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Abstract @

A large fraction of major waterways have dams influe
accounted for in large-scale hydrologic modeling. Howe My streamflow prediction for
i 3, especially at large scales.
Here we examined which types of dammed basi ’v’ il be well represented by long short-
2 information, and delineated the
7 basins (83% dammed) over the
paCc®yof reservoir purposes, degree of regulation
ling. While a model trained on a widely-used
or non-reference basins, the model trained on the
Butcliffe efficiency coefficient (NSE) of 0.74. The
zero-dor, small-dor (with storg pproximately a month of average streamflow or less),
’ ve distinct behaviors, so migrating models between

categories yielded catastrofhi ®ts, which means we must not treat small-dor basins as
i ith pooled data from different sets yielded optimal median
or these respective groups, noticeably stronger than existing

contiguous United States and noted
(dor), and diversion on streamflo

NSEs of 0.72, 0.79
models. These regllilts
about a month ¢ga ge streamflow or less) are modeled implicitly as part of basin rainfall-
runoff procegsesQRel® large-dor reservoirs of certain types can be represented explicitly.
However, d asins must be present in the training dataset. Future work should
examingf’Sce odeling of large reservoirs for fire protection and irrigation, hydroelectric
p rd % on, and flood control.

* corresponding author. Chaopeng Shen: cshen@engr.psu.edu
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1. Introduction.

Two-thirds of the longest rivers in the world are not flowing freely (Grill et al., 2019):
more than 800,000 dammed reservoirs impede the world’s rivers, including 90,000 in the
United States (International Rivers, 2007). Dams exert significant control on streamflows by
changing the magnitude and timing of the discharges (Gutenson et al., 2020). Th ility to
anticipate upstream reservoir operations at a daily scale has significant oper3 aly® for
optimal water resources management.

For large-scale hydrologic modeling at the daily scale, we ne nd tractable

methods to account for the influence of small and large resenﬁe amflow. One may
Di

explicitly with its own characteristics, operational rules,gtONgIe, inflow, and outflow. This

approach may not scale well to large scales, F@ as there may be dozens or even

hundreds of reservoirs upstream of th t large basin. A different approach would be

use a reservoir-centric modeling approach, in which each eds to be represented

basin-centric (or grid-centric, also ca ped), in which all the reservoirs in a subbasin (or
a computational gridcell) are ped to®ether into one unit in the river routing module.
Apparently, the basin-centri ( d) paradigm can vastly reduce modeling complexity
(Ehsani et al., 2016; P t 008). Alternatively, a mixed approach can be taken where
some reservoirs lum while some others are explicitly represented. Current large-scale
hydrologic % as the National Water Model (NWM) (Gochis et al., 2018), or land
surfac models with routing schemes, e.g. the Community Land Model (Lawrence
et al QO mulate some major reservoirs and make the habitual assumption of ignoring the
sm eservoirs. The questions are then: (i) What kinds of reservoirs can be modeled in a
lumped fashion and what kind cannot? (ii) Can we ignore the impacts of small reservoirs and
assume they are behaviorally similar to undammed basins?

It has been difficult to reliably obtain strong model performance for dammed basins
using a rule-based system at large scales. From a literature survey (see more details in

Appendix Table S1), it seems difficult to obtain Nash-Sutcliffe model efficiency coefficient
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(NSE) values that are higher than 0.65 by assuming generic reservoir operational schemes
(Biemans et al., 2011; Hanasaki et al., 2006; Shin et al., 2019; Voisin et al., 2013). Hanasaki
et al. (2006) derived a demand-driven approach for global reservoir routing and laid the
foundation for subsequent developments, showing error reduction compared to no-reservoir
simulations, but no NSE was reported. Voison et al. (2013) improved upon the formulation

from Hanasaki et al. (2006) to the heavily dammed Columbia River Basin and reportegd decent

correlation but mostly negative NSEs, indicating substantial biases. Unlike e relgase
schemes, empirically derived target storage-release functions can be ized for

individual reservoirs with sufficiently long observational records .“ inflows, and

storage levels, and can reproduce observed flows more accurﬂ0 -

et al., 2020; Wu and Chen, 2012; Yassin et al., 2019; Zajg

al., 2020; Turner

, ¥017; Zhao et al., 2016).
Yassin et al. (2019) used piecewise-linear relationships b?/e ®reservoir storage, inflow, and
release to describe reservoir policies and obtain v‘ pdian NSE of ~0.5 for 37 reservoirs
across the globe. Zajac et al. (2017) re aximum NSE of 0.61 for 390 stations around
the world. Although these results rep significant progress in research, further research
was still needed to inform whe these IMprovements were robust when simulated inflows
from the hydrologic models,gathgth®n observed inflows, were used as the input to reservoir
modules at large scale, n al., 2020). In addition, one can certainly argue the current
performance Ievﬁ m for improvement, which can provide better utility for practical
applications

QI ural networks (ANNs) and other machine learning models have been
app ablish data-driven rules that relate reservoir storage, inflow, and release data.
Ehsqgi#¥t al. (2016) used ANNSs to predict daily release using previous days’ reservoir storage
volume along with inflow and release measurements, and reported an NSE of 0.86. Yang et
al. (2019) similarly applied recurrent neural networks, using inflow and water storage as inputs,
to simulate the daily operation of three multi-purpose reservoirs located in one basin, and
reported an NSE value over 0.85. However, the use of recent storage and inflow data is akin
to a form of data assimilation and is known to greatly improve simulations for short-term
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forecast (Feng et al., 2020a), but we do not use recent observations here as our objective is
long-term projection. In addition, the existing generally-available reservoir databases (Lehner
et al., 2011; Mulligan et al., 2020; Patterson and Doyle, 2018) mainly provide information on
dam design specifications or operational details for some of the most significant reservoirs,
which is not available for large-scale modeling in dammed basins.

Recently, the long short-term memory (LSTM) network (Hochreiter and Schigidhuber,

1997), a deep learning (DL) algorithm, has been applied to explore the % pydict

streamflow in basins across the CONUS. It is relatively inexpensive (in terg'n to apply
at large spatial scales, and has grown to be a well-established hydroD

2018). LSTM-based models can effectively learn streamflow&d

superior performance compared to other hydrological ben

g tool (Shen,
and have shown
els (Ayzel et al., 2020;

Feng et al., 2020a; Kratzert et al., 2019b). For example}a et al. (2019b) reported that

the median NSE value in the evaluation period ¢ h 0.74 for a 531-basin subset of the
671-basin Catchment Attributes and ogy tor Large-Sample Studies (CAMELS)
dataset using the forcing data from erican Land Data Assimilation (NLDAS) system.

More recently, Feng et al. (2020%improve®the forecast NSE median to 0.86 with the addition

of a data integration kernel porated recent discharge observations. However, the
CAMELS dataset, whi studies were based on, is composed of basins that are
considered to beqlrefeMgce” or undisturbed basins, which have minimal anthropogenic
impacts (i.e.gmini d use changes, minimal human water withdrawals) (Addor et al., 2017;
Newmag, 5). To our knowledge, there is no systematic knowledge regarding how

LS s in basins with significant human modifications such as reservoirs or water
divedgig, especially at large scales.

Here we followed a divide-and-conquer approach to tackle the difficult problem of long-
term daily streamflow prediction from dammed basins, and to delineate where challenges
reside. We addressed the following questions: (1) Given only generally-available reservoir
information, how well can LSTM networks make long-term daily streamflow predictions for

basins with reservoirs across the entire CONUS? (2) How differently do basins with or without

4
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reservoirs of different sizes function in streamflow --- how much error are we making if we
simply ignore small reservoirs and treat those basins with small reservoirs as reference basins?
(3) What kinds of reservoirs (purpose, size, diversion) can be well modeled in a lumped fashion
and what kinds cannot? These questions have not been answered in the literature and the
answers will help the community to devise an informed and coherent modeling strategy. We
further provide experiences to the community on how to best form an appropriatgafraining
dataset, e.g., whether we should include basins with or without reservoirs we

should stratify basins into different categories based on reservoir Chara®s, r simply

group them together. O

2. Methods

Y4

As an overview, LSTM-based models@rained to predict long-term daily

streamflow from basins with or wtth&rhe Inputs include atmospheric forcing time

series data and static basin attributes ographic attributes and anthropogenic influences).
We trained the models using jous suets from a newly compiled 3557-basin dataset
across the CONUS as well AMELS dataset. Basins with complete streamflow records
from 1 January 1990 t cember 2009 were selected from the Geospatial Attributes
of Gages for Evalqgdliing Qeamflow || (GAGES-II) dataset (Falcone, 2011). Below we provide

the details ofkthe cevures.

