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With the rapid development of the Internet of Things (IoT) and Big Data infrastructure, crowdsourcing tech-
niques have emerged to facilitate data processing and problem solving particularly for flood emergences pur-
poses. A Flood Analytics Information System (FAIS) has been developed as a Python Web application to gather
Big Data from multiple servers and analyze flooding impacts during historical and real-time events. The appli-
cation is smartly designed to integrate crowd intelligence, machine learning (ML), and natural language pro-
cessing of tweets to provide flood warning with the aim to improve situational awareness for flood risk

management. FAIS, a national scale prototype, combines flood peak rates and river level information with
geotagged tweets to identify a dynamic set of at-risk locations to flooding. The prototype was successfully tested
in real-time during Hurricane Dorian flooding as well as for historical event (Hurricanes Florence) across the
Carolinas, USA where the storm made extensive disruption to infrastructure and communities.

1. Introduction

The south and southeast United States (US) are subjected to a series
of intense storms throughout the year as well as deadly Atlantic hurri-
cane events during hurricane season (June-November). These events
can happen in quick succession (~2 weeks apart) and produce cata-
strophic flooding in wide geographic areas (~1000 km swath) and
within short time-spans (less than a 48-h period). As a consequence of
these successive events, many lives were lost, and numerous critical
infrastructure and communities were vastly disrupted. To reduce the
risk of damages, accurate and real time flood assessment is critical for
emergency management and to improve two-way communication and
understanding of potential impacts.

At present, National Weather Service (NWS) and National Hurricane
Center (NHC) provide river and storm path forecasts and issue early
warning system for potential areas of flooding; however, it is acknowl-
edged that these forecasts are large scale and have less skills with respect
to detecting localized floods and identifying specific areas at risk of
flooding (Samaniego et al., 2017; Adams and Dymond. 2019). Flooding
in the south and southeast regions are often highly localized and intense
which cause inundation in low lying roads and poor drainage areas and
the level of individual properties (e.g., Philips et al., 2018).
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Furthermore, providing geographically targeted early flood warnings in
time is hampered by a lack of data and real-time information for
stakeholders and residents to take protective actions for themselves,
their property, and livestock. Improved data collection and real-time
assessment of at-risk locations allow more efficient mutual aid in the
operational theater for warnings and evacuations, and more effective
search and rescue plans while enabling automatic dispatching of relief
resources and evacuation plans.

Further development, validation, and implementation of viable and
accurate flood warning systems requires a step change in the method-
ologies used for data collection and analysis. With the rapid develop-
ment of earth observation technology and ground-based monitoring
systems that produce time-lapse videos and images, high spatial and
temporal Big Data have been recently tapped into flood early warning
assessment (e.g., Barker and Macleod, 2019). Although, these images
require innovative enabling technologies to improve the integration,
retrieval, analysis and presentation of large amounts of information
(Grolinger et al., 2013; Nativi et al., 2013). Smart technologies such as
Internet of Things (IoTs), image processing, and machine learning (ML)
can provide the “intelligence” to analyze real-time data and alleviate
information overload for flood early warning system (e.g., Rao et al.,
2017).
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10T is one of the fastest developing fields in the history of computing,
with an estimated 50 billion devices by the end of 2020 (Al-Garadi et al.,
2018) that can integrate billions of smart devices to communicate with
one another with minimal human intervention. The connectivity in IoTs
and high-speed data transfer capabilities can be used to implement real
time image processing and ML analytics system for flood risk studies.
Both image processing and ML algorithms are powerful methods of data
exploration for real time monitoring and learning about ‘normal’ and
‘abnormal’ condition of a watershed system. Recently, image processing
and ML algorithms have been demonstrated to label time laps camera
imagery, crowdsourcing, tabular data, and user generated texts and
photos to extract road flooding inundation extend and depth (de Albu-
querque et al., 2015; Starkey et al., 2017; Feng and Sester, 2018; Barker
and Macleod, 2019; Feng and Sester 2018, 2018; Erfani and Samadi,
2019). In addition, analysis of social geodata during floods can provide
actionable intelligence to assist first responders to identify at-risk
communities.

Stakeholders need place-based, geotagged, and crowd-sourced in-
formation about flooding being analyzed rapidly in real-time. Accessi-
bility to voluntarily generated and often publicly published content on
social networking and social media provides a strong draw for disaster
related research. Crowdsourced social media data, particularly Twitter,
is increasingly used to improve situational awareness and two-way
communication during hurricane and flood events (e.g., Kryvasheyeu
et al., 2016; Barker and Macleod, 2019). Social crowdsourcing data can
help with the identification of flood extend especially during pluvial and
fluvial flooding in urban settings (e.g., Smith et al., 2015; Eilander et al.,
2016; Arthur et al., 2018). Developing a pipeline to gather the data and
identify tweets relevant to flooding proved to be useful to assess
real-time flooding impacts and damage in Sao Paulo- Brazil (De Assis
et al.,, 2016), Jakarta-Indonesia (Filander et al., 2016), the River
Elbe-Germany (Herfort et al., 2014), and across Great Britain (Barker
and Macleod, 2019).

As needs for real time flood impact assessment increase, stakeholders
are facing fragmented data environments and warehouses with multiple
technologies—often on multiple web services. There is a need to auto-
mate Big Data and crowd sourced information collection in real-time
and create a map-based dashboard to better determine at-risk loca-
tions and flood situations. Indeed, with the new advancement in tech-
nologies, there is an opportunity to gather and combine social media
data with ground-based observations and imagery and translate this
information into a web-based application to monitor and assess flooding
hazards and to communicate this information with citizens in real time.

This paper introduces Flood Analytics Information System (FAIS) as
a data engineering and analytics pipeline, based on real-time flood
warnings and river level information, natural language processing of
tweets, and river and traffic web cameras imagery. FAIS allows the user
to directly download flood related data from USGS and visualize the data
in real time. The outcome of the river measurement, imagery, and
tabular data is displayed in a web based remote dashboard and the in-
formation can be plotted in real-time. A Twitter Application Program-
ming Interface (API) and a bot software were developed and
incorporated into the prototype as part of the real time crowd intelli-
gence for Twitter data gathering. The developed Twitter bot allows user
to monitor every tweet being tweeted and can automate all or part of
Twitter activities. Indeed, our developed pipeline allows the user to
query tweets from Twitter by a specific user and/or keyword using both
Search and Streaming APIs. A Search API gathers historical geotag data
while a Stream API monitors real-time geotagged tweets with short-
listing at-risk areas based on provided keywords. FAIS system can be
used equally efficiently by stakeholders as a pervasive early warning
system to take smart action such as warning and evacuation, deploy-
ment of emergency assets, search and rescue, and planning. The proto-
type was tested for Hurricanes Florence and Dorian driven flood
situational assessment across the Carolinas.

