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Abstract:  This work provides quantitative tests of the extent of violation of two inequalities 

applicable to qubits coupled into Bell states, using IBM’s publicly accessible quantum computers.  

Violations of the inequalities are well established.  Our purpose is not to test the inequalities, but 

rather to determine how well quantum mechanical predictions can be reproduced on quantum 

computers, given their current fault rates.  We present results for the spin projections of two 

entangled qubits, along three axes A, B, and C, with a fixed angle  between A and B and a range 

of angles  between B and C.  For any classical object that can be characterized by three 

observables with two possible values, inequalities govern relationships among the probabilities of 

outcomes for the observables, taken pairwise.  From set theory, these inequalities must be satisfied 

by all such classical objects; but quantum systems may violate the inequalities.  We have detected 

clear-cut violations of one inequality in runs on IBM’s publicly accessible quantum computers.  

The Clauser-Horne-Shimony-Holt (CHSH) inequality governs a linear combination S of 

expectation values of products of spin projections, taken pairwise.  Finding S > 2 rules out local, 

hidden variable theories for entangled quantum systems.  We obtained values of S greater than 2 

in our runs prior to error mitigation.  To reduce the quantitative errors, we used a modification of 

the error-mitigation procedure in the IBM documentation.  We prepared a pair of qubits in the state 

| 0 0 , found the probabilities to observe the states | 0 0 , | 0 1 , | 1 0 , and | 1 1  in multiple runs, 

and used that information to construct the first column of an error matrix M.  We repeated this 

procedure for states prepared as | 0 1 , | 1 0 , and | 1 1  to construct the full matrix M, whose 

inverse is the filtering matrix. After applying filtering matrices to our averaged outcomes, we have 

found quite good agreement between the quantum computer output and quantum mechanical 

predictions for the extent of violation of both inequalities as a function of . 
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I.  Introduction 
 

Bell introduced a set of experimentally testable inequalities with the goal of proving that 

local hidden-variable theories cannot reproduce observations.12 The inequalities are derived for 

two-qubit Bell states, which exhibit entanglement.  Bell originally worked with singlet-coupled 

spins,1 but related inequalities can be derived for the combination of triplet states,  

|   = 1/21/2 [ | (1) (2)  + | (1) (2)  ] , (1) 

where (k) denotes the state of qubit k with spin projection ħ/2 along the z axis, and (k) denotes 

the state of qubit k with projection −ħ/2 along z.  

The current work provides quantitative results for two Bell-type inequalities that apply to 

qubits coupled into Bell states.  The purpose of this work is to determine how well the output from 

current quantum computers can match quantum mechanical calculations given the current fault 

rates, rather than to test for the violation of the Bell inequalities per se, since violation of the 

inequalities is well established.  The results also provide a useful benchmark for the current 

accuracy of IBM’s publicly accessible quantum computers. 

Our results have been obtained from runs on quantum computers through the IBM Q 

Experience®.3  The first inequality, in a form that was suggested by Polkinghorne,4 governs the 

probabilities of finding spins aligned or opposed along three distinct axes A, B, and C.  The second 

inequality, devised by Clauser, Horne, Shimony, and Holt (CHSH),5 governs a linear combination 

of correlations between spin projections on different axes.  We have observed violations of both 

inequalities, establishing the non-classical character of the coupled qubits and the impossibility of 

constructing a local hidden-variable theory that accounts for the measured outcomes.  Violation of 

these inequalities is related to the quantum behavior described as “spooky action at a distance” by 

Einstein, Podolsky, and Rosen.6  



 4 

Quantum computing offers the potential to solve important, but very difficult problems that 

cannot be handled by classical computers, due to the exponential scaling of the computational time 

required.  In contrast to classical qubits, which take a definite value (either 0 or 1) at any instant in 

time, a quantum bit (qubit) may exist in a complex superposition of states | 0  and | 1 .  As a result, 

a very large number of calculations can be run simultaneously on quantum computers, with the 

state of each qubit “collapsed” to | 0  or | 1  only upon measurement.  The prospect for high-speed 

quantum computation was discussed by Feynman7 in the early 1980’s.  Deutsch and Jozsa8,9 

subsequently proved that a type of quantum algorithm could run exponentially faster than any 

conceivable algorithm on a classical computer (see also Cleve et al.10).  

Rapid developments are now occurring with the goal of converting the potential of 

quantum computing into practice.  Recent reviews of the current state of the art in quantum 

chemistry have been provided by McArdle et al.11 and by Cao et al.;12 early discussions of the 

complexity of chemical problems in the context of quantum computation have been given by Veis 

and Pittner,13 Yung et al.,14 and Kais, Rice, and Dinner;15 see also Aspuru-Guzik, Lindh, and 

Reiher.16  Quantum computational versions exist for both first-quantized and second-quantized 

methods.  In the implementation of first quantization methods on grids, the Born-Oppenheimer 

approximation need not be invoked.11,17  Second quantization methods rely on transformations of 

the Jordan-Wigner occupation-number representation,18 which include the Bravyi-Kitaev 

encoding19-22 with tree-mapping23 and super-fast versions.19  Disentangled unitary coupled cluster 

wave functions have been proven to exactly parametrize any state,24 thus permitting Trotter-error-

free25 applications in quantum computing.  Quantum unitary coupled cluster algorithms with 

selected subsets of excitations have been applied to many-electron molecules with strong 

correlation26 and to excited states.27  
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Quantum computers have been used to determine potential energy curves for H2,28-32 

LiH,31,32 linear BeH2,31 HeH+ (with NV defects in diamond as the qubits),33 for the dissociation of 

H3 into three hydrogen atoms,34 for rectangular, linear, and trapezoidal H4,27,35 and for linear H6 

and H8.36  Calculations for H2O on a trapped-ion quantum computer have been reported,37 as well 

as calculations on H2O with symmetric stretching.38,39 Hybrid quantum-classical methods 

employing neural networks have also been developed.40  

Smart, Schuster, and Mazziotti41 have used quantum computing to test the generalized 

Pauli constraints42,43 that apply to the eigenvalues of the one-electron reduced density matrix 

(occupation numbers), and have found no violations.  The results suggest limitations on the use of 

entanglement for quantum control,44 and restrictions on many-qubit systems in pure states.45       

The current work focuses on the indications of quantum character of the qubits evidenced 

in runs on IBM’s publicly accessible quantum computers, rather than on quantum supremacy.  The 

results reported here could be simulated, but not directly produced by bits on a classical computer, 

because they depend on qubit entanglement.   

 We have found few previously reported tests of the Bell inequalities on quantum 

computers, and none with the type or extent of exploration in this work.  Sisodia46 has compared 

the performance of four of IBM’s 5-qubit backends when preparing Bell states; he has also 

determined the density matrices for four 2-qubit states of the Bell type.  Huffman and Mizel47 have 

proven that measurement changes the state of the qubit q[2] on an IBM quantum computer, 

violating a classical inequality suggested by Leggett and Garg.48  Hamamura49 has employed the 

duality between the state space and an “effects space” to show that a dual version of the CHSH 

inequality5 is violated on IBM’s quantum computers.  Pozzobom and Maziero50 have prepared 

tunable Bell states on the IBM Yorktown 5-qubit computer and then determined state properties 
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including fidelity, nonlocal coherence, discord, entanglement negativity, and steering.50  They 

found good fidelity, but the remaining properties did not generally fit the quantum predictions, in 

the absence of a noise model.  Alsina and Latorre51 have used a five-qubit IBM computer to test 

the Mermin inequalities52 that apply to three, four, and five entangled particles  

 Ansmann et al.53 have demonstrated the violation of the CHSH inequality for Josephson 

phase qubits acting as spin-1/2 particles.  They ran single-shot experiments and found S = 2.0732 

 0.0003, thus exceeding the locality threshold (S = 2) by 244 standard deviations.  Likewise, the 

qubits in the IBM computers are superconducting transmon qubits,3,54,55 which employ a nonlinear 

qubit inductor, such as a Josephson junction operating at a temperature of 15 millikelvin.3  The 

anharmonicity of the physical circuit is exploited in order to effectively isolate two basis states, 

which function as | 0   and | 1 .3  These are not the spin states of a spin-1/2 particle, but the qubits 

respond to the quantum gates, such as the Hadamard gate,56 rotation gates, and coupling between 

qubits accomplished with controlled-not (C-NOT) gates,56 in the same way that spin-1/2 particles 

would respond.  With IBM’s qiskit®,57 the states of individual qubits and of multi-qubit systems 

can be visualized on the Bloch sphere.58  The states and outcomes of measurements on the qubits 

are described below in terms of spins, for simplicity. 

