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The high-dimensional data created by high-throughput technologies require visualization tools that reveal data structure and
patterns in an intuitive form. We present PHATE, a visualization method that captures both local and global nonlinear struc-
ture using an information-geometric distance between data points. We compare PHATE to other tools on a variety of artificial
and biological datasets, and find that it consistently preserves a range of patterns in data, including continual progressions,
branches and clusters, better than other tools. We define a manifold preservation metric, which we call denoised embedding
manifold preservation (DEMaP), and show that PHATE produces lower-dimensional embeddings that are quantitatively better
denoised as compared to existing visualization methods. An analysis of a newly generated single-cell RNA sequencing dataset
on human germ-layer differentiation demonstrates how PHATE reveals unique biological insight into the main developmental
branches, including identification of three previously undescribed subpopulations. We also show that PHATE is applicable to a
wide variety of data types, including mass cytometry, single-cell RNA sequencing, Hi-C and gut microbiome data.

a staggering rate, especially of biological systems measured

using single-cell transcriptomics and other genomic and
epigenetic assays. Because humans are visual learners, it is impor-
tant that these datasets are presented to researchers in intuitive ways
to understand both the overall shape and the fine granular structure
of the data. This is especially important in biological systems, where
structure exists at many different scales and a faithful visualization
can lead to hypothesis generation.

There are many dimensionality-reduction methods for visu-
alization'™", of which the most commonly used are principal-
component analysis (PCA)'" and t-distributed stochastic neighbor
embedding (t-SNE)'->. However, these methods are suboptimal
for exploring high-dimensional biological data. First, such meth-
ods tend to be sensitive to noise. Biomedical data is generally very
noisy, and methods like PCA and Isomap* fail to explicitly remove
this noise for visualization, rendering fine-grained local structure
impossible to recognize. Second, nonlinear visualization methods
such as t-SNE often scramble the global structure in data. Third,
many dimensionality-reduction methods (for example, PCA and
diffusion maps) fail to optimize for two-dimensional (2D) visual-
ization as they are not specifically designed for visualization.

Furthermore, common implementations of dimensionality-
reduction methods often lack computational scalability. The vol-
ume of biomedical data being generated is growing at a scale that far
outpaces Moore’s law. State-of-the-art methods such as multidimen-
sionalscaling (MDS) and t-SNE were originally presented (seerefs. ')

| | igh-dimensional, high-throughput data are accumulating at

as proofs-of-concept with somewhat naive implementations, which
do not scale well to datasets with hundreds of thousands, let alone
millions, of data points owing to speed or memory constraints.
Although some heuristic improvements may be made**, most avail-
able packages still follow the original implementation and thus
cannot run on big data, which severely limits the usability of these
methods in the medium-to-long term.

Finally, we note that some methods try to alleviate visualiza-
tion challenges by directly imposing a fixed geometry or intrinsic
structure on the data. However, methods that impose a structure
on the data generally have no way of alerting the user whether
the structural assumption is correct. For example, any data will be
transformed to fit a tree with Monocle2" or clusters with ¢-SNE.
While such methods are useful for data that fit their prior assump-
tions, they can generate misleading results otherwise, and are often
ill suited for hypothesis generation or data exploration.

To address the above concerns, we have designed a dimensional-
ity-reduction method for visualization named potential of heat dif-
fusion for affinity-based transition embedding (PHATE). PHATE
generates a low-dimensional embedding specific for visualization,
which provides an accurate, denoised representation of both local
and global structure of a dataset in the required number of dimen-
sions without imposing any strong assumptions on the structure of
the data, and is highly scalable both in memory and runtime. To
achieve this, we combine ideas from manifold learning, informa-
tion geometry and data-driven diffusion geometry, and integrate
them with current state-of-the-art methods. The result is that
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high-dimensional and nonlinear structures, such as clusters, non-
linear progressions and branches, become apparent in two or three
dimensions and can be extracted for further analysis (Fig. 1a).

We develop a new metric called DEMaP to quantify the abil-
ity of an embedding to preserve denoised manifold distances, we
show that PHATE consistently outperforms 11 other methods on
synthetically generated data with known ground truth. We also use
PHATE to visualize several biological and non-biological real-world
datasets, showing the capacity of PHATE to visualize datasets with
many different underlying structures including trajectories, clus-
ters, disconnected and intersecting manifolds, and more (Fig. 1). To
demonstrate the ability of PHATE to reveal new biological insights,
we apply PHATE to a newly generated single-cell RNA sequenc-
ing (scRNA-seq) dataset of human embryonic stem cells grown as
embryoid bodies over a period of 27d to observe differentiation
into diverse cell lineages. PHATE successfully captures all known
branches of development within this system as well as differentia-
tion pathways, and enables the isolation of rare populations on the
basis of surface markers, which we validate experimentally.

Results

Visualizing complex, high-dimensional data in a way that is both
easy to understand and faithful to the data is a difficult task. Such a
visualization method needs to preserve local and global structure in
the high-dimensional data, denoise the data so that the underlying
structure is clearly visible and preserve as much information as pos-
sible in low (two to three) dimensions. Additionally, a visualization
method should be robust in the sense that the revealed structure of
the data is insensitive to user configurations of the algorithm and
scalable to the large sizes of modern data.