This paper is organized as follows. In Section 2, the research
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questions and motivation of this research work are explained. The
procedures, algorithms, and the functionality of FAIS application are
introduced and discussed in Section 3. Section 4 discusses the imple-
mentation and case studies. Conclusions and future works and limitation
of the prototype are provided, respectively in Sections 5 and 6.

2. Research Questions and Motivation

Developing FAIS required addressing three research questions which
are:

1. How to programmatically and automatically identify areas at-risk of
flooding based on crowdsourced data, real-time flood peak rates, and
river level information? The first research question was whether we
could compute programmatically the areas of at risk to flooding
using various data sources. Vieweg et al. (2014) and Barker and
Macleod (2019) indicated that such an automatic task is difficult to
implement in real time due to the volume of data to identify relevant
information for decision-making process. However, Streaming APIs
proved to be useful for prioritizing a list of at-risk locations (Barker
and Macleod, 2019).

2. How to spatially display the retrieved data and implement this in-
formation for alert and warning system? The second research ques-
tion was to investigate the viability of displaying the retrieved data in
a timely and continuous way. Previous studies showed how cross-
referencing tweets can be used for prioritizing at-risk locations to
flooding (Middleton et al., 2014; Barker and Macleod, 2019) as well
as arranging location-based queries during floods, using georefer-
encing/geotag tweets (Laylavi et al., 2016).

3. How to seamlessly retrieve data from various sources and how to use
this information for making actionable decision? The third research
question investigated the viability of automated retrieval of data and
images from ground-based monitoring gauges as well as live traffic
and river webcams data. Previous studies highlighted that APIs are
particularly helpful in gathering various Big datasets (text, tabular,
and images) and could filter social media messages during flooding
events (Spielhofer et al., 2016; Barker and Macleod, 2019). Inter-
nationally, there are an increasing number of data sources with a
data service APIs that can be integrated with any software
application.

Our aim was to develop and test a pipeline integrated with historical
and real-time information based on these three research questions and
visualize at risk locations during a series of flooding events across the
Carolinas. The authors also discussed the design of the prototype with
federal and state stakeholders to more proficiently develop and imple-
ment the workflow. During several visits to SC Emergency Management
Division (SCEMD) as well as virtual discussions with federal agencies
such as USGS and Federal Emergency Management Agency (FEMA), we
demonstrated the need for a national scale pipeline that: (i) combines
historical and real-time river level information with crowdsourcing
data, (ii) automates Big Data gathering and information collection in
real-time, and (iii) creates a map-based dashboard to better determine
at-risk locations and flood situations across the United States. These
needs and discussion along with deficiencies in existing Big Data pipe-
lines provided comprehensive roadmap tasks for performing this
research.

3. Prototype Design and Development

FAIS is initially designed as a Python package targeting two sources
of data i.e., USGS and Twitter. The package was then transferred to a
web Python platform to collect the data during historical and real-time
events and visualize impacted areas. The pipeline uses IoTs-APIs and
machine learning for transmitting, processing, and loading Big Data
through which the application gathers information from various data
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servers and replicates it to a data warehouses for use with crowd intel-
ligence approaches. FAIS filters flood-relevant tweets using location-
filtering and word embedding of tweets. User can stream or search for
tweets using proper keywords for any region in US. FAIS provides both
custom data and analytics-as-a-service offerings to help users gain in-
sights about flood situation, data environment and start driving
informed decisions. The prototype also performs flood frequency anal-
ysis (FFA) to assist engineers in designing safe structures. Below, we
systematically describe a series of major design components and algo-
rithms designed within the FAIS application.

3.1. Machine Learning and Image Processing Approaches

This study used Google Vision API to detect objects in time lapse
images. Google Vision API uses image processing and machine learning
approaches to detect and extract information about objects and entities
in an image, across a broad group of categories. This tool encapsulates
machine learning models in an API approach that allows developers to
use computer vision technology for classifying images into thousands of
categories and assign them sensible labels and scores. Vision API detects
objects in the images using (i) multiple objects including the location of
each object within the image; and (ii) fast, high-accuracy models to
classify images or detect objects at the edge, and trigger real-time ac-
tions based on local data.

FAIS allows the user to use the Vision API directly or use AutoML
Vision to train machine learning model for image annotation and label
images. The application detects the objects in the image using google-
cloud-vision as a Python package to deal with the API. We included
Google cloud sdk along with gsutil tools in the FAIS algorithm to easily
upload large dataset of images to a google bucket. The tool then creates a
bucket in Google cloud storage and user can upload image folder from
the local desktop to Google bucket. The API then utilizes machine
learning tools to perform label detection on a request image and sends
the result back to the FAIS application. The tool can detect individual
objects and pieces of text and information within an image directly from
the application, analyze images, and build custom models using the API
to accommodate more flexibility for particular use case.

FAIS uses Label Detection to annotates an image with a label (or
“tag™) based on the image content and then name them. For example, a
picture of a flooded road may produce a label of “flood”, “road”, or some
other similar annotation. Label Detection determines broader category
contexts in different ways—for example, an image can be labeled as
“flood”, “water”, “river”, “floodplain”, etc. that cover broader categories
of water resources objects. To create high-quality training datasets of
annotated images, 100-200 or more flood occurrences (across all im-
ages) is required to train the Vision model and label the objects. The
more occurrences of an object such as “flood™ in time lapse images, the
better the model trains and performs. After the user creates the labels,
FAIS API calls to create an object detection dataset and populates the
images and labels them in the JSON format. The labels constantly store
on the MangoDB database and display on the presented image.

3.2. Flood Frequency Analysis

FFA is a technique used by hydrologists and engineers to predict flow
values corresponding to specific return periods or probabilities along a
river. The tool uses “dataRetrieval” (DeCicco et al., 2018) and “xts”
(Jeffrey et al., 2020) libraries to retrieve annual peak flow rates for
provided years and calculates statistical information such as mean,
standard deviation and skewness which are further used to create fre-
quency distribution graphs. The tool currently fits Gumbel distribution
to the annual maximum flood data and plots frequency curves. These
graphs are then used to estimate the design flow values corresponding to
specific return periods which can be used for designing structures such
as dams, bridges, culverts, levees, highways, sewage disposal plants,
waterworks, and industrial buildings.
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Gumbel is a proper distribution if: (i) the river system is less regu-
lated with less significant reservoir operations, diversions or urbaniza-
tion effects, (ii) flow data are homogeneous and independent (lack of
fluctuations and long-term trends; Philips et al., 2018), (iii) peak flow
data cover relatively long records (>10 years), and (iv) no major trib-
utary exists whose inflow may affect the flood peak rates (e.g., Raynal
and Salas, 1986). Gumbel distribution and the procedure with a return
period T is given as,

Xr=X + K., m

where oy represents standard deviation of the sample time series. K

denotes frequency factor which is formulated as K = XTS_‘—F, in which Y7

is reduced Variate, Y7 = — |iLrLLrL (T—L)] . The values of Y and Sn are

selected from Gumbel’s Extreme Value Distribution that depends on the
sample size (e.g., Raynal and Salas, 1936). It should be noted that the
theoretical definition of return period is the inverse of the probability
that an event will be exceeded in a given year. For example, a 10-year
return period corresponds to a flood that an exceedance probability of
0.10 or a 10% chance that the flow will exceed in one year.

