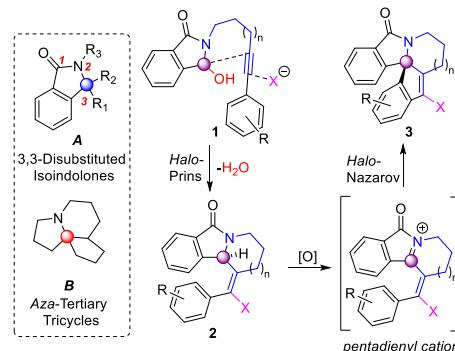

Synthesis of Spirocyclic Isoindolones using an Alkynyl Aza-Prins/Oxidative Halo-Nazarov Cyclization Sequence

Jackson J. Hernandez; Alison J. Frontier*

Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester NY, 14611, United States

Supporting Information Placeholder

ABSTRACT: In this report we describe an alkynyl *halo-aza*-Prins cyclization of 3-hydroxyisoindolones to prepare *aza*-Prins products. These Prins adducts undergo oxidation at the 3-isoindolone position after activation of the amide by triflic anhydride and 2-chloropyridine to form a pentadienyl cation capable of undergoing a *halo*-Nazarov cyclization. Using this methodology, angular-fused *N*-heterocyclic small molecules with two new rings, two new carbon-carbon bonds, a vinyl halide, and an *aza*-tertiary stereocenter can be obtained in good yields.



N-heterocyclic systems **A** and **B** (Scheme 1, Box) are substructures found in an array of bioactive molecules.¹⁻⁶ In particular, 3,3-disubstituted,⁴⁻¹⁰ or 3-spirofused isoindolones,¹¹ (**A**, Scheme 1) have been identified as valuable substructures to access for drug design. Scaffolds consisting of a tricyclic *aza*-tertiary core (**B**, Scheme 1) are also ubiquitous among bioactive alkaloids and typically require several steps to assemble.¹⁻³ Alkaloids containing both of these motifs have never been synthesized or studied before, which means that the newly accessed chemical space has the potential for some interesting bioactivity.

We report a new strategy for the synthesis of spirofused isoindolones **3** (Scheme 1). Our recent studies focusing on the alkynyl Prins reaction and *halo*-Nazarov cyclization guided the synthetic design.¹²⁻¹⁴ First, we leverage a new variant of the alkynyl *halo-aza*-Prins reaction¹⁵⁻¹⁸ to prepare key intermediate **2**. This cyclization is the first example of an alkynyl *halo*-Prins reaction with 3-hydroxyisoindolones **1** for the formation of **2**. Then, the isoindolone core is oxidized using an unusual amide activation strategy, in order to access a pentadienyl cation intermediate capable of undergoing a *halo*-Nazarov cyclization. Overall, our approach enables the synthesis of unique spirocyclic *N*-heterocycles from a sequential, double-functionalization of 3-hydroxyisoindolones **1**, generating two new rings, two C-C bonds, and a vinyl halide in two steps. In this report, we outline the scope and limitations of the methodology.

Initially, we focused on developing an alkynyl *halo-aza*-Prins cyclization capable of generating compounds like **2** (Scheme 1). Treatment of **1a** with an excess of triflic acid

Scheme 1. Scaffolds of Interest (Box). Synthesis of Spirocyclic Isoindolones **3** from Hydroxyisoindolones **1**

(TfOH) and two equivalents of tetrabutylammonium iodide (TBAI) gives 70% yield of **4a** (Entry 1, Table 1).¹⁹ The use of triflic acid, however, gives inconsistent yields and reactions are not scalable. Using triflimide leads to similar results (Entry 2, Table 1).

