
1. Introduction
There is a great deal of geographic imbalance in global hydrologic data sets. Outside of the US and parts 
of Europe, there are many parts of the world that have only sparsely available streamflow gauge networks 
with only a few years' worth of data (Do et al., 2017; Fekete & Vörösmarty, 2007). Besides streamflow gauges, 
these regions also lack data on physiographic attributes such as geology and soil depth. Nevertheless, cli-
mate change is stressing these parts of the world, and accurate hydrologic simulations are needed for these 
regions just as much, or even more than for data-rich regions.

Catchments across the world are often perceived as being unique from each other, requiring customized 
model development for each basin (Teutschbein & Seibert,  2012). As a rule of thumb, when we create 
process-based hydrologic models, our development effort scales roughly linearly to the modeled area, com-
putational effort scales linearly at best, and accuracy is unrelated to the number of basins modeled. It is 
typically difficult to apply knowledge gained from one basin to another, as parameters or experiences do not 
transfer easily. As a result, although there have been calls for hydrologic studies to transcend the uniqueness 
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Plain Language Summary We introduced a method to utilize available big data to better 
start and warm up a machine learning streamflow model that is later fine-tuned for prediction in basins 
on other continents (Asia, South America and Europe). This procedure noticeably improved streamflow 
volume prediction for different scenarios with varying amounts of data in the target basins (in terms 
of time period, length of collected data, and number of basins having data). This allows thousands of 
basins across the world with only a few years’ worth of streamflow observations to benefit from improved 
modeling and accuracy resulting from the use of deep learning.
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of places (McDonnell et al., 2007), success at modeling some basins does not in general translate into equiv-
alent success or reduced effort for other basins, especially in other continents.

Recently, data-driven hydrologic models, especially those based on the deep learning algorithm of long 
short-term memory (LSTM) (Hochreiter & Schmidhuber,  1997), have shown strong skills in learning 
streamflow dynamics for forward runs and forecasting (Feng et al.,  2020; Kratzert, Klotz, Hochreiter, & 
Nearing, 2020; Li et al., 2020). Such performance has benefited from the availability of big data uniquely 
available over the conterminous United States (CONUS). In other parts of the world, however, we cannot 
apply these same techniques due to a shortage of streamflow gauge data. Moreover, these techniques re-
quire uniform input variables that not only have the same physical concepts but also roughly consistent 
characteristics, which makes it difficult to apply outside of a unified data set like the US-specific CAMELS 
data set (Addor et al., 2017). Across different continents, climate forcing data and static physiographic at-
tributes are collected from different sources and can have systematic differences. Therefore, even if the com-
pilation of a global database like the CAMELS series were possible, it is still uncertain if a uniform global 
model could be trained on such a database.

In data-scarce regions, there are often daily streamflow measurements that have been recorded for a few 
years (Alipour & Kibler, 2018; Bitew & Gebremichael, 2011), but not with the consistency and breadth of the 
CONUS data. The Global Runoff Data Center (GRDC, available at http://grdc.bafg.de), for example, shows 
that a large portion of basins around the world have fewer than 3 years’ worth of daily streamflow obser-
vations. In these scenarios, machine learning models have still been employed but mostly in a local model 
setting, where a model is fitted to the data from one basin or a few neighboring basins (S. Zhu et al.,  2020; 
Yaseen et al., 2015; Liang et al., 2018; Bowes et al., 2019; de la Fuente et al., 2019). Shen (2018) provided a 
summary and an entry point into a vast body of work in this realm, with many other papers also attesting to 
the huge demand for solutions (Beven, 2020; Guillon et al., 2020).

Transfer learning (TL) (Pan & Yang, 2010; Thrun & Pratt, 1998) is a method to migrate knowledge learned 
from one task to another. Because some different tasks have similar mathematical principles or require 
similar responses, their representations in a deep learning network are similar. Therefore, it should be pos-
sible to train a model with one task and data set and transfer it to another task, keeping part of the original 
model while retraining a different portion of the model. TL has become a highly popular technique in the 
artificial intelligence community (George et al., 2017; Shen, 2018) and is widely used in image classification 
(Yosinski et al., 2014; Y. Zhu et al., 2011). It is now a popular practice to transfer models from image-recog-
nition data sets, for example, ImageNet, for remote sensing tasks such as land use classification (Marmanis 
et al., 2016; X. X. Zhu et al., 2017). TL has also been used to predict crop yields (Wang et al., 2018). While hy-
drologic parameter regionalization (Beck, van Dijk, et al., 2016; Wagener & Wheater, 2006) allows the trans-
fer of parameters to nearby basins, transferring knowledge from one region to another - for example, across 
continents - had not been attempted before, and it was unclear whether such a transfer would be fruitful.