Popular dimensionality-reduction methods are deficient in one
or more of these attributes. For example, t-SNE' focuses on pre-
serving local structure, often at the expense of the global struc-
ture (Fig. 1b,c), while PCA focuses on preserving global structure
at the expense of the local structure (Fig. 1b,c). Although PCA is
often used for denoising as a preprocessing step, both PCA and
t-SNE provide noisy visualizations when the data is noisy, which can
obscure the structure of the data (Fig. 1b,c). By contrast, diffusion
maps" effectively denoise data and learn the local and global struc-
ture. However, diffusion maps typically encode this information in
higher dimensions', which are not amenable to visualization, and
can introduce distortions in the visualization under certain condi-
tions (Supplementary Figs. 1 and 2).

PHATE is designed to overcome these weaknesses and provide
a visualization that preserves the local and global structure of the
data, denoises the data and presents as much information as possi-
ble into low dimensions. There are three major steps in the PHATE
algorithm (Fig. 2):

1. Encode local data information via local similarities (Fig. 2a—c).
For some data types, such as Hi-C chromatin conformation
maps'?, the local relationships are encoded directly in the meas-
urements. However, for most data types, the local similarities
must be learned. We assume that component-wise, the data are
well-modeled as lying on a manifold. Effectively this means that
local relationships between data points, even when noisy, are
meaningful with respect to the overall structure of the data, as
they can be chained together to learn global relationships along
the manifold. We apply a kernel function that we developed
(called the a-decay kernel) to Euclidean distances to accurately
encode the local structure of the data even when the data are not
uniformly sampled along the underlying manifold structure.

2. Encode global relationships in data using the potential dis-
tance (Fig. 2d,e). Diffusing through data is a concept that was
popularized in the derivation of diffusion maps'. Diffusion
is performed by first transforming the local similarities into
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probabilities that measure the probability of transitioning from
one data point to another in a single step of a random walk
and then powering this operator to t steps to give t-step walk
probabilities. Thus, both the local and global manifold distanc-
es are represented in the newly-calculated multistep transition
probabilities, which are referred to as the diffusion probabili-
ties. For example, two points that have multiple potential short
paths that connect them will have a higher diffusion probability
than two points that either have only long paths or relatively
few paths connecting them. By considering all possible random
walks, the diffusion process also denoises the data by down-
weighting spurious paths created by noise. However, directly
embedding the diffusion probabilities into two and three di-
mensions via eigenvalue decomposition results in either a loss
of information (Supplementary Fig. 1) or an unstable embed-
ding (Supplementary Figs. 2a and 3d, respectively). In PHATE
we interpret the diffusion probability of each point to all other
points as the ‘global context of the data point, and derive an
information-theoretic potential distance between each pair of
cells that compares the entire global context. Potential distance
is computed as a divergence between the associated diffusion
probability distributions of the two cells to all other cells. Thus
the relationship of each cell to both near neighbors and distant
points is accounted for in this distance. Notably, many diver-
gences use a sublinear transformation of probability distribu-
tions (such as a log-scale transformation), which prevents near-
est neighbors from dominating the distance.

3. Embed potential distance information into low dimensions for
visualization (Fig. 2e-f). The information in the potential dis-
tances are then squeezed into low dimensions for visualization
via metric MDS, which creates an embedding by matching the
distances in the low-dimensional space to the input distances.
Unlike PCA, this ensures that all variability is squeezed into
two dimensions for a maximally informative embedding.

These steps are outlined in Table 1. All of these steps are neces-
sary to create a good visualization that preserves local and global
structure in the high-dimensional data, denoises the data and pres-
ents as much information as possible in low dimensions. Further
details on all of the steps of PHATE are included in the Methods,
Supplementary Table 1 and Supplementary Note 1. PHATE is also
robust to the choice of parameters (Methods; Supplementary Fig.
4) and produces the same results every time it is run, regardless of
random seed (Supplementary Fig. 5).

In addition to the exact computation of PHATE, we developed
an efficient and scalable version of PHATE that produces near-iden-
tical results. In this version, PHATE uses landmark subsampling,
sparse matrices and randomized matrix decompositions. For more
details on the scalability of PHATE see the Methods, Supplementary
Table 2 and Supplementary Fig. 6, which shows the fast runtime of
PHATE on datasets of different sizes, including a dataset of 1.3 mil-
lion cells (2.5h) and a network of 1.8 million nodes (12 min).

Extracting information from PHATE. PHATE embeddings con-
tain a large amount of information on the structure of the data,
namely, local transitions, progressions, branches or splits in pro-
gressions and end states of progression. Here we present new meth-
ods that provide suggested end points, branch points and branches
on the basis of the information from higher-dimensional PHATE
embeddings (Fig. 3). These may not always correspond to real deci-
sion points, but provide an annotation to aid the user in interpreting
the PHATE visual.