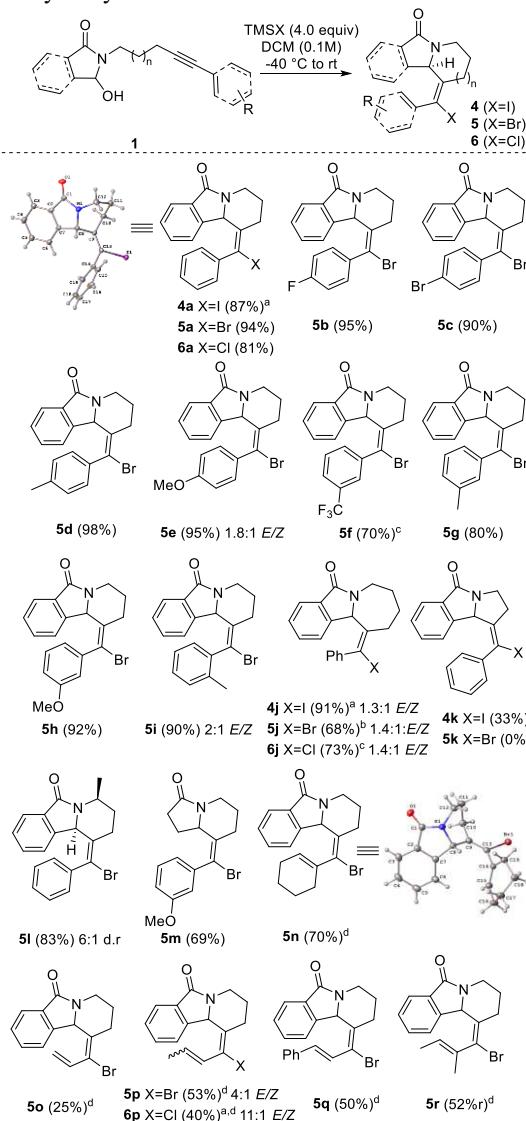
Seeing the poor reproducibility, we decided to move away from Brønsted acidic conditions and try more mild, Lewis acidic reagents.²⁰ Using four equivalents of chlorotrimethylsilane (TMSCl) gives *chloro*-Prins product **6a** in 98% yield (Entry 3, Table 1). Bromotrimethylsilane (TMSBr) gives the *bromo*-Prins product **5a** in 94% yield (Entry 4, Table 1). Adding two equivalents of TMSI in two portions at -50 °C leads to good yields of *iodo*-Prins product **4a** (Entry 5, Table 1).

A different set of conditions is optimal for enyne substrates. TMSBr leads mainly to decomposition and only 38% Prins product formation for **5n** (Entry 6, Table

1). BiBr_3 gives better results, with only 1.2 equivalents required to give full conversion to *bromo*-Prins product **5n** in 70% yield (Entry 7, Table 1).²¹

Table 1. Alkynyl *Halo-Aza*-Prins Optimization

Entry	Promoter (equiv)	T(°C)	Prod. (% Yield)	1	4a (X=I) 5a,n (X=Br) 6a (X=Cl)
				a R = Ph n R = 1-cyclohexene	4a (X=I) 5a,n (X=Br) 6a (X=Cl)
1 ^a	TfOH (1.4)	-20 to rt	4a (70)		
2 ^a	Tf ₂ NH (2.0)	-20 to rt	4a (71)		
3	TMSCl (4.0)	-20 to rt	6a (98)		
4	TMSBr (4.0)	-40 to rt	5a (94)		
5 ^b	TMSI (2.0)	-50	4a (87)		
6 ^c	TMSBr (4.0)	-40 to rt	5n (38)		
7 ^c	BiBr ₃ (1.2)	-40 to rt	5n (70)		

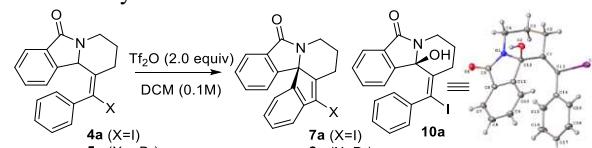

a) 2.0 equiv. TBAI, 5 Å molecular sieves (500mg/mmol)
1) b) TMSI added in two portions, 30 minutes between additions c) Enyne **1n** used

Chloro-, *bromo*-, and *iodo*-Prins products can all be synthesized in good yield (Scheme 2, **4-6a**, **4-6j**). Electron-deficient arenynes react slowly to provide Prins products like **5f**. Electron-rich arenynes react faster, showing full conversion to the Prins product within a few hours (**5b-e**, **g-i**). While both six- and seven-membered rings form smoothly (**4-6a**; **5b-i** and **4-6j**), five-membered rings are problematic (compare **4a** and **4j** with **4k**). Cyclization is sluggish, and mixtures of products are obtained. It is possible that the shorter tether length makes it difficult to achieve optimal geometry for cyclization.

