Retarded field of a uniformly accelerated source in non-local scalar field theory
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We study the retarded field sourced by a uniformly accelerated particle in a non-local scalar field
theory. While the presence of non-locality regularizes the field at the location of the source, we
also show that Lorentz-invariant non-local field theories are particularly sensitive to the somewhat
unphysical assumption of uniform acceleration, leading to logarithmic divergences on the acceleration
horizon. Analytic properties of the non-local retarded Green function indicate that the divergences
can be removed by placing appropriate sources on the acceleration horizon in the asymptotic past.

I. INTRODUCTION

Locality is deeply woven into our notion of physics:
from classical mechanics to general relativity and quan-
tum field theory, locality has been an undergirding prin-
ciple across disciplines. However, there are notable ex-
ceptions from that rule. Quantum entanglement is a non-
local phenomenon, effective actions in quantum field the-
ory typically contain non-local factors, and it has proven
difficult if not outright impossible to define local observ-
ables in quantum gravity [1]. Therein, the role of non-
locality may also play a major role in possible resolutions
of the black hole information loss problem [2].

The recent years have seen a flurry of activity with
a particular focus on the class of ghost-free infinite-
derivative theories [3-5]. These theories propose a fun-
damental non-locality by means of non-local form fac-
tors f(O), and have been remarkably successful in al-
leviating curvature singularities [6—14] in the context of
weak-field gravity. Some exact non-singular solutions of
infinite-derivative gravity theories have been constructed
in the context of gravitational waves [15, 16] and cos-
mology [17, 18]. Implications of such non-local mod-
ifications have also been investigated in quantum the-
ory [19-21], quantum field theory [22-26], quantum field
theory in curved spacetime [27], Hamiltonian mechanics
[28, 29], and other aspects of gravitational theory [30-
32]. Non-local Green functions have proven a particularly
useful tool in such studies [33], even though most sce-
narios considered in the literature so far are either time-
independent or space-independent, implying that the full
spacetime notion of non-local Green functions is not yet
very well understood.

This paper aims towards closing that gap by studying
the retarded non-local scalar field of a uniformly acceler-
ated source in flat spacetime. The study of the retarded
field for uniformly and arbitrarily accelerated point parti-
cles has a long history, but, to the best of our knowledge,
has so far been focused on local field theories.
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In 1909, Born studied the field of two charges undergo-
ing uniform acceleration in opposite directions [34]. The
following decades saw substantial activity in this field,
and while much progress was made in analyzing the ra-
diation content of such a field configuration—see e.g. the
introduction in Fulton and Rohrlich [35] for a brief histor-
ical overview—Bondi and Gold [36] emphasized that the
behavior of the field on the acceleration horizons was sin-
gular. Boulware [37] and Das [38] considered physically
meaningful limiting procedures towards the unphysical
assumption of uniform acceleration, and Bondi [39] used
their approach to re-derive the original Bondi—Gold so-
lution. While Ginzburg has deemed the problem of the
radiation of uniformly accelerated charges solved [40—42],
the field is still active, focusing on the influence of gravi-
tation [43], studying scalar theory [44], or extending the
studies to de Sitter spacetime [45, 46].

These considerations have provided much insight on
the causal structure of fields propagating in Minkowski
spacetime, the spacetime properties of retarded Green
functions, and have brought to light some unphysical con-
sequences of assuming uniform acceleration. This paper
presents a first step towards extending many of these con-
siderations from local field theory to a class of non-local
field theories.

In order to focus our discussion somewhat we shall
consider a simple toy model of a scalar field theory in
four-dimensional Minkowski spacetime with the metric

ds® = g, dX dX" = —dt? +da? + dy? +dz?, (1)

expressed in Cartesian coordinates X*# = (t,z) where
we denoted & = (z,y, z) for simplicity. The scalar field
equation takes the simple form

where j is an external source, and D is a differential oper-
ator.! The local theory is specified by the choice D = 0O,

1 We use the letter j to denote the external source term, but re-
call that a scalar field theory couples to a density and not to a
conserved current.
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where [J is the d’Alembert operator, and one recovers the
massless Klein—Gordon equation. Suppose now that the
external source has the following form:

§(X) = 2pa8®) (=17 + 2* — a?)5(2)3(y) 3)
X 0(z+1)0(z —1t),

which describes a uniformly accelerated particle of mass
© > 0 and acceleration parameter o such that the con-
stant acceleration of the particle is p/«, and the particle
is located on the positive part of the z-axis. The retarded
field created by such a source may be calculated via the
retarded Green function

s x - x2 e 1),
2

(X'~ X)? = (¢

R 1 _
GR(X', X) = @
- t)2 + (53/ - J;)27

such that the retarded solution for ¢ takes the well known
form [43-46]
o) = [ AXGR X X (X)
_ Ho 0(z+1) (5)
21 /(X2 + a2)? —4a2(22 — 2)

This retarded field of a uniformly accelerated source has
several remarkable properties.

First, this expression diverges when —t2 + 22 = o2 and
x =y = 0, that is, at the location of the uniformly accel-
erated source. Second, this expression is non-zero only in
the future and right Rindler wedges, while being finite on
all horizons. And third, across the past acceleration hori-
zon located at u = z + ¢t = 0, the retarded field exhibits
a discontinuity:

u=0 _ Nt N\ 14
AG= = glu=0") = ¢(u=0") = —5~. (6)
These three properties are intimately connected to the
properties of the retarded Green function of the local
scalar theory.

In the remainder of this paper it is our objective to
understand how the presence of non-locality affects the
properties of the retarded field of a uniformly accelerated
particle. Our model of non-locality utilizes the following
differential operator,

D:exp[(—ﬁm)ﬂm, N=1,2,..., £>0. (7

This expression is to be understood via a formal expan-
sion. N is an integer, and ¢ > 0 is the scale of non-
locality, and this class of non-local theories is also re-
ferred to as GFy. Here, “GF” stands for “ghost-free”
since the inverse of the non-local differential operator in
Fourier space has no additional poles and is thereby de-
void of spurious ghost-like particles typically encountered
in higher-derivative theories. In the local limit £ — 0 one
recovers the local theory. It has been demonstrated that

GFy theories manifestly regularize the field of station-
ary sources, but in the time-dependent case only even
values for N are permissible, since odd N lead to time-
dependent instabilities and divergences in the classical
theory [26, 47].