+ Branch-point identification with local intrinsic dimensionality.
In biological data, branch points often encapsulate switch-like

decisions where cells sharply veer towards one of a small number
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Fig. 1| Overview of PHATE and its ability to reveal structure in data. a, Conceptual figure demonstrating the progression of stem cells into different cell
types and the corresponding high-dimensional single-cell measurements rendered as a visualization by PHATE. b, Left, a 2D drawing of an artificial tree
with color-coded branches. Data is uniformly sampled from each branch in 60 dimensions with Gaussian noise added (Methods). Right, comparison of
PCA, t-SNE and the PHATE visualizations for the high-dimensional artificial tree data. PHATE is best at revealing global and branching structure in the
data. In particular, PCA cannot reveal fine-grained local features such as branches while t-SNE breaks the structure apart and shuffles the broken pieces
within the visualization. See Supplementary Fig. 3 for more comparisons of artificial data. ¢, Comparison of PCA, t-SNE and the PHATE visualizations

for new EB data showing similar trends as in b. d, PHATE applied to various datatypes. Left, PHATE on human microbiome data shows clear distinctions
between skin, oral and fecal samples, as well as different enterotypes within the fecal samples. Middle, PHATE on Hi-C chromatin conformation data
shows the global structure of chromatin®. The embedding is colored by the different chromosomes. Right, PHATE on iPSC CyTOF data. The embedding is
colored by time after induction. See Figs. 5 and Supplementary Figs. 8, 10 and 11 for more applications to real data.

data lie on low-dimensional progressions with some noise as
demonstrated in Fig. 3a. Asbranch pointslieat the intersections of
such progressions, they have higherlocal intrinsic dimensionality

of fates (Supplementary Fig. 7a). Identifying branch points is
of critical importance for analyzing such decisions. We make a
key observation that most points in PHATE plots of biological
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Fig. 2| a,b, Data (a) and Euclidean distances (b); data points are colored by their Euclidean distance to the highlighted point. €, Markov-normalized affinity
matrix; distances are transformed to local affinities via a kernel function and then normalized to a probability distribution. Data points are colored by the
probability of transitioning from the highlighted point in a single-step random walk. d, Diffusion probabilities; the normalized affinities are diffused to
denoise the data and learn long-range relationships between points. Data points are colored by the probability of transitioning from the highlighted point in
a t-step random walk. e, Informational distance; an informational distance (for example, the potential distance) that measures the dissimilarity between the
diffused probabilities is computed. The informational distance is better suited for computing differences between probabilities than the Euclidean distance.
f, The final PHATE embedding; the informational distances are embedded into low dimensions using MDS. Note that distances or affinities can be directly
input to the appropriate step in cases of connectivity data. Therefore, the Euclidean distance or our constructed affinities can be replaced with distances or
affinities that best describe the data. For example, in Supplementary Fig. 11d we replace our affinity matrix with the Facebook connectivity matrix.

and can thus be identified by estimating the local intrinsic . .
dimension. Figure 3a shows t})llat points 0%' intersection in the |
artificial tree data indeed have hlgher local intrinsic dimension- Input: Data matrix, algorithm parameters (Methods)
ality tha.n pomts. on branches. e . . Output: The PHATE visualization

+ End-pointidentification with diffusion extrema. We identify end
points in the PHATE embedding as those that are least central
and most distinct by computing the eigenvector centrality and ~ (2) Transform the distances to affinities to encode local information.
the distinctness of a cellular state relative to the general databy  (3) Learn global relationships via the diffusion process.
considering the minima and maxima of diffusion eigenvectors
(Fig. 3a) as motivated by ref. '°. After identifying branch points
and end points, the remaining points are assigned to branches

(1) Compute the pairwise distances from the data matrix.

(4) Encode the learned relationships using the potential distance.

(5) Embed the potential distance information into low dimensions for

between two branch points or between a branch point and an visualization.

end point using an approach that is based on a previously devel-

oped branch-point-detection method", which compares the

correlation and anticorrelation of neighborhood distances. Fig- branches on the artificial tree perfectly and defines biologically
ure 3a gives a visual demonstration of this approach and details meaningful branches on the other two datasets, which we will
are given in the Methods. Figure 3b shows the results of our use for data exploration.

approach to identifying branch points, end points and branches
on an artificial tree dataset, an scRNA-seq dataset of bone mar-
row'” and an induced pluripotent stem cell (iPSC) cytometry by =~ Comparison of PHATE to other methods. Here we compare
time of flight (CyTOF) dataset'. Our procedure identifies the PHATE to multiple dimensionality-reduction methods. We provide
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Fig. 3 | Extracting branches and branchpoints from PHATE. a, Methods for identifying suggested end points, branch points and branches. i, PHATE
computes a specialized diffusion operator as an intermediate step (Fig. 2d). We use this diffusion operator to find end points. Specifically, we use the the
extrema of the corresponding diffusion components (eigenvectors of the diffusion operator) to identify end points™. ii, Local intrinsic dimensionality is
used to find branchpoints in a PHATE visual. As there are more degrees of freedom at branch points, the local intrinsic dimension is higher than through
the rest of a branch. iii, Cells in the PHATE embedding can be assigned to branches by considering the correlation between distances of neighbors to
reference cells (for example, branch points or end points). b, Detected branches in artificial tree data (i), bone-marrow scRNA-seq data’ (ii) and iPSC

CyTOF data' (iii). MARS-seq, massively parallel single-cell RNA segeuncing.

quantitative comparisons on simulated data where the ground truth
is known, and provide a qualitative comparison using both simu-
lated and real biological data.