In general, the *E*-isomer is formed exclusively in cyclizations that form six-membered rings, whereas selectivity is poor for formation of seven-membered rings (close to 1:1 ratio, see **4j-6j**). Exceptions to this trend are substrates **5e** and **5i**, which give approximately a 2:1 mixture of *E/Z* isomers. Taken together, the data suggests that *E/Z* selectivity in the Prins reaction can be impacted by either sterics (hindrance at the site of C-X bond formation or the conformation of the ring system) or electronics.²² It is not clear whether the observed selectivities are kinetic or thermodynamic in origin.

Alkyne **1l**, with a methyl substituent at the carbon next to the nitrogen, cyclizes to afford **5l** with moderate diastereoselectivity (6:1 dr). Succinimide-derived hemiaminal **1m** also cyclized efficiently to give **5m** in 69% yield. Using BiBr_3 as the promoter gives modest yields for terminal enynes like **5o** (25%). Increasing substitution on the alkene leads to improved yields, giving **5p** in 53% and **6p** 40% yield (for the *bromo*- and *chloro*- cases respectively), and **5q** in 50% yield. Enynes with trisubstituted alkenes also give good yields (52% for **5r** and 70% for **5n**).

Scheme 2. Scope of Alkynyl *Halo-Aza*-Prins Cyclization of 3-Hydroxyisoindolones **1**



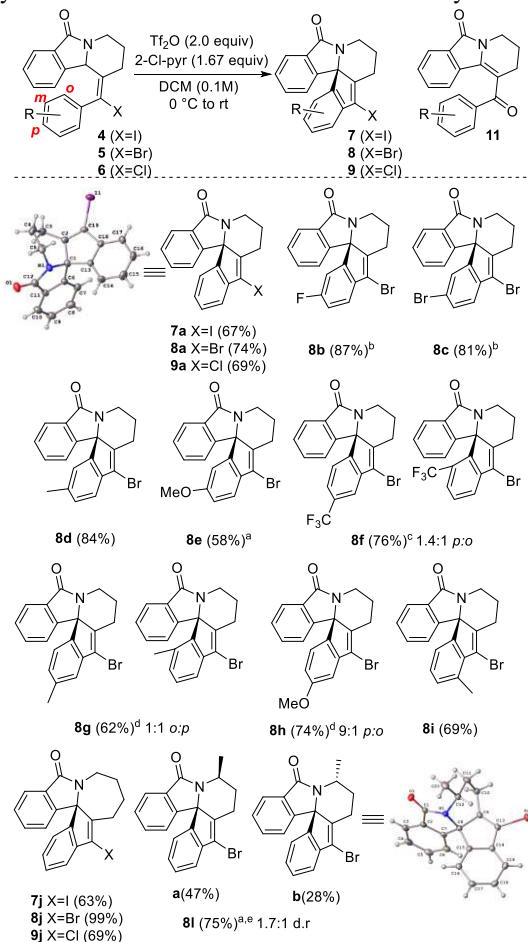
a) 2.0 equiv. TMSI, kept at -50 °C b) Warmed from 0 °C to room temperature c) Heated from 0 to 40 °C for four days d) BiX_3 used (1.2 equiv. for X = Br; 2.0 equiv. for X = Cl), warmed from -40 °C to 0 °C

With these substrates in hand, we moved on to finding conditions to activate the 3-position of isoindolones **5-7a** and promote the desired *halo*-Nazarov cyclization. Previous methods for 3-isoindolone oxidation use toxic reagents like 2,2'-bipyridinium chlorochromate,⁶ and palladium acetate.²³ Less toxic reagents have also been used like KHMDS,⁹ Eosin Y/selectfluor with blue LED's,⁸ and PIDA.¹¹ We discovered, somewhat serendipitously, that conditions developed for electrophilic activation of amides (triflic anhydride and a pyridine base derivative)²⁴⁻³⁰ can also be used to oxidatively activate C3 of isoindolones **4-6**.