Moreover, in a true spacetime sense it is impossible
to define “small” Lorentz-invariant spacetime volumes by
relations of the form — (¢ —t)2+ (z' —x)? < (2 since they
are always hyperbolic in nature. While in many purely
spatial problems the question of time-dependence can be
neglected and non-locality truly acts on a small scale, in
the present paper this interpretation is not possible. For
this reason we will place particular focus and emphasis
on non-local effects close to the light cone.

This paper is organized as follows. In Sec. IT we will
briefly introduce some useful coordinate systems and the
notion of Fourier transforms in those curvilinear coordi-
nate systems. In Sec. III we will derive an integral ex-
pression for the retarded field of a uniformly accelerated
source in the non-local theory and discuss its properties
in detail. And last, in Sec. IV, we will summarize our
findings and outline possible future research directions.

II. MINKOWSKI SPACETIME

In what follows it will be useful to work in Rindler
coordinates, so let us briefly fix our notation to encom-
pass different coordinate choices both in real space and
Fourier space.

A. Various coordinates

In this paper we exclusively consider flat Minkowski
spacetime, but it is convenient to introduce several co-
ordinates. We start with the standard Cartesian coordi-
nates {t,x,y, z}, where the flat metric takes the form

ds? = —dt? + da? + dy? + d22. (8)
It is useful to transform to null coordinates {u,v} via®

u=z+t, v=z-—1t. (9)
Finally, let us define the the real Rindler coordinates
{7,¢,z,y} that are adapted to the boost Killing vector
20y — t0, such that

7 = Llog [u/v| = artanh [(t/2)7+""]

¢ =+|uv| =] — 12+ 22|,

(10)

2 Note that in the literature one also finds the alternative defini-
tions @ =t — z and ¥ = t + z. We choose the present convention
such that v > 0 and v > 0 in the right Rindler wedge, which
reduces the amount of signs encountered in the following calcu-
lations significantly.



where o, = sign(u) and o, = sign(v). The inverse trans-
formations are given by

u = O'uCeT ) v = Ui)CeiT ) (11)
t=5(oue” —ove ), z=5(oue” +oe 7). (12)

Introducing the subscript W € {R, L, F, P} we may label
individual regions of Minkowski spacetime as Myy; see
Fig. 1. The metric in Rindler coordinates is

ds? = 0,0, (—¢2dr? + d¢?) + dp? + pPde®,  (13)

where we also introduced the polar cylindrical version
given by the standard relations (x,y) = (pcos g, psinp).
Denoting the four-dimensional spacetime volume element

by g'/? = /| Det g|, we can write
91/2 = dtdzdydz = %dudvdmdy = (pdrd{dpdp . (14)

The norm of a position vector X in these coordinates
reads

X?=X -X=guX'X" =2+ 22+ 4>+ 22

15
ZUU+$2+y2:UquC2+P27 ( )

where the dot denotes the scalar product. The difference
of two such vectors X and X has the norm

(X - X)P? =t 4+ @ -2+ y—9)°>+ (2 2)?
=e 7T (JueTC — aﬂe%f) (UUG%C — 07367—5)

+ 07+ 57 = 2ppcos(p — §). (16)

B. Fourier transform

Due to the translational invariance of Minkowski
spacetime M it is convenient to employ Fourier trans-
form methods. Because Minkowski spacetime is an affine
space, after fixing an arbitrary origin one may freely con-
vert coordinate positions into vectors with respect to that
origin. We denote the Fourier transform of a function
f(X) as fx, and in four spacetime dimensions their in-
terrelations are given by the formulas

fx =g [0P0SXX 00, an)
M

£ = o3 [@0 X X fe )
M

In our terminology, the coordinate space vector X as well
as momentum space vector X live in the same vector
space. This definition is useful because now several coor-
dinate systems can be used both for the Fourier transform
and its inverse. The contraction between the momentum
space and coordinate space vectors is given by

X X=-ft+zx+yy+zz (19)

= ?C(Uﬁo've‘?—‘r + Uﬁaue_f—,—q-) + ppcos (p—¢) .
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Figure 1. The split of Minkowski spacetime into the four

regions “L,” “R,” “F,” and “P,” here displayed for z = y = 0.
The dash-dotted line represents the spacetime location of the
uniformly accelerated particle, and the dashed line v = 0
(u = 0) represents the future (past) acceleration horizon.

Let us emphasize here that the above notation presents
a departure from the common notation where one would
write X* = (t,z) and X* = (w,k). Hence, in what
follows, a barred quantity is the conjugate Fourier mo-
mentum to the unbarred real-space variable. For Eu-
clidean coordinates this procedure is somewhat odd, but
its notational advantage becomes apparent when per-
forming Fourier transforms in curvilinear coordinates—
as we shall see below—since in that case one does not
need to invent new coordinate symbols for Fourier space.
For similar methods in Lorentz-invariant Fourier trans-
forms we refer to the insightful paper by DeWitt-Morette
et al. [48].

III. NON-LOCAL SOLUTION FOR AN
ACCELERATED PARTICLE

A. Non-local theory

With the brief reminder on Lorentz-invariant Fourier
transforms out of the way, let us discuss our non-local
toy model. In what follows we shall consider a scalar
field theory described by the equation of motion

()0 = j . (20)

Here, () is an analytic operator

a(d) = Z ap3d (21)
k=0



and j is an external source. In this paper, for simplicity,
we focus on so-called GFy theories defined by

a(0) = exp [(742D)N] : (22)

which reduces to the local case a(0) = 1 in the local limit
¢ — 0. a(0) is called the form factor, and it satisfies two
important properties: it is non-vanishing when acting on
functions, and it satisfies a(0) = 1.