Brunner et al. have remarked that Bell’s theorem “arguably ranks among the most profound 

scientific discoveries ever made.”59 Violation of the Bell inequalities was first confirmed 

experimentally by Freedman and Clauser60 in 1972, in studies of the polarization of entangled 

photons created in atomic cascades.  In this work, a general CHSH Bell inequality was found to 

be violated by six standard deviations.  Loopholes in the original demonstrations of nonlocality 

involve potentially inaccurate identification of pairs of particles based on coincidence 

measurements;61,62 detector inefficiency,63-66 which permits a number of systems to elude 
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observation; and the “memory loophole,”67 whereby the hidden variables for a pair may include 

previous measurement choices and outcomes.  The loophole connected with pair identification and 

the detector efficiency loophole do not arise in the current case; and they have been closed in 

laboratory experiments.61,62,66,68-70 We have used the definition of locality suggested by Brunner et 

al.,59 which ensures the independence of pairs of observations, but does not explicitly include the 

separation between the observers nor the time required for a light signal to pass between them.     

Experiments conducted by Fry and Thompson71 and by Aspect, Grangier, and Roger72,73 

have shown that S in the CHSH inequality may exceed 2.  In the initial experiments by Aspect et 

al.,72,73 the orientations of the polarizers were fixed in any given set of runs.  This left the memory 

loophole open, by potentially allowing for signals about the polarizer orientations to pass between 

the two observation sites.  Aspect, Dalibard, and Roger74 closed this the loophole in experiments 

where the orientations of the two polarizers were changed by acousto-optical switches while the 

photons in any given pair were in flight.  No signal about the orientations could pass between the 

detectors without exceeding the speed of light.   

Tittel, Brendel, Zbinden, and Gisin75 have reported the violation of the Bell inequalities by 

entangled photons separated by more than 10 km; Fedrizzi et al.76 subsequently extended this 

record to 144 km.  A quantum random number generator has been used by Weihs et al.77 to select 

the polarizer orientations.  Real-time observations of stars in the Milky Way have also been used 

to generate random numbers.78  Experiments have demonstrated entanglement between defect sites 

in diamond,79,80 between the electron and nuclear spin of a phosphorus atom embedded in silicon,81 

between opto-mechanical oscillators in silicon,82 Be+ ions,83 Yb+ ions,84 trapped Rb atoms in 

excited states,85 a photon entangled with 138Ba+,86 and coupled photons.75-78,87-89  
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Greenberger, Horne, and Zeilinger have demonstrated purely quantum behavior without 

the use of inequalities for three spin-1/2 systems coupled into “Schrödinger’s cat” states,90 

|   = 1/21/2 ( | (1) (2) (3)  + | (1) (2) (3)  )  . (2) 

If three observers A, B, and C each make measurements of the spin projection (scaled to  1) in 

either the x or y direction for one of the entangled systems, their results will satisfy the conditions 

Ax Bx Cx = 1, but Ax By Cy = −1, Ay Bx Cy = −1 and Ay By Cx = −1.  The product of the last three 

equalities gives −1, contradicting the first equality.  Pan et al.91 have prepared GHZ states for 

photons experimentally; Lavoie, Kaltenbaek, and Resch92 established definite nonlocality in this 

case.  Dür, Vidal, and Cirac93 have examined the related W state, which exhibits nonlocality and 

retains the entanglement of two systems, if the third is lost: 

 | W  = 1/31/2 ( | (1) (2) (3)  + | (1) (2) (3)   + | (1) (2) (3) )  , (3) 

The W state has been prepared experimentally by Eibl et al.94 

 We note that entropic versions of the Bell inequalities95-110 also show violations, with the  

maxima occurring for different orientations of the measurement axes than for the standard Bell 

inequalities.  Inequalities in systems with continuous variables111 and nonlocality involving more 

than three entangled photons have also been investigated.112-114   

 In Section II, we present the two inequalities that are investigated in this work.  In Section 

III, we describe the construction of the Bell states on the quantum computers, the effects of rotation 

of the spins, and the construction of the error-mitigation matrices.  In Section IV, we present our 

quantitative results from investigations of the first inequality, which governs probabilities of 

correlation between the spin projections on different axes.  In Section V, we characterize locality 

with reference to the work Brunner et al.,59 and present our results for violations of the CHSH 

inequality.5 Section VI contains a brief summary and conclusions.       
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II.  Classical inequalities and quantum violations 

The two types of inequalities investigated in this work hold for classical objects that can 

be characterized by three properties, each having two possible measurement outcomes.  

Inequalities of the first type govern the probabilities of observing specific pairs of values of these 

properties.  The inequalities follow from set theoretic considerations for classical objects; but 

quantum systems may violate them. 

We have tested one of these inequalities, in a form suggested by Polkinghorne;4 this 

inequality applies to measurements of the spin projections of entangled spin-1/2 particles along 

axes A, B, and C.  The spin measurements yield the probability p(A+B+) to observe spin up (+) for 

one particle along axis A and spin up for the other along axis B; similarly, the measurements yield 

the probability p(A+C+) for spin up along both axes A and C, and the probability p(B+C−) for spin 

up along axis B, but down (−) along axis C.  Constraints on the probabilities such as 

p(A+B+)  p(A+C+) + p(B+C−) (4) 

follow from set theoretic constraints if each of the particles can be placed into one of the eight 

mutually exclusive categories A+B+C+, A+B+C−, A+B−C+, A+B−C−, A−B+C+, A−B+C−, A−B−C+, and 

A−B−C−.4  For classical objects of this type, the number N(A+B+) that have characteristics A+ and 

B+ is the sum of the numbers with A+B+C+ and with A+B+C−,4 

 N(A+B+) = N(A+B+C+) + N(A+B+C−) .  (5) 

Also  

 N(A+C+) = N(A+B+C+) + N(A+B−C+) , and (6) 

 N(B+C−) = N(A+B+C−) + N(A−B+C−) . (7) 

Since the numbers in each category must be greater than or equal to zero, an inequality is produced 

by adding N(A+B−C+) and N(A−B+C−) to the right-hand-side of Eq. (5) and using Eqs. (6) and (7), 
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 N(A+B+) ≤ N(A+B+C+) + N(A+B−C+) + N(A+B+C−) + N(A−B+C−)  

  ≤ N(A+C+) + N(B+C−) . (8) 

Analogous reasoning yields 

  N(A−B−) ≤ N(A−C−) + N(B−C+) . (9) 

In terms of the probabilities p(A+B+) and p(A−B−), we find 

 p(A+B+) + p(A−B−) ≤ [p(A+C+) + p(A−C−)] + [p(B+C−) + p(B−C+)] . (10) 

The classification into eight mutually exclusive categories is not possible for a particle of spin-1/2.  

A particle that is observed to have the spin projection ħ/2 along the z direction has truly 

indeterminate values along other directions, characterized only by probability amplitudes and 

probabilities.  Consequently, the inequality in Eq. (10) is violated for certain orientations of the 

axes A, B, and C.  The analysis for spin-1/2 particles also applies to coupled qubits. A violation of 

this inequality indicates the essentially quantum character of the entangled qubits.  

 Of course, the inequality in Eq. (10) cannot be tested directly, because the spin projections 

of a single qubit cannot be measured along two different axes simultaneously;1,2,4 but if the qubits 

are entangled into the linear combination of triplet states | (1) (2)  and | (1) (2)  as in Eq. 

(1), the spin projection of qubit 1 can be measured along axis A, while the spin projection for qubit 

2 is measured along axis B. Then the outcome for one qubit can be imputed from the outcome for 

the other.  