Treatment of isoindolone **4a** with 2.0 equivalents of triflic anhydride and 1.1 equivalents of 4-(dimethylamino) pyridine (DMAP) gives 39% yield of 3-hydroxyisoindolone **10a** after a basic aqueous workup at -40 °C (Entry 1, Table 2). Adding 1.2 equivalents of *di-tert*-butyl-methylpyridine (DTBMP) to a solution of **4a** and warming from -78 °C to room temperature gives 44% yield of the *iodo*-Nazarov product **7a** (Entry 2, Table 2). Changing bases to 2-bromopyridine gives a slight increase in yield to 54% of **7a** (Entry 3), 2-chloropyridine gives 73% (Entry 4), and 2-fluoropyridine gives 67% yield (Entry 5). Unexpectedly, for *bromo*-Prins product **5a**, warming from -78 °C to room temperature gives only 38% yield of *bromo*-Nazarov product **8a** (Entry 6). Adding the triflic anhydride at 0 °C and then warming the reaction mixture to room temperature fixes this issue and gives 74% of **8a** (Entry 7).

Table 2. Optimization of 3-Isoindolone Oxidation/*Halo*-Nazarov Cyclization

Entry	Additive (equiv)	T(°C)	Prod. (% Yield)
1 ^a	DMAP (1.1)	-78 to -40	10a (39), 4a (32)
2 ^a	DTBMP (1.2)	-78 to rt	7a (44)
3 ^a	2-Br-pyr (1.5)	-78 to rt	7a (54)
4 ^a	2-Cl-pyr (1.5)	-78 to rt	7a (73)
5 ^a	2-F-pyr (1.5)	-78 to rt	7a (67)
6 ^b	2-Cl-pyr (1.5)	-78 to rt	8a (38)
7 ^b	2-Cl-pyr (1.67)	0 to rt	8a (74)
8 ^b	---	0 to rt	8a (12), 5a (59)
9 ^{b,c}	2-Cl-pyr (1.67)	0 to rt	5a (100)
10 ^{b-d}	2-Cl-pyr (1.67)	0 to rt	5a (100)

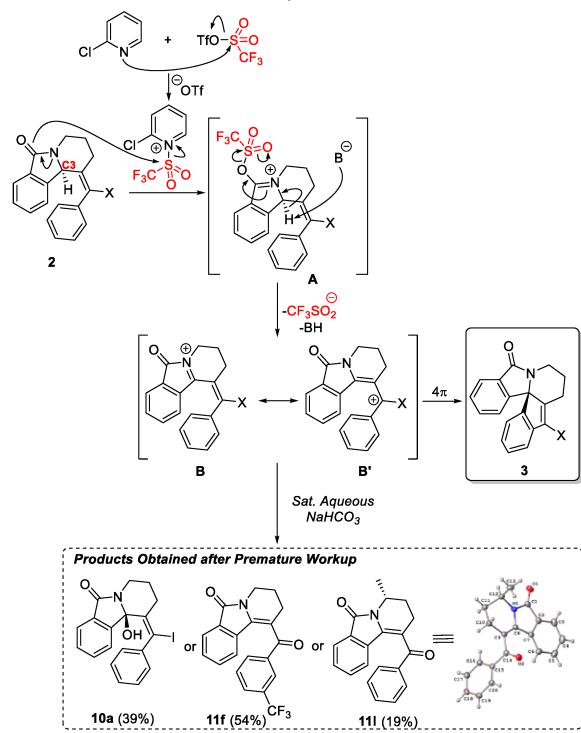

a) *Iodo*-Prins product **4a** used b) *Bromo*-Prins product **5a** used c) No Tf₂O added d) Argon/Oxygen atmosphere

