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Abstract
Inter-Coulombic decay (ICD) resonances in the photoionization of Cl@C60 endofullerenemolecule
are calculated using a perturbative density functional theory (DFT)method. This is the first ICD study
of an open shell atom in a fullerene cage. Three classes of resonances are probed: (i)Cl inner vacancies
decaying throughC60 outer continua, (ii)C60 inner vacancies decaying throughCl outer continua, and
(iii) inner vacancies of either systemdecaying through the continua of Cl-C60 hybrid levels, the hybrid
Auger-ICD resonances. Comparisons withAr@C60 results reveal that the properties of hybrid Auger-
ICD resonances are affected by the extent of level hybridization.

1. Introduction

In loosely bound compositematters, such as polymers, liquids, and biological systems, the relaxation of an
innershell vacancy resulting in the emission of an outershell electron, both belonging to the same site of the
system, is the regular Auger process. But, this vacancy can also decay by transferring excess energy to a
neighboring site. Thismigrated energy can subsequently drive the emission of an electron from that site. Such
processes, the inter-Coulombic decay (ICD) [1], are abundant in naturewhen energetically allowed, unless
quenched by a competing process, and piggyback on the long range electron-electronCoulomb interactions.
Broadly speaking, the excess energy-transfer to a neighboring site can be triggered via three distinctmechanisms.
(i)Anouter electron of the vacancy site can itselffill in the vacancy—the regular ICD [2]. (ii)Aweakly bound
electron from the ionizing neighboring site can transfer and fill the vacancy—the electron transfermediated
decay (ETMD) [3]. (iii)A slowpasserby electron can be captured into the vacancy—the inter-Coulombic
electron capture (ICEC) [4]. Experimentally, the precursor excitation process to create the vacancy can be
induced in varieties of ways: The early work of the observation of ICD inNe dimers used synchrotron radiation
for this purpose [5]. To achieve a higher pulse rate, for instance to carry out time-resolved experiment, free
electron laser sources aremore appropriate [6]. Furthermore, charged particle impact, such as pulsed electron
guns [7] or alpha-particle impact [8] have also been used. ICD signatures are probed by traditionalmethods of
electron [9] and ion [10] spectroscopy, including various coincidence techniques [11]. Access to time-resolved
ICDdynamics has also been possible by the contemporary pump-probe approaches [6, 12], specifically, by light
field streaking techniques [13]. A recent comprehensive review of the experimental and theoretical research of
the ICD topic, including the range ofmaterials studied and potential applications, can be found in [14]. Very
recently, themeasurement of ICD in liquidwater is reportedwhich draws interesting comparisonswith ICD in
water clusters [15].

Probing ICDprocesses in relatively simpler vapor-phasematerials is of considerable spectroscopic interest
[16–20]. One class of such systems of current theoretical and experimental study is endofullerene complexes, in
which an atomic or a smallmolecular host is placed in a fullerene cage. These are unique heterogeneous, nested
dimers of weak host-fullerene bonding. From the experimental side, the synthesis techniques for thesematerials
are fast-developing [21]with an advantage of their room-temperature stability. Furthermore, thesematerials are
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relevant in a number of applied contexts [22]. And, note thatmeasurements of a strong ICD signal in amolecular
endofullerene, Ho3N@C80, has recently been reported [23].

If the electron that creates the vacancy subsequentlyfills thehole to release energy, theprocess is conventionally
called the participant ICD.Thefirst ab initio calculations of participant ICD induced resonances in the
photoionizationofC60 levels inducedbyAr inner 3s [24] andKr inner 4s [25] vacancy decays, the atom-to-fullerene
ICD,were performedbyour group. Laterwe also studied ICDresonances in the reverse process of fullerene-to-
atomdecay [26]. In addition, a remarkable coherence between theAuger and ICDamplitudes to produce a novel
class of resonances in the photoionizationof atom-fullerene hybridized stateswas also predicted [24, 25].However,
these studies cover only close-shell confined atoms.On the other hand, considerationof open-shell atomic
endofullerenes to access their ICDproperties arouses particular interest given their recent photoresponse studies
[27, 28]. In general, due to the existence of unpaired electrons, there are attractive fundamental interests in such
systems.These include long spin relaxation times inN@C60 [29]while enhancement anddiminution inhyperfine
coupling, respectively, inP@C60 [30] and exoticmuonium@C60 [31]. In this article, therefore, a prototypical open-
shell systemofCl@C60 has been considered for thefirst time to capture its ICDprocesses along the photoionization
route. A comparisonwith the results ofAr@C60, the nearest close-shell systemofCl@C60, exposes the role of
atom-C60 hybridization in theAuger-ICDcoherence process.