Quantitative comparisons. Quantifying the accuracy of a dimen-
sionality reduction for visualization is an open problem in machine
learning'’-*' as it is generally impossible to greatly reduce the dimen-
sionality of a dataset without loss of information. To quantify the
quality of a visualization, we needed a metric that judged whether
a method preserves the information that is necessary for visual
understanding. Previous work has focused on preserving pairwise
distances or local neighborhoods®***. However, these quantifica-
tions are not strictly desirable. For example, classical MDS is ana-
lytically the optimal solution to pairwise distance preservation in #n
dimensions’. However, MDS, as is visible in Supplementary Figs. 3
and 8, often does not produce clear or insightful visualizations for
complex, nonlinear data. On the other hand, preserving local neigh-
borhoods is the basis of the objective function for #-SNE', which
fails to incorporate global structure and is hence insufficient for our
purposes (Supplementary Fig. 3).

1486

Previous work has also emphasized the utility of geodesic dis-
tances in computing both dimensionality reductions’ and associ-
ated metrics®. Similar computations have been used to compare the
output of trajectory-inference algorithms™. However, this metric
is insufficient for our use for two reasons: (1) unlike in trajectory
inference, the raw data is noisy, and we wish to quantify the abil-
ity of a visualization method to denoise the data; and (2) geode-
sic distances on low-dimensional visualizations fail to capture the
inherent meaning of curvature. As visualizations do not suffer from
the curse of dimensionality, we are able instead to use Euclidean
distances, which capture the difference between straight and curved
lines and which are also meaningful to the human eye.

Hence, to quantitatively compare PHATE to other visualization
methods, we formulated the DEMaP metric. DEMaP is designed to
encapsulate the desirable properties of a dimensionality-reduction
method that is intended for visualization. These include: (1) the
preservation of relationships in the data such that cells close together
on the manifold are close together in the embedded space and cells
that are far apart on the manifold are far apart in the embedding,
including disconnected manifolds (for example, clusters), which
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Fig. 4 | PHATE most accurately represents manifold distances in a 2D embedding. a, Schematic of the performance comparison. For each method

and each type of corruption, Euclidean distances in the 2D embedding are compared to geodesic distances in an equivalent noiseless simulation using
Spearman correlation. b, Performance of 12 different methods, such as UMAP, t-SNE, and local linear embedding (LLE)®, across varying levels of corruption
by dropout, decreased signal-to-noise ratio (BCV), randomly subsampled cells (subsample) and randomly subsampled genes (n_genes). The mean
correlation of 20 runs for each configuration is shown. For further details see Supplementary Table 3. DMs, diffusion maps.

should be as well separated as possible; and (2) denoising, such that
the low-dimensional embedding accurately represents the ground-
truth data and is as invariant as possible to biological and technical
noise. DEMaP encapsulates each of these properties by comparing
the geodesic distances on the noiseless data to the Euclidean dis-
tances of the embedding extracted from noisy data. An overview of
DEMaP is presented in Fig. 4a (Methods).

To compare the performance of PHATE to 12 dimensionality-
reduction methods, we simulated scRNA-seq data from Splatter®.
Splatter uses a parametric model to generate data with various
structures, such as branches or clusters. This simulated data pro-
vides a ground-truth reference to which we can add various types of
noise. We then use this noisy data as input for each dimensionality-
reduction algorithm, and quantify the degree to which each repre-
sentation preserves local and global structures and denoises the data
using DEMaP. To generate a diverse set of ground-truth references,
we simulated 50 datasets containing clusters and 50 datasets con-
taining branches (Methods).

For each method, we used the default parameters and calculated
DEMaP on each simulated dataset using different noise settings.
The results are presented in Fig. 4b and Supplementary Table 3.
We found that PHATE had the highest DEMaP score in 22 of 24
comparisons and was the top-performing method overall. Uniform
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manifold approximation and projection (UMAP) was the second
best performing method overall but had the highest DEMaP score
in only two of the comparisons, one of which is equal with PHATE.
We ran further tests on cluster data using the adjusted Rand index*
and found that on average PHATE preserves local cluster structure
as well as, or better than, t~-SNE, UMAP and PCA (Supplementary
Fig. 9). From all of these results, we conclude that PHATE captures
the true structure of high-dimensional data more accurately than
existing visualization methods.

Qualitative comparisons. In addition to the quantitative compari-
son, we can visually compare the embeddings provided by different
methods. Figure 5 shows a comparison of the PHATE visualiza-
tion to seven other methods on five single-cell datasets with known
trajectory (Fig. 5a,d,e) and cluster (Fig. 5b,c) structures. We see
that PHATE provides a clean and relatively denoised visualiza-
tion of the data that highlights both the local and global structure:
local clusters or branches are visually connected to each other in
a global structure in each of the PHATE visualizations. Many of
these branches are consistent with cell types or clusters validated
by the authors'”'®**® and are also present in other visualizations
such as force-directed layout and #-SNE, suggesting that the struc-
tures in the PHATE embedding reflect true structure in the dataset.
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Fig. 5 | Comparison of PHATE to other visualization methods on biological datasets. Columns represent different visualization methods, rows

different datasets.