 Inequalities of the second type govern the expectation values of products of outcomes 

found by two observers, each of whom has a choice of two measurement axes.1,2,5 We have 

considered cases where the first observer measures the spin projection A or B of one qubit along 

axis A or B, and the second observer measures the spin projection B or C of the second, entangled 

qubit along axis B or C.  We use  J K  to denote the expectation value of the product of the spin 
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projection measured along the J axis by the first observer and along the K axis by the second 

observer, with the spin projections scaled to 1 by division by ħ/2.  In this case, the Bell inequality 

proposed by Clauser, Horne, Shimony, and Holt (CHSH)5 takes the form 

 S =  A B  +  A C  +  B B  −  B C   2 ,  (11)  

which is applicable for any local, realistic theory.  Quantum mechanically, S may exceed 2.  A 

large violation (S = 23/2) is found when the observers make measurements along four distinct axes 

A, B, C, and D, with A and B perpendicular to each other, C and D perpendicular to each other, 

and the C, D axis system rotated by /4 relative to the A, B system.5  In our experiments with three 

measurement axes A, B, and C, the maximum observable violation of the CHSH inequality is 

somewhat smaller, at S = 5/2.  However, any violation of the CHSH inequality by a quantum 

system indicates the presence of nonlocality.59  

In this work, we compare the observed differences between the left-hand and right-hand 

sides of the inequalities (10) and (11) with the quantum mechanical predictions.  At present, the 

fault rate of the accessible quantum computers prevents accurate construction of the Bell states in 

Eq. (1).  We have invariably found contributions to the wave function from the states | (1) (2)  

and | (1) (2) .  These contributions have not been eliminated by a type of repetition code (see 

Sec. III) that checks for the identity of outcomes of spin measurements for the two qubits.115-117   

Substantially better methods of error mitigation exist,118-130 but they require more than 5 

qubits all together, for Bell-state runs.  Shor’s original error-correction algorithm used 9 qubits to 

encode for one logical qubit and correct its errors;118 Steane’s algorithm reduced the requirement 

to 7 qubits.119  The methods of Laflamme et al.120 and Bennett et al.121 require 5 qubits (total, the 

theoretical minimum) to provide error correction for one qubit.  The surface code suggested by 

Kitaev126 employs two-dimensional qubit grids with nearest-neighbor connectivity.   
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The difficulty of error correction in Bell-state runs on 5-qubit architecture raises questions 

about the observability of violations of the inequalities on publicly available quantum computers 

at present, and about the accuracy of the results.  These are the central issues addressed in the 

current work.  In later sections, we show that despite the current fault rates, we have observed 

clear-cut violations of both inequalities (10) and (11) in the results from several quantum 

computers, taken directly.  Additionally,  we have obtained quite good quantitative agreement 

between quantum mechanical predictions and the results from the quantum computers for the 

extent of violation of the inequalities, after the application of filtering matrices for error mitigation, 

as described in Sec. III.   
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III.  Construction of Bell states, the first inequality, and rotation of spins 
 
 We have examined several different methods for the construction of the Bell state in Eq. 

(1), which can be expressed equivalently as  |   = 1/21/2 ( | 0 0  + | 1 1  ).  The first is the simplest.  

In this case, the Bell state is produced by applying a Hadamard gate (listed below as h) to qubit 0, 

and then coupling qubit 0 and qubit 1 with a controlled-not gate conditioned on qubit 0 (C-NOT, 

listed below as cx, applied to q[0] and q[1]) as represented by the input, 

h q[0]; 
cx q[0], q[1]; 

Alternative A includes a gate with the Pauli spin matrix y (y), a phase gate (s) represented by the 

matrix {{1, 0}, {0 , i}}, and a rotation by  around the y axis, ry (pi), in addition to the Hadamard 

and controlled-not gates,  

h q[0]; 
y q[1]; 
s q[1]; 
ry(pi) q[1]; 
cx q[0], q[1]; 

Alternative B is slightly simpler, relying on gates with the Pauli spin matrix x (x) applied to both 

qubits, 

h q[0]; 
x q[1]; 
cx q[0], q[1]; 
x q[0]; 

Alternative C differs from B by employing two additional Hadamard gates, 

h q[0]; 
x q[1]; 
cx q[0], q[1]; 
x q[0]; 
h q[0]; 
h q[0]; 

The four methods have different transpiled versions, despite the fact that the square of the 

Hadamard gate is the identity operator.  
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 Figure 1 shows the averaged results of ten runs with 8192 shots each on five of the IBM 

quantum computing systems, burlington,131 vigo,132 essex,133 london,134 and ourense.135 States with 

the qubit spins opposed (| 0 1  and | 1 0 ) should not be present, but they appear in the output.  

Their contributions to the output show relatively little variation with the method of constructing 

the Bell states.  For the different methods, the sums of the percentages of the outcomes | 0 1  and 

| 1 0  ranged from 8.430 to 9.064, when averaged over the five systems.  At the time of these runs, 

we found greater variability from system to system than from method to method. The sums of the 

percentages of the outcomes | 0 1  and | 1 0 , averaged over the four methods of constructing the 

Bell states, ranged from 3.387 on vigo132 (and 4.337 on ourense135) to a high of 18.995 on 

burlington.131    

 The contributions to the Bell states from | 0 0  and | 1 1  should be equal.  The observed 

asymmetry shows somewhat greater variation from method to method than the contributions from 

the spin-opposed states show.  Averaged over the five systems, the sums of the absolute values of 

the differences between the percentages of the outcome | 0 0  and the outcome | 1 1  ranged from 

below 7.000 for alternatives A and B, to above 10.000 for the simple Bell state construction and 

alternative C.  The asymmetry between | 0 0  and | 1 1 , averaged over the four methods of 

constructing the Bell states, ranged from 5.208 on essex133 (and 5.789 on ourense135) to 11.055 on 

burlington.131  These values are all variable, depending on the proximity in time to the daily tuning 

of the systems and periodic maintenance, but they are reasonably representative.  

 We examined whether the results might be improved by use of a repetition code,115-117 to 

check whether the entangled qubits have identical values.  This can be done without a measurement 

that collapses the wave functions: A third qubit is coupled by a C-NOT gate to qubit 0, and then 

also coupled by a C-NOT gate to qubit 1.  A measurement on the third qubit should yield 0 if 
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qubits 0 and 1 have identical values—as they should in the Bell states—but it should yield 1 

otherwise.  We planned to drop the outcomes where this third qubit was in state 1, and renormalize 

the remaining outcomes to 100%.  We used the simplest method of Bell-state construction in this 

investigation for 20 runs on each of the five systems mentioned above.  Prior to any 

renormalization, the averaged sums of the percentages of the outcomes | 0 1  and | 1 0  ranged 

from 5.164 on vigo132 to 11.171 on essex,133 higher in both cases than without the repetition code.  

Renormalization increased these errors.  The repetition code did produce an improvement in the 

results on burlington.131  It reduced the error by more than a factor of two:  the average sum of the 

percentages of outcomes | 0 1  and | 1 0  dropped to 7.697—though this was still higher than the 

percentages of spin-opposed states on vigo132 and ourense135 without any correction.         

 So at the outset, it was not clear how well the actual extent of violation of the probabilistic 

inequalities could be matched by measurements on IBM’s publicly accessible quantum computers.  

The accurate representation of the Bell states is one requirement for a quantitative test.  The 

accurate representation of rotations of the qubit spins by various angles is another requirement.   

 Some of the early discussions of the inequalities apply to singlet-coupled spins.  For 

convenience, we have adapted the inequalities (10) and (11) to apply to the specific linear 

combination of triplet states |   = 1/21/2 [ | (1) (2)  + | (1) (2)  ], which is easily produced 

on the quantum computers.  

 An important feature of the combination of triplet states in Eq. (1) is that the spin coupling 

set up along the z axis holds along an arbitrary axis.  We show this by re-expressing the spin states 

|   and |   in terms of the eigenstates of a rotated spin matrix.  The matrix UR( n) that rotates 

a qubit spin by an angle  around the axis specified by unit vector n = (nx, ny, nz) is136 

 UR( n) = exp(−i  n  /2) = 1 cos (/2) – i n   sin(/2)  , (12) 
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where  is the vector of the Pauli spin matrices, x, y, and z.136  For example, in terms of |   

and |  , the eigenvectors of the spin matrix UR†( n) z UR( n) where n = (0, 1, 0) are | r  = 

cos(/2) |   − sin(/2) |  , and | s  = sin(/2) |   + cos(/2) |  .  The state | r  has a spin 

projection of ħ/2 along the axis rotated by  in the xz plane, and | s  has a spin projection of  −ħ/2.  

The transformation between the {|  , |   and {| r , | s } bases is accomplished by a matrix 

containing the scalar products of the states,  

     | r    | s      cos(/2) sin(/2)   

              =   (13) 

     | r    | s      −sin(/2) cos(/2)   
After re-expressing |   and |   in terms of | r  and | s , the Bell state in Eq. (1) becomes 

 |   = 1/21/2 [ | (1) (2)  + | (1) (2)  ] 

  = 1/21/2 { [ cos(/2) | r(1)  + sin(/2) | s(1) ] [ cos(/2) | r(2)  + sin(/2) | s(2) ]  

    + [cos(/2) | s(1)  − sin(/2) | r(1) ] [cos(/2) | s(2)  − sin(/2) | r(2) ] } 

  = 1/21/2 [ | r(1) r(2)  + | s(1) s(2)  ] . (14) 

This feature of coupling along any axis is shared by the singlet-coupled states. 

 An additional practical issue arises in the measurements on the quantum computers, 

because the qubit spins can only be measured along the z axis.  This is easily resolved, because the 

probability to observe spin up along z if the spin is up along an axis z in the xz plane at angle  is 

identical to the probability to observe spin up along z if the spin is up along z, since  |   | r  |2 = 

|  r  |   |2, and similarly for other probabilities that are needed.   