50

Long Short-Term Memory (LSTM) networks are a special kind of recurrent neural
network (RNN) which can both learn from sequential data and address the notorious exploding
and/or vanishing gradient problem (Hochreiter, 1998). These networks are composed of
memory cells, the keys to which are the “cell states” and “gates” that control information flow
within the LSTM algorithm. Cell states allow information to be stored over long time periods,
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which is important for modeling catchment processes like snow, subsurface flow, and reservoir
storage. Based on the input of the current time step and the output from the previous one, a
"forget gate" decides what information is going to be removed from the existing cell state.
Next, a sigmoid layer and a tanh layer are applied as an "input gate" to update the cell state.
Finally, the cell state is put through a tanh function and multiplied by the output of the sigmoid
"output gate" to determine the final output.

There are different formulations of LSTM-based models. Kratzert et &@sed
an N-to-1 model to predict streamflow, which means that the input was a "’Q e series
and the output was a one-step variable. An N-to-M LSTM-bas so called a
sequence-to-sequence model, was employed to predict multi-tingg-s amflows by Xiang

%

N-to-N model using meteorological forcings and static ayu ®of the basins to predict daily

et al. (2020). In the present study, following Feng et al. (2 rained a CONUS-scale

discharge. Here we did not use discharge from pr: ays as inputs. We trained the model
on sequences of a fixed length (365 for inference, we ran the model in a single
forward pass through the full time peri Is procedure means that during training, the LSTM

has no context for the initial inp eps of eFh sequence. However, in our preliminary anaysis,

we added a warm-up periodw to not have any noticeable impact. Thus we neglected
r ce

the warm-up period fo reasons. The N-to-N model had significant advantages
in efficiency, and Id h convergence for the 671 basins in the CAMELS dataset with 10
years of traiging I®69 minutes on an NVIDIA 1080 Ti graphical processing unit (GPU). In
this pa el was able to be trained on 10-year data for the entire 3557-basin dataset
urﬁ nce was achieved (300 epochs) in 427 minutes of computational time. In our
cod randomly sampled for sites and training periods to form mini-batches and we defined
the total number of iterations in an epoch as corresponding to the probability that 99% of the
time periods of all basins are picked in the epoch.

The forward propagation equations of the present LSTM-based model can be
summarized as the following (see Figure S1 in Appendix for more details), based on the
notations in Fang et al. (2020).
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x® = ReLU(W xx + by 1

(1)

O =a(D(W1x®) + D(W ;,h¢ = D) + by) (2)
i® = o(D(W,x®) + D(Wih" =) + b)) 3)
g® = tanh(D(W 3,x®) + D(W 5yh¢~ D) + b,) (4)
0® = g(D(W,xx®) + D(Woph ¢~ D) + b,) (5)
sO=fO Q=D 4iOF g® (6)

h® = tanh(s®) © o® (7)

y® =w,,h® + b, (8)

where x{P is the vector of raw inputs for the time step t, x® is the input vec{or WatH®L.STM
cell, ReLU is the rectified linear unit, o is the sigmoid activation functio & the dropout
operator, (O denotes pointwise multiplication, W’s are netwgr! @m ts, b’'s are bias
parameters, g®® is the output of the input node, f©, i®® angag(™4ge respectively the forget,
input, and output gates, s® represents the states of me lls, h® represents hidden
states, and y® is the predicted output which is co ﬁ) stre@mflow observations.
&d with the meteorological inputs at

The static catchment attributes wereﬁ
each time step to produce the inr. T®reduce overfitting, we employed dropout

regularization, which stochastigglly sets e network connections to zero. Here, D applies
\

dropout with constant dropo o recurrent connections, i.e., the connections that are

set to zero stay the samegdhr each training instance. This kind of dropout over recurrent
connections allows @n to be treated as a Bayesian network (Gal and Ghahramani,
2016). In additi nlinear transformation with a linear function and rectified linear unit
(ReLU) 2 n the first input layer, following Fang et al. (2020). This was used because
witRgut @ t transformation layer, some weights of inputs would be directly set to 0 after
dropoutihnd lead to information loss. The network outputs one scalar prediction value for each
time step, and compares it to the observation for that time step by computing a loss function,
which in this case was the root-mean-square error (RMSE) between the observed and
predicted discharges. As in Feng et al. (2020a), the Adadelta algorithm, an adaptive learning

rate scheme (Zeiler, 2012), was selected as the optimization method for performing stochastic

gradient descent on the model parameters of the neural network.
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Normalization of inputs and outputs is a useful procedure to facilitate parameter
updates by gradient descent. Normally, the loss function is defined over a mini-batch: the
model is trained on many basins over the CONUS, and a random subset of hydrographs from
some basins are put together to calculate the loss function. In this setup, however, wetter or
larger basins contribute more to the loss function than the drier or smaller ones. To prevent
this imbalance, we first normalized the daily streamflow by its area and meggaannual
precipitation to get a dimensionless streamflow, i.e., the runoff ratio, as the
Next, the distributions of daily streamflow and precipitation were transfor close to

a Gaussian distribution as possible, using the equation

lOgl()(\/7 v+ 0. 1) (9)

where v is the original value and v* is the transfo alue Finally, a standard
transformation was applied to all the inputs by su the C®NUS-scale mean value and
then dividing by the CONUS-scale standard e statistics used for normalization of

the test period data were the same g gdcalc®ated for the training period data.

There were four hypergarametoRy (i) the mini-batch size, which is the number of

hydrographs that are put toggil

é

nta®®n of the learning capacity of the LSTM network; and (iv) the

calculate the loss function before performing a weight

update; (ii) the length of thée graphs used for training; (iii) the number of hidden units,
which is a direct r

dropout probab ich Is the probability that a weight is set to 0. As in Feng et al. (2020a),

a mini-ba of#00, an LSTM sequence length of 365, a hidden size of 256, and a dropout
ravuof selected to run the model. The network training is stochastic in nature. Also
similar M the previous setup, all networks in this paper were trained with n = 6 different random
seeds. Streamflow predictions resulting from the different random seeds were combined into
an ensemble-average prediction. All evaluation metrics were reported for the ensemble-
average streamflow, except for the final model transferability experiment (For these

experiments detailed in section 2.4.4, we could clearly reach the conclusion from one-random-

seed experiments, so there was no need for multiple random seeds). All experiments were
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implemented using adaptations from the PyTorch library (Paszke et al., 2017), and were

performed on an NVIDIA GeForce GTX 1080 Ti GPU.
2.2. Basin Datasets

Until now, there had not been a large-scale streamflow benchmark dataset taining
extensive basins with reservoirs; CAMELS only has a small fraction of basins erypirs.

To compile such a dataset, we collected attributes, forcings, and strean@ or 3557
(

basins from GAGES-II, which also encompasses most of the CAM see section
2.4). We selected 30 static physical attributes which fit inﬁ gories: (1) basic
identification and topographic characteristics, (2) percenta cover in the watershed,
(3) soil characteristics, (4) geological characteristics, (5) Igead cumulative dam variables,
and (6) other disturbance variables (see Table S2 ndix for more details). Figure 1 plots
the location of all 3557 sites and shq ' &bu es of all basins including slope, forest
fraction, soil permeability, normal st f dams, and freshwater withdrawal. Basin mean

forcing data for the period 01/0 90-12/3/2009 was generated using the same method as

for the CAMELS dataset, w e by mapping a daily, gridded meteorological dataset,
Daymet Version 3 (Th ¥, 2016) to the chosen basin polygons. The Daymet dataset
was acquired frorv@Earth Engine (GEE) data catalog (Gorelick et al., 2017) in the
form of grid@ s of daily weather variables for the United States from 01/01/1980 to
the pre@ sin mean daily time series forcing data were also obtained in GEE using

the 3 ce functions. Pixels of the gridded data were determined to be in a region
accHyg#fg to weighted reducers. Pixels were included if at least 0.5% of the pixel was in the
region; their weight was the fraction of the pixel covered by the region. Daily average
streamflow was the target variable, for which data for all gauges was downloaded from the
USGS website (USGS, 2019). It should be noted that the Daymet data use UTC time
(Spangler et al., 2019), while USGS daily values are based on local time (Sauer, 2002). It is
difficult to correct this error as they were given in a daily format in the raw data. In this paper,
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we directly use daily data from the Daymet dataset and the USGS to keep consistent with the
CAMELS dataset, as many other studies did. Ideally, one would download sub-daily values
from the USGS Instantaneous Values API and shift them to UTC before aggregating to days
(or, vice versa, use an hourly forcing product and shift it to local time), as was done in some
recent work (Gauch et al., 2020). While we do not think this error changes our conclusions, it

calls attention to the need for revisions in datasets like CAMELS.