3.3. Development of Twitter APIs

During recent hurricane events, many citizens in the Carolinas used
Twitter to share flood information such as local damage, road closure,
and shelter information. The government agencies such as NWS, NHC,
SC Department of Transportation (SCDOT), and USGS also used Twitter
to provide updates about the storm path, environmental condition,
damaged infrastructure, emergency situations, evacuation route, and
resources in a continuous and timely manner during and after the event.
A tweet can provide a variety of information, such as text, images,
videos, audio, and additional links. In addition, there is also a significant
amount of metadata that is attached to each tweet. This metadata in-
cludes information regarding geolocation (either a place name or co-
ordinates), the author name, a defined location, a timestamp of the
moment the tweet was sent or retweeted, the number of retweets, the
number of favorites, a list of hashtags, a list of links, ete. This informa-
tion is valuable and has the potential to provide intelligence when
attempting to extract information for use in crisis response. Twitter APIs
also offer a varying number of filters and filtering capabilities including
additional filter operators and tweet enhancements (e.g., profile loca-
tion and un-shortened URLSs).

The Twitter platform provides various APIs for searching Tweets
including (i) the standard Twitter APIs consisting of REST APIs and
Streaming APIs, and (ii) the enterprise APIs including filtered firehose,
historical search and engagement APIs for deeper data analytics. FAIS
uses the standard Twitter APIs because it is free and less challenging to
gather Twitter flow of information and Hashtag (#) driven topics.
Standard API provides an endpoint to return time-series counts of
Tweets matching user query. The interested geotagged data that can be
gathered using the standard API are images, videos, text, and numeric
(e.g., flood depth) from citizen inputs. For privacy issues and other se-
curity concerns regarding personal information, our developed Twitter
APIs do not employ any user-related features (such as number of fol-
lowers on Twitter), rather focused on the message-related attributes.
The APIs also calculates sentiment of the tweet and the identified cat-
egories. Sentiment is a text/tweet analysis that is used to categorize and
classify the opinions and sentiments expressed in text. Three classes of
sentiment were implemented using Twitter APIs including (i) Pos-
itive—a positive sentiment has been expressed, (ii) Negative—a nega-
tive sentiment has been expressed, and (iii) Neutral—a neutral or no
reaction sentiment has been expressed.
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3.3.1. Twitter Streaming API

We used Tweepy package and integrated it with FAIS as an easy-to-
use Python library for accessing the Twitter data. Twitter developer
account was used to access Token, Token Secret, Consumer Key, and
Consumer Secret to manipulate Twitter functionalities. To protect the
credential, the authors decided to develop a Twitter Streaming bot
(functions on both i0OS and Mac) and deployed it at Heroku cloud
platform outside of the application access which can be controlled by the
Heroku User Interface. Heroku is a cloud platform as a service (PaaS)
that enables system-level supervision and coordination of Twitter APIs,
crowd sourced data, and tweets. Our developed Streaming Twitter bot
automated all Twitter data gathering and continuously watched all
Twitter activities during real time implementation. To be able to watch
Twitter activity in real time, the bot gets notified when new content,
such as tweets, that matches certain criteria (such as “Dorian Floods™) is
created. This is particularly important when dealing a vast amount of
real time tweets. We created a reusable Python module (a module
config) containing the logic common to the bot functionalities. This
module reads the authentication credentials from environment variables
and creates the Tweepy API object. By reading the credentials from
environment variables, user avoids hard coding them into the source
code, making it much more secure. The bot reads the credentials from
four environment variables, including CONSUMER _KEY, CONSUMER -
SECRET, ACCESS_TOKEN, and ACCESS TOKEN_SECRET. After reading
the environment variables, the bot creates the Tweetpy authentication
object that eventually uses to create API object. The bot uses the logging
Python module to inform errors and information messages that help user
debug them if any issue arises. The tweets save constantly in the Man-
goDB database when the bot is in operational use. The administrator can
choose to activate or deactivate the bot and change the keywords for
Streaming services. Our developed Twitter bot contains three compo-
nents (Fig. 1) notably:

1. Twitter Client: This component talks to the Twitter API and au-
thenticates the connection to use its functionality. This also hosts a
function called tweets listener, which will continuously stream
tweets and listen for the matched keywords. Once it finds the match,
it will then talk to the other two components.

2. Tweet Analyzer: It analyzes the tweets and gives it a score after a
match is found.

A=Y

FAIS

Tweet Analyzer
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3. Twitter Streamer: This module streams tweets from pre-specified
keywords, analyzes the data, and organizes them into a data frame.
The collected tweets will then store in a MongoDB database waiting
to be extracted. A conceptual process about how to gather real time
tweets using the developed Streaming Twitter bot is shown in Fig. 1.

Due to the size of queried data, the Twitter bot filters the data and
only keeps text, location, author, and date of tweets which are elimi-
nated for over 95% of uninterested data. FAIS application has access to
MongoDB cloud database without having access to Twitter bot. This
allows the user to see the result of our services while protecting FAIS
Twitter account privacy and information allowing the users to have
access to database resources whenever needed.

Using Twitter Streaming bot, FAIS was able to identify at-risk loca-
tions to flooding. The application first cycles through a set of USGS web
addresses for river gauge height readings, parsing these flat files using
Python web seraping technique and obtain all the latest river levels.
Each river level reading is compared with its respective long term
cached average level, to identify the highest relative river levels in real-
time. The highest river level then intersects with watershed polygons as
well as geotagged tweets to identify at-risk locations to flooding. Geo-
tagged tweets coordinates considered as a center-point for approxi-
mately 16 km wide square boxes. This size is arbitrarily chosen to cover
the areas nearby to each flood gauge. The retrieved tweets are constantly
stored in a MangoDB database during operational use which provide an
ideal open-source database to store JSON format files.