In this work, we applied TL to streamflow modeling to better understand if and when such knowledge 
transfer could be useful for hydrological time series modeling problems. We demonstrate how LSTM models 
trained over the data-rich CONUS can be transferred to data-scarce regions such as Asia and South Amer-
ica to mitigate the limitations of local observations and input attributes. For clarity, the CONUS data set is 
called the source data set, while the basins in the second, transferred location are referred to as the target. 
We reveal the benefits of TL by comparing models employing TL (hereafter called TL models) with those 
that are trained using only data from the target region (hereafter called local models) (Section 3.1). We also 
investigate the impacts of data quantity in the source and target data sets (Section 3.2) and how they com-
pare to alternative initialization methods (Section 3.3). As a side note, because our approach does need local 
data for tuning, it does not solve the problem of prediction in ungauged basins (PUB) (Sivapalan, 2003).

2. Data and Methods
2.1. Data

To examine the effectiveness of TL in different data-density scenarios, we used data sets from four countries 
(Figure S1): the original Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) data 
set for the contiguous United States (Newman et al., 2014); CAMELS-GB, a dense data set for Great Britain 
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based on the CAMELS framework (Coxon, Addor, et al., 2020); CAMELS-CL, a moderately dense data set 
for Chile based on the CAMELS framework (Alvarez-Garreton et al., 2018); and CHINA-MR, hydrological 
and meteorological data for the upper Min River region of China (Ma et al., 2020).

The data sets all included daily streamflow volume, meteorological forcings (precipitation, temperature, 
etc.), and static basin attributes (slope, soil texture, etc), but specifics varied by data set (Text S1 and Ta-
ble S1). The CAMELS data set contains 671 basins with minimal anthropogenic impacts spanning a wide 
range of geographies and climates in the conterminous US United States (CONUS). The CAMELS-GB 
basins are mainly of temperate oceanic climate, and are underlain by varied hydrogeological conditions. 
Chile’s Southern Zone includes both humid Mediterranean and temperate rain-oceanic climates. The CHI-
NA-MR data set contains five basins with large spatial and vertical variations in climate and land cover, 
elevations ranging from 653 to 6,054 m, and mostly urban agglomerations in the southern part.

We selected all the basins in CAMELS to train the source model (training period from October 1, 1985 to 
October 1, 2015). For context, if we trained the model using 10 years' worth of data (October 1, 1985 to 
October 1, 1995) and tested it in the next 10 years, the median NSE for the test period was 0.72, which was 
essentially identical to other models reported in the literature with NLDAS forcing data (Kratzert, Klotz, 
Hochreiter, & Nearing, 2020). For the TL model pretraining process, however, we wanted to maximize in-
formation learned, and hence provided models with the full source dataset containing all 30 years’ worth 
of data. In Chile, we selected 49 basins by screening for basins in CAMELS-CL located in moderate central 
Chile, between latitudes 38°S and 42°S, with less than 20% of missing streamflow data from January 1, 2000 
to January 1, 2010. In our preliminary tests, LSTM models gave poor results for the extremely dry deserts 
in the North and glacier-influenced cold regions in the south, a phenomenon worth future investigation. 
Given that the scope of this study was to improve LSTM-based modeling, we excluded these regions as 
the current LSTM models seem to be unsuitable there, which matches other observations of where CO-
NUS-trained LSTM-based models have struggled (Feng et al., 2020). The 664 basins in the CAMELS-GB 
data set, representing a data-rich case in the target region, were selected with the same conditions for avail-
able streamflow data.

