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Editorial on the Research Topic

Broadening the Use of Machine Learning in Hydrology

The introduction of deep learning (DL) (LeCun et al., 2015) into hydrology around 2016–2018
(Tao et al., 2016; Laloy et al., 2017, 2018; Shen, 2018; Shen et al., 2018), especially the use of long
short-term memory (LSTM) as a dynamical modeling tool for soil moisture and streamflow (Fang
et al., 2017; Kratzert et al., 2019), has ignited a surge in machine learning applications across all
domains of hydrology. At the core, machine learning is a set of tools that allow us to build and
train models that extract and reproduce the spatial and temporal patterns in the datasets they
encounter. In particular, the central philosophy of DL has been to minimize the intervention of
the human experts in feature design and to facilitate maximal extraction of information from data
(Goodfellow et al., 2016). Improved prediction quality in hydrologicmachine learning (ML)models
has been achieved not by infusing process-based assumptions into the models, but by conducting
extensive training of the models with large quantities of a priori data. It has been argued by Nearing
et al. (2020) that there could be significantly more information in large-scale hydrological data sets
than hydrologists have been able to translate into theory or process-based models. The hydrology
community is poised to fully explore the power in the vast amount of data using machine learning
in various subdomains of hydrology.

In this Research Topic, we sought to broaden the use of machine learning (ML) in hydrology
rather than emphasizing the depth of a specific topic. We sought applications of machine learning
in both data-rich and data-scarce settings. We are highly encouraged to see the diversity and
breadth covered by the resulting collection of published papers, which have almost covered the
entire water cycle. A variety of machine learning techniques have been adapted to address various
challenges existing in predicting the hydrologic cycle, ranging from a dynamical modeling tool
to event localization, and from information extraction to a hypothesis generator. In the following
section, we briefly go over some editor-identified highlights of the papers.

Precipitation, as the beginning of the hydrologic cycle, is a major source of uncertainty, and
most satellite products are still too coarse for water management purposes, making precipitation
downscaling a high-stakes activity. Sun and Tang employed an attention-based, deep convolutional
neural network (AU-Net) to downscale coarse-resolution satellite-based precipitation data
products to 1 km resolution (learning from gauge-based precipitation data products), with the
help of auxiliary predictors including elevation, vegetation index, and air temperature. Novel
to hydrology, authors employed an attention mechanism that extracts multiscale features by
fusing gauged data. However, there are often missing values in gauged precipitation data due
to various instrumentation and data quality issues. Mital et al. developed a new sequential
imputation algorithm based on a Random Forest technique for interpolating the missing values in
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spatio-temporal daily precipitation records. They found that, for
reliable imputation, having a few strongly correlated references
is more effective than having a larger number of weakly
correlated references.

Snow is an important precipitation component that is even
more difficult to measure (in-situ or remotely) than rainfall.
Meyal et al. wrote one of the first papers to simulate a
snow water equivalent (SWE) using LSTM, leveraging climatic
and SWE data from five Snow Telemetry (SNOTEL) stations.
They reported Nash Sutcliffe efficiency coefficient (NSE) values
ranging from 0.85 to 0.96. The authors build an automated
prediction system with online data ingestion. This standard
application demonstrated the plausibility of using LSTM for
large-scale operational SWE modeling. With only five training
sites, however, it remains to be seen if the model can be applied
to larger scales.

Streamflow is an important and human-relevant component
of the hydrologic cycle. Duan et al. employed a temporal
convolutional neural network (TCNN), a one-dimensional
dilated convolutional unit with sequential or causal connections,
for long-term streamflow projection in California. By
comparing the performance of TCNN against other machine
learning approaches including the LSTM, Duan et al. not
only showed that TCNN excelled at capturing high flows,
but also qualitatively demonstrated that TCNN yielded
physically plausible estimations of streamflow in responding to
precipitation under future extreme climate scenarios beyond the
historic records (e.g., under high temperature and quadrupled
precipitation), showing that causal convolutions could enhance
the stability of ML models when extrapolated outside of their
trained conditions.