 In this work, we have considered coplanar axes A, B, and C, with the angle  between axes 

A and B and the angle  between axes B and C.  Quantum mechanically from Eq. (10), violations 

of the Bell inequalities for the entangled states (1) occur when  
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 cos2(/2)  cos2[( + )/2] + sin2(/2) .  (15) 

The corresponding quantities from the quantum computer outputs are p(A+B+) + p(A−B−) on the 

left and [p(A+C+) + p(A−C−)] + [p(B+C−) + p(B−C+)] on the right.  We have evaluated these 

probabilities quantum mechanically by finding the spin projections for coupled qubits along the 

axes (A, B), (A, C), and (B, C), taken pairwise.  Figure 2a shows the quantum value of f(, )  

cos2(/2) – cos2[( + )/2] – sin2[/2], as  and  range from 0 to 2.  Figure 2b shows the regions 

where f(, ) > 0, and the Bell inequalities are violated, with a cut-off in the horizontal plane for 

all of the pairs of angles where f(, ) < 0.  The maximum value of the function f(, ) is 1/4, 

which is found when  =  = /3, or  =  = 5/3.  The minimum value f(, ) = −2 occurs when 

 =  = , so that axis B runs in the opposite direction to axes A and C.  For many angle pairs, 

f(, ) = 0.  Specifically,  f(, ) = 0 for all values of  when  = 0 or  = 2, and correspondingly 

f(, ) = 0 for all values of  when  = 0 or  = 2.  Also, if 0 <  < , f(, ) = 0 when  =  – 

; and if  <  < 2, f(, ) = 0 when  = 3 – .   

As noted, a second major requirement for a quantitative test of the inequalities (1) and (2) 

is the ability to obtain p(A+B+) + p(A−B−) accurately for the Bell states, when axis B is rotated by 

an angle  with respect to axis A.  The result should be cos2(/2).  We evaluated p(A+B+) + p(A−B−) 

for axis B rotated by n/30 relative to axis A, with one run at each n value, ranging from n = 0 to 

n = 30, and 1024, 4096, or 8192 shots.  For comparison purposes, we obtained results from runs 

on the IBM qasm simulator,137 which exhibits purely statistical error. With a single run of 1024 

shots at each angle, the largest absolute value of the deviation from cos2(/2) was 0.024172 at 

19/30; and the mean absolute error was 0.005732.  With 4096 shots, the largest absolute value of 

the deviation from cos2(/2) was 0.02100, at /2, and the mean absolute error was 0.004245.  With 
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8192 shots, the largest absolute value of the deviation from cos2(/2) was 0.01368, at /2, and the 

mean absolute error was 0.002712.  

We looked next at the results from runs at each angle on burlington.131  Figure 3 shows the 

values of p(A+B+) + p(A−B−) as a function of , from sets of ten runs, each with 1024 shots (in 

red), 4096 shots (in cyan) and 8192 shots (in blue).  The results generally agree well with cos2(/2) 

at  = /2, but they diverge from the expected results for other values of ; for  < /2, the values 

of p(A+B+) + p(A−B−) are too small, while for  > /2, they are too large.  The mean absolute errors 

are 0.11005 with 1024 shots, 0.09862 with 4096 shots, and 0.10316, with 8192 shots.  In a few 

cases, fluctuations produced clear outliers.  This was observed at 2/3 and to a greater extent at 

11/15 and 14/15 in the runs with 1024 shots.  In these cases, we re-ran the codes three times on 

burlington131 with 1024 shots, and averaged the values.  The results are plotted in orange, although 

they are obscured by other points where the values coincide.  In the runs with 4096 shots, we found 

outliers at /2 and 14/15; results from an average of four new runs at these angles on ourense135 

are plotted in green.  Finally, for the runs with 8192 shots, we found outliers at /10 and 17/30; 

results from an average of four additional runs on ourense135 are also plotted, this time in magenta. 

Overall, the most striking feature of this plot is the regularity of the curve from the quantum 

computers, especially from the runs with 4096 or 8192 shots—a feature that we did not anticipate.  

Combined with a lack of significant drop-off in the mean absolute error with an increasing number 

of shots, this feature suggests that the deviation from cos2(/2) may be systematic. 

Accordingly, we constructed an error mitigation matrix that is independent of the previous 

set of calculations.  We have adopted the qiskit procedure57 for constructing error mitigation 

matrices on the quantum computers, but we have modified the procedure by applying the matrices 

to the averaged results, outside of the quantum computing runs.  First we allowed the quantum 
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computer to remain in the two-qubit state | 0 0  in 25 calibration runs on burlington,131 each with 

8192 shots, and then determined the fraction of measurements reported as | 0 0 , | 0 1 , | 1 0 , or 

| 1 1 .  We regard the states | 0 1 , | 1 0 , and | 1 1  which should not have appeared in the 

measurement outcomes, as “intruder” states in this case.  The fractions of measurements of each 

of the possible outcomes go into the first column of the error matrix M.  Next we prepared the two-

qubit state | 0 1 , and again determined the fraction of measurements that were reported as | 0 0 , 

| 0 1 , | 1 0 , or | 1 1 , to find the second column of the error matrix M.  We repeated this procedure 

after preparing the states | 1 0  and | 1 1  to find the third and fourth columns of M.  In each case, 

we used sets of 25 calibration runs with 8192 shots.  Then we applied the inverse M−1 to the 

observed outcomes of | 0 0 , | 0 1 , | 1 0 , and | 1 1  for spin projection measurements along 

various pairs of axes, to obtain the results after error mitigation.  The inverse matrices found for 

burlington,131 vigo,132 london,134 and ourense135 in the course of this investigation are listed in the 

Appendix.  The stated purpose of the mitigation matrix is to reduce read-out error upon 

measurement.  We note that the qiskit strategy57 would also ameliorate the effects of incomplete 

inversion of the qubits and the noise due to stray electromagnetic fields.  It is a fair correction for 

the current application, in the sense that it does not account for errors rotating the qubits by 

arbitrary angles, only for 180º inversions (and for leaving the qubit unaltered).   

The error-mitigated results are shown in Figure 4, with the same color coding as before:  

red for the runs with 1024 shots, cyan for runs with 4196 shots, and blue for runs with 8192 shots.  

The alternate runs for angles where we originally had outliers were mitigated with the same matrix 

M−1 and color coded as before. The mean absolute errors of the mitigated results are smaller by 

factors of ~3-6 than the corresponding values for the raw results; for 1024 shots, the mean absolute 

error is 0.03348, for 4096 shots it is 0.01606, and for 8192 shots it is 0.01868.  The fit between the 
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results with error mitigation and the expected cos2(/2) dependence is greatly improved as shown 

in Figure 4, relative to the raw results in Figure 3.  The error-mitigated results obtained with 4096 

and 8192 shots are particularly close to the actual quantum values.  Discrepancies are still found 

to some extent for the A, B angles closest to ; but overall the quality of the fit suggests that it 

might be possible to obtain quantitatively accurate results for the violations of the inequalities in 

Eqs. (10) and (11) on the quantum computers. In the construction of the Bell states, we have 

observed rather pronounced asymmetries between | 0 0  and | 1 1 , along with asymmetries 

between | 0 1  and | 1 0 , which are usually smaller in terms of actual percentages, but may be 

large on a relative basis.  The asymmetries do not affect any of the sums of probabilities p(A+B+) 

+ p(A−B−), p(A+C+) + p(A−C−), or p(B+C−) + p(B−C+) that go into Eq. (10).  This feature is 

favorable, since it increases the likely level of quantitative accuracy.  
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IV.  Quantitative tests of the quantum character of coupled qubits 
 

We have computed the differences  defined as 

 = p(A+B+) + p(A−B−) – {[p(A+C+) + p(A−C−)] + [p(B+C−) + p(B−C+)]} (16) 

for the Bell states in Eq. (1), for spin projections along one of the coplanar axes A, B, and C for 

each qubit.  We constructed the Bell states for qubits 0 and 1, using the first construction method 

listed in Sec. II.  The angle between axes A and B was fixed at /3 (the location of the maximum 

value of ) in all of the runs, and the angle between axes B and C was varied from 0 to  in steps 

of /24.  First, we ran ten times with 8192 shots at each of the fixed angles between two axes in 

order to determine the probabilities of finding the qubit states aligned or opposed.  With the ten 

measured outcomes for each angle pair ( from A to B,  from B to C, and  +  from A to C), 

we generated 1000 different combinations of the results, calculated  for each combination, and 

then determined the average value of  for the entire set of 1000 combinations, as well as the 

standard deviation .  Quantum mechanically, the expected value of the average is  

 = cos2(/2) – cos2[( + )/2] – sin2(/2)  . (17) 

Any case where the value of  is positive illustrates the purely quantum character of the qubits.  If 

 is positive, it is impossible to categorize the spin projections along three different axes 

simultaneously, as one could for a classical object.    