3.3.2. Twitter Search API

Twitter Search API is a functionality to search past tweets that match
the search criteria. Twitter contains the search functionality but has a
limited amount of search result, search frequency, and time constrained.
To upgrade the functionality, the user requires to pay for the upgraded
Twitter account. With the goals of keeping FAIS application free and
open source, an alternative search method was implemented which was
using the REST service freely from Twitter search function. Twitter
search operation allows the users to look for tweets based on interested
user account, keywords, language, and time period but this is not an
ideal procedure for the user to go through the website and gather all the
interested tweets that they need. Therefore, this project used “urllib”
python library for Universal Resource Locator (URL) handling modules,

Stream
/T Tweets

Twitter Client

FAIS Application »
) Tweepy Twitter Bot
r"\\
5 Tweet Streamer @Heroku
L..-\__\\ | ’__//___ _____\_P_E\\ B f_.-’ .I;_}"
Display  \ \—( y- 4
e | \-\MongoDB j/
. Filter and Save

Fig. 1. The workflow and integration of developed Twitter bot components.
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to send specific request to Twitter search web service and to gather the
tweets. The URL can be then modified based on the user search criteria.
The Search API continuously sends request URL to Twitter and waits
for the JSON response from Twitter. After receiving the JSON file, the
Search API extracts interested tweets including username, text, retweets,
likes, date, id, Permalink, user_id, media, URL, and the sentiment. The
response JSON file contains a ‘min position’ data file which can be used
to move iteration forward. The iteration will keep running until the
response exceeds maximum number of tweets limit set by the user. Note
that the date limit is set to the request URL sent to Twitter. Twitter
outcomes such as the sentiment analysis can be performed for a tweet.
The sentiment shows whether or not a tweet has positive (+1), neutral
(0), or negative tones (—1). This information is important because it can
be used by social scientists to study the impacts of flooding on the citi-
zens and how the residents responded to the flooding and damage.

3.4. Development of USGS and 511 Traffic Data APIs

USGS collects and stores multiple river system data across the United
States. These are river flow data (flood, streamflow, gauge heights),
water quality, ground water levels, and precipitation at defined gauging
stations which are strategically placed at the outlets of rivers and lakes.
These placements allow USGS to correctly monitor and collect the data
and compute several statistical indices related to the river flow. USGS
server provides two different types of flow data including real-time and
historical records based on datetime. FAIS gathers USGS discharge data
(daily streamflow and flood data) as well as gauge heights, and river web
camera images. The stream data is value of flow rate in cubic feet per
second (cfs) and water level (gauge height) in feet. FAIS first gathers
both historical and real time USGS data for any state in US. It then an-
alyzes the information and plots the historical and real time data. These
data are recorded based on data recording time step such as every 15-
min to 1-h intervals. FAIS made USGS data collection seamless and
straightforward by providing access to the station’s information
including station name, ID name, latitude, longitude, and URL to USGS
server.

In addition, FAIS gathers USGS real-time cameras and 511 traffic
images. DOT in each state provides traffic data in real-time to the users
through 511 web application. The cameras are strategically placed on
the bridges and roads and along the interstate, allowing operators to
continuously monitor road conditions. They also monitor rising and
falling water stage over critical infrastructures such as roads and
bridges. In addition, USGS established real-time web cameras for critical
rivers where there is high chance for flooding and inundation issues.
FAIS currently collects six USGS Sevillian cameras images across South
Carolina (SC). The application uses a dynamic mapping interface to
allow the user to select specific traffic camera and access the data in real-
time. Indeed, there are embedded URLs at both USGS and 511 Traffic
websites that were used to gather both USGS and traffic images in real
time. Images constantly store at MangoDB database when the applica-
tion is in operational use.

3.5. Web Development Platform

With the use of Python in the FAIS API tools, it was straightforward
to use the same language and develop a web application. The seamless
interaction between the API and Python motivated this study to use
Django as a web framework. Django is a rapid development platform
with clean, and pragmatic design that provides a widest range of li-
braries including Twitter APIs and machine learning tools. The key point
of making it an ideal development framework is due to its focus on
automation as much as possible and adhering to the “don’t repeat
yourself (DRY)” principle aiming at reducing repetition of software
patterns and avoid redundancy. Django allows the user to develop a web
application using Python element along with a classic web development
language like HTML, JavaSeript, jQuery, etc. This means that developers
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are not stuck with limited approaches of solving the problem. This
interaction can also be a downside of this development framework as it
requires the knowledge of different languages to debug like Ruby on
Rails. FAIS is version -controlled using GitHub since Git is a widely used
version control system and an open source repository hosting service.

Fig. 2 shows the overall workflow of the FAIS pipeline development.
The workflow includes collecting the data from various resources,
analyzing the potential at risk areas and providing actionable results to
users/stakeholders. As illustrated, FAIS combines multiple APIs along
with machine learning and image processing algorithms (Google Vision
API) and FFA script (written in R) to provide both historical and real-
time information about flood-risk incidents. Qur developed prototype
offers an end-to-end, open source, web-based, pipeline architecture to
address the crucial issue of how first responders and decision makers can
be smartly informed and acted in emergency situations. To achieve our
aim and answer three research questions stated above, we tested FAIS
operationally during Hurricane Dorian flooding event (September
04-06, 2019) as well as during historical event, Hurricane Florence
flooding (September 13-16, 2018), across the Carolinas.

4. Results and Discussion
4.1. Retrieval of Social Geotagged Tweets Using Twitter APIs

This section addresses the first and second research questions: How
to programmatically and automatically identify areas at-risk of flooding
based on crowdsourced data, real-time flood peak rates, and river level
information? And how to spatially display the retrieved data and
implement this information for alert and warning system? To address
these questions, two options, i.e., the Search and the Streaming APIs,
were included to the FAIS application for data gathering. We used
Tweepy library as a Search API and developed a Streaming API using
Twitter bot. Search API was more suited to singular and specific queries
for tweets, whereas the Streaming API provided a real-time stream of
tweets.

There were widespread flooding events across the Carolinas when we
designed and Beta tested FAIS application. These events caused local-
ized and major flooding as well as above average river level for most
basins in the Carolinas. FAIS was tested for historical hurricane driven
flood events such as Hurricane Florence (September 13-16, 2018) across
the Carolinas. In addition, the prototype was operationally tested during
Hurricane Dorian event (September 04-06, 2019) and georeferenced
tweets were gathered in real-time to identify at-risk locations. An
example from each hurricane driven floods is presented with intersect-
ing at-risk locations and geotagged tweets. A web-based console and a
visualization tool- GeoJSONLint13 were used to view results and inspect
the polygons.