While still dealing with surface water, Oppel and Mewes
present a slightly different application that used machine
learning to localize events. They compared several machine
learning approaches ranging from support vector machines to
extreme learning machines to identify the beginning and end
of multiple flood events along with their associated volumes
from hydrographs. They also demonstrated that the MLmethods
afford additional benefits in facilitating the automation of
the workflow, which can lead to increased scalability for
practical operations.

With the groundwater of the hydrological cycle, Sahu et al.
trained a Multilayer Perceptron (MLP) model to predict three-
point observations of groundwater levels using temperature,
precipitation, river discharge, and past groundwater data as
inputs. The authors conducted a sensitivity analysis of features’
importance and observed that providing all available inputs
to their MLP models was not necessarily the optimal choice.
They also found that MLPs trained solely on temperature and
historical groundwater level measurements as features were
unreliable at all locations, which alluded to the dynamical linkage
between surface hydrology and groundwater. Future sensitivity
analysis will likely be accompanied by uncertainty estimates
to ensure the robustness of the analysis. We also note more
effort should be focused on finding ways to generalize these
types of models outside of locations with data included in the
training set. Groundwater flow problems, due to their lack of

observation, the three-dimensional nature of the problem, and
strong heterogeneity, are difficult to formulate into uniform
learnable problems.

Diving deep into the subsurface environment, Generative
Adversarial Networks (GAN) are becoming an alternative to
Multiple-point Statistics (MPS) techniques to generate stochastic
subsurface fields from training images. An open issue for all the
training image-based simulation techniques (including GAN and
MPS) is to generate consistent 3D field realizations when only
2D training data sets are available. This is especially relevant to
groundwater hydrology for which it is difficult, if not impossible,
to collect exhaustive and accurate data about the 3D subsurface
distribution of rock types (or physical properties). Coiffier et al.
introduced a novel approach termed Dimension Augmenter
GAN (DiAGAN) that enables GANs to generate 3D fields from
2D examples. Themethod is simple to implement as it introduces
a random cut sampling step between the generator and the
discriminator of a standard GAN. Numerical experiments show
that for complex binary subsurfacemedia, the proposed approach
is efficient and provides results of similar quality as those
obtained by a state-of-the-art MPS method.

Around the world, many aspects of urban water systems, e.g.,
water supply, discharge, and stormwater management, require
upgrades to adapt to the challenges of global change and urban
growth.We expect there will be a substantial surge in applications
of ML in urban water systems to improve their efficiency and
transform them into smart cities. Allen-Dumas et al. wrote a
thorough review that synthesized ways in which ML techniques
have been applied to different parts of the urban water system
in order to address multiple water hazards. They discussed
ML applications in monitoring, early warning, prediction of
urban water hazards (floods, drought, water contamination, soil
erosion, and sediment transport), multi-hazard risks (compound
risks), selection of best management practices, etc. They argued
that by weaving together multiple ML methods for different
risks, we can eventually arrive at a comprehensive watershed-
to-community planning workflow for smart-city management of
urban water resources.

In agreement with the general trend in the field of hydrology,
the abovementioned papers have covered most components of
the hydrologic cycle. Outside of this Research Topic, machine
learning has been applied to soil moisture (Fang et al., 2019),
soil data extraction (Chaney et al., 2019), hydrology-influenced
water quality variables including in-stream water temperature
(Rahmani et al., 2020) and dissolved oxygen (Zhi et al., 2021),
human water management through reservoirs (Yang et al., 2019;
Ouyang et al., 2021), subsurface reactive transport (Laloy and
Jacques, 2019; He et al., 2020), and vadose zone hydrology
(Bandai and Ghezzehei, 2021), among others. ML is not only
applicable in data-rich regions but can also be leveraged by
data-scarce regions (Feng et al., 2021; Ma et al., 2021). DL-
native methods for uncertainty quantification have also emerged
(Zhu et al., 2019; Fang et al., 2020). What is still missing to
date includes vegetation hydraulics, glaciers, preferential flow,
hyporheic exchange, and regional groundwater recharge, though
this list is incomplete. We believe these components will be
covered by machine learning approaches in the future.
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While the broadening of ML has been, to some extent,
achieved, one can also notice some limitations and unrealized
potential. First, most of the abovementioned use cases are siloed
to one variable, e.g., streamflow or precipitation. Second, many of
the presented examples are built on small datasets, which means
that instead of having learned universally-applicable physical
laws, they were locally-fitted models based on the measurement
sites in question. The implications of these limitations are that
the models are not transferable outside the training region, their
potential prediction failures are not yet sufficiently tested, and
the information from one observed variable cannot influence the
other variables.