From a first set of runs, we determined the average values of  and  on IBM’s qasm 

simulator.137 The results are listed in Table 1.  With  fixed at /3, the average value of  is positive 

over the range of  from /24 to 5/8, as predicted quantum mechanically.  For  equal to 0 or 

2/3, the value of  is small and negative, but it falls within a standard deviation of the quantum 

expectation value of zero.  
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The results for  and  from the simulator runs are shown in Figure 5.  The quantum 

mechanical prediction is plotted as the blue curve; the red points show the average  values from 

the simulator as a function of the angle , with error bars extending one standard deviation above 

and below the average values.  It is apparent that the simulator results adhere very closely to the 

numerical values obtained quantum mechanically, in addition to showing the essentially quantum 

character of the qubits based on results in the range 0 <  < 2/3.  In this case, the standard 

deviations reflect purely statistical variations. 

 We have then repeated the sets of 10 runs for each pair of axes, giving 1000 combinations 

of results in total, using IBM’s 5-qubit london quantum computer134 with 8192 shots for each run.  

The results are shown in Figure 6 and listed in Table 2.  The red points with standard deviations 

mark the raw results.  We have found clear-cut instances where  > 0 in the range of  values  

/12     13/24.  This is a sub-interval of the range quantum mechanically predicted to show 

 > 0, but the results still illustrate the fundamentally quantum nature of the qubits.  For the angle 

5/24, the raw results are plotted in orange.  The initial set of runs gave a value of  that was 

slightly out of alignment with the overall pattern of points.  The repeat runs gave a value of  that 

is closer to the overall pattern, but not very different from the  value in the first run. 

 The raw results from runs on IBM’s 15-qubit melbourne138 quantum computer are shown 

in purple in Figure 6.  As before, the values of  and  have been obtained from 1000 combinations 

of 10 runs for each of the angles. The larger number of qubits made it possible to determine the 

outcomes 00, 01, 10, and 11 for all three angle pairs in each of the runs, with (A, B) on qubits 0 

and 1, (A, C) on qubits 2 and 3, and (B, C) on qubits 4 and 5.  Each run consisted of 1024 shots.  

The raw results from melbourne138 are not as accurate as the raw results from london,134 and the 

standard deviations are appreciably higher.  The difference is due to the higher fault rate of qubits 



 23 

on melbourne138 and the smaller number of shots.  In some of the ten individual runs for each set 

of orientations of the A, B, and, C axes (before combinations of the results were generated), clear-

cut violations of the Bell inequalities were observable, however.  This holds in seven cases with 

 = /3, six cases with  = /12, seven cases with  = /2, and three cases with  = 7/12.    

As indicated in Tables 1 and 2, when the calculated A, C angle  +  satisfies  <  +  < 

2, in the work on the simulator137 and on london134 we have replaced the angle by 2 − ( + ), 

since the quantum mechanical probabilities p(A+C+) + p (A−C−) are identical in both cases, as are 

the probabilities p(A+C−) + p(A−C+).  In the next section, when  +  exceeds 2, we have replaced 

 +  by ( +  − 2) for the same reason. The average values of the sums of probabilities are 

compared in Table 3 for the angle pairs (/24, 47/24), (/2, 3/2), and (23/24, 25/24), for ten 

runs at each angle on ourense,135 vigo,132 and the ibmq qasm simulator.137 The replacements make 

very little difference to the results from the simulator.  The results from the five-bit quantum 

computers are not identical for the pairs of angles, but the differences between the results on the 

two quantum computers are larger than the differences between angles in a pair.  The differences 

in runs separated by nine days are also larger than the differences between angles in a pair.  The 

largest differences between the results for angle pairs are seen in p(A+C+) − p (A−C−) and p(A+C−) 

− p(A−C+) on the quantum computers. These differences are quite small on the simulator.  In any 

event, these asymmetries do not affect the results in this section or the next.  The angle 

replacements make the calculations appreciably more efficient, because they let us re-use one set 

of ten results in eight of the twenty-five cases.   

The results for  after error mitigation by a filtering matrix57 are plotted as the green points 

in Figure 6.  Given the fault rate noted above, it is interesting that the patterns of both the red points 

(raw) and the green points (error-mitigated) show a great deal of regularity.  The error-mitigated 
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 values are positive over the entire set of angles studied in the range 0 <  < 2/3, exactly as 

predicted quantum mechanically.  The averaged value of  found for a B, C angle of 0 should be 

zero quantum mechanically; the computed value is positive, but it falls within one standard 

deviation of zero.  The error-mitigated value of  is negative for 2/3 and a little less than four 

standard deviations away from zero. 

 In the quantum mechanical case, the dividing line between inherently quantum values of  

( > 0) and values that could be consistent with a classical picture is very sharp, as is apparent 

from analysis of Eq. (17):  If  = /3,  = 0 when  = 2/3;  > 0 for  < 2/3 (except for  = 0); 

and  < 0 for  > 2/3.  We have explored the nature of this transition on a quantum computer.  

For this investigation, we shifted from the london134 computer to ourense,135 which generally gave 

more accurate results.  Figure 7 shows the number of cases where the quantum computer gave 

negative values of , out of 1000 tests generated by taking all possible combinations of 10 runs at 

each of the pairs of angles (A, B), (B, C) and (A, C).  For this plot, quantum mechanical 

calculations would give a Heaviside theta function scaled by 1000, with a jump at  = 2/3.  

Results from runs on ourense135 are plotted for two separate sets of 1000 combinations for the 

angles  = 5/8, 31/48, 11/16, 17/24, and then for three separate sets of 1000 combinations 

for the angles closer to 2/3, specifically  = 21/32, 127/192, 2/3, 43/64, and 65/96. 

Pronounced fluctuations in the number of combinations within a set that yielded  < 0 are seen at 

the angles  = 2/3, 43/64, and 65/96, with smaller fluctuations for  = 21/32 and 127/192.  

On the quantum computer,  the transition region is fairly narrow; it runs over a range of ~/96 in 

the  values. 
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 We have found a comparatively high level of agreement between the quantum results for 

 and the error-mitigated results obtained with the london134 computer.  We have also obtained an 

average value of  that is 9.27 standard deviations above zero on london,134 when  = /3. We 

wanted to see whether it would be possible to come even closer to the maximum value of  = 0.25, 

which is predicted to occur when  = /3.  The results of the runs (as above) on london,134 vigo,132 

and ourense,135 with and without error mitigation, are plotted in Figure 8.  Both vigo132 and 

ourense135 gave values of  closer to the quantum limit.  In fact, the average error-mitigated value 

on vigo132 (plotted in blue) slightly exceeded 0.25, although the value is close to falling within a 

standard deviation of the quantum result.  The two sets of runs on ourense135 were generated over 

two- to three-day periods, separated by five days.  Two different error mitigation matrices, 

obtained five days apart, were applied to the probability distribution over qubit states on 

ourense,135 with quite similar effects.  The runs came very close to reproducing the predicted 

maximum,  = 0.25. These runs also gave average values of  that are many standard deviations 

above zero, even without error mitigation:  22.76 standard deviations above zero on vigo,132 20.78 

standard deviations above zero in the first set of runs on ourense,135 and 25.67 standard deviations 

above zero in the second set of runs on ourense,135 compared with 28.06 standard deviations above 

zero on the qasm simulator.137 This behavior is decidedly non-classical.      
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V.  Nonlocality and the CHSH inequality 
 
 If S in Eq. (11) exceeds 2, then a number of potential hidden-variable theories are ruled 

out.  The quantity S is a linear combination of correlations between the spin-projections for two 

qubits along various axes.  In the original form suggested by Clauser, Horne, Shimony, and Holt,5 

four different axes are used, two by the first observer and two by the second observer, with no 

measurement axes in common.  The maximum value of S obtainable with this version of the CHSH 

inequality is S = 23/2.  In our runs with three axes, A, B, and C, where the first observer measures 

the spin projection along axes A or B, while the second observer measures the spin projection 

along axes B or C, the maximum observable value of S is slightly smaller at 2.5, but S is still well 

over 2.   