We also trained and tested models on the CAMELS dataset to allow fi risgh to
previous results. The CAMELS dataset (Addor et al., 2017; Newman et al., nincluded
basins which experienced minimal human disturbance, noted as gages, and
excluded basins where human activities including artificial divg#io ervoirs, and other
activities in the basin or the channels significantly affected flow of the watercourse
(Falcone, 2011). ,
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Figure 1. The location of all 3557 sites and characteristics of the corresponding basins. (a)
Locations of all 3557 sites. Blue “x” markers are used to represent sites belonging to the
CAMELS dataset, while red “0” points are the other, non-reference sites; (b) Slope: basin
mean slope, as a percentage; (c) Forest fraction: percentage of basin with land cover "forest";
(d) Soil permeability: basin average permeability, inches/hour; (e) Normal storage of dams:
total normal reservoir storage volume in a basin, megaliters of total storage per sgkm; (f)
Freshwater withdrawal, megaliters per year per sq km. We excluded some 'y Brge

values of (e) and (f) by choosing values below the 95% percentile va/u@ to more

clearly show basin diversity. O

2.3. Reservoir-related basin characteristics

Y4

Degree of regulation (dor) refers to the ve upstream reservoir storage as a
percentage of the average streamflow, ) &po ant indicator of the impact of reservoirs
on streamflow (Lehner et al., 201 1).Qesent study, it was calculated as the capacity-to-
llows:

runoff ratio of a basin, defined

@ dor =" (10)

where nor represe sunrof normal capacity of all reservoirs in a basin (m* per km?), and
q is the estimat &rshed mean annual runoff, or total volume of water annually leaving
the basi 'Qow (m?® per km?), from GAGES-II. A dor value of 0.1 was set as the cut-
off it n basins with relatively little human regulation (small-dor basins) and basins
with relZively large human regulation (large-dor basins) based on our preliminary analysis of
the distribution of whole-CONUS model’s performance across different basins as a function of
dor. The doris analogous to the commonly used metric of storage ratio (McMahon et al., 2007).
A basin with dor=0.1 has the approximate storage of about a month of streamflow, which

typically would be expected to have significant impact on daily streamflow yet is not enough

to heavily modulate flow across seasons. On a side note, dor was not the threshold used by

11
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CAMELS to select basins. CAMELS contains 344 small-dor basins and 32 large-dor basins,
which represent a much smaller fraction of the CAMELS basins as compared to the overall
CONUS.

We hypothesized that reservoir characteristics such as their purposes could be useful.
To obtain these attributes, dams listed in the National Inventory of Dams (NID) database (US
Army Corps of Engineers, 2018) were spatially joined with the boundary polygons of tg basins.
To minimize the influences of these differences on our results, we excluded a S yhich

did not have matching dams included in NID and GAGES-II. Next, for eve@, sum of

the reservoir's normal capacity associated with each dam purpC

purpose with the largest associated capacity was considered t&

ﬁ Sha&ing the largest capacity,

we calculated normal storages of these purposes in o?r portance (indicated by the

order of the letters symbolizing the dam’s purpos@“SC” indicates a primary purpose of

water supply followed by flood control ’&hose the most important purpose with the

ulated. The

jor purpose of the

collective dams in the basin. If there were more than one p

largest capacity. If still more than o ose was obtained, we treated them as being of
equal importance, meaning thatQgere wer@®multiple main dam purposes listed for that basin.
There were only a few basi ategories of main dam purposes (only 1 basin had the
main dam purpose of [ ntrol”, and only 7 basins had the main dam purpose of
“Navigation”), whi Qenough to determine statistical characteristics, so they were
excluded frogn thegiat®tical analysis. After all of these processing steps were complete, 656
basins Q 7-basin dataset were excluded from the statistical analysis in section 2.4.2:
6105 not have dams, 38 basins do not have dams listed in either the GAGES-II
dat or NID database, and 8 basins have main dam purposes of “Debris Control” or
“Navigation”. As a result, 2901 basins with 10 main dam purposes (Table 1) were available to
analyze the influence of reservoir types (Table 2).

We added flags to describe the presence of water diversion, based on remarks and
comments included in the GAGES-II dataset. “WR_REPORT_REMARKS” reported remarks

pertinent to hydrologic modifications from the Annual Data Report (ADR) citation of the USGS,

12



332 and “SCREENING_COMMENTS?” reported screening comments from National Water-Quality
333  Assessment (NAWQA) personnel regarding evidence of human alteration of flow, based on
334  visual (primarily Google Earth) screening. We manually read through the text in these columns,
335 and if there was some description with "diversion" or "divert" for a basin, the presence of
336 diversion for this basin was regarded as "True"; otherwise it was assumed “False”.
337  Unfortunately, there was no available data regarding the volume of diversion, agg hence
338 diversion could only be used as a qualitative flag for our statistical analysis.

339 Q

340 Table 1. Major reservoir purposes for basins in our dam char ; taset

341 0

Type Purpose mber of Basins

C Flood Control and Stormwater Managevnt 313

F Fish and Wildlife Pond & 94

H Hydroelectric Q 196

I Irrigation 328

Other @ 163
ﬁo tion, Stock, or Small Farm Pond 66

OJj -U O

RgCreation 1207
Water Supply 426
Tailings 52

X Unknown 66

342
343  2.4. Experiments
344
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2.4.1. Temporal generalization tests

As we first wanted to determine the level of performance that could be achieved using
one model over all 3557 basins in the full dataset (Table 2), an LSTM-based model (LSTM-
CONUS) was trained and tested over all of these basins. For comparison to previous studies
using the CAMELS dataset, we selected 523 basins (Table 2) from CAMELS (LSTM-CAMELS)
to form a training set. The choice of 523 was made for multiple reasons. Firstly, 3557-
basin dataset does not actually contain all of the CAMELS basins. In additi tigPute
data from the GAGES-II dataset and the forcing data used in this study, I@ ion 3 in
GEE (last access in this study: 18 January 2020), were not exactly those used
for CAMELS. Finally, by removing some basins with large basiglfar re is a 531-basin
@

modeling in previous work (Feng et al., 2020a; Kratzert e?, ob). An intersection between

subset of CAMELS which has often been selected as t rk set for rainfall-runoff

the 3557 basins and this 531 benchmark CAME et basins resulted in the 523-basin

“baseline” CAMELS dataset we usec@%‘e S were trained using data from 1 January

1990 through 31 December 1999, ting was done using data from 1 January 2000

through 31 December 2009. \

2.4.2. Exploring the i S eservoir attributes on model performance

There areqan servoir attributes that could potentially inform improvements in
streamflow rgodeg, Rich as dam storage or distance from gage location to dam. As the first
paper Q of our knowledge) to study continental-scale streamflow prediction in
dﬁ ns in a deep learning context, we explored the impacts of multiple reservoir
attri and anthropogenic factors (details in Appendix Figure S2). Then, within the scope
of this paper and partially consistent with McManamay (2014), we examined three major
factors having significant influence on our model performance: capacity-to-runoff ratio (degree
of regulation, dor), main dam purpose, and presence of diversion. As the models utilized in
this study were basin-centric, these factors needed to be aggregated to each basin, which was

done following the procedures discussed in Section 2.3.

14



373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

Table 2. Datasets used in the this study

Name Number of basins Explanation

full dataset 3557 Basins with complete streamflow records during
1990/01/01-2009/12/31, selected from GAGES-II
(section 2.4.1)

523-CAMELS 523 Basins contained both in full datase

dataset CAMELS (section 2.4.1)

dam 2901 Subset of full dataset, containin used to

characteristics explore the impacts of the j#MgT8 : capacity-

dataset to-runoff ratio (dor), dam f @ and diversion
(section 2.4.2)

zero-dor dataset 610 Subset of full dat
dams (section

ONggining basins without

small-dor dataset 1762 Subset of full vase ontaining basins with 0 <
dor<0 tion 2.4.3, 2.4.4)
large-dor dataset 1185 Sulpfet ataset, containing basins with dor
.1gction 2.4.3, 2.4.4)

2.4.3. Stratification by resew&me s. pooling data together
For DL models in g@ihe rdviding more data often leads to model improvements.