In data-scarce regions, streamflow records also tend to be short. To evaluate the impact of target-region 
data length, we ran a 1-year training scenario and a multi-year training scenario. For the multi-year training 
scenario, CAMELS-CL and CAMELS-GB were trained on data from 5 years (January 1, 2000 to January 1, 
2005) and tested on data from 5 years (January 1, 2005 to January 1, 2010), while due to data set limitations, 
CHINA-MR models were trained on data from 4 years (January 1, 2009 to January 1, 2013), and tested on 
data from 3 years (January 1, 2013 to January 1, 2016). For the 1-year training scenario, CAMELS-CL and 
CAMELS-GB basins were trained in January 1, 2004 to January 1, 2005, and for CHINA-MR were trained 
in January 1, 2009 to January 1, 2010, with the same testing periods as for the multi-year training scenario.

2.2. Transfer Learning Model Based on LSTM

For this work, the TL models were based on an established LSTM architecture which was already success-
fully tested for predictions of streamflow (Feng et al., 2020), soil moisture (Fang, Pan, & Shen, 2019; Fang 
& Shen, 2020; Fang, Shen, et al., 2017) with uncertainty estimates (Fang, Kifer, et al., 2020), water temper-
ature (Rahmani et al., 2020) and other water quality variables like dissolved oxygen (Zhi et al., 2021). Long 
short-term memory (LSTM) is a deep learning algorithm, a type of recurrent neural network that learns 
from sequential data. LSTM has “memory states” and “gates” which enable it to retain long memory and 
learn how long to retain state information, what to forget, and what to output. More detailed descriptions of 
LSTM are provided in Text S2 and can also be found in Feng et al. (2020). Deep networks such as LSTM are 
defined by a basic architecture with a number of weights and nonlinear activation functions across many 
layers. During the training process, information in the training data is stored as weights, with some parts 
of the network self-organizing to perform certain functionalities as dictated by the architecture (e.g., for a 
LSTM model trained for streamflow prediction, some of the cell states could be used to track accumulated 
snow storage).

Here we discuss TL in two senses: weight initialization (also known as pretraining) by a source data set, and 
weight freezing. To apply transfer learning (an overview is provided in Figure S2), we train the model after 

MA ET AL.

10.1029/2020WR028600

3 of 11



Water Resources Research

the pretraining process, this time using data from the target location. Here, we have a choice: to allow some 
or all of the weights to further change during training on the target task (so the weights obtained during 
pretraining simply provide an initialization), or to prevent these weights from any further changes (weight 
freezing).

We tested three different combinations (TL-a, TL-b, and TL-c) of transfer learning (visualized in Figure 1). 
All options used weight initialization, and from TL-a to TL-c we progressively allowed more weights to be 
adjusted during training on the target data set. For option TL-a, the input and output linear transformation 
layers were the only weights allowed to be updated; the rest of the weights were frozen to prevent the values 
from changing. For the other two options (TL-b and TL-c), the weights of the LSTM gates themselves were 
also allowed to be updated. For TL-b, the weights of the recurrent connections from hidden states were al-
lowed to change, but the weights from inputs were frozen. For TL-c, all weights in the network were allowed 
to be updated.

Compared to training a network from a blank (or cold) initial state (where the weights of the network are 
zero or randomly generated), the pretraining process initializes the weights so the network can roughly 
perform streamflow modeling according to the source data set. This allows the network to converge faster 
and requires fewer training data points from the target data. If we freeze some weights, the training forces 
the unfrozen weights to change and adapt around the frozen part. Typically, weight freezing reduces de-
mand for training data and lowers the chance for overfitting compared to weight initialization, because it 
reduces the number of trainable parameters. However, there may also be some performance penalties due 
to reduced flexibility.

All of our TL models allowed updating of the input linear transformations (Text S2, Equation 1) along with 
the connection from the hidden states to the outputs. There are different forcing and attribute variables 
in data sets, and even for the same variable name, variable characteristics (such as biases) are often sub-
stantially different across data sets. Therefore, the input transformations were necessarily different, and 
allowing only these values to update (TL-a) essentially transforms target-region inputs into the roles of the 
source-region inputs. It is worth noting that the local models were trained with all the basins in the respec-
tive region, just as the CAMELS model was trained using all the basins in the CAMELS data set.
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Figure 1. The architecture of long short-term memory with transfer learning (TL) options. TL-a, TL-b, and TL-c 
have progressively more weights which are allowed to be tuned during training with target data, which follows the 
pretraining process using source data. For equation details, please see Text S2.
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2.3. Experiments

2.3.1. The Effect of Source and Target Data Quantity on TL

We hypothesized that TL models would benefit from the quantity and diversity of the source data set. To 
test this hypothesis, we ran experiments where we varied the amount of source training data the TL models 
were given. In theory, we expected the benefits of TL to increase with more source data, with the benefits 
becoming incrementally smaller. We set the number of basins used in the source data to 10, 50, 100, 300, 
500, and all 671, and randomly sampled the CONUS basins, defining the groups with fewer basins as being 
subsets of the larger ones. We also ran trials where we used CAMELS-GB as the source data set, and the 
CONUS CAMELS basins as the target.