B. Retarded solution

Consider a particle with mass p that uniformly ac-
celerates in the direction of the positive z-axis with the
constant acceleration u/a. The corresponding source is
localized in the region My and can be parametrized as

§(X) = 2p08®) (=12 + 2° — a?)5(2)3(y)8(u)0(v)
= pd(¢ — a)d(x)d(y)0(u)(v) .
In order to find the response of the non-local theory to

this source, we employ the Green function method such
that the retarded solution is given by the integral

(23)

o) = 3 [a0 XX Gy @y
M

Real-space expressions for G} are known and can be given
in terms of Meijer-G functions, and we derive an ex-
plicit expression in Appendix A, where we also prove that
they satisfy DeWitt’s asymptotic causality criterion [49].
However, their form is rather complicated and hence im-
practical for calculational purposes. As we will demon-
strate now it is much simpler to perform the calculations
in momentum space.

A momentum space Green function for the differential
operator Oa(0) is given by the expression

1
Gy = — 25
X —X2a(—X2) ( )
and we may rewrite it as a sum of two terms,
Gx =Gx +AGx,
1 al(-X%) -1 (26)
GX:j:iga AQxZ(_Aﬁ)~

Here, G5 denotes the Green function of the U-operator.
This quantity is a Green function for the local theory and
does not depend on the presence of non-locality. It has
two poles in complex Fourier space, and needs to be reg-
ulated, typically via a suitable ie-prescription. As is well
known, the choice of ie-regularization gives rise to dis-
tinct causal properties. The quantity AG g, on the other
hand, encapsulates the non-local modification of the local
theory: in the limiting case of £ — 0 one has a — 1 such
that this quantity vanishes identically. Moreover, since

4

the form factor satisfies a(0) = 1, the quantity AGy is
devoid of any poles in the complex plane and hence ana-
lytic. This implies that non-locality, as described in non-
local infinite-derivative theories, modifies all local Green
functions equally, irrespective of their causal properties.

Concretely, making use of Eq. (22), the Green function
for our scalar non-local theory takes the form

67(52X2)N
Gy = ———. (27)
X —X2

Because the non-local modification does not change the
structure of the poles in the complex momentum plane,
one might be tempted to perform a similar ¢e-prescription
and contour integration in analogy to the local case.
This, however, is impossible, since contour integration
assumes a fall-off behavior of the momentum space rep-
resentation of the Green function which is not satisfied in
our non-local infinite-derivative model due to the expo-
nential factor. Incidentally, this problem is well known in
the non-local literature and lies at the heart of unitarity
issues of non-local theories [22-25].

At this point we note that it is possible to avoid the
notion of contour integration by following the approach
proposed in Ref. [47]. Using the Sokhotski-Plemelj the-
orem for continuous functions it is shown that one may
derive non-local Green functions with the correct causal
properties by performing a one-dimensional line integral
along the real axis. To obtain the retarded Green func-
tion we shift the poles by an infinitesimal quantity —ie
in accordance to the local theory, and define

£2X2)N e—[éz(—{z+i2+ﬂ2+22)]l\7

= —[—(t —ie)? + 22 + §% + 72

e_(
_Xz } —1ie

%

e—[zz(ﬂﬂ,aigz'i'pz)]}v
R NS
—[UT—LU@C +p +z<(oﬂeT—U@e*’r)e]

where in the second line we employed Rindler coordinates
that are ideally suited for analytical calculations with
uniformly accelerated sources.

To that end, the momentum space description of the
source j g takes the following form in Rindler coordinates:

jx = Ba dtdzdydz ¢! (-t HTetoy+22)

272
M

X 6@ (=% 4+ 2% — a?)6(x)0(y)0(u)0(v)
_ ﬂ g _T—T = T+T
=53 / drd( exp {z > (oae” " + oge )}
Mr
x exp [i (zx + gy)] 6P (¢* - o?)
_ pe - al T—T —T+T
=13 /d’]’ exp [17 (cae™ T +oge T )} . (29)
R

With the expressions for both Q;R? and jg known in mo-
mentum space we may now utilize Eq. (24) to arrive at



the real-space expression of the retarded field ¢. Since
we shall employ Rindler coordinates, this step involves
the integration over four distinct patches of momentum
space, which we refer to as My, (with W = R,L,F,P in
analogy to the real-space covering of Minkowski space-
time). For this reason the integration can be split into
four integrals I, over the regions M. The retarded

solution for ¢ is then given by four contributions,

$(X)=> Iy(X), (30)
W
1 s
Iy(X) = g [ @R XX R G
My
I (X) = % df/df/d%g’exp {Zg
0 R

e_[£2(a'ﬂ0'1752+)52)]1\7

Then, employing the integral expression for the source as
per Eq. (29), I takes the following rather lengthy form:

[oa(ae™"—0oyCe™T)e T +og(ae” —0,(eT)e T ] }

im(oa—05)

x[ dp pJo(pp) -
Z[ —(0a05C% + p?)

oo

2 {Jo(pC) / dpé(”(o—ao—@cﬂﬁ)}
0

= g‘:BR/dT O/dCR/d%Cexp {zg [aﬂ(aeff_avcg)wﬁ(ae;_auge,fﬂ}

e*[52(0ﬁ0562+52)}]\]

—(0a05C? + p?)

x []o[o dp pJo(pp)
0

In the above we first integrated out the angles,

2m

[ e expl-ippcos (o - ) = 2mdn(pn).
0

(33)

where Jy(z) denotes the Bessel function of the first kind
[50]. Then we made use of the Sokhotski-Plemelj theo-
rem to rewrite the regulated expression

1) S0

-2 P o2
-X |—ie X (34)
ORI §(0)) (X7

where f(p) is a continuous function. Due to the central
importance for the causal properties of the solution pre-
sented in this paper, we prove the above relation in detail
in Appendix B.

In the above, the symbol p.v.; denotes the Cauchy
principal value with respect to the variable p with other
coordinates held fixed. The symbol f denotes that the
integration is to be performed with the standard prescrip-
tion for the Cauchy principal value. Note that the last

7;7'['(0'2:*0'17) JO(PO] .