Exclusion of the pyridine base additive gives 59% recovery of starting material **5a** and about 12% product formation after stirring for 24 hours (Entry 8, Table 2). This experiment shows that the pyridine is necessary for optimal results. Omitting the triflic anhydride from the reaction mixture leads to 100% recovery of starting material **5a** (Entry 9, Table 2). To explore the possibility of oxygen taking part in the oxidation of **5a**, the reaction was attempted under an argon/oxygen atmosphere with no triflic anhydride (Entry 10, Table 2).³¹ This experiment resulted in full recovery of starting material. Using optimized conditions from Entry 7, the scope of this 3-isoindolone oxidation/*halo*-Nazarov cyclization was explored (Scheme 3).

Electron neutral substrates react smoothly to give *halo*-Nazarov products **7-9a** in good yields. Interestingly, the *bromo*-Nazarov **8a** works better than the *chloro*-Nazarov

9a, which works better than the *iodo*-case **7a**. *para*-Substituted, electron-rich substrates react well to give products **8b-e**. The more electron-rich substrates **8b,c** and **8e** need to be heated to 70 °C and 40 °C respectively for optimal yields. Letting these reactions go at room temperature led to the formation of ketones like **11**. We were happy to see that Prins substrate **5f** cyclizes to give **8f** as a 1.4:1 mixture of the *para/ortho* (with respect to CF₃ group) trapped product, albeit after heating to 80 °C overnight (running the reaction at room temperature also favors ketone **11f** formation). *meta*-Substituted, electron-rich substrates such as **5g** and **5h** require more Tf₂O (3.0 equivalents) to fully undergo the desired oxidation.

Scheme 3. Scope of Spirocyclic Isoindolones Synthesized from Oxidation/*Halo*-Nazarov Cyclization


a) Heated to 40 °C b) Heated to 70 °C c) Heated to 80 °C d) 3.0 equiv Tf₂O and 2.5 equiv 2-Cl-pyridine needed e) Ketone **11l** isolated in 19% yield from this reaction

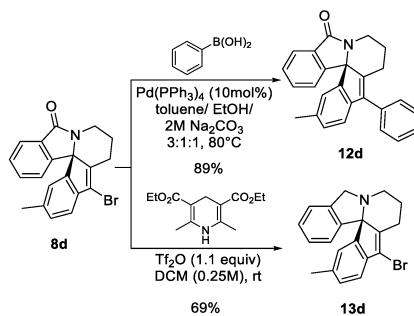
Following oxidation, substrate **5g** cyclizes to give a 1:1 mixture of the *para/ortho* (with respect to methyl group) trapped product, while **8h** forms as a 9:1 mixture of the *para/ortho* trapped product. *ortho*-Substituted substrates such as **5i** cyclize efficiently to give **8i** in 69% yield. Seven-membered ring containing substrates like **4-6j** cyclize quickly to give ring systems like **7-9j** in good to

excellent yields. Once again, we can see that the *bromo*-Nazarov works better than the *chloro*-Nazarov, which works better than the *iodo*-Nazarov. Subjecting **5l**, as a 6:1 mixture of diastereomers, leads to a 1.7:1 separable mixture of diastereomers (see SI for explanation of diastereomeric ratio erosion).

Preliminary experiments showed that enyne-derived Prins adducts **5n-r**, did not undergo smooth cyclization under the optimized conditions. Further studies into the oxidation/cyclization of this class of isoindolones is ongoing. In addition, cyclization of **4k** gave complex mixtures and none of the corresponding Nazarov product was formed. Succinimide-derived Prins product **5m** did not undergo oxidation and led to recovery of starting material.

Scheme 4. Proposed Mechanism for 3-Isoindolone Oxidation/Halo-Nazarov Cyclization.

A mechanistic hypothesis for the oxidative *halo*-Nazarov cyclization is depicted in Scheme 4. Pyridine derivatives are known to react with the highly electrophilic Tf_2O , leading to the formation of pyridinium triflate.²⁴ This pyridinium triflate can react with amide **5a** to give intermediate **A**. Amide **5a** could, in principle, react directly with Tf_2O , but experiments showed that omission of 2-chloropyridine led to poor reactivity and recovery of starting material.