Along with sparse gauges, target data-scarce regions often only have observations from a limited period of 
time. To validate the effects of TL when we have different lengths of training data in the target region, we 
ran a 1-year training scenario and a multi-year (3 or 4 years) training scenario for all regions. For compari-
son, their testing periods were the same (detailed descriptions are provided in Text S1).

2.3.2. Comparison of TL to Pretraining by a Process-Based Model

It has been suggested that pretraining a machine learning model (determining an improved initialization of 
the network weights) using outputs from a process-based model could improve the model (Jia et al., 2019; 
Read et al., 2019). The idea is that the process-based model outputs, even if imperfect or downright flawed, 
could teach the deep learning model basic hydrologic responses to inputs. Could TL essentially serve the 
same purpose as the physical equations encoded in a process-based model?

We set up a Soil & Water Assessment Tool (SWAT) model (Text S3) for the Min River in China. For the 
purpose of assessing the benefit of physics encoded in SWAT, the SWAT model could not be calibrated: 
calibrating this model would leak information from the observations, which would defeat the purpose of 
the test. The SWAT model was run from January 1, 2008 to January 1, 2013 with 1 year of warm up (Ma 
et al., 2020). The LSTM model was pretrained with the SWAT model, and then trained with the observed 
streamflow data from the Min River using all of the TL options (TL-a, TL-b, and TL-c), which were collec-
tively referred to as SWAT-MR. We then compared the most effective option from SWAT-MR with the TL 
models from CAMELS.

Some research has shown that using the output of a process-based model as an input to LSTM could im-
prove the robustness of the model (Jia et al., 2019). We concur, and have found minor evidence of these 
effects in previous work (Fang, Shen, et al., 2017). However, training a model like that would entail creating 
the process-based model for all the basins in the source data set, which would be a time- and effort-intensive 
option that hence we did not explore.

2.4. Evaluation Metrics and Hyperparameters

The first metric we used for model evaluation was the Nash–Sutcliffe efficiency coefficient (NSE), a widely 
used metric in hydrologic modeling (Nash & Sutcliffe, 1970). We ran all training experiments with five ran-
dom seeds and used the average streamflow from these ensemble members for metric evaluation. We also 
evaluated the percent bias of the top 2% peak flow range (flow duration curve (FDC) high-segment volume, 
or FHV) and the percent bias of the bottom 2% low flow range (FDC low-segment volume, or FLV) to un-
derstand performance for more extreme values (Yilmaz et al., 2008).

Hyperparameters such as learning rate, hidden size, and dropout rate are configurations of LSTM model 
and therefore have some level of control on model performance (Goodfellow et al., 2016). We manually 
adjusted the hyperparameters by sensitivity analysis, and selected values such that each model had optimal 
performance, for more fair comparison. We tried many combinations, with Table S2 listing all the tested 
hyperparameters and the final values that were chosen, along with the meanings of these hyperparameters. 
We used a training-instance length of 365 days for all models. The batch size chosen for the TL model was 
the same as for the local model, and the hidden size used for TL was consistent with that for the correspond-
ing source model.
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3. Results
3.1. Performance of TL Models in Each Region

TL is an effective strategy that significantly improves streamflow predictions (Table 1; Figure 2). For the 
1-year TL model, the improvement in NSE compared to the locally trained model ranged from 0.033 to 
0.128. For each region, the optimal TL model had better metrics than the local model, and the advantages 
tended to be larger for smaller target data sets. The 1-year models of CAMELS-CL showed the highest 
benefits, with the optimal TL model respectively improving the mean and median NSE values by 0.118 and 
0.128 as compared to the local model. For CHINA-MR, the mean NSE was elevated by 0.039 (ensemble 
member values ranged from 0.564–0.603) for 1-year training models. With the multi-year training scenar-
io, CHINA-MR also showed the highest TL benefit, where option TL-a improved the mean NSE by 0.068 
(0.666–0.734).