(

term of (34), including the d-distribution, has support
only in MU Mp as there are no poles in Mg U Mj,. Con-
sequently, in the regions Mg U M, the Cauchy principal
value integral reduces to the standard integral and (34)
yields the identity, as it must.

Then, in the second equality of Eq. (32), we integrated
out the J-distribution and shifted the variables 7 and 7.
In order to obtain the final expression for the retarded
field ¢ we now need to sum the contributions I, and it
is useful to first sum the integrals corresponding to the
opposite regions. We arrive at the compact expressions

I*(X) =

. 7 (e (&%)
= % dCC[C\jz‘Lv(QC) ][dPPJo(PP)e_(iCZJFpQ)
0 0
- 2055w (6.0(n0)]. (35)

where we defined 6, = 1, §_ = 0, and Céfv(g,é) and



Sw (¢, ¢) denote the following cosine and sine integrals:

CEWC, ) = /dT/chos (ae T—g,CeT)
§(ae —o,Ce” T)} ,
36
w(¢ ) = /dT/dTbln T —o,Cem) o

- g(aeT—auCe_T)} .

These double integrals can be separated into products of
integrals (see Eq. (3.868), (1)—(4) in Ref. [51]) and take
the following form in the various regions of Minkowski
spacetime:

CE 5 - {ﬂ [(a0)0(¢0) + Yo(a0)Yo(¢O)]
4Ko(00)Ko(<0)
(
0

(
. { [~ (g o(¢0) + Yo(ad)Ya(cO)]
4Ko(aC)Ko(¢C
(37)
_ _ —27Yy (o) Ko(¢C)
CE(C.0) = CF(C.Q) = { (Rl
—2mKo(aq)Yo(¢C)
SR(C? 5) = SL(C?E) =0
Sk (¢,¢) = =5 (¢, ¢) = 2mKo(a) Jo(¢C) -
Then, the final solution for ¢ is given by the sum
H(X)=TT(X)+ 1 (X). (38)

We were not able to find a closed-form analytic expression
for ¢, which is why we refrain from giving an explicit
expression at this point.

C. Local case /=0

As a simple consistency check let us recover the known
local solution for £ — 0. Employing Eq. (35) we find

o) = 4% [ace]-Kalotrci (.0 (39)
0
+ THp00(6.0) ~ SR(pOSW(E )|

where we used the following principal value integral ex-
pressions (for p # 0):

][dﬁ (pJo(pp) :{—Ko(pC), (10)

S mEEEDY) [ 5Y5(e0) -

Numerical integration of Eq. (39) perfectly matches the
known analytic result for the retarded solution [43-46],

na 6(w) (41)

T (RN el

Note that this field is non-zero in Myr U MF and vanishes
in My, U Mp. Despite the discontinuity across the surface
u = 0, it fully satisfies the field equations with distribu-
tional source (23). The advanced solution ¢ can be
found by formally reversing the time direction, t — —t,
which is equivalent to the exchange u < v,

N )
R R Ew el

(42)

As already pointed out in the Introduction, this local
solution is singular at the location of the source, that
is, in the plane { = « whenever p = 0. On the future
horizon ¢t = z, however, the retarded field is regular. For
a more detailed discussion of this local solution, including
quantum radiation, we refer to Ren and Weinberg [44].

D. Non-local case ¢ >0

Let us now study the non-local case £ > 0. In general,
for p > 0, we were not able to proceed analytically with
the integral expressions for the non-local retarded field

via Egs. (32), (35), and (38). Restricting ourselves to
the plane p = 0, however, the solution reduces to
$0(X) = ¢(X)|p=0
® i(_£2N§2N) L
-2 [l Py e w
0
Ei (7(762)NC_2N) & -

where we used the principal value integral expression

[ pelCeaosCi]" gy (- (ke2)NEN
_pe
7[dp —(£2+p2) ( 2N )’ (44)

and Ei(z) denotes the exponential integral [50]. Inspect-
ing Eq. (43) one immediately notices that the cases of
even and odd N are quite different. Indeed, the integrals
for odd values of N do not converge. This can be shown
simply for X € Mg UMji,. In this case, the first and third
terms in the integrand of Eq. (43) are suppressed for large
values of ¢, but the second term grows to infinity. For
X € My U Mp, the second term is also unbounded be-
cause it oscillates with growing amplitude. On the other
hand, the integral converges for even values of N. This
behaviour for even/odd non-local theories seems to be in
agreement with Refs. [26, 47].



For numerical analysis it is useful to introduce dimen-
sionless quantities. Since we assume the scale of non-
locality ¢ to be fundamental, we choose to normalize the
physical parameters of distance and acceleration with re-
spect to that length scale and introduce the quantity

@
7"
The scalar field is proportional to the mass of the particle
w. Since that constant does not appear anywhere else we
define the dimensionless scalar field ¢ as

ot (46)

1

(45)

&

é

Now the only free parameter is the dimensionless acceler-
ation parameter &, which measures inverse acceleration
per unit mass.

For the remainder of this paper let us focus on the
simplest case of N = 2, which we refer to as GF5 theory.
Then one finds

wix) =25 [P g0 an
0
D 05— Tawico)

where we introduced the dimensionless distance f = (/L.
The integration can be performed numerically for each
Rindler wedge, and we plot a graphical representation
in Fig. 2. For convenience we combined the numerical
expressions for the right and future wedge by artificially
plotting ¢ as a function of o,0,(, and, similarly, in the
left and past Rindler wedge.
The retarded field has several noteworthy properties:

1. For large timelike and spacelike distances, ¢ > ¢,
one recovers the local result discussed in the
previous section.

2. The non-local field is regular at the location of the
source, ( = «, in contrast to the local field.

3. The non-local field is non-vanishing in the left and
past Rindler wedges, unlike the local field.

4. The behavior of the non-local solution around the
horizon appears singular. Closer inspection, as we
shall discuss below, reveals that this is an artefact
of the unphysical assumption of uniform accelera-
tion.

Let us now discuss these properties of the retarded non-
local field in more detail.