 We have adopted the definition of locality used by Brunner et al.,59 and we have followed 

their proof of the CHSH inequality,5 adapted to our 3-axis case.  The definition allows for the 

possibility that values in a set of variables  (which may be hidden) affect the outcomes of 

measurements made by the two observers.  In a local theory, the probabilities for measurement 

outcomes J and K should factorize as59  

 p(J K | ) = p1(J | ) p2(K | ). . (18) 

That is, the probability distribution for the outcomes found by the first observer depends on  and 

the local choice of measurement axis J, but not on the axis chosen nor the outcome found by the 

second observer. The definition of locality in Eq. (18) refers to the independent factorization of 

probabilities of the outcomes of measurements by two observers.59  Strictly, this definition ensures 

one type of locality:  the exclusion of influences by one observer on the other.  The distance 

between the observers is not considered explicitly, nor is the speed of light considered. Limits on 

the speed of transmission of information between the observers and closure of the “memory 



 27 

loophole”67 must be incorporated by restrictions on the allowable variables . The analysis of 

locality based on Eq. (18) involves the assumptions that both objects in an entangled pair are 

accurately identified, and that detection is efficient.59  Both of these conditions are met in the 

current work involving coupled qubits.  

 After we allow for the possibility that  may vary between runs, as represented by the 

normalized probability distribution q() of the values of , the condition for locality can be cast in 

the form59 

 p(J K) = 

 q() p1(J | ) p2(K | ) d  , (19) 

where the integral runs over all possible values of the variables .  In order to correspond with our 

qubit measurements, we consider a case where the first observer makes measurements of the spin 

projection scaled to 1 along axis A or B, and the second observer makes measurements along 

axis B or C.  The expectation value of the product J K of measurements made by the first observer 

along axis J and the second observer along axis K is denoted by  J K . We compute S as in Eq. 

(11).  From Eq. (19),   

  J K  = 

 q()  J ,1  K ,2 d  , (20)  

where 

  J ,1 = p1(J = 1 | ) − p1(J = −1 | ) , (21) 

and similarly for  K ,2.  Both  J ,1 and  K ,2 must have values between −1 and 1. With the 

assumption of locality, S in Eq. (11) can be expressed as an integral over  of q() multiplied by 

S, where 

 S =  A ,1 [ B ,2 +  C ,2] +  B ,1 [ B ,2 −  C ,2]  . (22) 

Then still following Brunner et al.,59 
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 S   |  A ,1 [ B ,2 +  C ,2] | + |  B ,1 [ B ,2 −  C ,2] |  , (23) 

from the triangle inequality.  Since the absolute value of the product is the product of the absolute 

values, and both  A ,1 and  B ,1 are between −1 and 1, we find 

 S   | [ B ,2 +  C ,2] | + | [ B ,2 −  C ,2] |  . (24) 

Then (without loss of generality) assuming that 1   B ,2   C ,2  0, it follows that S satisfies 

S = 2  B ,2  2.  Since the distribution q() is normalized, this means that S  2 in any case 

where locality holds.59   

 We have determined the product  J K  for a given pair of axes J and K, by taking the 

combination p(00) + p(11) – [ p(01) + p(10) ] for runs with those axes.  In our calculations, with 

axes A and B separated by the angle  and B and C separated by , the predicted value of S from 

Eq. (11) is 

 S =  A B  +  A C  +  B B  −  B C   2  

    = cos2(/2) – sin2(/2) + cos2[( + )/2] – sin2[( + )/2] + 1 – cos2(/2) + sin2(/2) 

    = 1 + cos() – cos() + cos( + ) . (25) 

We have examined cases with  = /3 and  ranging from  to 2.  The specific inequality that 

governs the probabilities in Eq. (10) is valid for these cases, but analogous inequalities break down.  

For example, the inequality  p(A+B+) + p(A−B−)  p(B+C+) + p(B−C−) + p(A+C−) + p(A−C+) is 

violated for  <  < 5/3.  In this same range, S > 2.    

 As before, we have used 10 runs with 8192 shots for axes with relative angles of , , and 

( + ), then formed the 1000 combinations generated by these runs, and evaluated the average S 

value and its standard deviation.  The results are listed in Table 4.  Figure 9 shows the raw results 

for the averaged S value and the error-mitigated results, with the mitigation matrix determined 
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separately, outside of these runs on the ourense135 quantum computer.  The results are plotted as a 

function of the angle .  Again, both mitigated results (in green) and raw results (in red) lie along 

curves that are strikingly well-behaved.  There are two exceptions to this pattern, for the error-

mitigated results with  = 13/8 or 41/24.  In both of these cases, it was necessary to determine 

 A C  for a quite small angle of /24 between the A and C axes.  After error mitigation, the 

value of  A C  exceeded one by approximately 12%.  The points plotted in magenta were 

obtained by capping the correlation  A C  exactly at one, in the cases where  A C  would 

otherwise have exceeded one. 

 The value of S exceeds 2 for both the raw results and the error-mitigated results, showing 

that no local hidden-variable theory can be compatible with the runs on the quantum computer, 

subject to the definition of locality in Eq. (18).59  In these runs, the maximum S value prior to error 

mitigation exceeds 2 by 6.27 standard deviations.  After error mitigation, the maximum S value 

exceeds 2 by 12.89 standard deviations.  The error-mitigated results for S as a function of the angle 

 fall very close to the quantum predictions.  
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VI.  Summary and conclusions  
 
 In this work, we have provided quantitative measures of the essentially quantum character 

of the qubits on IBM’s publicly accessible quantum computers.  The inequality in Eq. (10) is a 

variant of the Bell inequalities suggested by Polkinghorne.4  This inequality tests whether the spin 

projections for spin-1/2 particles may exist simultaneously along three distinct axes A, B, and C, 

even though they cannot be measured simultaneously along the three axes.  If the spin projections 

exist simultaneously, then the particles can be classified completely into one of eight disjoint sets, 

according to whether the spin points up or down along each of the axes.  The inequality in Eq. (10) 

follows directly from this classification. We have found numerous violations of this inequality for 

the qubits as listed in Table 2 and plotted in Figure 6. We have also found that for a fixed angle 

 = /3 between A and B and a variable angle  between B and C (with A, B, and C coplanar), 

the extent of violation as a function of  follows the quantum mechanical predictions reasonably 

well in terms of the raw data and quite well in terms of the error-mitigated data, in runs on 

london.134  Even without error mitigation, the average differences  that we have found between 

p(A+B+) + p(A−B−) and the sum p(A+C+) + p(A−C−) + p(B+C−) + p(B−C+) exceed zero by more 

than 20 standard deviations in runs on vigo132 and ourense.135   

 The Clauser-Horne-Shimony-Holt inequality5 in Eq. (11) provides a test of locality.  If S 

exceeds 2, then a local hidden variable theory cannot be formulated to match the quantum 

predictions; in this context, the condition for locality is specified in Eqs. (18) and (19) as proposed 

by Brunner et al.59 As before, we have found numerous cases in which S exceeds 2, listed in Table 

4 and plotted in Figure 9. With  = /3, the value of S as a function of  follows the quantum 

predictions prior to mitigation and fits the predictions very well after error mitigation. The 
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maximum value of S in our runs exceeds 2 by more than 6 standard deviations prior to mitigation 

and by more than 12 standard deviations after error mitigation.  

 The accuracy of these results overall was somewhat surprising to us, given the known 

single qubit U2 error rates, the C-NOT error rates,3 and the measurement faults revealed by 

preparing two qubits in states that should be exclusively | 0 0 , | 0 1 , | 1 0 , or | 1 1 , and 

observing that all of the other states are typically found in the output.  It is noteworthy that the 

averages of both  and S from our runs with 8192 shots show a striking regularity as a function of 

the angle .  In our view, this suggests that the remaining faults may be systematic, rather than 

random.  The effects of error mitigation tend to support this view.  We have applied error-

mitigation matrices that were determined outside of the runs to find  and S.  The error mitigation 

matrices were not adapted to the calculations being run, since they were determined without 

coupling the qubits and without applying a rotation to any qubit (other than complete inversion).  

The mitigation matrices for burlington,131 vigo,132 london,134 and ourense135 differ somewhat 

among themselves, as is apparent from the listing in the Appendix.  The mitigation matrices for 

ourense135 determined at two separate times did not differ much, however.   

 The nature of the Bell states themselves has helped to enhance overall accuracy of the 

determinations of  and S.  On the whole, we have observed a tendency for the measurement 

outcome | 0 0  to be more probable than expected, and for the measurement outcome | 1 1  to be 

less probable than expected.  Because the analysis relies on sums of probabilities such as p(A+B+) 

+ p(A−B−), some cancellation of errors occurs naturally.  Similarly, we have observed asymmetries 

in the measurement outcomes | 0 1  and | 1 0  when they should be equal.  The use of combinations 

such as p(B+C−) + p(B−C+) removes the effect of the asymmetries, though it does not completely 

remove the errors in the probabilities themselves.  Designing quantum computing algorithms to 
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take advantage of Bell-type states may be beneficial in terms of accuracy, when this is possible.  