From the perspective gf mRRi®learning, then, lumping all data together would thus seem to
be the obvious ce to follow, given the likely beneficial impacts on modeling
peﬁormanc%s simple implementation. However, it remains possible that stratification
by,res qiributes might result in clear separation basins with different latent (unknown)

attrib .tence, our research question 2 raised in the Introduction became two sub-
que s: (2A) Should we group all basins together, or classify basins into certain types and
train models for each class separately to achieve the best performance? (2B) Do basins with
varied reservoir regimes (no reservoir, small reservoir, or large reservoirs) function
fundamentally differently? This could be proven true if basins trained in one regime cannot

apply to basins in another regime.
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To answer question 2A, all basins in the full dataset were divided into three groups

(Table 2): zero-dor basins (dor=0), small-dor basins (0<dor<0.1) and large-dor basins

(dor=0.1). We trained models on these different groups individually, as well as together in

various combinations. First, we trained and tested three LSTM-based models, called LSTM-

Z,LSTM-S, and LSTM-L (we used “LSTM-x" to represent the LSTM-based models, yich was
different from the naming method for the datasets), on zero-dor, small-do rqgtdor
basins, respectively. Second, basins from two of the three groups were co@i training

nd small-dor

sets for three additional LSTM-based models: LSTM-ZS (trained o

datasets), LSTM-ZL (trained on zero-dor and large-dor datase QM-SL (trained on
small-dor and large-dor datasets), but these three models g on basins from each of
zero-dor, small-dor, and large-dor datasets. Finally, the tegn @& sults of basins in these three
groups were compared to results for the same b@ﬁ the LSTM-CONUS (trained on full

dataset) model.

2.4.4. Model transferability ex{griments

To answer question se®in 2.4.3, we ran a set of predictions in ungauged basins

(PUB) experiments, in s trained in one set were tested in other sets. Further, when
a model is trained4g@so asins and tested in others, the performance will naturally degrade.
Therefore, ad c®ntrol experiments where models were trained and tested on the same
catego@ s, which helped to disentangle the effects of reservoir regime and spatial
extr .

or example, zero-dor basins were divided into two batches (Train-z and PUB-z) with
a ratio of 1:1 for training and test, respectively. We ensured that each of these cases was
representative of the full group by including basins from every LEVEL-Il ecoregion (Omernik
and Giriffith, 2014). The model trained on the Train-z set is then tested on Train-z itself, PUB-
z and a subset (PUB-s) of the small-dor basins. These three test sets represent temporal

generalization alone, spatial extrapolation and “spatial extrapolation+difference in reservoir
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regime”, respectively. Similarly, we separated the small-dor dataset into Train-s and PUB-s,
and the large-dor dataset into Train-l and PUB-I. We also ran experiments with a mixed training
set, e.g., Train-z and Train-s were merged to form one training dataset called Train-zs. Once
trained on Train-zs, the LSTM-based model was tested individually on PUB-z and PUB-s. Two
more training sets, combining zero-dor basins with large-dor ones (Train-zl), and pairing small-
dor basins with large-dor ones were set up in the same way (Train-sl). It was not piggtical to
attempt all possible combinations, but the combinations used sufficientl redythe
question (2B).

Finally, a fourth sub-experiment was added for comparison, ansferability
of the LSTM-based model trained on the 523-CAMELS datﬁ asins of the 523-
CAMELS dataset were also divided into the training (Tr est (PUB-c). Then, the

models trained on Train-c were tested on itself and other PUB-c/PUB-z /PUB-s/PUB-

). The details of all four of these sub-experim@ed in Table 3.

Table 3. A summary of the training ting datasets for sub-experiments exploring PUB
with dams. All models were trafgd from uary 1990 through December 1999, and tested
from January 2000 through 2009. Multiple basin counts are given for each case of
the first three sub-ex n s we ran two tests (and therefore performed the basin
groupings twice) ea®ycase. For example, in the first sub-experiment, Train-z had 299
basins for the firsQgur® and 309 basins for the second run. We list the Train-z and PUB-z

dataseg the first and second sub-experiments, because they belong to two

inde ub-experiments.

sub-experiment ID  training dataset (explanations) test dataset (explanations)

1 Train-z Train-z (same as the training set)
(299/309 randomly selected
zero-dor basins)

PUB-z
(309/209 zero-dor basins that are
different from those in Train-z)

17



PUB-s
(300/292 randomly selected
small-dor basins)

Train-zs
(A mixture of 544/560 zero-dor or
small-dor basins)

PUB-z (280/272 zero-dor basins
that are different from those in
Train-zs)

PUB-s (280/272 small-dor basins
that are different from those in
Train-zs)

2 Train-z Train-z (same as t ammng get)
(295/305 randomly selected
zero-dor basins)
yero-dor basins
from those in
Train-zl PUB-z (264/256 zero-dor basins
(A mixture of 512/528 r oy that are different from those in
large-dor basins Train-zl)
PUB-I (264/256 large-dor basins
that are different from those in
Train-zl)
3 Train, Train-s (same as the training set)
871/ mly selected
o) PUB-s (879/871 small-dor basins
that are different from those in
K Train-s)
PUB-I (639/634 randomly
selected large-dor basins)
Train-sl PUB-s (444/438 small-dor basins

(A mixture of 876/888 small-dor
or large-dor basins)

that are different from those in
Train-sl)

PUB-I (444/438 large-dor basins
that are different from those in
Train-sl)

Train-c
(257/264 basins in the 523-
CAMELS dataset)

Train-c (same as the training set)

PUB-c (264/257 basins that are
different from the Train-c dataset,
but still in the 523-CAMELS

18



439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

dataset)

PUB-z (383 zero-dor basins that
are different from the 523-
CAMELS dataset)

PUB-s (1482 small-dor basins
that are different from the 523-

CAMELS dataset)
@at

2.5. Metrics Q
In this study, the metrics used to mathematically quantiig@the acy of the models

PUB-I (1169 large-
are different from t
CAMELS dataset)

included bias, Pearson’s correlation (Corr), the Nash-S ﬁ el efficiency coefficient

(NSE) (Nash and Sutcliffe, 1970) and Kling-Gupta effici(—v/ E) (Gupta et al., 2009). Bias

is the mean difference between modeled and gb alues. Corr is the linear correlation
coefficient between modeled and obs \% s, and is not influenced by bias. NSE is a
normalized statistic that determines th tive magnitude of the residual variance compared

to the measured data variance. E is a ndnlinear combination of correlation, flow variability
measure, and bias; it is anoiffier, n metric to evaluate how well the models perform. We
also reported the percght Mgs® the top 2% high flow volume range (FHV) and the percent
bias of the bottorg0% flow volume range (FLV) (Yilmaz et al., 2008). FHV and FLV

highlight thegqgerfo ce of the model for peak flows and baseflow, respectively. Metrics for

all exp I this study are reported for the test period (01/01/2000-12/31/2009).

3. ts and Discussion

3.1. CONUS-scale model with reservoirs

For the 3557 basins in the full dataset, the ensemble median NSE of the CONUS-scale

model reached 0.74 (Figure 2c, details of ensemble experiments recorded in Appendix Table
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S3). This value is at the same level as the previous benchmarks with the CAMELS reference-

basin dataset (Feng et al., 2020a; Kratzert et al., 2020), despite that 83% of the 3557 basins

have dams present in GAGES-II. When the models trained on CAMELS (LSTM-CAMELS)

and CONUS (LSTM-CONUS) were tested on the 523-CAMELS baseline reference dataset,

both achieved a median NSE values of 0.75 (Figure 2c, more details in Appendix Table S3).
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Figure 2. Comparison of the empirical cumulative distribution functions ' for the 523

basins tested in LSTM-CONUS and LSTM-CAMELS, and the 3557 @ TM-CONUS.

or some basins is

The CDF of FLV does not reach 1.0 because the 30% low ﬂo@
S

completely composed of zero-flow observations. Thereforg @ ys€ basins, the percent bias

is infinite, and thus the x-axis cannot include them. ,

The high NSE for the entire s &%nexpected, because we had earlier
thought that reservoirs would create lenges for LSTM and there may not be reliable
mapping relationships that coul learned on a large scale. Comparing our results to those
reported in the literature, a S 074 certainly represents a state-of-the-art prediction for
basins with reservoirgffan ch more operationally-reliable model. Besides the values

reported in Iiterat& arized in the Introduction and Table S1, many of which reported
negative N forWis challenging problem, the closest value we can find in the literature was

;
), who added reservoirs into a simple lumped hydrologic model, tested this

40 pasins (mostly in France), and reported a mean NSE of 0.68. We would also like
ton at the meteorological data for CONUS seems to have larger error than the European
counterpart, which could lead to our model presenting an even higher NSE with European
basins if we were to train our models there. In line with this hypothesis, some of our previous

work showed that we could obtain a NSE of 0.84 for CAMELS-GB (Coxon et al., 2020), which
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has 670 basins from United Kingdom (Ma et al., 2021), while the same model with the same

training procedure could only achieve a NSE of 0.74 for CAMELS over CONUS.