1. Asymptotic timelike and spacelike behavior

As discussed in Sec. IIIC, in the local limit ¢ — 0
one recovers the local expression for the retarded field.

However, we may also consider the dimensionless limit
é = (/¢ — oo, which corresponds to the limit of £ — 0
at finite Rindler radius ¢, or to the large-distance limit
in the case of finite £ > 0. From the graphical repre-
sentation in Fig. 2 it is clear that the non-local retarded
field approaches the values of the local theory at large
spacelike and timelike distances,

a1+ oy) '

QZ)O(Ct >1)=— 47762

(48)

This is a non-trivial consistency check since it implies
that for large timelike and spacelike distances the effects
of non-locality are heavily suppressed.

2. Regularity at the location of the source

In stark contrast to the local solution (41), the non-
local field is finite at the location of the particle, { = a.
It is possible to calculate this value analytically,

5o (C ~ 6 1 342 1 3.1 3.
¢0(CNQ>:M I:—47T « 2F4 (4,47 §’1’1,5717

a4

— 51
) e
where G} denote Meijer G-functions [50]. One may

show that (;AS((A ~ &) is finite, smooth, and negative for
positive values of &, whereas it vanishes for & — 0. This
manifestly finite behavior at the location of the source
matches our expectation that non-locality regularizes the
field of localized sources and, perhaps more importantly,
presents a concrete extension from previous static and
stationary results known in the literature to the full,
time-dependent case.

A closer inspection reveals that the linear term (’)(6 —
&) does not vanish. This corresponds to the fact that
the minimum of the non-local potential is not located at
¢ = a but, rather, is shifted towards smaller values of (.
This behavior can also be seen in Fig. 2.

8. Causal properties

Recall that the local solution (41) is proportional to
the step function f(u), implying that the local retarded
field is strictly zero in the left and past Rindler wedges. In
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Figure 2. The local (dashed) and non-local (solid) retarded dimensionless field in the four Rindler wedges plotted as a function
of 0,0,(, in the plane p = 0 for a dimensionless acceleration of & = 7, with a dimensionless step size of 0.05. The vertical
dashed line in the right wedge indicates the position of the particle at ( = &.

the non-local case one might expect that this is no longer
the case. And indeed, Fig. 2 confirms this suspicion:
the non-local retarded field is non-zero in the left and
past Rindler wedges. While we were unable to find a
complete analytical description, it is again possible to
find the value of the field analytically at the somewhat
ad hoc location ¢ = «. In the left Rindler wedge we find

DR LAy 1 272 40 A A

do(C = &) NEIET [r?a*A(a) + 2B(&)] (52)

+0((—a),

whereas for the past Rindler wedge one has

2o (¢ ! o g (7 it

=~ O :7—7G ’ -

(¢~ a) =gz — G Ca 0,0,0; —1| 64
+O(é_d)a

(53)

Let us emphasize that these non-zero values arise solely
due to the presence of non-locality, £ > 0. In the limit of

vanishing non-locality and finite acceleration parameter
a one has @ = a/f — oo, and one may show that in this
limit the above terms vanish identically.

In linearized non-local theories it is common wisdom
that “non-locality smears out sharp sources” [33, 52], and
one might be tempted to interpret the above expressions
as the result of a smeared out step function similar to
the expression ~ emze(u). However, due to the lack of
concrete analytical expressions for the retarded field for
arbitrary values of ( it is not possible to test this idea
further.

4. Singular behavior in vicinity of acceleration horizons

From our numerical plot in Fig. 2 it is obvious that
the retarded non-local field behaves somewhat singularly
in proximity to the acceleration horizons. Expanding the
integrand (43) for small values of f one finds the following



logarithmic behavior:

B0l < 1) = @) + (8) log ¢ + O(E), 5)
0(@) = [ 05 {wBi(-C") [rlou + o) ()
R
+ 4Y,(a0) (~y +log g) }
— 4Ky (&) [#(au — o)

4 2Fi(—C) (7 +log g) } } : (55)

cl(d):41 G2 <1 b 2546> (56)
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Apparently, the retarded field diverges logarithmically as
one approaches the acceleration horizon. Note that ¢y de-
pending on o, and o, leads to different values in different
Rindler wedges. However, the constant c¢; that multiplies
the diverging logarithmic term is universal.

This logarithmic divergence arises due to non-locality
and is pathological as the retarded field of the local the-
ory does not exhibit any singular behavior, except for a
discontinuity on the past horizon, which we shall address
in the next subsection. In what follows we will demon-
strate that the pathological logarithmic divergence arises
solely due to the unphysical assumption of a uniformly
accelerated massive particle. This acceleration would re-
quire an infinite amount of energy and result in a massive
particle moving asymptotically at the speed of light.

In order to gain some qualitative understanding of the
divergences, let us consider a simpler setting of a single
point-like source located at (uq,vo),

jtest(X) = K)(S(U - UO)(;(U - U0)5($)5(y) ) (57)

where k is a dimensionless prefactor. Focusing our con-
siderations to the plane p = 0 the resulting field is then
simply

¢test (X

To study the effects of non-locality it is sufficient to con-
sider the non-local modification of the Green function.
Since we are interested in a source that becomes asymp-
totically null we need to check two cases:

) = kG (u, v;ug, vg) . (58)

(a) Past horizon: Set ug = 0 and consider the resulting
field in the limit vy — oo, evaluated on the past
horizon (u = 0).

(b) Future horizon: Set vy = 0 and consider the result-
ing field in the limit ug — —oo, evaluated on the
future horizon (v = 0).

For a visualization we refer to Fig. 3. The non-local
Green function modification—see Appendix A—can be
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Figure 3. Test setup to understand the emergence of singular
behavior on the past and future acceleration horizons due to
non-locality. Consider two sources of magnitude x located
at (uo,0) and (0,v0) and then take the limit ug — —oo and
vy — 00, shifting the sources into the asymptotic past.

written as follows:

n 2
—y?/4 g 5
AG 47r5/2 /dye sin (4y€2> (59)
0
_ sgn[(u—ug)(v —vp)
=_ 1520 /dy sin ( )
x exp [—y*(u — up)? (v —vo)?/(44Y)] ,  (60)
where s? = (u — ug)(v —vp). In order to probe the diver-

gence on the past horizon we set ug = 0. If u # 0 then
AG = 0 due to the exponential suppression in the limit
vg — o0. If uw = 0, then the integral diverges logarith-
mically close to the past horizon. For the future horizon
the analysis goes through identically, mutatis mutandis.