2. Afleeting description of theory

Kohn–Shamdensity functional theory (DFT) is used to describe the ground, photoexcited, and photoionized
electronic properties of Cl@C60 [27]. TheC60molecule ismodeled by smudging sixty C4+ ions over a classical
spherical jellium shell, fixed in space, with an experimentally knownC60mean radius of 3.5Å and thicknessΔ.
The nucleus of a Cl atom is placed at the center of the sphere. TheKohn–Sham equations for the systemof a total
of 240+N electrons (N=17 for Cl and 240 delocalized electrons fromC60) are then solved to obtain the
ground state properties inDFT. The gradient-corrected Leeuwen andBaerends exchange-correlation (XC)
functional [LB94] [32] is used for the accurate asymptotic behavior of the ground state radial potential
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which is solved self-consistently in amean-field framework. The requirement of charge neutrality producedΔ=
1.3Å, in agreementwith the value inferred from experiment [33, 34].We note that, unlikeHartree–Fock type
methods that treats the non-local exchange exactly, DFTmodels as in the current study can use adjustable
parameters of the functional to force accurate ground state properties even for general open-shell systems [35].
The best parametric optimizationwas previously obtained [27] to reasonably produce experimental andNIST-
based ground state information for Cl. Although the jellium-basedDFTpotential is a simplification to the
atomisticmolecular potential of C60, previous calculations based on thismodel explained photoionization cross
sectionmeasurements reasonably well [33, 36]. In addition, the present calculations are the only extant
treatment of the ICDproblem addressed in this paper.

Linear-response time-dependent density functional theory (LR-TDDFT) is employed to simulate the
dynamical response of C60 to incident photons [36]. The single-electron dipole operator, z, corresponding to
light that is linearly polarized in z-direction, induces a frequency-dependent complex change in the electron
density arising fromdynamical electron correlations. This can bewritten, using the independent particle (IP)
susceptibilityχ0, as
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where thefirst and second terms on the right hand side are, respectively, the induced changes of the Coulomb
and the exchange-correlation potentials. Obviously, δV includes the dynamical field produced by important
electron correlations within the linear response regime. In thismethod, the photoionization cross section
corresponding to a bound-to-continuumdipole transition ℓ ℓ ¢n k is given by

ℓ ℓ∣ ∣ ∣ ∣ ∣ ∣ ( )ℓ ℓs d~ = á ¢ + ñ ¢  k z V n , 4n k
2 2

where, in the LR-TDDFTmatrix element, ℓ ℓ∣ ∣= á ¢ ñ k z n and ℓ ℓ∣ ∣dá ¢ ñk V n are, respectively, the IP and
correlationmatrix elements. For the convenience of notation, we use the symbol nℓ@ to denote pure levels of
the confinedCl atom and@nℓto represent pure levels of the dopedC60.
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In general, the fullmatrix element of photoionization of a level of Cl@C60 can bewritten as:

( ) ( ) ( ) ( ) ( )= + +- - E E M E M E , 5c c d c

where -Mc c and -Md c are, respectively, contributions from continuum-continuum (c-c) and discrete-
continuum (d-c) channel couplings. ℓ ℓ∣ ∣dá ¢ ñk V n in equation (4) accounts for these coupling contributions.

-Mc c constitutes a rather smoothmany-body contribution to nonresonant cross section, while the Auger or
ICD resonances originate from -Md c.