For both CAMELS-CL and CHINA-MR, the benefits from TL are likely substantial enough to be of in-
terest to most modelers. The benefit was less pronounced for CAMELS-GB, but might still be considered 
non-trivial to those who want to have the best possible performance. These results agree with our intuition: 
re-training on the local target region fine-tuned the network weights and adapted them to local conditions, 
but when there was a small target data set, the model needed to heavily rely on knowledge obtained from 
the source data set. The more data were available for the target region; the more adjustments were applied 
to the network weights.

All the multi-year training models performed better than the corresponding 1-year training models, and the 
TL benefits tended to be smaller, although there were exceptions. Across all the regions, multi-year training 
of the local models improved the median NSE by an average of 0.151 (ranging between 0.059 and 0.233) as 
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Model

NSEmean NSEmedian

CHINA-MR CAMELS-CL CAMELS-GB CHINA-MR CAMELS-CL CAMELS-GB

(a)

1-year training Local 0.564 0.587 0.726 0.571 0.597 0.794

TL-a 0.597 0.705 0.765 0.609 0.725 0.824

TL-b 0.593 0.650 0.770 0.620 0.657 0.827

TL-c 0.603 0.636 0.767 0.624 0.645 0.822

Multi-year training Local 0.666 0.810 0.769 0.733 0.830 0.853

TL-a 0.706 0.845 0.789 0.708 0.868 0.847

TL-b 0.718 0.820 0.794 0.698 0.840 0.861

TL-c 0.734 0.801 0.796 0.749 0.823 0.859

Model NSEmean NSEmedian

(b)

1-year training Local 0.564 0.571

TL-c (SWAT-MR) 0.580 0.603

TL-c (CONUS) 0.603 0.624

Multi-year training Local 0.666 0.733

TL-c (SWAT-MR) 0.693 0.748

TL-c (CONUS) 0.734 0.749

Note. Local models were trained with all the basins from the target regions, for example, the 5 basins in CHINA-MR are trained together. TL options were TL-a, 
TL-b, and TL-c (Figure 1). Bold numbers indicate the best performing model for each category. (a) NSE values of the 5-member ensemble mean discharge for 
different training scenarios; (b) Comparison between the locally trained models for CHINA-MR, the TL model initialized with SWAT model outputs, and the 
best-performing TL model originally trained over the CONUS data (option TL-c).

Table 1 
NSE Values of the 5-Member Ensemble Mean Discharge for Different Training Scenarios
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compared to the 1-year training local models, while multi-year training of the TL models improved median 
NSE values by an average of 0.100 (ranging between 0.024 and 0.183) as compared to the 1-year training TL 
models.

For the more extreme parts of the hydrograph (represented by FHV and FLV), we noted a reliable improve-
ment of TL with 1-year local training. TL alleviated the negative FHV bias significantly for all three target 
regions (Figure 2c) and also noticeably reduced the positive bias with FLV. To put things into context, the 
top 2-percentile events are generally considered difficult to capture due to various reasons such as inac-
curacies of precipitation data. A similar −20% FHV was noted in other work with CAMELS as well (Feng 

MA ET AL.

10.1029/2020WR028600

7 of 11

Figure 2. Performance of local and optimal TL models (selected based on Table 1) pretrained with different numbers 
of CONUS (source) basins for (a) 1-year training and (b) multi-year training. (c and d) The percent bias of the top 
2% peak flow range (FHV) and (e and f) the percent bias of the bottom 2% low flow range (FLV) for (c and e) 1-year 
training and (d and f) multi-year training. All the metrics were calculated for the five-member ensemble mean 
discharge during the test period (ensemble standard deviation provided in Table S3). Plus symbols indicate mean 
values. For CHINA-MR, there were only five basins, so the two “whiskers”, the two edges of the boxes, and the median 
line each represent performance for one basin.
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et al., 2020; Kratzert, Klotz, Shalev, et al., 2019). We found the TL model to better capture some of the peaks 
in CHINA-MR (Figure S3). For multi-year training scenarios, the benefits were less pronounced than for 
the 1-year training scenarios for CHINA-MR and CAMELS-GB, but were still observable. However, for 
CAMELS-CL, TL actually increased the bias of FHV and FLV. Since TL improved for median NSE by ∼0.38 
(Table 1a), TL seems to have improved the medium part of the hydrograph for CAMELS-CL for the mul-
ti-year training scenario to compensate for this worsened bias.