An analytic representation of the non-local Green func-
tion modification confirms this behavior:

Ag(SQ) =

|S | G 0 54 (61)
10247204 703 \ =1, —1.—1)| 25604 ) °
where GZ3 denotes the Meijer G-function [50]. For a

derivation of this expression we refer to Appendix A. This
function has the following asymptotics:

1 st
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AG(|s* > 1) =




While for large arguments the non-local contributions are
strongly suppressed, on the light cone the modifications
diverge logarithmically. This means that non-locality
may have a non-trivial influence if the point of obser-
vation (u,v) and the location of a source at (ug,vo) are
null separated. This is precisely what happens on the
acceleration horizons.

Extracting the prefactor of the logarithmic divergence
created by the presence of the test source (57),

K

P ="5enp (%)
we may now equate it to the negative of the near-horizon
constant ¢1 (&) of Eq. (56) while simultaneously restoring
a dimensional ¢-field, resulting in an expression for the

dimensionless constant k,
L33 ot
25644
(64)

4
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This implies that it is possible to regularize the loga-
rithmic divergence by adding a counterterm-like source
with the above prefactor on the past horizons at both
(ug — —o0,v9 = 0) and (ug = 0,99 — 00); see also
Fig. 3. It is clear that this procedure is necessitated
solely due to the presence of non-locality, since in the
limit £ — 0 one has k — 0, as expected.

Hence, just as in the local case, the singular behavior
arises due to the unphysical assumption of uniform ac-
celeration: in order to accelerate a particle of mass p to
the speed of light we would require an infinite amount
of energy. In the local case, due to the simplicity of the
local Green function, it is possible to consider instead a
source which is initially at rest and then starts acceler-
ating: see Bondi and Gold [36] and Boulware [37] for the
electromagnetic case, and Ren and Weinberg [44] for the
scalar case. Boosting such a source to a finite speed, and
then taking the ultrarelativistic limit, one recovers the
unphysical discontinuities on the past acceleration hori-
zon that are otherwise absent.

Unfortunately, due to the complicated analytical form
of the non-local Green function, such a construction is
not feasible in this case. However, based on the above
discussion we may argue that if the source never reaches
the future light cone (or has never emanated from the
past light cone) then there would be no such singular
behavior. Alternatively, one may place the k-sources on
the past horizons as a regularization prescription.

These considerations confirm our hypothesis that the
unphysical assumption of uniform acceleration leads to
the pathological behavior on the past and future hori-
zons, and any physically well-behaved source should be
devoid of such artefacts. Non-local theories, such as the
GF; theory studied in the present work, appear to be
more sensitive to the physicality of sources.
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5. “Principal values” across acceleration horizons

While the field is logarithmically divergent on the hori-
zon, it is possible to show that the difference of the field
across both the past acceleration horizon (u = 0) as well
as the future acceleration horizon (v = 0) is finite. Since
this difference is taken between two diverging expressions
we shall refer to it as a “principal value.” This principal
value is known from the local case, £ = 0. In the local
theory the field is manifestly finite on all horizons, and
hence the principal value becomes a mere discontinuity.
Moreover, this discontinuity only appears across the past
horizon, and not on the future horizon.

In this subsection we will determine the principal val-
ues across the acceleration horizons analytically (for p =
0). Since ¢ depends only on the coordinate ¢ = \/|uv|,
the near-horizon expressions for the functions in the inte-
grand of Eq. (43) can be found by inserting ¢ = pq (with
p >0 and ¢ > 0) and expanding around ¢ = 0,

1 _ _
Cw (¢, Q) = 5m{4Y5(a) [log (pa¢/2) +1]
+ (o +0v)Jo(aC) } (65)
Cw(¢. Q) = —4Ko(aC) [log (paC/2) +] ,  (66)
Sw(¢, ¢) & m(ow — 0v) Ko(ag) - (67)
It turns out that the difference of these integrals between
either side of the horizon is independent of the position
on the horizon p as well as the near-distance coordinate

q. As a consequence, the jumps across u =0 and v =0
reduce to the finite expressions

A0 =+ 42 [ agC[ (B sd)

0

—4Ko(a0)] . (68)
Aoy = 42 [ 4GB (-7 ) o)

0

+4Ko(aC)] . (69)

For N = 2 one finds the analytic expressions

Ao =5 1= Jow)] (70)
Mgt~ =~ Q@) (71)
Q0)= ob: (535555 )

- 7;&2 oF% <;1,§;;§6> o (12)

where Q(&) captures the influence of non-locality. Let us
emphasize that the logarithmic divergence encountered
on the horizon in GF5 theory precisely cancels out of
this symmetric limit from both sides of the horizons. In



Figure 4. A plot of the dimensionless function Q(&) and k(&)
in arbitrary units. They both undergo non-periodic oscilla-
tions, and their zeroes do not coincide.

the cases of small and large values for the dimensionless
acceleration parameter & one finds

IimQ=1, lim Q=0, (73)

a&—0 &—00

The latter equation shows that in the limiting case of
vanishing non-locality, £ — 0 (which implies & — o0), the
principal value across the future horizon (v = 0) vanishes.

Hence, the principal value across the future horizon
is solely related to the presence of non-locality, and the
principal value across the past horizon is modified by non-
locality—in the local theory it is merely a discontinuity
since there are no divergences. Let us also note that the
contributions due to non-locality across these horizons
are equal in magnitude but opposite in sign.