Typically, the type **A** intermediate generated in the course of amide activation suffers either direct substitution at carbon, or collapses to the corresponding keteneiminium/isonitrile intermediate.²⁴ Our findings suggest that in isoindolones **4-6**, electrophilic amide activation renders the C3 proton of **A** acidic, leading to oxidative elimination facilitated by either 2-

chloropyridine or the previously generated triflate anion. This pathway supersedes any kind of substitution reaction.

Expulsion of trifluoromethylsulfinate from **A** thus generates *N*-acyliminium intermediate/pentadienyl cation **B/B'**. Experimental results suggest that intermediate **B** forms at low temperatures and is long-lived. If the reactions are quenched prematurely, we isolate products of either type **10** or **11** from the corresponding amide precursors. Electron-neutral substrate **4a**, for example, results in isolation of the 3-hydroxy trapped species **10a**; while electron-deficient substrate **5f**, or sterically hindered substrate **5l**, form ketone **11f** or **11l** respectively (Scheme 4, see SI for mechanism). 4π -electrocyclization of intermediate **B**, however, requires warming to room temperature or significant heating in some cases. For instance, electron-deficient substrate **5f** needs to stir at 80 °C to ensure full conversion to **8f**. In addition, substrates not activated at the *ortho*-position for aromatic substitution (**5b**, **5c**, and **5e**, Scheme 3) do not cyclize without heating.

Scheme 5 shows two reactions that can further diversify spirocyclic isoindolones **3**, thus expanding the accessible chemical space and offering different options for synthesizing molecules with interesting bioactivity. The first example corresponds to a Suzuki cross-coupling reaction of **8d** with phenylboronic acid to give spirocycle **12d** in 89% yield.¹⁴ Reduction of the amide to an amine can also be achieved using triflic anhydride and Hantzsch ester as a hydride source.³² Subjecting **8d** to these conditions gives tertiary amine **13d** in 69% yield.

Scheme 5. Further Diversification of Spirocyclic Isoindolone **8d**

In summary, a two-step sequence has been developed for the synthesis of spirocyclic isoindolones **3** from arenyne and enyne 3-hydroxyisoindolone **1**. Specifically, an alkynyl *aza*-Prins cyclization delivers intermediate isoindolones **2**, and then a novel C3 oxidation protocol generates an *N*-acyliminium ion intermediate capable of undergoing a *halo*-Nazarov cyclization. The method allows for the efficient installation of two new rings, two new carbon-carbon bonds, a vinyl halide, and an *aza*-quaternary stereocenter (which is found in a wide range of bioactive natural products). Ongoing work includes the exploration of different conditions for the efficient activation of enyne-derived Prins products, as well as development of an asymmetric variant of the reaction.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS publications website. (SI, Spectral Data CIF files).

AUTHOR INFORMATION

Corresponding Author

Alison J. Frontier—*Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States; Email: alison.frontier@rochester.edu*

Author

Jackson J. Hernandez—*Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States*

ACKNOWLEDGEMENTS

We thank the NSF (CHE-1900050) for financing this study. We thank Dr. W. W. Brennessel (Dept. of Chemistry, University of Rochester) for running x-ray crystallography and the NSF (CHE-1725028) for financing our x-ray diffractometer. We also thank Kevin Wells, the University of Rochester Mass Spectrometry Resource Laboratory, and NIH instrument grant (S10OD021486).