4.1.1. Hurricane Dorian Case Study

We monitored georeferenced tweets, filtered by keywords and
queries across the shortlisted areas in the Carolinas during Hurricane
Dorian event (September 04-06, 2019). To identify at-risk locations in
real-time, a shell seript in Python ran on a local computer server, the
script was reset every 3 h in order to update areas at-risk of flooding
from the latest national and environmental data sources as well as
Twitter feeds. A period of 15 min was initially chosen as intended trade-
off between tracking the latest at-risk area forecasts. API updates varied
between 15 min to several hours but based on real-time testing the
period extend to 3 h to allow some reaction time from impacted citizens
on Twitter. However, the choice of time period depends solely on the
project requirements as well as the severity and impacts of flooding
events. A period of 6-12 h was chosen during Hurricane Dorian flooding
event as an intended trade-off between tracking the latest at-risk areas to
flooding (API updates varied between 15 min and 6 h depending on
flood data time step), and that allowed capturing reaction from those at-
risk areas in real time.
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Fig. 2. FAIS workflow and structure.

The collected tweets provided a real-time dataset which explored
further and used to prioritize at-risk locations for Dorian flood simula-
tion (results not shown here). This provided a general indication of the
proportion of potentially relevant tweets that could be used to identify
flooded areas and improve flood situational awareness for first re-
sponders. FAIS filtered georeferenced tweets returned from the
Streaming API with keywords and a blend of geographic data sources
(geolocations) to show areas affected by Dorian floods, at a regional
scale.

During Hurricane Dorian, we constantly ran the Twitter bot to collect
tweets and to determine at-risk locations over time. The stored tweets
provided a real-time dataset which then explored and used to prioritize
at-risk locations to Dorian flooding. This provided a general indication
of the proportion of potentially relevant tweets that could be used to

identify flooded areas and improve flood situational awareness. Data
retrieval of Dorian flooding was explored via basic text query searches
such as “Hurricane Dorian Floods” and centroids were added to tweet’s
geotag for creation of map-based visualizations. Currently, the size of
bounding boxes of tweets are 16 km from the centroid that determines
the number of tweets intersect with the bounding boxes to yield and
visualize at-risk areas. The size for 16 km boxes is arbitrarily chosen to
cover the areas nearby to each USGS gauge in the coastal Carolinas and
may differ location by location based on the proximity of the tweets to
the nearest flood gauge. Previous studies showed that messages within
10 km of severely flooded areas had a much higher likelihood of being
related to such events (see de Albuquerque et al., 2015). Fig. 3 illus-
trated collected geotagged tweets intersected with watershed bound-
aries for South Carolina during Hurricane Dorian flooding.

Fig. 3. Geotagged tweets retrieved via Twitter Search API in real-time during September 04, 2019 for Hurricane Dorian event across the coastal SC using specific

location searches combined with keywords.
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Delineating at-risk areas could be further improved by populating
critical infrastructure (bridges, roads) and flood defense structures (le-
vees, dams, reservoir) which are out of the scope of this research. Table 1
presents several real time tweets, along with their geolocation infor-
mation, Twitter account, etc. which were retrieved during Hurricane
Dorian flooding in South Carolina (September 04-06, 2019). The clas-
sifier was developed by an annotator (the first author) manually labeled
a subset of >800 tweets from September 04-06, 2020 as either relevant
or irrelevant tweets.

4.1.2. Hurricane Florence Case Study

We implemented FAIS to extract geospatial footprint of Hurricane
Florence flooding event using georeferenced tweets. The user has an
option to select a proper Twitter account for the historical tweets
gathering. We chose NWS Twitter account (@NWS) to gather Hurricane
Florence historical tweets and map the geospatial footprint (map view
wasnot shown here). FAIS was able to successfully identify a dynamic set
of at-risk areas using Twitter Search API for Hurricane Florence event.
At-risk areas to flooding were identified by intersecting the geotagged
tweets with watershed polygons and river gage heights. Search API that
is designed within the FAIS application was able to collect the tweets
and visualize them in on a Leaflet map via Folium Python API. Fig. 4
showed the FAIS design and outcomes for Twitter Search API imple-
mentation of Hurricane Florence flooding event. The Search API pro-
vided the source of the tweet, image, the sentiment, and map view of the
tweets. If the user changes the keywords, the Twitter Search API will
then filter the tweets and save the data in a MangoDB database. We used
National Geographic base map tiles, and geolocated each tweet based on
its geographic coordinates. Each tweet is represented by a clickable
marker, which provided a pop-up box of the tweet information, loca-
tions, coordinates, time, etc. Alternative interactive base map can be
included to the prototype such as OpenStreetMap, Imagery, Topo-
graphic, etc. FAIS can be applied nationally across the US, running for
both real time and post flood event tweet gathering and assessment.

Table 2 displays several tweets gathered using NWS account for
Hurricane Florence flooding in SC. The tweets were retrieved via loca-
tion filter that varied in terms of spatial precision (less or no exact
“Place” metadata or coordinates). Location filtering reduced mismatch
of off-topic tweets (irrelevant), which is an issue for keyword-based
retrieval (de Albuquerque et al., 2015). Although, the word “flood”
and its translations were also frequently used figuratively or in a
transferred sense (e.g., “I am flooded with many tasks™). We performed
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the filtering mostly by location filter capabilities designed within
Twitter APIs that seemed to be an effective filtering approach to improve
collecting the relevant tweets and reducing manual labor. Overall, we
collected over 800 “location-filtered” tweets between September 13-16,
2018 across the Carolinas.

4.1.3. USGS Data Collection

This section addresses the third research question: How to seamlessly
retrieve data from various sources and how to use this information for
making actionable decision? FAIS collects and displays USGS data that
include the date, discharge (cfs), and gage height (ft) along with their
associated plots. Gathering USGS historical data involves selecting the
target state, the interested station, and the date. After query criteria is
entered, FAIS creates a request URL and sends it to the USGS server for
collecting the data. The prototype displays the data as “Table View”
(Fig. 5(a)) as well as “Map View” (Fig. 5(b)) and plots the results (Fig. 5
(©)). The user can also upload a csv format file of all the collected data
that contains station name and ID, latitude, longitude, discharge, gauge
height, and USGS original URL (Fig. 5(d)).

In addition, FAIS collects six USGS Sevillian cameras images across
South Carolina. These cameras are located at Rocky Creek near Wade
Hampton, Rocky Branch at Whaley St., Columbia, PeeDee River near
Florence, Lake Monltrie Trailrace Canal at Moncks Corner, SC, Tearcoat
Brach at I-95 near Manning, SC, and Pocotaligo River at 1-95, above
Manning, SC. The image contains the meta data such as when and where
the image was captured. FAIS also collects North Carolina (NC)' 511
images in real-time. Several cameras that are located in the coastal re-
gion of NC were selected to record road flooding conditions in real-time.
These images are crucial for monitoring of water level and providing
early warning to the local community in case the water level increases
above a predefined threshold value. Both USGS and 511 traffic images
cane be stored at MangoDB database when the application is in opera-
tional use. Readers are referred to FAIS web server (https://floodana
lytics.clemson.edu/) for more detailed information and to stream and
store the camera images.