It is conceivable that these non-trivial principal val-
ues remain present in the non-local retarded field even
after the k-subtraction presented in the previous subsec-
tion. This is because the logarithmically divergent term,
as per Eq. (56), does not depend on the Rindler wedge
and hence cancels out of the symmetric principal value
prescription presented in this subsection. The constant
term, however, as per Eq. (55), differs across the Rindler
wedges, giving rise to the non-trivial principal value.

The function ) exhibits damped oscillatory behavior
with an infinite number of non-periodic zeroes, the first
few taking place at & = {2.77,6.26,9.18,11.81}. For
these values the principal value vanishes across v = 0. On
the other hand, the quantity x viewed as a function of
& also undergoes damped non-periodic oscillations, with
the first zeroes at & = {0,4.63,7.77,10.52}. For those
distinct values there are no divergences on the horizons,
but the solution is discontinuous due to the non-vanishing
principal value. A graph of the functions Q(&) and k(&)
can be seen in Fig. 4. Their zeroes do not coincide, which
means that for select values of dimensionless acceleration
& = a/¢ one may have either no principal value or a finite
field at the acceleration horizon.
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E. A non-local Born-type solution

Before concluding, let us briefly comment on a possi-
ble extension of the retarded solution discussed so far.
Namely, we would like to construct a non-local gener-
alization of the Born solution [34] and comment on its
features in relation to the previously discussed logarith-
mic divergences and principal values.

Formally, the Born solution may be regarded as the
field resulting from the retarded response of a uniformly
accelerated particle in the right Rindler wedge super-
posed with the advanced field of a uniformly accelerated
particle in the left Rindler wedge [45, 46]. Instead of re-
deriving Eqs. (32), (35), and (38) for that particular case,
let us observe that we can transform the retarded field in
the right Rindler wedge into the advanced field in the left
Rindler wedge by mapping the null coordinates u — —u
and v — —v, which amounts to identifying Mr — Mj, as
well as My — Mp. Let us call the retarded solution ¢&
and the advanced solution ¢*. The Born solution is

P8 =" + ™. (74)

The Born field in, say, the right Rindler wedge is then the
superposition of the retarded field in the right Rindler
wedge and the advanced field of the left Rindler wedge,
and similarly for all other wedges. For this reason the
dependence on the factors o, and o,, as encountered
in Egs. (32), (35), and (38), drops out entirely. This
immediately implies that the principal values across the
horizons vanish identically for the Born solution.

The logarithmic divergences on the horizons, however,
as can be seen from Eqs. (54)-(56), do not depend on
the Rindler wedge, and hence are still present in the
Born solution and need to be removed via a suitable x-
subtraction.

IV. CONCLUSIONS

In this paper we constructed the retarded field of a
uniformly accelerated point particle in a non-local scalar
field theory: we employed the Sokhotski—Plemelj theo-
rem to construct a non-local causal Green function in
momentum space and found an integral representation
for the resulting field. We then proved that the pres-
ence of non-locality regularizes the field at the location
of the source, while—for large timelike and spacelike dis-
tances away from the hyperbolically accelerated source—
approaching the expression for the retarded field found in
the local theory, in accordance with DeWitt’s notion of
asymptotic causality encountered in non-local theories.

On the acceleration horizons of the source, however,
the retarded field is mildly logarithmically divergent due
to the presence of non-locality. Using a pair of test
sources on a null cone we proved analytically that such
sources indeed give rise to logarithmic divergences in this
particular non-local theory. We believe that this diver-
gence is similar to those artefacts encountered in local



theories, arising due to the unphysical assumption of uni-
form acceleration. Our considerations prove that if the
source is never to become asymptotically null (either in
its past or future) then there are no such divergences
present, consistent with the regular field of null sources
in other non-local theories [13, 15, 16, 53]. Moreover, we
devised a prescription that involves test sources placed
in the asymptotic past of the acceleration horizon which
is capable of removing these spurious divergences. It re-
mains to be seen if and how these additional sources are
related to modified boundary conditions that one may
encounter in non-local field theories. We shall leave this
question for future research.

Let us offer an additional perspective on the loga-
rithmic divergences on the acceleration horizon. The
non-local modification of the Green function AG, see
Egs. (A2) and (A5), encodes all effects of non-locality in
our linear theory such that new non-local effects are due
to this object. At the same time, AG is a quantity that
has no poles in the complex momentum plane. For this
reason it is insensitive to ie-prescriptions, such that the
causal properties of the total Green function (and hence
the relation to boundary conditions) are encoded in the
local Green function. In other words, the logarithmic
divergence only arises due to non-locality, and for this
reason unlikely to be caused by boundary conditions.

Last, we found that the difference of the retarded field
across acceleration horizons is finite, even without a reg-
ularization procedure, and we demonstrated that for a
non-local generalization of the Born solution these prin-
cipal values vanish identically. If combined with the reg-
ularization procedure of sources in the asymptotic past
one then arrives at a solution that is completely regular
on the horizons.

It is a natural question to ask how the radiation of a
retarded non-local source behaves, but since energy mo-
mentum tensors of non-local fields are notoriously hard
to compute, see e.g. Ref. [27] for a concrete example of
GF; theory, this point deserves further study. Another
avenue would be the study of non-local electrodynamics,
where recently ultrarelativistic objects have been stud-
ied by one of the authors [53]. Then, it would also be
highly interesting to study implications for the presence
of radiation vis-a-vis the equivalence principle in Lorentz-
invariant non-local theories.