Our work offers one benchmark for the accuracy of IBM’s publicly available quantum computers, 

at present. 

 Bell states provide the basis for one form of quantum cryptography,139-141 since the no-

cloning theorem offers a first line of security for quantum key distribution142,143 Yet it is possible 

for three or more observers to share the nonlocality of an entangled pair, with violations of the Bell 

(CHSH) inequalities found in all of the measurements.144-147  Experimental confirmations of this 

possibility have been reported.148-150  Still, the information that can be gained by an eavesdropper 

is subject to a tight bound based on the extent of violation of a Bell inequality (Acin).151 Xu et 

al.141 have reviewed multiple types of hacking attacks on quantum key distribution, with reference 

to experimental tests of security measures.  

 The formation of Bell states between an ancillary qubit and a qubit that is subject to an 

unknown quantum map permits full characterization of the quantum dynamics.152-154  Hamiltonian 

actions on the qubit can be identified; and quantum key distribution methods or quantum repeaters 

can be verified.152 The population relaxation time T1 and the dephasing time T2 can also be 

determined.152  The approach has been generalized to cover two-qubit exchange Hamiltonians, 

with a pair of ancillary qubits,153 and to characterize the dynamics when the Bell state is noisy.154  

 Randomness certification155-157 can be accomplished with Bell states, which also permit 

extremely dense coding,158,159 teleportation,160-163 delayed-choice quantum erasure,164-166 and 

entanglement swapping.167,168 Entangled states of multiple qubits are used in improved methods 

of error correction.115-127 Thus the Bell states have considerable utility beyond the demonstration 

of inherently quantum characteristics, or tests of the accuracy of quantum gates and measurements, 

as in the current work.   
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Appendix:  External mitigation matrices M−1 used in this work 
 
The mitigation matrices determined outside the runs on the quantum computers are listed below.  

We have used the method of construction described in the qiskit documentation.57 Matrices that 

are closer to the identity indicate more accurate operation of the quantum computer.  These 

matrices do not remain stable over long periods.  However, the two mitigation matrices for 

ourense135 were determined five days apart, and they differ from each other less than they differ 

from the other matrices.  

 
burlington131 
 
   1.074988 −0.124294 −0.217828 −0.012518   
 
   −0.024451 1.165339 0.001658 −0.207666 
M−1 = 
   −0.033282 0.001876 1.237703 −0.128352 
 
   −0.017255 −0.042921 −0.021520 1.348218   
 
london134  
 
   1.016556 −0.076543 −0.046868 0.004441   
 
   −0.006517 1.092766 −0.000025 −0.055147 
M−1 = 
   −0.009573 0.000386 1.052127 −0.064562 
 
   −0.000476 −0.016598 −0.005234 1.115267   
 
vigo132  
 
   1.010999 −0.029718 −0.025551 0.000636   
 
   −0.005768 1.036088 −0.000118 −0.026499 
M−1 = 
   −0.005252 0.000215 1.033087 −0.033973 
 
   0.000021 −0.006575 −0.007418 1.059824   
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ourense135  
 
   1.034861 −0.029335 −0.034065 0.000811   
 
   −0.013127 1.050248 0.000270 −0.037341 
M−1 = 
   −0.021839 0.000571 1.047827 −0.041142 
 
   −0.000105 −0.021485 −0.014032 1.077683   

 
Second set of runs on ourense135 

 
   1.032876 −0.028240 −0.036447 0.000685   
 
   −0.012984 1.049636 0.000263 −0.042541 
M−1 = 
   −0.020000 0.000390 1.050376 −0.029087 
 
   −0.000098 −0.021775 −0.014192 1.070943   
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Table 1.  Average values of   p(A+B+) + p(A−B−) – p(A+C+) – p(A−C−) – p(B+C−) – p(B−C+) and 
the standard deviations  from 1000 combinations of runs for each set of angles on the qasm 
simulator.137 Axes A, B, and C are co-planar.  Positive values of  reflect inherently non-classical 
behavior.  Angles ( + ) larger than  have been replaced by 2 – ( + ), which should give 
identical values of , based on quantum mechanical calculations. 
 

A, B angle B, C angle A, C angle   

     
/3 0 /3 −0.00204 0.00624 
/3 /24 3/8 0.04992 0.00697 
/3 /12 5/12 0.10110 0.00620 
/3 /8 11/24 0.14510 0.00792 
/3 /6 /2 0.17840 0.00750 
/3 5/24 13/24 0.21052 0.00764 
/3 /4 7/12 0.23295 0.00768 
/3 7/24 5/8 0.24640 0.00932 
/3 /3 2/3 0.24575 0.00875 
/3 3/8 17/24 0.24301 0.00860 
/3 5/12 3/4 0.23010 0.00711 
/3 11/24 19/24 0.21096 0.00857 
/3 /2 5/6 0.18169 0.00723 
/3 13/24 7/8 0.14314 0.00796 
/3 7/12 11/12 0.09943 0.00713 
/3 5/8 23/24 0.05025 0.00808 
/3 2/3  −0.00175 0.00526 
/3 17/24 25/24 → 23/24 −0.05870 0.00650 
/3 3/4 13/12 → 11/12 −0.12275 0.00565 
/3 19/24 9/8 → 7/8 −0.18771 0.00636 
/3 5/6 7/6 → 5/6 −0.25250 0.00543 
/3 7/8 29/24 → 19/24 −0.31733 0.00633 
/3 11/12 5/4 → 3/4 −0.38230 0.00558 
/3 23/24 31/24 → 17/24 −0.44634 0.00637 
/3  4/3 → 2/3 −0.50317 0.00534 
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B, C angle A, C angle       
      

0 /3 −0.04928 0.01398 0.01137 0.01636 
/24 3/8 −0.01705 0.00925 0.06220 0.00901 
/12 5/12 0.02378 0.01061 0.09506 0.01217 
/8 11/24 0.06062 0.00907 0.13719 0.01030 
/6 /2 0.08612 0.00876 0.16118 0.00960 

5/24 13/24 0.11292 0.00989 0.19749 0.01142 
/4 7/12 0.11873 0.00909 0.20128 0.01015 

7/24 5/8 0.13140 0.00997 0.21799 0.01137 
/3 2/3 0.13216 0.01426 0.21918 0.01666 
3/8 17/24 0.13054 0.00908 0.21773 0.01024 
5/12 3/4 0.11716 0.01087 0.20242 0.01245 
11/24 19/24 0.10077 0.00941 0.18361 0.01072 

/2 5/6 0.07609 0.00877 0.15601 0.01003 
13/24 7/8 0.04293 0.00997 0.11746 0.01158 
7/12 11/12 −0.00054 0.00857 0.06787 0.00970 
5/8 23/24 −0.04190 0.00986 0.02080 0.01125 
2/3  −0.09227 0.00850 −0.03678 0.00955 

17/24 25/24 → 23/24 −0.13341 0.00881 −0.08408 0.00991 
3/4 13/12 → 11/12 −0.18961 0.00805 −0.14849 0.00908 

19/24 9/8 → 7/8 −0.23955 0.00895 −0.20580 0.01015 
5/6 7/6 → 5/6 −0.29490 0.00843 −0.26892 0.00954 
7/8 29/24 → 19/24 −0.35024 0.00895 −0.33204 0.01015 

11/12 5/4 → 3/4 −0.40019 0.00805 −0.38935 0.00908 
23/24 31/24 → 17/24 −0.45638 0.00881 −0.45376 0.00991 

 4/3 → 2/3 −0.49752 0.00850 −0.50106 0.00955 
 
 
 
 
 
 
 
 
 
 

Table 2.  Average values of   p(A+B+) + p(A−B−) – p(A+C+) – p(A−C−) – p(B+C−) – 
p(B−C+) from 1000 combinations of runs for each set of angles on london.134 Values of  
and standard deviations  with and without error mitigation by a filtering matrix.  Values 
after mitigation are indicated by asterisks.  The angle between axes A and B is fixed at 
/3.  