When tested on the 523-CAMELS dataset, the expanded dataset led to slightly
improved overall bias with almost the same correlation but slightly decreased KGE (noticeable
by comparing red and blue lines in Figure 2a-b,d). Since KGE is a composite tric of

correlation, flow variability, and bias, we suspect that additional samples in th I dahset

enlarged the flow variability, which makes it a little more difficult for LSTM S capture
the flow variability for the 523 basins. This hypothesis can be furth ' y looking at
the values for FHV and FLV. The median FHV values when testegfon CAMELS basins

were -10% for LSTM-CONUS and -4% for LSTM-CAMEL minor increase in high-

flow bias for the expanded dataset (Figure 2e). In contra?fo Ife same test set, the low-flow

simulations were improved by the use of a bigge dataset, as the median FLV values
were 28% for LSTM-CONUS, and 33% &A LS (Figure 2f). Compared to CAMELS,
we suspect the expanded set may a higher fraction of basins with large reservoirs

which attenuate the peak rowwnce e LSTM-CONUS model tended to predict lower

peaks. @

(b) NSE map of LSTM-CAMELS

Figure 3. NSE spatial patterns of the ensemble results of (a) LSTM-CONUS and (b) LSTM-

CAMELS.
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LSTM-CONUS and LSTM-CAMELS both showed good performance in the
northwestern CONUS and most parts of the eastern CONUS, but had relatively poor
performance on the Great Plains, Texas, Oklahoma, Kansas, and parts of California (Figure
3). The regional distribution of NSEs is largely in line with earlier work (Feng et al., 2020a),
where basins on the Great Plains and the extremely-dry southwestern border performed
poorly with LSTM-based modeling. Evidently these basins in the central CONUS cgalinue to
pose challenges for LSTM despite the larger dataset, perhaps because th roestl| Mrge

basins where the homogeneous assumption of the LSTM-based models

3.2. Analysis of the impacts of reservoir-related factors @

Using the results from the CONUS-scale simulati?( -CONUS), we explored the
uncertainty of the current LSTM-based model gui ree attributes: the capacity-to-runoff
ratio (degree of regulation, dor), the p e dam and its associated reservoir, and the
presence of diversion (Figure 4a). s a clear pattern regarding dor: regardless of the
purpose, the overall model perFN nce, a®Pquantified by the median NSE, was always better
for small-dor basins than f(@ r ones (see Figure 4d). This observation differs from
previously-reported re d with a process-based model (Shin et al., 2019), which
had more diffic icting the streamflow of basins with small-capacity reservoirs
(correspondjgg to dor). The management policies of reservoirs could change over time
and we@ potentially the reason why the model did not perform as well for large-dor
basi er, for small-dor reservoirs, the model still delivered excellent performance so
suc nges in policies may not have resulted in dramatic impacts for these small reservoirs.
A first-order visualization of the impacts of other control variables are given in Appendix Figure

S2.

Exploring model uncertainty based on dam purpose not only showcased the
uncertainty of the LSTM-based models, but also clearly indicated that different types of
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reservoirs exert varied influences on streamflow. Among all the various dam purposes, basins
with reservoirs mainly for recreation (R) or water supply (S) were easier to model. It may be
inferred that the water storages of these reservoirs changed relatively little on a daily scale to
achieve their purposes and therefore had less impact on the streamflow than other reservoirs
(Ryan et al., 2020). Three types of reservoir purposes stood out as being more challenging to

predict (Figure 4b): fire protection or farm ponds (P), irrigation (1), and hydroelectric (HaaBasins

with "P" reservoirs, for any dor value range regardless of the presence of
difficult to predict and had the worst performance of all those in the smal ry. This
#es for a chain

indicates that LSTM had trouble finding a universal relationship to mg S
eservoirs was not

of many small, individually-regulated ponds. Difficulty in modelir(
Y

unexpected, as it has been shown that irrigation water usag

ific seasonal variations,
and is related to the crop type, field, and other site-spe}ic ormation (Shin et al., 2019).
Critical information that would help with modelin se basins, such as water use and

timing, is not generically available. Like &era lonal policies of hydroelectric (H) dams
a
wh

seek to optimize electricity productio re therefore influenced by the prices on the local
electricity grid (Giuliani et al., \ ichWere not included in this dataset.

The presence of d@ bstantially decreased NSE values (Figure 4a). For
instance, it is visibly a there are smaller NSE values for dam purposes "I", "O",
"P" and "R" in t asMg with diversion. This was also expected: diversion influences the

water balange, bURgeC®use no information about the quantity of diverted water was available

to the E) model, the model couldn’t understand the imbalance, leading to reduced
predNgio ormance. A clearer separation is seen in the results of four specific cases, which
diffi combinations of only two categorical variables -- the dor value range, and the

presence of diversion (Figure 4c). The median NSEs for small-dor basins without diversion,
small-dor basins with diversion, large-dor basins without diversion and large-dor basins with
diversion were 0.78, 0.76, 0.65, and 0.62, respectively. It was evident that LSTM could reach

the best performance in small-dor basins without diversion, while the worst performance
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568 occurred in large-dor basins with diversion, and thus the effects of the two factors seem to be

569 additive.
570
571
572 (a)
diversion = no diversion = yes
1.00
0.75
0.50
M 025
Z [ dor>01
0.00 B dor<0.1
—-0.25
—0.50
C F H O P R S T X CFH, R &§ T X
573 purposes purpos

574 (b)
1.0 :
0.8+ N
0.6 71
[l 0.4 4 1, :
% 0.2 7051
0.0 .
—0.21 :
_0.4 T T T T T T T T . I
C H O P R § T X
575 purposes
576 (d)

25

—— not_diverted_small_dor
—— not_diverted_large_dor
0.84 ---- diversion_small_dor
---- diversion large dor
- CONUS

(©)

,,,,,

—

0.0
0.0 0.1

02 03 04 05 06 07 08 09 10
NSE



577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

1.0

084 %TTTTT

ol | Tlllj

NSE

0.2

0.0
—0.21
—0.4 1

N &
USRI RN ST
Q- Q

DOR RANGE
Figure 4. (a) NSE distributions with three categorical variables. doange (‘small-dor”

basins have O0<dor< 0.1 and ‘large-dor” basins have dor 2, W purposes of reservoirs

d Control and Stormwater

in a basin, and presence of diversion. Dam purpz‘ C:

Management; F: Fish and Wildlife Popgk i ctric; I: Irrigation; O: Other; P: Fire
Protection, Stock, or Small Farm P ecreation; S: Water Supply; T: Tailings; and X:
Unknown. (b) NSE distribution Qﬁs K1 different main dam purposes. (c) NSE empirical

cumulative distribution funci U from LSTM-CONUS and four cases resulting from

combinations of two ca iables: dor range and presence of diversion. The blue and
green lines respec present the NSE distributions of small-dor basins with and without
diversion, whic &icked out from the ensemble result of LSTM-CONUS. The red and
orange tively indicate the NSE distributions of large-dor basins with and without
di Qgrey dashed line represents the empirical CDF of LSTM-CONUS. (d) NSE as
a fugctisn of dor values all 3557 basins; the ranges of dor values: 0, (0, 0.02], (0.02, 0.05],
(0.05, 0.1], (0.1, 0.2], (0.2, 0.4], (0.4, 0.8], >0.8, where “(]” means a left side half open interval;
the correspond numbers of basins in each range: 610, 1076, 377, 309, 311, 277, 247, 350;

other plots in this figure are for dam characteristics dataset shown in table 2.
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The main challenges for LSTM-based modeling of reservoirs are clearly delineated
(Figure 4a): LSTM had difficulty predicting streamflow for large-dor basins with dams for fish
and wildlife, flood control, hydroelectric power generation, irrigation, and fire protection, with
difficulty increasing in this order. Diversion further added to the challenge. To our knowledge,
such identification of specific challenges has not been previously reported. Additionally, it was
not previously clear that these challenges mainly exist only for large-dor basins. all-dor

basins, even those with reservoirs for irrigation and hydroelectric purposes, ca soghbly

captured by LSTM, presumably because they have limited adaptive c TM can

approximate an optimal information extractor, which suggests that w ply sufficient

information needed to model the more challenging cases and prwﬁ geted direction for

future work.