4.2. Image Processing and Label Detection

We integrated Google Vision API with FAIS application for object
detection of flooded and non-flooded images. The tool first trains the
automated ML Vision model and then labeled the datasets. This provides
custom label detection data with scores. We used flooded and non-

Table 1
Examples of tweets as gathered during Hurricane Dorian flooding in South Carolina. Note: These geotagged tweets are manually labeled as “relevant” by an annotator
(the first author).
Tweet/Text Twitter Account Geolocation Date/Time Latitude  Longitude
Hurricane Dorian flattened and flooded Great Abaco Island ... @AnitaNelam South Carolina, USA Thursday, September 33.68 —80.43
05, 2019 02:58:52 p.m.
Low country SC hit by hurricane Dorian, which peaked at Cat. 5. @ b7ameister South Carolina, USA Thursday, September 33.68 —80.43
05, 2019
20:04:52 p.m.
2019 is the fifth consecutive year (2015-2019) in which 10 or more @ bopete Charleston, Charleston Friday, September 06, 32.78 —79.94
billion-dollar weather and climate disaster events have impacted the County, South Carolina, 2019
United States. Hurricane Dorian was one of them - NOAA UsA 17:52:35 p.m.
I'm about to! The people who run our HOA have no clue what their (they =~ @BrubakerSteven = Pawleys Island, Georgetown  Friday, September 06, 33.42 —-79.12
are!) doing. I had to dispute a $350 charge because I didn't want to County, South Carolina, 2019
power wash my house a week before hurricane Dorian and now they're UsA 17:22:59 p.m.
trying to charge it to me again.
This is awesome! I followed all the buoys and Data Collection Research @LisaGethard Charleston, Charleston Friday, September 06, 32.78 —79.94
during Hurricane Dorian with wave heights and timings. County, South Carolina, 2019
USA 17:45:43 p.m.
... remembering those in the Bahamas still feeling impact Hurricane @F35tumble Columbia, Richland County,  Friday, September 06, 34.01 —81.03
Dorian, especially the hundreds of kids orphaned by the storm. South Carolina, USA 2019
11:24:28 a.m.
Hurricane #Dorian skirting the Carolina Coast from a satellite @EdPiotrowski Myrtle Beach, Horry Wednesday, September 33.69 —78.89
perspective. County, South Carolina, 04, 2019

USA 15:24:14 p.m.
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flooded images of Hurricane Florence to train the Google Vision API and
detect the objects in the images. We extracted high quality still images
from Hurricane Florence videos. Overall, we analyzed a range of
100-240 time-lapse images to detect the labels and sore them. The
higher quality images user delivers and the better the design of the
model user uses; the smarter outcome will be produced.

Fig. 6 shows the detected objects for the Person Street bridge, Cape
Fear River, NC. Flood (91%), land lot (91%), and Asphalt (89%) are
detected as major labels in flooded images while the major labels and
scores are given to sport venue (89%) and residential area (85%) in non-
flooded images. Fiz. 7 showed the score and the number of images that
we used to detect the label for this location. As illustrated, the algorithm
was able to detect water/flood (0.97) during and after hurricane event.
The algorithm also detected bridge infrastructure (0.92) for pre-event
while distinguished it as a reservoir (0.9) during post flooding event
due to overtopping issue (see Fig. 8). A number associated with every
returned label annotation, representing the Vision API's assessment of
the label’s accuracy. Scores range from 0 (no confidence) to 1 (very high
confidence) (Fig. 9).

Overall, Google Vision API detected 11 labels for the flooded and
non-flooded images at the New Bern, NC while captured 17 labels for the
Person Street bridge flooding event at the Cape Fear River, NC. Despite
the lower number of labels, 92.6% of Vision’s labels turned out to be
relevant (8 errors). It would be worth mentioning that Google Vision API
could further improved by cluster equivalent labels together (*Flood”,
“Water”, and “Water Resources/River”) whenever a water being is
detected in the image. By collapsing such labels into one, the number of
detected labels will definitely decrease, and it may also have some im-
pacts on relevance scores. Our analysis suggests that Google Vision API
has detection problems whenever flooded areas are too small (below
50px) partially out of the image, or occluded by other obstacles such as
vehicles and trees. This might improve over time with a more specialized
pattern recognition layer and approaches such as including an image
segmentation to the tool based on watershed algorithm that builds

barriers in the locations where water merges. These barriers can provide
segmentation results that could be used to estimate inundation extend
and flood level using a reference such as a bridge pier or a car. It should
be noted that we didn’t focus on other accuracy parameters such as
location, direction, and special traits (Vision doesn’t provide such data).
Further work and a considerable dataset expansion may provide useful
insight into flood location and direction accuracy, although the differ-
ence of a few pixels is usually negligible for most applications. The best
scoring fragments for a given label matched well with visual appearance
of the object in the image. Indeed, the pairs of flooded and non-flooded
images should have the same view angle and geometry.

Although image processing and machine learning algorithms
designed within Google Vision API yielded successful results as indi-
cated by the scoring metrics, there are several challenges in detecting
the flooded or inundated areas. For example, this study found discrep-
ancies in labeling dry/flooded image pairs specifically for differentiating
“flood”, “floodplain”, “waterway”, and *“road”. The algorithm detected
some labels that weren’t existed in the image such as roof and flood-
plain. To prevent this issue, the model can be validated on a simple
dataset where a single object (e.g., flood) occupied most of the image. A
wide variety of images with annotated objects that co-occur in the same
images can be used to test the accuracy of the tool. Further, the algo-
rithm can be enhanced by including in painting procedure to efficiently
remove unwanted objects such as the sidewalk and streetlight to detect
the inundation border as studied elsewhere (Witherow et al., 2019).
Although, differences in image resolution and lighting, and environ-
mental conditions have significant impacts on annotating an image with
a reliable label and score.

Flood detection provides important information to stakeholders
because the results can be proactively used for flood emergency man-
agement. Indeed, the capability to detect temporal changes in image
sequences is crucial and this information can be combined with other
datasets such as USGS flood peak rates and rainfall (radar) data to

develop an automated image-based flood alarm system as a disaster-
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Table 2
Examples of tweets, and date and time as gathered for Hurricane Florence
flooding in South Carolina using NWS Twitter account.