Let us emphasize that the results derived in this paper
present only one step towards improving our understand-
ing of the spacetime structure of non-locality. Due to the
intrinsic Lorentz invariance that lies at the very heart of
this class of non-local field theories, modifications of the
Green function can only be a function of the dimension-
less 4-distance,

Ag(t/’m,;t,m) — AG ((t/ — t)2£+2 (' — :13)2) ()

Naively speaking, Lorentz-invariant non-local field theo-
ries cannot seem to tell whether two points in spacetime
are coincident or null-separated. Whether this presents a
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bug or a feature of this class of non-local theories remains
to be seen.
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Appendix A: Real-space expression for the non-local
modification of the scalar Green function

The free scalar retarded Green function GR(X', X),
due to the translational isometry of Minkowski space,
depends only on the difference of its arguments,
GR(X',X) = GR(X' — X). Moreover, writing X* =
(t,z), one can further decompose the argument struc-
ture as GR (X', X) = GR(¢' —t; 2’ —x). A Green function
in GF5 theory is a solution of

Oe “D°GR(Y —t,2' —x) = —6(t — 1)

(A1)

x 6O (x! — ),
and clearly it is sensitive to the existence of non-locality
£ > 0. We may decompose it as

Ry ! Ry /
t—ta —a)=GR({t —t,a —
e (A2)

+AG(H —t,x' —x),
where AG(t' —t, &’ — ) is a non-local modification term
and GR(¢' —t, 2’ — x) is the local retarded Green function
that solves

OGRW —t, &' —x) = —6(t' —1)6® (2’ —x), (A3)
subject to the retarded constraint GR(t' — ¢, 2’ — ) = 0

if ' < t. From now on we shall denote ' — t simply as ¢
and &’ — x as x. For the local piece one may calculate

GR(t,x) = %5@)(42 +22)0(t), (A4)

which, by construction, is only non-vanishing on the fu-
ture light cone. Inside the future light cone, as well as
anywhere outside of it, it vanishes identically. The non-



local part can be calculated as follows:

dw [ &3k . o 1 — e W=k
. +iwt—ik-x
AG(t ) = / & / e e

= 7r7/2:r/ wcoswt/kdksink:x
0
oo Yy
X /67y2/4/dZSiIl [62((,02
0 0
oo Y
=g [ e [
0

0
X [I1(t, 2)[2(x, 2) — I3(t, 2)I4(2, 2)]

—k?*)z] (A5)

where we defined k = |k| as well as z = |z|, and I, I,
I3, and I, denote the following regularized integrals:

Li(t,z) = lirr%) dwe™ coswt sin w?(?z (A6)
oa—r
0
T eos () e (B
T Vs |“P\ e ")
Is(t,z) = 1in%) dwe™* cos wt cos wl?z (A7)
a—
0
R 2 e ¢
R we) T\ e )|
oo
Iz, z) = lin%) kdke " sin kx cos k2022 (A8)
a—
0
= Lx sin x—Q — Cos i
—\ 823¢6 4202 4202 ) |7
Ii(z,z) = lir% kdke™ % sin kx sin k%022 (A9)
a—r
0

= s () feos (2
T\ gz [Pz O\ 1z '
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Then one can further regulate (s> = —t2 + ?)
oo y
1 dz 52
- - —y?/4
AG(t,x) 1605720 /dy / 3 Co8 (4 €2>
0 0
Y
- _ —y°/4
-~ | e
0
T 5°
X olzgl}) dze™ %% cos <4€2Z> (A10)
1y
1 7 2 s?
- v /Agin [ 2 —
122 /dye sin (4yf2)
0
_ |57 G20 s
10247204 708 \ =4, —5,—1] 25601 )
where G2 denotes a Meijer G-function [50]. It is clear
that this function is invariant under s> — —s2, mean-

ing that it does not distinguish between timelike and
spacelike distances, consistent with the putative acausal-
ity typically encountered in non-local theories.

For small and large arguments s? one finds the follow-
ing asymptotic behavior:

1 st
2 R P s
AG(s*| <« 1) = 395730 {2 3y — log (64£4>] ,
1 3v/3s4/3
2 _ .
AG(|s7]| > 1) = 2\/371_2|52|Sm <8-22/3£4/3 (A11)

384/3

X exp <_8 . 22/3@4/3) :
The non-local modification is logarithmically divergent
on the light cone and decreases exponentially fast for
large spacelike and timelike distances. We plot the func-
tion AG(s?) as well as its asymptotics in Fig. 5. The
exponential suppression happens in accordance with De-
Witt’s asymptotic causality criterion [49] which states
that any causal Green function must satisfy

lim G —t;2' —x) =0,

t'—t——o0

(A12)

that is, if the effect precedes the cause arbitrarily, any
causal Green function must vanish. Since local causal
Green functions satisfy DeWitt’s criterion identically—
since they are proportional to 8(t' — ¢)—we only need to
verify that the non-local modification satisfies condition
(A12), which it does, as can be seen from Eq. (A11).

Appendix B: Proof of Eq. (34) using the
Sokhotski—Plemelj theorem

The Sokhotski-Plemelj theorem may be stated as fol-
lows: for any continuous function f(x) one has
[z —x0) f(@— )

=pv.,— F1 — . B1
ezt PV, Timr—wm). (B
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Figure 5. The dimensionless non-local modification

AG(]s%|) x £2 plotted as a function of dimensionless 4-distance
|s|/£2, together with its null expansion (|s?| < 1) as well as
large-distance expansion |s?| > 1.

These expressions are understood under the integral sign,

b
lim [ dp L =%0) ][ f@ :me(xo) (B2)

e—0 x—mozi:ze
a

First, let us consider X € Mg U M;,. Then the function
ff(ﬁ)/Xz has no poles since X # 0 in that region. This
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means that Eq. (34) is satisfied trivially: the Cauchy
principal value integral reduces to the standard integral,
and the d-term does not contribute since the momen-
tum is spacelike. In other words, in this domain the
ie-prescription is not necessary and we may simply set
e=0.

If X € Mg U Mp, we define 0 = (05 — 05)/2 such that

oc=1in Mg and 0 = —1 in Mp. Then one can show
—f(p)

_(f_i6)2 +f2 _|_272 _|_22
N 10

0a0sC2 + p? + zf(oﬁe*—a@eff)e
. —f(p)

o= V& =iole] o+ VT —inle]

_ (B3)

- —f(p)

(p—C +ioe)(p+ ¢ —ioe)
_ 1 =f = f)

20| p—C+ioce  p+(—ioe

—f(p)

=PV TS (8P (p* = &%,

— 4’2
where in several lines we have rescaled € by a positive
constant. Utilizing this relation in Eq. (24) and the fol-
lowing steps, one readily obtains Eq. (34) as written in
the main body of the paper.
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