However, force-directed layouts tends to give a noisier visualization
with fewer clear branches. Additionally, +-SNE* tends to shatter
trajectories into clusters, creating the false impression that the data
contain natural clusters. We characterize each of these visualizations
in detail in Supplementary Note 2.

We obtained similar results by comparing PHATE to eleven
methods on nine non-biological datasets, including four artificial
datasets where the ground truth was known (Supplementary Fig. 3).
Expanded comparisons on single-cell data, including addi-
tional datasets and visualization methods, are also included in
Supplementary Fig. 8. See Supplementary Note 2 for a full discus-
sion of each method in all of these comparisons.

Data exploration with PHATE. PHATE can reveal the underlying
structure of the data for a variety of data types. Supplementary Note 3
discusses PHATE applied to multiple different datasets, including
single-nucleotide polymorphism data, microbiome data, Facebook
network data, Hi-C chromatin conformation data and facial images
(Supplementary Figs. 10 and 11). In this section, however, we show
the insights gained through PHATE visualization of this structure
for single-cell data (see Methods for details on preprocessing steps).

We show that the identifiable trajectories in the PHATE visu-
alization have biological meaning that can be discerned from the
patterns of gene expression and the mutual information between
gene expression and the ordering of cells along the trajectories. We
analyzed the mouse-bone-marrow scRNA-seq'” and iPSC CyTOF**
datasets described previously. Our analysis of the iPSC CyTOF data
is presented here while the analysis of the mouse-bone-marrow data
is presented in Supplementary Note 3. For both of these datasets, we
used our new methods for detecting branches and branch points.
We then ordered the cells within each trajectory using Wanderlust”
applied to higher-dimensional PHATE coordinates. We note that
ordering could also be based on other pseudotime-ordering soft-
ware'*"-*, To estimate the strength of the relationship between
gene expression and cell ordering along branches, we estimated the
DREMI score (a weighted mutual information that eliminates biases
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to reveal shape-agnostic relationships between two variables™)
between gene expression and the Wanderlust-based ordering within
each branch. Genes with a high DREMI score within a branch are
changing along the branch. We also used PHATE to analyze the
transcriptional heterogeneity in rod bipolar cells to demonstrate the
ability of PHATE to preserve cluster structure (Supplementary Note
3 and Supplementary Fig. 12a).

Supplementary Figure 7c shows the mass-cytometry dataset
from ref. ' that shows cellular reprogramming of mouse embry-
onic fibroblasts to iPSCs with Oct4-GFP at a single-cell resolu-
tion. The protein markers measure pluripotency, differentiation,
cell-cycle and signaling status. The cellular embedding (with
combined timepoints) by PHATE shows a unified embedding
that contains five main branches, further segmented in our visu-
alization, each corresponding to the identified biology®. Branch 2
contains early reprogramming intermediates with the correct set
of reprogramming factors Sox2*Oct4*Klf4*Nanog* and with rela-
tively low CD73 at the beginning of the branch. Branch 2 splits into
two additional branches. Branches 4 and 6 (Supplementary Fig.
7) show the successful reprogramming to embryonic stem (ES)-
cell-like lineages expressing markers such as Nanog, Oct4, Lin28,
Sseal and Epcam that are associated with the transition to pluripo-
tency®. Branch 5 shows a lineage that is refractory to reprogram-
ming, does not express pluripotency markers and is referred to as
“mesoderm-like”".

The other branches are similarly analyzed in Supplementary
Note 3. In addition, the data features can be reweighted to
obtain specific ‘views' of the data (Supplementary Note 3 and
Supplementary Fig. 13).

PHATE analysis of human ES cell differentiation data. To test the
ability of PHATE to provide novel insights in a complex biological
system, we generated and analyzed scRNA-seq data from human
ES cells differentiating as embryoid bodies (EBs)*, a system that
has never before been extensively analyzed at the single-cell level.
EB differentiation is thought to recapitulate key aspects of early
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embryogenesis and has been successfully used as the first step in
differentiation protocols for certain types of neurons, astrocytes
and oligodendrocytes””~*, hematopoietic, endothelial and muscle
cells"~*, hepatocytes and pancreatic cells*™’, and germ cells™>.
However, the developmental trajectories through which these early
lineage precursors emerge from human ES cells, as well as their cel-
lular and molecular identities, remain largely unknown, particularly
in human models.

We measured approximately 31,000 cells, equally distributed
over a 27-d differentiation time course (Supplementary Fig. 14a;
Methods). Samples were collected at 3-d intervals and pooled for
measurement on the 10x Chromium platform. The PHATE embed-
ding of the EB data revealed a highly ordered and clean cellular
structure dominated by continuous progressions (Figs. 1c and 6a),
unlike other methods such as PCA or t-SNE (Supplementary Fig. 8).
Exploratory analysis of this system using PHATE uncovered a com-
prehensive map of four major germ layers with both known and
new differentiation intermediates that were not captured with other
visualization methods.