Y4

dor is apparently a major control on@ model performance (Figure 4d).

Interestingly, small-dor basins, instead &basms, have the highest performance. The
median NSE in the 0.05-0.1 dor bin | st 0.8, a very high number (we offer explanations
later). Below dor<0.1 human isions c&not shift water availability across seasons. As

discussed earlier, basins WI% ave the reservoir storage equivalent to approximately

one month of averag As dor gets bigger than this amount, they have more

capability to regu n a seasonable scale, and the impact of human choice becomes

more promi al®o found the basin with more reservoirs could have equivalent or higher

perfor e S2l), which suggests the difficulty may have mainly come from one or
few ms. Due to sometimes unpredictable human decisions influenced and also the
non narity in such decisions, e.g., shift in reservoir management policies, the dor>0.1
becomes increasingly difficult to simulate. This figure is also the basis for us to choose dor=0.1
as the threshold. Despite the challenges for large-dor basins, we nonetheless note that even
for these basins, LSTM obtained a median NSE of 0.65 for basins without diversion, which is
higher than many literature values reported in Table S1. To put things even further into context,

a recent study for a basin with a major dam (USGS 11462500, Russian River near Hopland,
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California, dor = 0.17) reported oftentimes negative daily NSE values and correlation between
0.5 to 0.8 for different months of the year (Kim et al., 2020). In contrast, the CONUS-scale
model developed in this study reported a very high NSE value of 0.88 and correlation of 0.94
for this specific station. For a different comparison, the National Water Model reported an NSE

of 0.62 for reference basins in CAMELS (Kratzert et al., 2019a).

3.3. Impacts of training dataset 6
Our experimental results suggest that datasets with differentGnges can be

trained together to enhance overall performance, and at the veryi

not exert a significant detrimental impact on the model (Fig

ed training should

more details in Tables
S3 and S4, Appendix). With the inclusion of small-dor t?in ® the training set (LSTM-ZS),

there was a small improvement in predictions fi med basins (Wilcoxon signed-rank

test: p=4.9 x 10%). For small-dor basi eQere no clear differences in test performance

when training with zero-dor bas'ns&ge . In the large-dor basins, as compared to the result

of LSTM-L (training with only lazge™§r basins), all other cases reported slightly increased NSE
values and fewer “catastr@uras” (cases with NSE close to or smaller than 0),

suggesting that ne rm was brought in by pooling information together. It is possible
K

that the inclusi ro-dor or small-dor basins allowed the model to better understand

natural flowsQad e ®bled better modeling of the large-dor basins. Such a pattern fits with our

g raations obtained from training DL models.

We did see a slight exception to this pattern, however, when adding large-dor basins
to the training set. When large-dor basins were added to the training set, a minute deterioration
in NSE was observed when this model was tested on zero-dor and small-dor basins: the

median NSE decreased from 0.72 to 0.71 for LSTM-ZL (left panel of Figure 5a, Wilcoxon

signed-rank test: p=1.3 x 10#), and there was a declination from 0.79 to 0.78 shown for LSTM-
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SL (center panel of Figure 5a, Wilcoxon signed-rank test: p=1.2 x 10-32). We hypothesize that

operations of large reservoirs are characteristically different from those of smaller reservoirs,
and therefore the inclusion of large reservoirs introduced some noise to the data and made it
more difficult for LSTM to grasp a universal pattern. Nevertheless, the adverse impact was
quite minor. This result, along with our other observations of LSTM-CONUS (Section 3.1), also
imply that it should be possible to fine-tune the LSTM-CONUS model for c@w to
obtain refined simulations.

We were surprised to see that small-dor basins had notably SE values
(median NSE ~0.79) than zero-dor basins (median NSE ~0.72) (Eig @ Two hypotheses

could potentially explain this phenomenon: first, that the small-dorgsins may be concentrated

®
dor reservoir may serve as a buffer to boost the s ﬁthe stem, thereby reducing the
impacts of flash precipitation peaks which legPing to model (Feng et al., 2020a).

Looking at the basins on a map a p eter space (Figure 5b), however, while

in certain areas, e.g., mountainous areas, where NSEs ten® igher; second, that a small-

mountainous basins do have higher N , the zero-dor and small-dor basins are mixed in

space and there is no spatial a9 ation of one or the other. Therefore, we reject the first

hypothesis (concentration)

& (a)

oward the second one (buffer).

O
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672 Fi oxp/ofs of NSE values for zero-dor basins (Z, dor=0), small-dor basins (S,
673 O< . 1) and large-dor basins (L, dor=0.1). Green, blue, and red boxes show the results

674  from models respectively tested on zero-dor, small-dor, and large-dor basins, while the training
675  sets are noted on the x-axis labels. For each color, the lightest-colored box was trained solely
676 with the same subset of basins on which it was tested, while the others had additional subsets

677 included in the training sets. Basins in the test sets were always subsets of the training sets,
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and the models were trained in 1990-1999 and tested in 2000-2009. (b) The left part is a NSE
map of the western CONUS where small-dor and zero-dor basins coexisted. There are 303
zero-dor basins and 310 small-dor basins shown here. The right is a scatter plot of the
relationship between NSE and SLOPE_PCT (mean watershed slope, as a percent). The NSE
values are part of the results for LSTM-CONUS (section 3.1). Red circular markers represent
the zero-dor sites, and blue x-shaped markers represent the small-dor sites. For the gaap only,

sites with lighter colors have lower NSE values.

Additionally, we were also surprised to see that LSTM s onably good
performance on even large-dor basins, with median NSE vﬁ .64 in the overall
p

CONUS training sets (the rightmost boxplot in Figure tively, which were still

comparable to SAC-SMA’s median NSE of 0.65 (Feng et a) for reference basins. This
result suggests a large advantage of LSTM for reservoirs as compared to earlier
methods.

3.4. The PUB experiments angodel trasferability

As we asked in o the introduction, were the NSE values for dammed basins
similar to previousegesu ith CAMELS because these basins in fact behave similarly? If this
was not the gase, Naw Wifferent are these basins? Our stratified PUB experiments showed that
there ws ial differences between zero-dor, small-dor, and large-dor basins such that
app Pels trained only on one type of basin to other basin types caused significant
perf nce drop that could not be explained solely by spatial extrapolation (Figure 6). For
example, the median NSE values for “Train-z”, “PUB-z”, and “PUB-s” were 0.65, 0.51, and -
0.06, respectively (Figure 6a). The scenario Train-z was a temporal test only, so this NSE
value of 0.65 represents model performance without spatial extrapolation (this value was lower
than LSTM-Z shown in Figure 5a because the training sample size was smaller: the zero-dor
basins were randomly split for this experiment, as explained in section 2.4.4). The decline from
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0.65 to 0.51 for PUB-z was then due to spatial extrapolation in the same zero-dor group. The
more dramatic decline from 0.51 for PUB-z to -0.06 for PUB-s can be entirely attributed to the
behavioral difference between zero-dor and small-dor basins. We also note larger declination
for large-dor basins (Figure 6b-c), with median NSE values of -0.19 and 0.18 for the PUB-I
cases.

Including diverse basins in the training dataset substantially elevated ovegall PUB
performance. The mixed training sets (Train-zs, Train-zl, and Train-sl, the bo egght
side of each panel in Figure 6a-c) had greatly improved median NSE value greatly
reduced incidences of catastrophic failures (cases with NSE close t

It is noteworthy to mention that when we trained a modepfole asins subset from
the 523-CAMELS dataset and then tested it on the other 23-CAMELS as well as
zero-, small-, and large-dor basins, the model gave outrigyji ous results for PUB-z, PUB-
s, and PUB-I (Figure 6d). This means that CA sins, as they are reference basins,
differ fundamentally from the others, the zero-dor basins. This result distinctively
highlights the danger of using CAM ins as the whole training set for continental-scale

modeling, and also suggests w nnot siM®ly ignore small reservoirs or simply treat them as

being equivalent to referenu@
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di ombinations of basin types: ¢ indicates 523-CAMELS, z indicates zero-dor basins,
s indicates small-dor basins, and I indicates large-dor basins. Combinations of letters indicate
that a combination of the indicated basin types were used (refer to Table 3 for details). The
drop in performance from training basin-located test results to PUB-basin-located test results

of the same type (e.g. Train-z vs PUB-z) represents the effect of spatial extrapolation, while

the drop across different basin type combinations (e.g. PUB-z vs PUB-s) represents the effect

33



732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

of migrating models across reservoir regimes. A side note: the PUB-c in (d), with a median of
0.60, is not comparable to other PUB tests in the literature. Here we only used ~260 CAMELS
basins as training data and did not employ an ensemble for different random seeds (so as to
be inline with other experiments in this figure). This test is solely shown to highlight the

difference between the CAMELS basins and the others.