Table 3.  Comparisons of probabilities for spins to be aligned or opposed for angle pairs that should give identical results.  Averages of 
10 runs at each angle on ourense135 and vigo,132 without mitigation.  Results from the ibmq qasm simulator137 (sim) are shown for 
comparison.  Results for /24 on ourense135 on the first line were obtained nine days before the corresponding results on the second line. 
 
ourense135       

Angle p(A+B+) + p(A−B−) Quantum value p(A+B−) + p(A−B+) Quantum value p(A+B+) − p(A−B−) p(A+B−) − p(A−B+) 
       

/24 0.91895 0.99572 0.08106 0.00428 0.04714 0.00676 
/24 0.87383 0.99572 0.12617 0.00428 0.09192 0.06802 

47/24 0.86759 0.99572 0.13241 0.00428 0.05956 0.10260 
       

/2 0.51417 0.50000 0.48583 0.50000   18151 −0.04498 
3/2 0.48923 0.50000 0.51077 0.50000 −0.02908   0.17791 

       
23/24 0.13297 0.00428 0.86703 0.99572 0.11423 0.04681 
25/24 0.13004 0.00428 0.86996 0.99572 0.08038 0.07304 

       
vigo132       
Angle p(A+B+) + p(A−B−) Quantum value p(A+B−) + p(A−B+) Quantum value p(A+B+) − p(A−B−) p(A+B−) − p(A−B+) 

       

/24 0.95260 0.99572 0.04740 0.00428 0.08825 −0.01510 
47/24 0.95238 0.99572 0.04762 0.00428 0.08292 −0.00868 

       
/2 0.49243 0.50000 0.50757 0.50000 0.07756 −0.00325 
3/2 0.51530 0.50000 0.48471 0.50000 0.03676   0.03519 

       
23/24 0.04830 0.00428 0.95170 0.99572 0.03353 0.03255 
25/24 0.04588 0.00428 0.95413 0.99572 0.02695 0.04814 
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sim137       
Angle p(A+B+) + p(A−B−) Quantum value p(A+B−) + p(A−B+) Quantum value p(A+B+) − p(A−B−) p(A+B−) − p(A−B+) 

       
/24 0.99596 0.99572 0.00405 0.00428   0.00626 −0.00003 

47/24 0.99679 0.99572 0.00421 0.00428 −0.00299 −0.00006 
       

/2 0.49575 0.50000 0.50425 0.50000 −0.00059 0.00262 
3/2 0.49941 0.50000 0.50058 0.50000   0.00566 0.00032 

       
23/24 0.00421 0.00428 0.99579 0.99572 0.00001 0.00089 
25/24 0.00420 0.00428 0.99580 0.99572 0.00010 0.00073 

 



B, C angle  A, C angle /3 +   S (S) S* (S*) 
      

 4/3 → 2/3 1.79995 0.02027 1.98703 0.02239 
/24 → 23/24 11/8 → 5/8 1.89699 0.02124 2.09490 0.02351 
/12 → 11/12 17/12 → 7/12 1.92583 0.02026 2.15255 0.02267 

/8 → 7/8 35/24 → 13/24 2.01277 0.02227 2.25173 0.02596 
/6 → 5/6 /2 → /2 2.07908 0.02060 2.32884 0.02324 

29/24 → 19/24 37/24 → 11/24 2.12844 0.02169 2.38404 0.02445 
/4 → 3/4 19/12 → 5/12 2.16123 0.02428 2.42166 0.02753 

31/24 → 17/24 13/8 → 3/8 2.18799 0.02113 2.45229 0.02360 
/3 → 2/3 /3 → /3 2.19123 0.03049 2.45518 0.03532 

11/8 → 5/8 41/24 → 7/24 2.18970 0.02267 2.45280 0.02559 
17/12 → 7/12 7/4 → /4 2.16072 

2.16365 
0.02101 
0.02115 

2.41939 
2.41630 

0.02344 
0.02368 

35/24 → 13/24 43/24 → 5/24 2.15274 0.02254 2.41180 0.02567 
/2 → /2 11/6 → /6 2.09914 0.02058 2.34854 0.02316 

37/24 → 11/24 15/8 → /8 2.04815 0.02111 2.29119 0.02370 
19/12 → 5/12 23/12 → /12 1.97446 0.02381 2.20694 0.02701 
13/8 → 3/8 47/24 → /24 1.89280 

1.89280 
0.02142 
0.02142 

2.26765 
2.14122 

0.02154 
0.02149 

5/3 → /3  → 0 1.82835 0.02997 2.03955 0.03475 
41/24 → 7/24 49/24 → /24 1.70805  1.93095 0.02113 

7/4 → /4 25/12 → /12 1.59390 0.01975 1.77958 0.02205 
43/24 → 5/24 17/8 → /8 1.45889 0.02015 1.61691 0.02233 

11/6 → /6 13/6 → /6 1.33711 0.01998 1.47897 0.02224 
15/8 → /8 53/24 → 5/24 1.21533 0.02015 1.34104 0.02233 

23/12 → /12 9/4 → /4 1.08032 0.01975 1.17837 0.02205 
47/24 → /24 55/24 → 7/24 0.96617 

0.96617 
0.02116 
0.02116 

0.90056 
1.02699 

0.02117 
0.02113 

 → 0 7/3 → /3 0.84587 0.02997 0.91840 0.03475 
 
 

 
 
 
 
 

Table 4.  Values of S =  A B  +  A C  +  B B  −  B C  in the CHSH inequality and 
standard deviations .  Averages of 1000 combinations of runs on london.83  Results after error 
correction with a mitigation matrix are indicated by asterisks.  Values exceeding 2 show that a 
local hidden variable theory cannot be formulated. Initial angle choices have been replaced by 
calculated angles that are predicted quantum mechanically to give identical correlations.  In the 
second lines for  = 13/8 and 47/24,  A C  has been capped at 1.00000 (see text) 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Histogram of the measurement outcomes | 0 0 , | 0 1 , | 1 0 , and | 1 1  for Bell states constructed with different methods 
(see text).  Averaged results are shown for ten runs with 8192 shots each on the IBM quantum computing systems burlington,131 vigo,132 
essex,133 london,134 and ourense.135 Figure created with the IBM Q Experience.® 
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Figure 2a.  Plot of the function f(, )  cos2(/2) – cos2[( + )/2] – sin2(/2), as  and  range 
from 0 to 2.   
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Figure 2b. Plot highlighting the regions where f(, ) > 0, and the probabilistic inequality in Eq. 
(10) is violated.  A cut-off is imposed in the horizontal plane, for all pairs of angles where f(, ) 
< 0.  
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Figure 3. Values of p(A+B+) + p(A−B−) for the Bell states plotted as a function of , from sets of 
ten runs each on the burlington quantum computer131 with 1024 shots (in red), 4096 shots (in cyan), 
and 8192 shots (in blue).  Where outliers were observed in the initial runs, the outcomes of repeat 
runs are shown in green or magenta (see text for details).  Purple curve:  quantum mechanical 
prediction.   
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Figure 4. Error-mitigated values of p(A+B+) + p(A−B−) for the Bell states plotted as a function of 
, from sets of ten runs each on the burlington quantum computer131 with 1024 shots (in red), 4096 
shots (in cyan), and 8192 shots (in blue). As in Figure 3, where outliers were observed in the initial 
runs, the outcomes of repeat runs are shown in green or magenta (see text).  Purple curve:  quantum 
mechanical prediction.   
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Figure 5.  Average values of  defined as cos2(/2) – cos2[( + )/2] – sin2(/2) for the Bell 
states, as obtained from runs on the IBM qasm simulator.137  The angle  is fixed at /3, and the 
points are plotted in red as a function of .  Results from 1000 combinations of 10 runs each at 
angles ,  and ( + ).  The error bars reach one standard deviation above and below the average 
 values.  Blue curve:  quantum mechanical prediction.  
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Figure 6.  Average values of  defined as cos2(/2) – cos2[( + )/2] – sin2(/2) for the Bell states, as obtained from runs on the IBM 
london134 quantum computer.  Results from 1000 combinations of 10 runs each at angles ,  and ( + ).  The angle  is fixed at /3, 
and the raw data points are plotted in red as a function of .  Error-mitigated points are plotted in green.  See text for orange and magenta 
points.  The error bars reach one standard deviation above and below the average  values.  Blue curve:  quantum mechanical prediction.  
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Figure 7.  Number of cases where the quantum computer gave negative values of , out of 1000 
cases generated by taking all possible combinations of 10 runs at each of the pairs of angles (A, 
B), (B, C), and (A, C).  Results from multiple calculations are plotted as a function of the angle  
between axes B and C.  Calculations run on the IBM ourense135 quantum computer.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1000 
 
 800 
 
 600 
 
 400 
 
 200 
 
     0 

 • 

 • 

 • 

5    61   31   21     2  65   11    67   17  
 8   96     48       32  3  96    16      96      24 

Angle  between axes B and C 

N 



 55 

 

 
 
 
 
 
Figure 8.  Calculated  values for  = /3, obtained from runs on london,134 vigo,132 and 
ourense135 with and without error mitigation (see text).  The maximum value predicted quantum 
mechanically is  = 0.25.  
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Figure 9.  Raw results (red) and the error-mitigated results (green) for S in the CHSH inequality 
of Eq. (11), from runs on ourense,135 plotted as a function of the angle  between axes B and C.  
Values of S > 2 rule out local hidden variable theories.  For the two results plotted in magenta, see 
text. 
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