There are many angles from which one can overcome the
limitations. From a purely data-driven perspective, multi-task
learning could allow multiple variables to interact and inform
each other. A multiphysics land surface model can be trained
to simultaneously predict multiple physical variables in the
context of multi-task learning, which is known to improve all
tasks. This is because many tasks can use shared representations
and are thus constrained by multiple targets at the same time
(Caruana, 1997). Alternatively, one may seek to organically tie
in physical processes with machine learning, allowing known
physical laws such as themass balance and the law of flow to serve
as the connective tissue between different model components.
While there is a substantial amount of effort in the direction
of knowledge-guided machine learning (Read et al., 2019), there
are certainly many different paths toward the goal of integrating
physics with machine learning. Outside of this Research Topic,
there are methods for parameter learning (Tsai et al., 2020a) and
physics-informed neural networks (He et al., 2020; Tartakovsky
et al., 2020).

One of such pathways, perhaps a niche one, was documented
in (Tsai et al., 2020b). This paper used machine learning to
generate articulable hypotheses about which physical factor
between soil texture, soil thickness, and slope caused water
storage and streamflow to be linked in a certain way in a
basin, and tested them using a physically-based model. While
machine learning is very powerful, due to data limitations and
factor covariation, it often cannot distinguish between causal
or associative relationships, and what it found are therefore
merely hypotheses. To test these competing hypotheses, Tsai et al.
configured a physically-based hydrology model, PAWS+CLM
(Shen and Phanikumar, 2010; Shen et al., 2013; Niu et al.,
2017; Ji et al., 2019) to represent these hypotheses, e.g., they
increased soil thickness or changed soil texture in one of the
synthetic simulations and checked if the storage-streamflow
relationships changed in agreement with the hypothesized effect
as a result. The outcome of the process-based model can in fact
be merged with the machine learning hypotheses in a Bayesian
and algorithmic way, which implies this avenue can in fact be
autonomously executed. While this paradigm is not expected
to become popular any time soon, it does suggest physical
models provide unique information that can fill in the gaps
(in this case, assessment for a causal relationship) for machine
learning methods.

Multiple pathways exist for ML to help to make advances
in hydrology: (1) incorporating physics in ML models; (2)
improving the interpretability of ML models; (3) developing
coupled, physics-informed neural networks; (4) quantifying and
propagating uncertainty in model results; (5) developing publicly
available benchmark training data sets that can be used to
aid and test new ML methods; and (6) building a community
computational platform to allow sharing of ML pipelines with
easy access to pre-trained MLmodels (e.g., similar to Model Zoo,
https://modelzoo.co/), standardized application-ready datasets,
interoperable process-based models, and supercomputing and/or
cloud computing resources. Generating public benchmark
training data sets (similar to ImageNet, http://www.image-net.
org/) that researchers can use to build better ML models is
the key to advancing applications of ML in Earth science
domains (Dramsch, 2020; Maskey et al., 2020). There is a unique
opportunity here to enhance the use of the new generation of
remote sensing products that capture components of the water
cycle (precipitation, snow, soil moisture, evapotranspiration,
groundwater, and runoff), as well as coupled carbon and
nutrient cycle components, with increasing spatial and temporal
resolutions. Training data may also be generated from process-
based models. Leveraging open-source resources from federal
agencies is necessary for the success of such extensive and
expensive effort. For example, NASA’s Earth Sciences Data
Systems (ESDS) have generated high-quality training data sets
that are open and easily accessible. NOAA, USGS, and other
federal agencies have been maintaining extensive observation
networks and are developing a large number of integrated
Earth system models. Standardized data management practices
would significantly increase data usability, and we call for
significant investment to support community efforts that address
these challenges.
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