3.5. Further Discussion 6

In future work, we could allow LSTM to estimate model un ; sed on input
attributes, as shown in the modeling of soil moisture (Fang eg

N

it could be useful to incorporate more information regardir?v

and rainfall-runoff

(Klotz et al., 2020). To further improve modeling capabilitj ore challenging cases,

se, electricity price patterns,

and estimated diversion rates from sources like w agement models (Yates et al., 2005)
into the context of optimization proces I&Qani et al., 2016). Fine-tuning may be another
approach to improve predictions in challenging basins (Sampson et al., 2020). For

example, Ma et al. (2021) transi®ged their Model trained on the CAMELS basins over to a few

basins in Sichuan province § a¥nd obtained better results than the model trained with

all local basins. Otherr, ted information such as distribution of the storage capacity
among the basin’qgfesegirs, surface water area, or storage change in a basin may also be
used as ingts udh an encoder unit (Feng et al., 2020b). Moreover, physics-guided

#fla is scarce. In addition, a distributed version of the deep learning models could

Read et al., 2019) could be employed to provide more stability where

repr t the spatial heterogeneity of a basin and may perform better than the lumped ones
for large basins. In the future, machine-learning-based routing schemes (Bindas et al., 2020)
can be added to support flood modeling in major rivers.

As a rule of thumb for DL models, pooling data together almost always helped improve
modeling, which was confirmed by the zero-dor and small-dor cases shown in this study.
However, here the large-dor basins could slightly pull down the metrics for other cases, which
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deviated, albeit in a minor way, from this rule. We think that this was due to a combination of
the rainfall-runoff processes from different basins having very dissimilar patterns, and the
information from the inputs not being enough to discern differences between reservoir regimes,
causing the LSTM-based model to struggle in fitting all of this information into one universal
model. We suspect that the large-dor basins represent an extreme case of the problem of
unmodelable dissimilarity in geoscience. The cut-off dor of 0.1 in this paper is an ogggational

threshold, but may not be the only choice. Other dor cut-off values may als icgble,

but this was not the focus of this paper. Future work should concentrate o i®orporate

more information and tune the model structure to train a univeg || 0 for all non-

regulated/regulated basins. K

4. Conclusion ,

Prior work has documentedQ&o modeling rainfall-runoff processes with

LSTM in reference basins with mini ropogenic impacts. However, to our knowledge,

no previous deep-learning basww sed on basins significantly impacted by reservoir
r

operations at a continental gffal modeling implications of reservoir attributes. For this
work, we created a ne onsisting of 3557 basins over the CONUS, and trained an
LSTM-based modefwhi chieved an ensemble test median Nash Sutcliffe model efficiency

¥4. This performance was at the same record level as reported for

sed modeling benchmarks, which showed for the first time that many
be modeled as part of the standard basin rainfall-runoff and storage processes.
In f. ese results provide the first benchmarks for basins with and without reservoirs: zero-
dor, small-dor, and large-dor basin subsets had median NSE values of 0.72, 0.79, and 0.60,
respectively. Furthermore, the NSE value for even the most challenging large-dor basins in
the model over the CONUS (0.64) was still comparable to that of the current operational

hydrologic model, SAC-SMA, trained and tested only with reference basins (0.65) (Feng et al.,
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2020a), which further highlights the effectiveness of LSTM as a competitive option for
emulating basins with reservoirs for large-scale hydrologic modeling.

Our results provided us with a coherent modeling strategy and some useful lessons.
We showed that zero-dor and small-dor basins behave characteristically differently (and are
also different from CAMELS reference basins), which strongly suggests that we cannot simply
ignore smaller reservoirs out of convenience and treat them as natural flow, the gtandard
practice in some process-based models. If using a data-driven model, the 'S negiicial

strategy we determined for small reservoirs was to include their reservoir, eNand train

a lumped, uniform model that simulated them as part of the basin
We showed that basins with different dor values can be trainedﬁ er a large dataset

to obtain record-level modeling performance, a strateg

modeling process. If using a process-based model, the’r onding approach may be to

modify parameters in the model, e.g., linear rese

smaller reservoirs. The LSTM-based m &

without diversion, especially for thos eservoirs for water supply and recreation. For the

e best performance in small-dor basins

large-dor reservoirs of certain es, i.e., ¥re protection or farm ponds, hydroelectric, and
irrigation dams which are m CUWo model, we may adopt a mixed approach to represent
them separately. Consj is already very strong with respect to feature extraction,
it is likely that morqXeleVagt information, e.g., electricity prices or irrigation water demand, will
be needed tg impue their simulation. This paper is the first time such a systematic analysis
has be from a data-driven perspective.

ON B tests advised us of the most important factor in LSTM-based modeling of
da basins: there must be sufficient representation of small-dor and large-dor basins in
the training set. Dammed and undammed basins behave characteristically differently, and
migrating models between them can be dangerous: when a model trained only on CAMELS
reference basins or zero-dor basins was tested on basins with dams present, we encountered
catastrophic failures. We showed that pooling all data together for model training tended to

improve results, and even when it did not (likely due to insufficient input information and very
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heterogeneous training data bringing in noise), the inclusion of training data from other

scenarios still did not significantly jeopardize the results.
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Figure S1. The illufrati®gof the LSTM-based model structure and its unit. x{ is the vector of

raw inputs fgr the' tep t, p is the length of time sequence of LSTM in the training period.

ReLU(/Q rectified linear unit, x® s the input vector to the LSTM cell, g is the output
of t ode, f®, i® 0O are the forget, input and output gates, respectively, s©
rep ts the states of memory cells, h® represents hidden states, and y® is the predicted

output which is compared to streamflow observations.
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858  Figure S2. Scatter plots (subfigure a-k) and a boxplot (subfigure |) for relationships between

859  NSE values (20) from the LSTM-CONUS model and some reservoir-related attributes. There

860 are many attributes potentially impacting the performance of the LSTM-based model. We

861  analyzed the information about dams and other anthropogenic hydrologic modifications in
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the basin in the GAGES-II dataset. (a) NDAMS: number of dams in a basin; (b) STOR_NOR:
dam normal storage in a basin, megaliters total storage per sq km; (c)

RAW _DIS NEAREST MAJ_DAM: raw straight line distance of gage location to nearest
major dam in watershed, km. Major dams are defined as being >= 50 feet in height (15m) or

having storage >= 5,000 acre feet in GAGES-II; (d) RAW_AVG_DIS ALLDAMS: raw

average straight line distance of gage location to all dams in watershed, km; (e)
FRESHW_ WITHDRAWAL: freshwater withdrawal, megaliters (1000 cubic m @r

per sq km; (f) PCT_IRRIG_AG: percent of watershed in irrigated agricultu@
POWER_SUM_MW: sum of MW operating capability of electric gen r plants in
watershed of type "coal”, "gas”, "nuclear”, "petro”, or "water"; (hi®D OCK: population
density in the watershed, persons per sq km; (i) ROADS _ : road density, km of
roads per watershed sq km; (j) DAM_GAGE_DIS VAR: ? icient of variation of the
distances from each dam to the gage location in 4 @ (k) DAM_STORAGE_STD: the
standard deviation (std) of the normal eRstor) of reservoirs in a basin; we set
std(log(stor+1)) as the x-axis variable$ means the natural logarithm; (1)

DAM_NUM_RANGE: the rang%m n®nbers -- 0, 1, (1, 3], (3, 5], (5, 10], (10, 20], (20,
e

