 2, 10, 4, 3, 8, 6, 7, 11, 9).

This defines a cyclic action ρ on Qq .
Multiplication by a also acts on Mp and the map ψ is equivariant with respect to ρ. That

is, the subspace of R generated by ψ(Mp) is invariant under the action of ρ. As we now
see, there are very few invariant subspaces. The action ρ makes Qq into a free Q[Zq ]-module:
Q[Zq ] = Q[t]/ ⟨tq

− 1⟩. This module splits into a direct sum of cyclic summands:

Q[t]/

tq

− 1

∼= Q[t]/ ⟨t − 1⟩ ⊕d Q[t]/ ⟨φd(t)⟩ ,

where the φd are the d-cyclotomic polynomials and d ranges over all nontrivial divisors of q .

A.3. Conclusion of proof

The vector z given by Theorem A.2 satisfies ψ(z) = (b, b2, . . . , bq) where b is some positive
integer and


b j ≤ b and all b j ≥ 0. Viewed as an element in Q[Zq ], ψ(z) = fz(t) =

b + β1t + β2t2
+ · · · + βq−1tq−1 where the βi are some permutation of the bi . If ψ(z) were

in some proper invariant subspace of Q[Zq ], then fz(t)h(t) would be a multiple of tq
− 1 for

some proper divisor h(t) of tq
−1. This would imply that fz(ω) = 0 for some q-root of unity. But

any such (odd) root of unity has real part greater than −1; considering the real part of the fz(ω)

and the fact that the constant term is at least as large as the sum of the remaining coefficients,
this is impossible.

In conclusion, R = Qq and in particular every relation d̄i = 0 is among the relations.

A.4. Example

To clarify the previous discussion, we present an example. Suppose that we are in the case
p = 31 and n = 8. Theorem A.2 tells us that within the metabolizer for H1(Yp) ∼= (Z312)8 there
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is a vector with all entries divisible by 31 and at least four of them equal to 31, for instance

(31, 31, 31, 31, 13(31), 13(31), 27(31), 0).

The presence of this vector in the metabolizer would imply that:

4d̄1 + 2d̄13 + d̄27 = 0.

Since d̄27 = d̄4, we rewrite this as

4d̄1 + d̄4 + 2d̄13 = 0.

The group Z∗

31/{±1} is cyclic generated by 3. The first 15 powers of 3 are:

{1, 3, 9, 27, 19, 26, 16, 17, 20, 29, 25, 13, 8, 24, 10}.

Replacing x with −x mod 31 when x ≥ 15 we have

{1, 3, 9, 4, 12, 5, 15, 14, 11, 2, 6, 13, 8, 7, 10}.

Multiplication by 3 permutes Z∗

31/{±1}, acting as a 15-cycle. If we identify Q[Z15] with
Q[t]/


t15

− 1

, identifying t i with d̄3i we have the relation

4 + 2t3
+ t11

= 0.

The set of all relations between the d̄i corresponds to an ideal in Q[Z15], but the ideal generated
4 + 2t3

+ t11 is all of Q[Z15], since 4 + 2t3
+ t11 is relatively prime to t15

− 1. In particular, t i

is in the ideal, so d̄3i = 0 for all i .
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