3. Results and discussions

3.1. Cl-to-C60 ICD resonances
Using thewell-known approach by Fano [37] to describe the dynamical correlation through the interchannel
coupling, the amplitude of resonant ICDofCl inner 3s@photo-vacancies viaC60@nl ionization can be
expressed byMd−c that denotes the coupling of Cl 3s@→ηp@discrete excitation channels with the  ¢nl kl@
continuumchannel of C60. Following [24], -Md c can thus bewritten as:
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where hE s p3 @ @ and h s p3 @ @ are, respectively, excitation energies and IPmatrix elements of channels
hs p3 @ @, andE is the photon energy corresponding to the@nl transition to continuum. In equation (6) the

ψ are IPwavefunctions that represent the final states (channels) for transitions to excited ηp or continuum kl′

states. Obviously, the Coulomb couplingmatrix element in the numerator of equation (6) acts as the passageway
for energy transfer from theCl de-excitation across to theC60 ionization process, producing ICD resonances in
theC60@nl cross sections.

Three suchCl-to-C60 ICD resonances, corresponding toCl hs p3 @ @ with η=4, 5, 6 (labeled as A, B and
C), are seen inC60@7h (HOMO) andC60@2s cross sections infigure 1.Note that these resonance features in
@2s aremore prominent due to relatively smaller values of non-resonant background of the@2s cross section.
Also shown are the corresponding Auger resonances in free Cl 3p cross section from the decay of thefirst two 3s
excitations which show clear Fanowindow-shape (also seen in experiments [38]), due to the higher background
3p continuum transition strength. In comparison, the corresponding ICD resonances showdramatically
different, small, peak-type shapes, indicating lower continuum transition strengths. They also show the expected
energy red-shifts, owing to the smaller binding energy of confinedCl 3s@.TheseCl-to-C60 ICD resonances are
qualitatively similar to those of Ar-to-C60 found earlier [24], albeit with expected energy offsets. The remaining

Figure 1. (Color online)Photoionization cross sections of free Cl 3p and emptyC60 (total) comparedwith the results for C60@7h and
@2s levels inCl@C60. Three Cl-to-C60 ICD resonances (labeled as A,B,C) are identified in the C60@7h and@2s cross sectionswhich
can be comparedwith regular Auger resonances in free Cl 3p.
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resonances in@7h and@2s cross sections infigure 1 are fromAuger decays of C60 inner holes and are almost
stable in their energies as can be seen by comparingwith the empty C60 total cross section (shown).

3.2. C60-to-Cl ICD resonances
A coupled-channel representation of thematrix element like equation (6), but to address the ICD resonances
from the decay of C60 inner excitations that appear in theCl s kp3 @ photoionization of Cl@C60, can be
written as,
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Since a number of inner C60 vacancies can be produced that are degenerate withCl 3s@ ionization, two sums
have been introduced.

C60-to-Cl ICD resonances are displayed infigure 2 for 3s@photoionization of Cl. Note that the cross section
is highly structuredwith the resonances when compared to the smooth 3s cross section of freeCl (shown). As
seen, the freeCl result in the current energy range does not include any regular Auger decay of atomic innershell
vacancies, indicating that the ICDprocess completely dominates the vacancy decay. The resonances are strong
and of varied shapes. Their narrowwidth owes to theC60 excitations. Indeed, C60wavefunctions, atypical of
cluster properties, are delocalized, spreading over a large volume (seefigure 3). Since the autionization rate
involves thematrix element of 1/r12 [equation (7)], spread-out wavefunctions translate to a decrease in the value
of thematrix elements.

figure 2 also shows that for Cl 3s@ theCooperminimum, seen in the non-resonant background values of the
curve,moves lower in energy to about 32 eV from its positions of 35 eV in free Cl. This shift is a consequence of
the atom-C60 dynamical coupling of Cl ns kp@ ionization channel with a host of C60 continuum channels
andwas earlier noted for confinedAr andKr aswell [26]. This coupling is included in -Mc c in equation (5). A
comparisonwith the resonances (Auger) in the emptyC60 cross section (shown) indicates a general energy
correspondence betweenAuger and ICD features, although there appear a rather dramatic shape alterations, in
particular, at higher energies. The overall behavior of the ICD resonances is found very similar to the previous
results for Ar 3s@andKr 4s@caged inC60.