3.2. The Effect of Source Data Quantity on TL

In general, the performance of TL was enhanced as the number of basins in the source data set increased, 
though some inherent randomness did exist. We evaluated both 1-year training and multi-year training 
models (Figure 2a and 2b). For 1-year training, both the mean and median NSE of the TL model trained only 
on 10 CONUS basins were still higher than those of the local models for CAMELS-CL and CHINA-MR, sug-
gesting that even a relatively small source data set was already beneficial. A main benefit of transfer learn-
ing arises from enabling the LSTM model to warm up and learn basic hydrologic dynamics - for example, 
that streamflow follows rainfall except when it is cold - and using the diverse CAMELS basins as the source 
data set provides a more robust initial model, as it has seen a rich combination of inputs and responses. 
For multi-year training TL models, all showed optimal performance in Chile and Great Britain when the 
number of basins was maximized, and the model performance progressively improved with the number 
of basins (Since CHINA-MR contained only five sites, the fluctuations were relatively larger). The basins 
shown in Figure 2 were selected randomly, but using different random seeds gave characteristically similar 
results (data not shown here). The temporal length of the source data set also affected the TL models. We 
also tried training using only 10 years’ worth of source data, which gave lowered performance (Figure S4). 
This advantage may be seen when the quantity of the source data set is small, such as for the 1-year models 
tested in Chile and China using source data from 10 CONUS basins.

As expected, the gain resulting from increasing the source data set size became smaller and smaller as the 
data set became larger: the initial 50 basins showed the most notable benefit, raising median NSE from 
0.629 to 0.720. As the source data set continued to increase, the benefit per added basin became smaller and 
smaller, albeit still non-zero if we discount some stochastic fluctuations. This observation was consistent 
with other results from big data machine learning: we typically see diminishing returns as the marginal 
benefit of a larger data set gradually decreases toward very large sample size, but the benefit may still be 
non-zero even for a very large data set (Sun et al., 2017).

3.3. Comparison With Model Initialization Using a Process-Based Hydrologic Model

Our experiments showed that the benefits of TL were larger than what would have been contributed by 
weight initialization using outputs from SWAT. The initialization by SWAT outputs raised the mean NSE 
from 0.564 to 0.580 in 1-year training and from 0.666 to 0.693 for multi-year training, suggesting this ap-
proach is useful (Table 1b). Nevertheless, the optimal TL model from CAMELS had much bigger benefit, 
with median NSE values of 0.603 for 1-year training and 0.734 for multi-year training. A possible explana-
tion is that the source LSTM model is a more accurate hydrologic model than many process-based models 
(Feng et al., 2020; Kratzert, Klotz, Hochreiter, & Nearing, 2020; Shen, 2018).

Because initialization can only be done once, the two different approaches cannot accommodate each other. 
We must also consider the cost of process-based model initialization, which is very high in this case, be-
cause we would need to create process-based models for each target basin of interest. It was impossible for 
us to implement this method for CAMELS-CL and CAMELS-GB within the scope of this work.

4. Discussion
4.1. Selection of the Optimal TL for the Target Region

The optimal TL options differed for each data set, but they seemed to be the same for each region, re-
gardless of training length. Table 1a shows that the optimal TL options were TL-c (all weights unfrozen) 
for CHINA-MR, TL-a (just input and output transformation layers unfrozen) for CAMELS-CL, and TL-b 
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(many, but not all weights unfrozen) for CAMELS-GB. The difference between different options was sub-
stantial for CHINA-MR and CAMELS-CL, but relatively minor for CAMELS-GB.

These results show that it will be difficult to find the best option a priori. TL-b was the best option for CAM-
ELS-GB by a very small margin over TL-c, which was largely consistent with our intuition that more local 
data can be better exploited by models with larger complexity. TL-a was found to be better for CAMELS-CL, 
which suggests central Chile may be climatologically and hydrologically similar to some basins in CONUS 
and was sufficient to only perform linear transformations of inputs and outputs. However, TL-c, for which 
the pretraining only provided weight initialization, was found to be the best option for all CHINA-MR ex-
periments, which countered our intuition that a smaller target data set would benefit from a partially frozen 
model. One potential explanation is that CHINA-MR contains larger basins than the CONUS source basins, 
which could have made the routing process comparably more important, and thus obtaining optimal results 
required the retraining of all the LSTM weights to sufficiently alter the model’s memory dynamics.