REFERENCES

1. Fresno, M.; Jimenez, A.; Vazquez, D., Inhibition of Translation in Eukaryotic Systems by Harringtonine. *Eur. J. Biochem.* **1977**, *72*, 323-330.
2. Garreau de Loubresse, N.; Prokhorova, I.; Holtkamp, W.; Rodnina, M. V.; Yusupova, G.; Yusupov, M., Structural basis for the inhibition of the eukaryotic ribosome. *Nature* **2014**, *513*, 517-522.
3. Pilli, R. A.; Rosso, G. B.; de Oliveira, M. d. C. F., The chemistry of Stemona alkaloids: An update. *Nat. Prod. Rep.* **2010**, *27*, 1908-1937.
4. Glavač, D.; Gredičák, M., Organocatalytic Asymmetric Transformations of 3-Substituted 3-Hydroxyisoindolinones. *Synlett* **2017**, *28*, 889-897.
5. Shen, J.; You, Q.; Fu, Q.; Kuai, C.; Huang, H.; Zhao, L.; Zhuang, Z., Base-Promoted Cascade C–C Coupling/N- α -sp³C–H Hydroxylation for the Regiospecific Synthesis of 3-Hydroxyisoindolinones. *Org. Lett.* **2017**, *19*, 5170-5173.
6. Dempster, R. K.; Luzzio, F. A., A direct arylation-oxidation route to 3-arylisindolinone inhibitors of MDM2-p53 interaction. *Tetrahedron Lett.* **2011**, *52*, 4992-4995.
7. Lin, W.; Cheng, J.; Ma, S., Iron(III) Chloride-Catalyzed Tandem Aza-Prins/Friedel-Crafts Cyclization of 2-Arylethyl-2,3-butadienyl Tosylamides and Aldehydes-An Efficient Synthesis of Benzo[f]isoquinolines. *Adv. Synth. Catal.* **2016**, *358*, 1989-1999.
8. Yan, D.-M.; Zhao, Q.-Q.; Rao, L.; Chen, J.-R.; Xiao, W.-J., Eosin Y as a Redox Catalyst and Photosensitizer for Sequential Benzylic C–H Amination and Oxidation. *Chem. Eur. J.* **2018**, *24*, 16895-16901.
9. Moreau, A.; Couture, A.; Deniau, E.; Grandclaudon, P.; Lebrun, S., A new approach to isoindoloisoquinolinones. A simple synthesis of nuevamine. *Tetrahedron* **2004**, *60*, 6169-6176.
10. Rong, M.-Y.; Li, J.-S.; Zhou, Y.; Zhang, F.-G.; Ma, J.-A., Catalytic Enantioselective Synthesis of Difluoromethylated Tetrasubstituted Stereocenters in Isoindolones Enabled by a Multiple-Fluorine System. *Org. Lett.* **2020**, *22*, 9010-9015.
11. Sengoku, T.; Nagai, Y.; Inuzuka, T.; Yoda, H., New Synthetic Methodology Toward Azaspiro- γ -Lactones by Oxidative C–H Spirocyclization. *Synlett* **2019**, *30*, 199-202.
12. Alachouzos, G.; Frontier, A. J., Cationic Cascade for Building Complex Polycyclic Molecules from Simple Precursors: Diastereoselective Installation of Three Contiguous Stereogenic Centers in a One-Pot Process. *J. Am. Chem. Soc.* **2019**, *141*, 118-122.
13. Holt, C.; Alachouzos, G.; Frontier, A. J., Leveraging the Halo-Nazarov Cyclization for the Chemodivergent Assembly of Functionalized Haloindenes and Indianones. *J. Am. Chem. Soc.* **2019**, *141*, 5461-5469.
14. Alachouzos, G.; Frontier, A. J., Diastereoselective Construction of Densely Functionalized 1-Halocyclopentenes Using an Alkynyl Halo-Prins/Halo-Nazarov Cyclization Strategy. *Angew. Chem., Int. Ed.* **2017**, *56*, 15030-15034.
15. Abdul-Rashed, S.; Holt, C.; Frontier, A. J., Alkynyl Prins and Alkynyl Aza-Prins Annulations: Scope and Synthetic Applications. *Synthesis* **2020**, *52*, 1991-2007.
16. Kobayashi, N.; Kaneko, K.; Amemiya, S.; Noguchi, K.; Yamanaka, M.; Saito, A., Alkyne aza-Prins cyclization of N-(hexa-3,5-diynyl)tosylamides with aldehydes using triflic acid and a binuclear aluminum complex. *Chem. Commun. (Cambridge, U. K.)* **2019**, *55*, 8619-8622.
17. Subba Reddy, B. V.; Nair, P. N.; Antony, A.; Lalli, C.; Gree, R., The Aza-Prins Reaction in the Synthesis of Natural Products and Analogues. *Eur. J. Org. Chem.* **2017**, *2017*, 1805-1819.
18. Overman, L. E.; Sharp, M. J., Nucleophile-promoted electrophilic cyclization reactions of alkynes. *J. Am. Chem. Soc.* **1988**, *110*, 612-614.
19. Das, M.; Saikia, A. K., Stereoselective Synthesis of Pyrroloisoindolone and Pyridoisoindolone via aza-Prins Cyclization of Endocyclic N-Acyliminium Ions. *J. Org. Chem.* **2018**, *83*, 6178-6185.
20. Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N., Enantioselective Pictet-Spengler-Type Cyclizations of Hydroxylactams: H-Bond Donor Catalysis by Anion Binding. *J. Am. Chem. Soc.* **2007**, *129*, 13404-13405.