Tweet/Text Twitter Date/Time

Account

Here is the latest (5PM EDT) forecast track and key
messages with Hurricane Florence from
@NHC_Atlantic. NOAA Hurricane Hunters
discovered Florence strengthening and could
become a major Hurricane on Monday.
#HurricaneFlorence #HurricanePreparedness

Hurricane #Florence continues to strengthen; max
winds are now 140 mph. Further strengthening is
forecast, and it is expected to be a large and
powerful hurricane as it nears the East Coast. See
below for a 1-stop page for the latest #Florence
info: http://weather.gov/wrn/florence

Flash flooding and storm surge are the immediate
threats with #Florence, but longer-term river
flooding will also become an issue in the coming
days. This map denotes rivers currently forecast to
flood. Check the latest at https://weather.gov/
serfc/

Here is the latest forecast track and key messages for
Hurricane #Florence from the @NHC_Atlantic.
Damaging, hurricane force winds likely along
portions of the coasts of North Carolina and South
Carolina beginning this evening.
#HurricaneFlorence

Hurricane #Florence is resulting in communication
difficulties in some areas. Having multiple ways
to receive warnings though this event could save
your life.

WIDESPREAD, LIFE-THREATENING flash flooding
and storm surge ongoing or possible today. Have
multiple ways to receive warnings. It could save
your life! #Florence #HurricaneFlorence

The flash flood threat is just beginning in some
areas. As #Florence moves slowly, double-digit
rain totals will become more widespread. Avoid
flooded areas, especially roadways. #Turn
Around Don’t Drown

Think about this for a moment .... The average
walking speed is about 3.1 mph. #Florence is
moving approximately 2 mph. As a result of the
slow movement, Florence is producing heavy rain
and flash floods. Turn Around Don’t Drown!
#TADD http://weather.gov/flood

@NWS 5:26 p.m. -

Sep 9, 2018

@NWS 5:04 p.m. -

Sep 10, 2018

@NWS 4:35 p.m. -

Sep 13, 2018

@NWS 5:35 p.m. -

Sep 13, 2018

10:52 a.m. -
Sep 14, 2018

@NWSs

10:52 a.m.
Sep. 14, 2018

@NWS

@NWS 7:05 p.m. -

Sep 14, 2018

@NWS 5:01 p.m. -

Sep 15, 2018

monitoring application. Image-based flood warning information can
facilitate proactive monitoring and damage assessment, and early
warning to rising water levels and associated inundation areas in real
time. However, current deficiencies in Google Vision API and overall
image processing algorithms explained above may limit Vision appli-
cation for image-based early warning system.

4.3. Flood Frequency Analysis of Two USGS Gauges

FAIS provides flood frequency analysis to estimate flood quantiles
that combines elements of observational analysis, stochastic probability
distribution and design return periods. FAIS currently uses Gumbel
distribution to compute FFA for any given flood gauging station in US.
Fig. 10 shows FFA for the USGS 02147500 Rocky Creek at Great Falls,
SC, SC as well as the USGS 02196000 Stevens Creek Near Modoc, SC. As
illustrated annual flood peak of ~15000 cfs for the Rocky Creek repre-
sents a design return period of 25-year while the same flood peak shows
a design return period of <5 years for the Stevens Creek gauge. The
difference is related to the size of the drainage system. On small wa-
tersheds, a 25-year rainfall event may produce a 25-year flood event. On
large watersheds, however, the 25-year flow event may be produced by
a series of smaller rainfall events. This distinction should particularly be
kept in mind by the practitioner while dealing with design projects in
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large watersheds. The likelihood of a 100-year flood (50% annual
chance) occurring at both gauging stations ranging between 32000 to
35000 cfs. Both gauging stations appeared to experince large flooding
events particularly USGS 02196000. This gauge is part of the Savannah
Basin where frequent flooding is a major threat for the residents. FFA for
this location proved that high peak values made critical contributions to
the upper tail of the Gumbel probability distribution function. This
analysis is useful in providing a measurement parameter to assess the
damage corresponding to specific flow during flooding event. Along
with civil infrastructure design, flood frequency analysis can be used in
flood insurance and flood zoning activities. Accurate estimation of flood
frequency not only helps engineers in designing safe infrastructure but
also in protection against economic losses due to maintenance of
structures. However, the accuracy of FFA estimates may vary using
different probability distributions such as Pearson type III, Gamma, and
Normal distributions. We recommend using Gumbel function for a river
system with less regulation and significant reservoir operations, di-
versions or urbanization effects. Efforts are underway to include other
distribution functions to the prototype. Therefore, care should be given
when the current function uses for any structure design purposes.

5. Conclusions

In this paper, we developed a prototype for flood data analytics and
assessment using IoT APIs, crowd intelligence, and Big Data gathering
approaches. Our study presented the first step towards identifying at-
risk areas to flooding in real time and defining the geospatial footprint
of a flood event using georeferenced tweets. We aimed to use IoT-APIs
and collect environmental data (river levels and discharge) at the na-
tional scale in combination with Twitter APIs to identify the areas
affected by a flood. The application also uses image processing and
machine learning to detect label and scores objects in time-lapse images.
FFA algorithm was also developed in R and embedded with the FAIS to
perform flood design metrics and peak rates that could be combined
with Twitter and image processing results for studying the design met-
rics of overtopped structures as well as economic assessment.

Overall, our proposed pipeline proved to be robust and user-friendly
tool for both real-time and post-event analysis of flooding at regional
scale that could help stakeholders for rapid assessment of the situation
and damages. Gathering the data and analysis of flood situation take on
average few minutes to select the data periods and set the designed al-
gorithm to run; thereby it reveals to be promising for meeting first re-
sponders’ needs during emergencies. During real-time event, the time
between a tweet appears online and visually plots for a stakeholder as
being potentially relevant (in terms of location and content) would be in
the order of few seconds to minutes, thereby this rapid analysis can
provide an early information channel for asset allocation and rescue.
The application proved to be proficient for real time flood assessment as
it was tested during a 2-day Hurricane Dorian event across the Carolinas
with over 15,000 geotagged tweets collected from 38 dynamic, poten-
tially at-risk areas.

Using Streaming API during Hurricane Dorian, tweets were collected
and labeled as “relevant” because they were related to ongoing hurri-
cane and flood event. Streaming API assigned a tweet as “relevant” class
when a user tweeted about ongoing Dorian floods at the time of posting.
This includes, for example, tweets referring to response, rescue, road
closure, and failure of critical infrastructure/water supply. All other
tweets were assigned being “irrelevant”. Examples include historic flood
event commemorations, the use of the word “flood” in figurative or
transferred sense, etc. It is interesting to note that the Streaming API
showed a great performance to maximizing the retrieval of geotagged
tweets via location filtering as well as using more detailed key words,
and this finding is in agreement with other studies (see Barker and
Macleod, 2019; Ekta et al., 2017; Tsou et al., 2017; Morstatter et al.,
2013). The alternative Search API preferentially relied on a tweet’s
geotag presence and therefore reverts to the more general and less
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Label and Score
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Fig. 6. Flooded (right) and non-flooded (left) images with detected labels (roads, residential area, water, etc.) and scores during Hurricane Florence event at the

Person Street bridge, Cape Fear River, NC.

spatially accurate user profile location. The user profile location is
manually set by the user, and maybe different to the specific tweet’s
actual location. Furthermore, tweets are often contained noisy and
redundant data and that cleaning and geoparsing might be difficult and
present a time-consuming task. Most importantly, the Search API per-
mits just a single location per query and is not suitable for spatiotem-
poral assessment of flooding event in real-time. Our developed
Streaming API and a Twitter bot allowed simultaneous monitoring of
multiple locations, necessary for real-time, national-scale flood
assessment.