A comprehensive lineage map of embryoid bodies from PHATE.
Importantly, PHATE retained global structure and organization
of the data as evidenced by the retention of a strong time trend in
the embedding, although sample time was not included in creating
the embedding. Furthermore, PHATE revealed greater phenotypic
diversity at later time points as seen by the larger space encom-
passed by the embedding at days 18 to 27 (Fig. 1c).

This phenotypic heterogeneity was further analyzed by both
an automated analysis (Supplementary Note 4, Fig. 6a and
Supplementary Tables 4 and 5) and by manual examination of the
embedding in conjunction with the established literature on germ-
layer development (Supplementary Fig. 14b). For the manual analy-
ses, we used 80 markers from the literature to identify populations
along the PHATE map, which gave rise to a detailed germ-layer
specification map (Fig. 6b and Supplementary Videos 1, 2 and 3).
These populations are shown on the PHATE visualization in Fig. 6c¢.
In the lineage tree, the dots are the populations and the arrows rep-
resent transitions between the populations. Our map shows in detail
how human ES cells give rise to germ-layer derivatives via a con-
tinuum of defined intermediate states.

Novel transitional populations in embryoid bodies. The com-
prehensive nature of the lineage map generated from the PHATE
embedding allowed us to identify novel transitional populations
that have not yet been characterized. Three new precursor states
were identified in both manual and automated analyses: a bipotent
neural crest and neural progenitor precursor, an endodermal pre-
cursor and a cardiac precursor.

Within the ectodermal lineage, differentiation begins with the
induction of preneuroectoderm state characterized by downregu-
laton of POUS5FI and induction of OTX2. This state is resolved
into two precursors, neuroectoderm 1 (expressing GBX2, ZIC2
and ZIC5) and neuroectoderm 2 (expressing GBX2, OLIG2 and
HOXDI). While neuroectoderm 1 appeared to develop along the
canonical neuroectoderm specification route and expressed a set
of well-established anterior neuroectoderm markers (ZIC2, ZIC5,
PAX6, GLI3, SIX3 and SIX6), neuroectoderm 2 gave rise to a bipo-
tent precursor expressing HOXA2 and HOXBI that subsequently
separated into the neural crest and neural progenitor branches.
Given its potential to generate both neuroectoderm and neural crest
cell types, the precursor expressing HOXA2 and HOXBI could rep-
resent the equivalent of the neural plate border cells that have been
defined in model organisms™.

Within the endoderm branch, the canonical precusors expressing
EOMES, FOXA2 and SOX17 was clustered together with a new pre-
cusor that expressed GATA3, SATBI and KLF8 but did not express

NATURE BIOTECHNOLOGY | VOL 37 | DECEMBER 2019 | 1482-1492 | www.nature.com/naturebiotechnology

ARTICLES

EOMES or FOXA2, which further differentiated into cells express-
ing the posterior endoderm markers NKX2-1, CDX2, ASCL2 and
KLF5. Finally, a new cardiac precursor cell expressing T (TBXT),
GATA4, CERI and PROX1 was identified within the mesoderm lin-
eage that gave rise to cells expressing TNNT2 via a differentiation
intermediate that expressed GATA6 and HANDI.

A more detailed analysis of the new and canonical cell types
derived from the PHATE embedding is given in Supplementary
Note 4.

Experimental validation of PHATE-identified lineages. We next
used the ability of PHATE to extract data on specific regions within
the visualization to define a set of surface markers for the isolation
and molecular characterization of specific cell populations within
the EB differentiation process.

We focused on two specific regions that correspond to the neu-
ral crest branch (sub-branch iii; Fig. 6a) and cardiac precursor
sub-branch within the mesoderm branch (sub-branch vii; Fig. 6a).
Differential expression analysis identified a set of candidate markers
for each region (Figs. 6d,e). We focused on markers with a high Earth
mover’s distance (EMD; Methods)° score in the targeted sub-branch
and low EMD scores in all other sub-branches. On the basis of these
analyses and the availability of antibodies, ITGA4 (also known as
CD49D) was chosen for the neural crest (the highest scoring sur-
face marker for sub-branch iii) while F3 (also known as CD142) and
CD82 were chosen for cardiac precursors (among the top 6% of sur-
face markers and the top 3% of all genes by EMD). We FACS purified
CD49d*CD63~ and CD82*CD142* cells and performed bulk RNA-
seq (Supplementary Fig. 14f) on these sorted populations.

To verify that we isolated the correct regions, we calculated
the Spearman correlation between the gene-expression pattern
of each cell and the bulk RNA-seq data from the CD49d*CD63~
sorted cells (Figs. 6f and Supplementary Fig. 14d). The correlation
coefficient was highest in the neural crest branch (sub-branch iii),
which corresponded to the highest expression of CD49d. Similar
results were obtained for the cardiac precursor cells (Figs. 6f and
Supplementary Fig. 14e).