21. Lian, Y.; Hinkle, R. J., BiBr₃-Initiated Tandem Addition/Silyl-Prins Reactions to 2,6-Disubstituted Dihydropyrans. *J. Org. Chem.* **2006**, *71*, 7071-7074.

22. It is likely that the cyclization of the *para*-methoxyarenyne reactant **1e** proceeds through a quinone methide intermediate and thus a different mechanism for incorporation of the halide. This may account for lower *E/Z* ratio observed in product **5e**.

23. Jiménez, J.; Kim, B.-S.; Walsh, P. J., Tandem C(sp₃)-H Arylation/Oxidation and Arylation/Allylic Substitution of Isoindolinones. *Adv. Synth. Catal.* **2016**, *358*, 2829-2837.

24. Kaiser, D.; Maulide, N., Making the Least Reactive Electrophile the First in Class: Domino Electrophilic Activation of Amides. *J. Org. Chem.* **2016**, *81*, 4421-4428.

25. Kaiser, D.; Bauer, A.; Lemmerer, M.; Maulide, N., Amide activation: an emerging tool for chemoselective synthesis. *Chem. Soc. Rev.* **2018**, *47*, 7899-7925.

26. White, K. L.; Mewald, M.; Movassaghi, M., Direct Observation of Intermediates Involved in the Interruption of the Bischler-Napieralski Reaction. *J. Org. Chem.* **2015**, *80*, 7403-7411.

27. Charette, A. B.; Mathieu, S.; Martel, J., Electrophilic Activation of Lactams with Tf₂O and Pyridine: Expedient Synthesis of (±)-Tetraponericine T4. *Org. Lett.* **2005**, *7*, 5401-5404.

28. Movassaghi, M.; Hill, M. D., Single-step synthesis of pyrimidine derivatives. *J. Am. Chem. Soc.* **2006**, *128*, 14254-14255.

29. Bélanger, G.; Larouche-Gauthier, R.; Ménard, F.; Nantel, M.; Barabé, F., Intramolecular Additions of Various π -Nucleophiles to Chemoselectively Activated Amides and Application to the Synthesis of (±)-Tashiromine. *J. Org. Chem.* **2006**, *71*, 704-712.

30. Bechara, W. S.; Pelletier, G.; Charette, A. B., Chemoselective synthesis of ketones and ketimines by addition of organometallic reagents to secondary amides. *Nature Chem.* **2012**, *4*, 228-234.

31. Ahmed, M.; Kricka, L. J.; Vernon, J. M., Autoxidation of polysubstituted isoindoles. Part II. Products from 1,3-diphenyl- and 1,2,3-triphenyl-isoindoles. *J. Chem. Soc., Perkin Trans. 1* **1975**, 71-75.

32. Barbe, G.; Charette, A. B., Highly Chemoselective Metal-Free Reduction of Tertiary Amides. *J. Am. Chem. Soc.* **2008**, *130*, 18-19.