In addition, we integrated Google Vision API to parcel images into
labels and scores them. As discussed, image processing and machine
learning is not perfect: it often splits objects into separate labels, labels
objects that are not presented in the image, or includes multiple objects
in the same label. However, over a large dataset of time lapse images, we

10

found that image processing approaches perform better for many object
categories. We showed improved object discovery for a more compli-
cated set of flooded and non-flooded images for recent hurricane driven
floods in the Carolinas. Our research revealed that images and image
sequences (videos) make up about 80 percent of all corporate and public
unstructured Big Data for flood related studies, providing an excellent
data sources for flood analytics research. Although, the result deseribed
herein is encouraging for time-lapse images/videos analysis, the
following open issues still exist in image recognition: (i) how do we
effectively improve recognition and label detection approaches to cope
with numerous object categories that exist and are recognizable by
humans? and (ii) How can we apply image processing and machine
learning approaches to motion and actions in video and label them? We
hope that the techniques developed in this study will offer a good
starting point in addressing these issues and developing more intelligent
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Fig. 7. The scores and the number of images that were used to detect the label for the Person Street bridge, Cape Fear River, NC.

Fig. 8. Flooded (right) and non-flooded (left) images with detected labels and scores during Hurricane Florence event at New Bern, NC.
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Fig. 9. The scores and the number of images that were used to detect the labels for flooded and non-flooded images during Hurricane Florence in New Bern, NC.

and proficient image segmentation and processing methods for flood
studies.

The authors believe that data analytics applications in the field of
flood risk management should adopt a modular view, moving from a
component based to a national scale. At present, data analytics research
remains in its developing phase into existing workflows and practices.
There appears a major gap particularly in seamless integration of
different data sources as number of datasets keep increasing over time.
Although, the main issue in integrating these datasets is to ensure data
consistency, accuracy and completeness for informed decision-making
processes. As data collection through various heterogeneous sources in
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real-time is highly susceptible to noise and uncertainty. To this end,
security as well as privacy issues in data transmission and analytics, and
storage also need to be under constant control to ensure the authenticity
of data and citizen-based crowd sourced information while keeping the
confidentiality of people’s sensitive information. In this study we set out
the major design choices and decisions made by acknowledging the
inputs from many decision makers and first responders. We appreciate
the discussions with SCEMD and believe FAIS can be a more transparent
and efficient tool than many other similar pipelines. We acknowledge
there is a need to evaluate the pipeline in other case studies and real-
time events. Also integrating other approaches such as deep learning
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Fig. 10. Flood frequency analysis for the USGS 02147500 as well as USGS 02196000 using Gumbel distribution. Red and blue lines represent 95% confidence
interval while black line represents fitted Gumbel distribution. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web

version of this article.)

techniques for word-embeddings natural language processing in
deriving vector representations for non-English tweets. This would be
crucial since we gathered tweets in Spanish and other languages when
we tested the prototype operationally during Dorian flooding.

6. Limitation of FAIS Prototype and Future Work

This national-scale Big Data analytics pipeline could be further
improved in several ways. In the FFA section, we recommend computing
nonstationary flood frequency models by incorporating external cova-
riates (Lopez and Francés, 2013; Philips et al., 2018; Su and Chen,
2019). Meteorological modes such as El Nino-Southern Oscillation
(ENSO) and/or physical properties (reservoir index) are key covariates
that could be taken into account for non-stationary FFA assessment. In
addition, compound flood calculation can be included to compute FFA
based on multivariate extreme variables (see Renard et al., 201 3) for the
coastal region. In addition, FAIS workflow and design for identifying
at-risk areas to flooding can be further improved. The size of bounding
boxes of tweets (currently 16 km from the centroid) requires further
attention and evaluation, given the boundary effect on the number of
tweets intersect bounding boxes and yielding a match as well as
considering the density of USGS flood gauges including ungauged areas.
In an urban setting, inecreasing the size of bounding boxes would likely
include more significant tweets thereby more accuracy on the chosen
proximity. The selected tweets can be also overlaid with other data
layers such as census data, population density, rainfall radar data, and
Federal Emergency Management Agency (FEMA) flood hazard map.

In addition, FAIS image processing and machine learning approaches
need further attension. Google Cloud Vision is a mature detection tool
and comes with more flexible API conventions, multiple image formats,
and a native batch support. Its Object Detection functionality generates
much more relevant labels, and its label detection currently seems
mature enough, as well. Although it’s not quite perfect, yet. The biggest
issue of this tool seems to be rotational invariance, although it might be
transparently added to the deep learning model in the future. Vision has
a wide margin of improvement regarding batch/video support and more
advanced features such as image search, object localization, and object
tracking in video. Being able to fetch external images (e.g. by URL)
might help speed up API adoption, while improving the quality of flood
detection features will inspire greater trust from users. For further FAIS
development, a linking approach could be proposed to increase system
autonomy during real time flood risk assessment and data retrieval
tasks. This automation would help satisfy the need for timeliness and

reliability during emergency responses and management. Efforts are
currently underway to combine IoT sensor rainfall and water level in-
formation to the prototype.

7. Software and Data Availability

Flood Analytics Information System (FAIS): Various Scripts as they
apply to pipeline development.

Description: Data Gathering application designed for flood and
Twitter data analyses.

Developer: Nattapon Donratanapat.

Contact: pleuk5667 @gmail.com.

Software Access: https://pypi.org/manage/project/fais/releases/

Year First Available: 2019.

Hardware required: Windows, Linux, MacOS.

Hardware required: Intel i3 or mid-performance PC with multicore
processor and SSD main drive, 4 Gb memory recommended.

Cost: Free. Software and source code are released under the Massa-
chusetts Institute of Technology License.

Software availability: All source code can be found at GitHub public
repository as well as at the Python Package Index (PyPI).

https://github.com/VidyaSamadi/Flood-Analytics-Information-Syst
em-FAIS

https://pypi.org/project/fais/

https://floodanalytics.clemson.edu/
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publicly available at the HHR (HydoSystem and Hydroinformatics
Research) GitHub account (https://github.com/HHRClemson). The
prototype is currently running on the IBM cloud computing service
(https://floodanalytics.clemson.edu/).

Appendix A. Supplementary Data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.envsoft.2020.104828.
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