Taken together, our analyses show that PHATE has the potential
to greatly accelerate the pace of biological discovery by suggesting
hypotheses in the form of finely grained populations and identify-
ing markers with which to isolate populations. These populations
can be probed further using alternative measurements such as epi-
genetic or protein-expression assays.

Discussion
With large amounts of high-dimensional, high-throughput biologi-
cal data being generated in many types of biological systems, there
is a growing need for interpretable visualizations that can repre-
sent structures in data without strong prior assumptions. However,
most existing methods are highly deficient at retaining structures
of interest in biology. These include clusters, trajectories or pro-
gressions of various dimensionality, hybrids of the two, as well as
local and global nonlinear relations in data. Furthermore, existing
methods have trouble contending with the sizes of modern datasets
and the high degree of noise inherent to biological datasets. PHATE
provides a unique solution to these problems by creating a diffu-
sion-based informational geometry from the data, and by preserv-
ing a divergence metric between data points that is sensitive to near
and far manifold-intrinsic distances in the data space. Additionally,
PHATE is able to offer clean and denoised visualizations because
the information geometry created in PHATE is based on data dif-
fusion dynamics, which are robust to noise. Thus, PHATE reveals
intricate local as well as global structure in a denoised way.

We applied PHATE to a wide variety of datasets, including sin-
gle-cell CyTOF and RNA-seq data, as well as gut microbiome and
single-nucleotide polymorphism data, where the data points are
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subjects rather than cells. We also tested PHATE on network data,
such as Hi-C and Facebook networks. In each case, PHATE was able
to reveal structures of visual interest to humans that other methods
entirely miss. Moreover, we have implemented PHATE in a scalable
way that enables it to process millions of data points in a matter of
hours. Hence, PHATE can efficiently handle the datasets that are
now being produced using scRNA-seq technologies.

To showcase the ability of PHATE to explore data generated in
new systems, we applied PHATE to our newly generated human EB
differentiation dataset consisting of roughly 31,000 cells sampled
over a differentiation time course. We found that PHATE success-
fully resolves cellular heterogeneity and correctly maps all germ-
layer lineages and branches on the basis of scRNA-seq data alone,
without any additional assumptions on the data. Through detailed
subpopulation and gene-expression analysis along these branches
we identified both canonical and new differentiation intermediates.
The insights obtained with PHATE in this system will be a valu-
able resource for researchers working on early human development,
human ES cells and their regenerative medicine applications.

We expect numerous biological, but also non-biological, data
types to benefit from PHATE, including applications in high-
throughput genomics, phenotyping and many other fields. As such,
we believe that PHATE will revolutionize biomedical data explora-
tion by offering a new way of visualizing, exploring and extracting
information from large-scale high-dimensional data.
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Methods

Here we present an expanded explanation of our computational methods,
experimental methods and data-processing steps. For the computational details, we
first provide a detailed overview of the PHATE algorithm followed by a robustness
analysis of PHATE with respect to the parameters and the number of data points.
We then provide details on the scalable version of PHATE, identifying branch
points and branches and the EMD score analysis.

The embedding provided by PHATE is designed for visualizing global and
local structure in the data in exploratory settings with the following properties in
mind: (1) the visualization should capture the relevant structure in low (two to
three) dimensions; (2) the visualization should preserve and emphasize global and
local structure including transitions and clusters; (3) the visualization is denoised
to enable data exploration; and (4) the visualization is robust in the sense that the
revealed structure is insensitive to user configurations.

The mathematical steps of PHATE are provided in Supplementary Table 1. We
now provide further details about each of the steps in the PHATE algorithm and
explain how these steps ensure that PHATE meets the four properties described
above. For more mathematical details of the algorithm, see Supplementary Note 1.

Distance preservation. Consider the common approach of linearly embedding

the raw data matrix itself, for example, with PCA, to preserve the global structure
of the data. PCA finds the directions of the data that capture the largest global
variance. However, in most cases local transitions are noisy and global transitions
are nonlinear. Therefore, linear notions such as global variance maximization are
insufficient to capture latent patterns in the data, and they typically result in a noisy
visualization (Supplementary Fig. 3). To provide reliable structure preservation that
emphasizes transitions in the data, we need to consider the intrinsic structure of
the data. This implies and motivates preserving distances between data points (for
example, cells) that consider gradual changes between them along these nonlinear
transitions (Fig. 2a,b).

Local affinities and the diffusion operator. A standard choice for a distance
metric is the Euclidean distance. However, global Euclidean distances are not
reflective of transitions in the data, especially in biological datasets that have
nonlinear and noisy structures. For instance, cells sampled from a developmental
system, such as hematopoiesis or ES cell differentiation, show gradual changes
where adjacent cells are only slightly different from each other. But these changes
quickly aggregate into nonlinear transitions in marker expression along each
developmental path. Therefore, we transform the global Euclidean distances into
local affinities that quantify the similarities between nearby (in the Euclidean
space) data points (Fig. 2c).