50], >50, where “(]” means el alf open interval; the correspond numbers of basins in

each range: 610, 3620 5, 442, 437, 619.
Tab Qarvoir simulation results in the literature that do not use recent observations (i.e.
dat milation or data integration). For comparison, our median NSE values reported here
were 0.74 for the whole set and 0.78 for basins with small reservoirs. For comparability, we

did not include papers that used continual inputs of recent observations of inflow, outflow, or

storage.
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Reference Metric Description
Shin et al. No NSE reported. high-resolution  continental-scale  reservoir
Correlations of monthly
(2019) outflow for the new scheme scheme (grid-centric) which improved the
(Rnew) ranged from -0.07 to
0.63 with a median of 0.25, simulations of reservoirs greatly over the
which were higher than
Hanasaki et al. (2006) and  contiguous United States. Tested over six
Biemans et al. (2011)
schemes. reservoirs in the Missour, ramento,
Columbia, San Joaquin, an olor; River
Basins
Voison etal.  Best monthly NSE of An improved grid- ervoir formulation to
regulated flow is 0.62.
(2013) Negative NSEs for two the heavily gg d Columbia River Basin.
other locations @
Authors s dy performance metrics for
m gulate®flow at three locations.
Wu and Chen  \sE of outflow = 0. reservoir operation scheme to decide outflow
(2012) and its distribution on hydropower, water supply
\ and impoundment purposes according to the
@ infow and storage. Authors calibrated the
coefficients of equations in the new scheme
K during 1965-1984 and validated the scheme in
the period 1987-1988 for the Xinfengjiang
reservoir
Kim efal., Positive monthly NSEs of A grid-centric scheme inside the NWM. Tested
daily runoff discharges for
(2020) real scheduled release; on four locations and 21 hydrographs. An NSE
most simulated releases
brought negative NSEs of 0.78 was reported for a short period (~11

(reading off Figure 7)
days) of hourly simulation at one of the locations,

but Figure 7 showed mostly negative NSEs.
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Zajac et al. Best NSE of streamflow is
0.61 (reading off Figure 6)
(2017)

Global daily streamflow simulations of a spatially
distributed LISFLOOD hydrological model in 390

stations during 1980-2013

Zhao et al. NSE of 0.74 and 0.51 for
(2016) outflow of two reservoirs,

respectively.

A multi-purpose reservoir module with
predefined complex operational rules was
integrated into the Distribut Soil
Vegetation Model (DHSVM ormance of

the model was tested_o upper Brazos

River Basinin Te dtwo reservoirs, Lake
Whitney an {ake, are located

Payan et al. Mean NSE = 0.68

&
&

\
O

46 basinsgmoR in France).
@y of the meteorologic dataset in the
, used in this dataset, is potentially lower than
the European counterpart. Our work showed that
we could obtain NSE=0.84 for CAMELS-GB
(Coxon et al., 2020), which has 670 basins from
United Kingdom (Ma et al.,, 2021), while the
same model with the same training procedure
can achieve only 0.74 for CAMELS over
CONUS, consistent with other studies. Beck et
al., (2020) also showed that NSE for US basins

are not higher than global basins.

Dang et al. A NSE range of 0.68-0.79
for the calibration period,

(2020) but no value was reported
for the validation period

A novel variant of VIC’s routing model to simulate
the storage dynamics of water reservoirs for the

Upper Mekong. However, this study focused on
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the effect of parameter compensation during
calibrating the model or without the reservoir
module. Hence, the author did not report on the

test period.

889
890 6
891

892  Table S2. Summary of the forcing and attribute variables used as inputs STM—based

893  model O
894 K
Variable Type Variable Name DescriptlQ Unit
Forcing dayl @gth S
prcp &Z’recipitation mm/day
sgad Solar radiation W/m2
Snow water equivalent mm
Maximum temperature °C
K tmin Minimum temperature °C
0 vp Vapor pressure Pa
At asic DRAIN_SQKM Watershed drainage area km?
identification
and :
topographic E,I&g\l/I\TMEAN_M_ Mean watershed elevation m
characteristic
S SLOPE_PCT Mean watershed slope %
STREAMS KM_S Stream density km of
Q_KM streams
per
watershe
d km?
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Percentages  DEVNLCDO06 Watershed percent -
of land cover "developed" (urban)
in the
watershed
FORESTNLCDO0O6 Watershed percent "forest" -
PLANTNLCDOG6 Watershed percent -
"planted/cultivated”
(agriculture)
WATERNLCDO06  Watershed percent Open %
Water
SNOWICENLCDO Watershed percent Pe -
6 Ice/Snow
BARRENNLCDO06 Watershed pe aI -
Barren
SHRUBNLCDO6  Water -
Shrublan
GRASSNLCDO06 ed pe®ent -
eous (grassland)
WOODY, Wa ershed percent Woody -
D06 etlands
Watershed percent Emergent -
Herbaceous Wetlands
Soll Average value for the range inches of
characteristic of available water capacity for water per
S the soil layer or horizon inches of
soil
K depth
PERMAVE Average permeability inches/h
O BDAVE Average value of bulk density g/cm3
ROCKDEPAVE Average value of total soil inches
thickness examined
Geological GEOL_REEDBU Dominant (highest percent of -
characteristc SH_DOM area) geology
S

GEOL_REEDBU
SH_DOM_PCT

Percentage of the watershed -
covered by the dominant

geology type
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895

896

897

898

899

Local and
cumulative
dam variables

NDAMS_2009

STOR_NOR_200
9

RAW_DIS_NEAR

Number of dams in -

watershed
Dam storage in watershed megaliter
("NORMAL_STORAGE") s/km?

Raw straightline distance of km

EST_MAJ_DAM gage location to nearest
major dam in watershed.
Other CANALS PCT Percent of stream kilomet
disturbance coded as "Canal", "Ditch",
variables "Pipeline"

\

RAW_DIS_NEAR
EST CANAL

FRESHW_WITH
DRAWAL

POWER_SUM
w

NOOO_BLO

@‘ DS_KM_SQ

IMPNLCDO06

Raw straightline distan km
gage location to n
canal/ditch/pipeli

watershed

Wdrawal 1000 m3

Freshwagg

megalit}

@ operating capability of MW
e ic generation power

lants in watershed of type
‘coal", "gas", "nuclear”,

"petro", or "water"

Population density in the persons/
watershed km?2
Road density km of
roads
per
watershe
d km?
Watershed percent %

impervious surfaces

Table S3. Detailed ensemble results of LSTM-based models in this study

Section in the

“Experiments”

Random seed NSE median Ensemble NSE

median




LSTM-CONUS ~ 2.4.1 123 0.71 0.74
1234 0.71
12345 0.72
111 0.69
1111 0.72
11111 0.71
LSTM-CAMELS 2.4.1 123 0.73 of
1234 0.74
12345 O
111
1111
11111
LSTM-Z 24.3 123 0.72
1 0.65
0.71
\111 0.69
@ 1111 0.70
Q 11111 0.68
LSTM-S 123 0.77 0.79
O 1234 0.77
12345 0.78
111 0.78
1111 0.76
11111 0.76
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LSTM-L 243 123 0.52 0.60
1234 0.58
12345 0.57
111 0.54
1111 0.59
11111 0.59
LSTM-ZS 243 123 0.76 Q
1234 0.74
12345
111 .76
1 0.77
Q 0.76
LSTM-ZL 243 \123 0.64 0.66
1234 0.63
KQ 12345 0.64
0 111 0.63
O 1111 0.64
11111 0.63
LSTM-SL 243 123 0.72 0.75
1234 0.73
12345 0.72
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111 0.72

1111 0.72

11111 0.72

900

901

902 6

903 Table S4. Ensemble testing results of basins with different dor ranges 6 models

904  (Section 3.3)
905 O

sub-experiment ID Test basins Training mdH median NSE
(number of basins)

1 zero-dor basins LS 0.72
(610)
LS 0.72
LSTM-ZL 0.71
LSTM-CONUS 0.72
2 LSTM-S 0.79
LSTM-ZS 0.79
LSTM-SL 0.78
LSTM-CONUS 0.77
3 large-dor basins LSTM-L 0.60
(1185)
LSTM-ZL 0.63
LSTM-SL 0.64
LSTM-CONUS 0.64

906
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] @ h reservoirs.

LSTM achieved state-of-the-art performance for modeling
Reservoir types, capacity-to-runoff ratio (dor) and divers¢ treamflow.
LSTM performed well for basins with reservoirs that gamge ut a month of flow.
It is crucial to include basins with reservoirs in the 4 % sel.

Large-dor basins with certain types of dams are 9@ ug#Cult for LSTM.