3.3.Hybrid Auger-ICD resonances
About an equal share ofmixing in ground state hybridization between valence 3p orbital for ArwithC60 3pwas
earlier found inAr@C60 [24]. In fact, the hybridization gap of 1.52eV between symmetrically (Ar+C60) and
antisymmetrically (Ar−C60)mixed hybrid levels in that earlier calculationwas in good agreementwith the
measured value of 1.6±0.2 eV [39]. This hybridization inCl@C60, which is similar to the bonding and
antibonding states inmolecules or dimers, can bewritten as,

Figure 2. (Color online)Cross sections of freeCl 3s subshell and 3s@ofCl@C60 are compared. The total cross section of emptyC60 is
also presented.
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∣ ∣ ∣ ( )f a f a f = ñ = ñ  - ñp pCl3 C 3 1 . 8p p60 3 Cl 3 C60

Both free and hybrid radial wavefunctions and corresponding energies are shown infigure 3 for a comparison
betweenCl@C60 andAr@C60 ground state properties. Figure 3 clearly shows somewhatweakened hybridization
inCl@C60 versus Ar@C60which is primarily due to higher Cl 3p binding energy leading to a larger energy gap
between this level withC60 3p.We note that recentDFT structure calculations using atomistic description of C60

predict hybridization of the confined atom’s p level withC60 in similar proportions ofmixing [40].
Following equation (8), the hybridization of the continuum channels assumes the form

∣ ∣ ∣ ( )y a y a yñ = ñ  - ñ  1 , 9p ks d p ks d3 @Cl , @3 C ,60

where y p ks d3 @Cl , and y p ks d@3 C ,60
are thewavefunctions of the channels. Using equation (9) and recognizing

that the overlap between a pure Cl and a pureC60 bound state is negligible (seefigure 3), wemay separate the
atomic and fullerene regions of integration towrite thematrix elements -Md c for emissions fromhybrid levels
as
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It is now straightforward to understand from equation (10) that if the inner vacancy corresponding to
ℓ hln is located at Cl, then the first term in equation (10) denotes the decay through theCl continuum, like
in the Auger decay, and the second termwill embody the decay through theC60 continuum, like the ICD. This
will result in resonant hybrid Auger-ICD (RHA-ICD) features from coherence in a hybrid level cross section
driven by aCl hole. These resonances for both hybrid levels of Cl@C60 are presented in the top panel offigure 4
and labeled as A, B andC for three s np3 @ @ excitations. On the other hand, the original vacancy at C60 in

Figure 3. (Color online)Radial symmetric (a) and antisymmetric (b)wavefunctions of Cl@C60 versusAr@C60.Wavefunctions of
participant levels of free systems are displayed. Relevant binding energies in eV (scaled in opposite y-axis) are also graphed. The inner
(Ri) and outer (Ro) radii of theC60 shell are shown on panel (a). Reproduced from [27]. © IOPPublishing Ltd. All rights reserved.
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equation (10)will produce coherent RHA-ICD features initiated by aC60 hole. All remaining resonances in
figure 4 (top) for hybrid states are from this latter category.We note infigure 4 (top) that the resonances A-C in
bothCl±C60 3p cross sections feature window-type shapes, like the freeCl Auger resonances (shown),
generally suggesting strong continuum transitions. These RHA-ICDwindow resonancesmay likely be observed
in the experiment due to their broadwidths.However, we further note that these resonance shapes are
significantly stronger for the symmetric Cl+C60 level. The generic shapes of RHA-ICD structures fromC60

hole-decays, on the other hand, are seen to be non-window type, while they are substantiallymore prominent in
the antisymmetric Cl−C60 emission. The cause of these disparities is discussed below.

The novel RHA-ICD features were originally predicted for Ar@C60 [24] that are also presented in figure 4
(bottom) to draw insights from comparisons. As seen for Ar@C60, for each hybrid level cross section these
resonances initiated by creation of Ar inner 3s holes (A-C) versus by creation of C60 inner holes (1-4) are of
approximately similar strengths. This is a direct consequence of a similar degree ofmixing betweenAr andC60

characters in Ar±C60 levels (see figure 3)—a fact that generates similarmagnitudes of overlaps in theCoulomb
couplingmatrix elements in equation (10). However, as noted before, themixing reduces inCl@C60. As seen in
figure 3, while the Cl+C60 level containsmoreCl character, Cl−C60 hasmoreC60 character. This fact,
through the couplingmatrix elements in equation (10), translates into stronger RHA-ICD structures, A-C, for
the decay of Cl holes inCl+C60 than inCl−C60. Likewise, this same fact is also responsible for the opposite
behavior for C60 hole decay, that is, the corresponding stronger structures inCl−C60 versus inCl+C60.