4.2. The Impact of Source Data Diversity on TL

Using CAMELS-GB (30 years) as the source and CAMELS as the target produced an optimal TL model 
with a median NSE of 0.738, compared to our previous value of 0.732 (Feng et  al.,  2020). Transferring 
CAMELS-GB to CAMELS-CL resulted in a median NSE of 0.843, compared to the value of 0.868 obtained 
by using CAMELS as the source. CAMELS also has a wider range of values for topographic, climatic and 
hydrological attributes than CAMELS-GB, and covers more of the range of CAMELS-CL (Figure S5). Using 
CAMELS-GB as a source was still useful, but the benefits were less notable compared to using CAMELS 
as the source, suggesting it is preferable to use a more diverse source data set which likely helped reduce 
overfitting.

Not much work in the literature is directly comparable to the work reported here. With NLDAS forcing 
data, Kratzert, Klotz, Shalev, et al. (2019) reports a CAMELS-median NSE of ∼0.74 (which we were able to 
reproduce) and 0.63 for LSTM and the SAC-SMA hydrologic model, respectively, while recent work with 
a 4,229-basin global data set produced a median Kling-Gupta efficiency (KGE, comparable to NSE) of 0.69 
for locally calibrated conceptual hydrologic models in the validation period (Beck, Pan, et al., 2020). Our 
multi-year training with TL presented median NSE values of 0.75, 0.87, and 0.86 for CHINA-MR, CAM-
ELS-CL, and CAMELS-GB, respectively, certainly representing state-of-the-art results. As a side note, the 
good performance on the global data set suggests that NLDAS, although more easily accessible, may have a 
lower quality than other climate data sets in the world.

4.3. Limitations

This study did not address streamflow measurement uncertainty (Coxon, Freer, et  al.,  2015; McMillan 
et al., 2017), which may be impactful for some stations but should be of limited importance for target data 
sets with observations in many basins if there is no systematic bias in the measurements. We also recognize 
that LSTM is not a silver bullet: for example, it did not work well in extremely arid or glacier-dominated 
regions in Chile, perhaps because the time scales of runoff generation in these basins (flash flood or glacier 
melt) are not easily handled by LSTM.

5. Conclusion
We introduced a transfer learning scheme to leverage information from data-rich regions to mitigate the 
limitations of small data sets and incomplete input attributes in data-scarce regions on different continents. 
Trained on the CAMELS data set over the CONUS, our LSTM model was transferred to data-scarce regions 
in Asia, Europe, and South America to enhance the accuracy of streamflow predictions as compared to 
locally trained models. There is tremendous value in this transfer learning procedure, as a huge number of 
basins around the world with only a few years’ worth of local observations are now amenable to accurate 
modeling with deep learning.

These results suggest that hydrologic dynamics around the world, while often perceived as being unique 
for each location, have commonalities that could be leveraged by modelers across different continents. It 
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also means that enticing rewards in terms of model performance are “right at the fingertips” of the steadily 
rising amount of streamflow forecasters in data-scarce regions who employ LSTM on small data sets. Mul-
tiple transfer learning options are possible, and the choices need to be evaluated for each target region’s use 
cases. This work suggests that modelers across the world can and should look beyond their watersheds or 
even their continents for useful data. Efforts such as the Global Runoff Data Center and the CAMELS data 
set series are highly meritorious, and could be leveraged for these efforts. A global synergy, which was not 
envisioned before, is now possible with deep learning frameworks.

Data Availability Statement
Data for CAMELS can be downloaded at https://ral.ucar.edu/solutions/products/camels. Data for CAM-
ELS-CL can be downloaded at http://www.cr2.cl/camels-cl/. Data for CAMELS-GB can be downloaded 
at https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9. Atmospheric data for CHINA-MR can 
be downloaded at http://www.cmads.org/. The hydrologic deep learning code used in this work can be 
accessed at http://doi.org/10.5281/zenodo.3993880.
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