Figure 4. (Color online) (Top)Photoionization cross sections of free Cl 3p andC60 3p levels are comparedwith those of their hybrid
pair. (Bottom)Published [24]Ar@C60 results for hybrid levels.
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3.4. ETMDadmixture
In an endofullerene system the excited state for the precursor excitation resulting in anAuger decay or an ICD
can itself be a state which is a hybrid of an atomic and aC60 excited state of same angularmomentum character.
Here the excited states in question include ηp@,@ηλand ηλ in, respectively, equation (6), (7) and (10). This
suggests that the part of the excited probability that will transfer to the other system can fall back in to the
vacancy to initiate a resonant Auger decay or an ICDor a hybridizedAuger-ICD. Furthermore, a very careful
comparison between the ICD related results with corresponding emptyC60 results infigures.2 and 4 reveals a
very few extra resonances in the ICD curves. These are present owing to the additional excited states in the
spectrumof thewhole compound, since it now also includes the empty states of the caged atom that can be
transfer-excited by aC60 electron. This clearly suggests that some of the resonances of both ICD andAuger
nature presented heremay incorporate coherentmixingwith ETMDamplitudes. Of course, these contributions
are hard to separate. A detailed discussion about such coherent combination of resonant ICD and ETMD
mechanisms, but for a specific case of C60-to-Ar ICD,was given elsewhere [26].

4. Conclusion

Wepresent results of various kinds of single-electron ICD-type resonances in the photoemission of theCl@C60

molecule. This is the first ICD study of an endofullerenewith a one-vacancy, open-shell atom inside. The
calculation is carried out in a jellium-based linear-response time-dependent density functional framework that
has previous success. The study includes resonant decays of Cl (C60) innershell excitation vacancies degenerate
withC60 (Cl) outershell ionization vacancies. A uniquely different class of resonant features decaying into atom-
fullerene hybrid final state vacancies has also been presentedwhich arises from the interference of the Auger
channel with an intrinsically connected ICD channel. These resonances are found to be remarkably strong, and
the ones initiated by atomic excitations are quite broad.Hence they are likely experimentallymeasurable,
allowing a powerful access to ICDdynamics. Furthermore, the hybridized character of some of the excited states
of the compound points to a coherence of ICDwith the ETMDprocess. Such ICD-ETMDcoherence should be
abundant—all it would require is that both the fullerene and the trapped atomormolecule have dipole-allowed
excited states of the same (angularmomentum) symmetry so they can hybridize.We further emphasize that the
present calculation only includes participantRICDswhere the precursor hole isfilled by the excited electron
itself. However, it is of great interest to access the influence of spectator processes where a different electron
occupies the hole likely significantly affecting the situation. Based upon our explanation of the details of
multicenter decay, the resonant ICDpredicted here is expected to be a strong process in general for any atomor
molecule encaged in any fullerene, in any position, central or not.

By freezing themolecular vibrations, the present jellium calculation effectivelymodels the stuation at 0K
sample temperature. Afinite sample temperature in an experiment can, therefore, potentially wash out some of
the narrow resonances due to the lattice vibration driven broadening. Yet, as pointed above, the Cl-based
features, such as, Cl-to-C60 ICD resonances (Figure 1) andRHA-ICDofCl holes (Figure 4), may still be
detectable due to their larger widths, drawn from thewidth ofmeasuredwindow resonances of isolatedCl (like
Ar) [38]. Beyond this, the colder the target temperature, themore detailed of the ICD signals that can be
accessed. Besides encouraging experiments onCl@C60, or evenAr@C60, the other aimof this study is to
motivatemore sophisticated treatments of the current problem.

Finally, with the contemporary focus [41] on photoemission phase and time delay studies by interferometric
metrology [42], particularly at Fanowindow resonances for free Ar [43], we hope that the current results will
stimulate similar ultrafast spectroscopic studies of ICD resonances in fullerene confined atoms. And to that end,
our future research outlook includes investigations ofWigner type intrinsic time delays of these various resonant
ICD emissions.
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