A common approach to transforming global (for example, Euclidean) distances
to local similarities is to apply a kernel function to all pairs of points. A popular
kernel function is the Gaussian kernel k,(x,y) = exp(—||x — y||*/¢) that quantifies the
similarity between the two points x and y on the basis of their Euclidean distance.
The bandwidth ¢ determines the radius (or spread) of neighborhoods captured by
this kernel. Let X C R be a dataset with N independent and identically distributed

points sampled from a probability distribution p:R? — [0, c0) (with / px)dx=1
) that is essentially supported on a low dimensional manifold M™ C RY, where

m is the dimension of M and m < d. A kernel matrix that includes all pairwise
measures of local affinity is constructed by computing the kernel function between
all pairs of points in X.

Embedding local affinities directly can result in a loss of global structure as is
evident in ¢-SNE (Figs. 1 and 5, and Supplementary Figs. 3 and 8) or kernel PCA
embeddings. For example, t-SNE only preserves data clusters, but not transitions
between clusters, as it does not enforce any preservation of global structure. By
contrast, a faithful structure-preserving embedding (and visualization) needs to go
beyond local affinities (or distances), and also consider global relations between
parts of the data. To accomplish this, PHATE is based on constructing a diffusion
geometry to learn and represent the shape of the data'****. This construction is
based on computing local similarities between data points, and then walking or
diffusing through the data using a Markovian random-walk diffusion process to
infer more global relations (Fig. 2d).

The initial probabilities in this random walk are calculated by normalizing the
row-sums of the kernel matrix. In the case of the Gaussian kernel described above,
we obtain the following:

r)=lklh =Y, ko) M

resulting in a N X N row-stochastic matrix

_k(xy)

- v,(x) ’

(P.lxy XyEX (2

The matrix P, is a Markov transition matrix where the probability of moving from x
to y in a single time step is given by Pr[x — y] = [P, ] - This matrix is also referred
to as the diffusion operator.
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The a-decaying kernel and adaptive bandwidth. When applying the diffusion
map framework to data, the choice of the kernel K and bandwidth ¢ plays a key
role in the results. In particular, choosing the bandwidth corresponds to a tradeoff
between encoding global and local information in the probability matrix P.. If the
bandwidth is small, then single-step transitions in the random walk using P, are
largely confined to the nearest neighbors of each data point. In biological data,
trajectories between major cell types may be relatively sparsely sampled. Thus,

if the bandwidth is too small, then the neighbors of points in sparsely sampled
regions may be excluded entirely and the trajectory structure in the probability
matrix P, will not be encoded. Conversely, if the bandwidth is too large, then

the resulting probability matrix P, loses local information as [P, ], ) becomes

more uniform for all x € X, which may result in an inability to resolve different
trajectories. Here we use an adaptive bandwidth that changes with each point to
be equal to its kth-nearest-neighbor distance, along with an a-decaying kernel that
controls the rate of decay of the kernel.

The original heuristic proposed" suggests setting ¢ to be the smallest distance
that still keeps the diffusion process connected. In other words, it is chosen to
be the maximal 1-nearest-neighbor distance in the dataset. While this approach
is useful in some cases, it is greatly affected by outliers and sparse data regions.
Furthermore, it relies on a single manifold with constant dimension as the
underlying data geometry, which may not be the case when the data is sampled
from specific trajectories rather than uniformly from a manifold. Indeed, the
intrinsic dimensionality in such cases differs between midbranch points that
mostly capture one-dimensional trajectory geometry, and branching points that
capture multiple trajectories crossing each other.

This issue can be mitigated by using a locally adaptive bandwidth that varies on
the basis of the local density of the data. A common method for choosing a locally
adaptive bandwidth is to use the k-nearest-neighbor (k-NN) distance of each point
as the bandwidth. A point x that is within a densely sampled region will have a
small k-NN distance. Thus, local information in these regions is still preserved. By
contrast, if x is on a sparsely sampled trajectory, the k-NN distance will be greater
and will encode the trajectory structure. We denote the k-NN distance of x as &,(x)
and the corresponding diffusion operator as P.

A weakness of using locally adaptive bandwidths alongside kernels with
exponential tails (for example, the Gaussian kernel) is that the tails become heavier
(that is, decay more slowly) as the bandwidth increases. Thus for a point x in a
sparsely sampled region where the k-NN distance is large, [P,], , may be close
to a fully-supported uniform distribution owing to the heavy tails, resulting in a
high affinity with many points that are far away. This can be mitigated by using the

following kernel
o Lexp| [ 1=
2 &(y)

that we call the a-decaying kernel. The exponent a controls the rate of decay of

the tails in the kernel K, .. Increasing a increases the decay rate while decreasing
decreases the decay rate. As a =2 for the Gaussian kernel, choosing a > 2 will result
in lighter tails in the kernel K, , as compared to the Gaussian kernel. We denote

the resulting diffusion operator as Py . This is similar to common utilizations of
Butterworth filters in signal-processing applications®. See Supplementary Fig. 2b
for a visualization of the effect of different values of & on this kernel function.

Our use of a locally adaptive bandwidth and the kernel K, , requires the
choice of two tuning parameters: k and a. k should be sufficiently small to
preserve local information, that is, to ensure that [P, ], ,is not a fully-supported
uniform distribution. However, k should also be sufficiently large to ensure that
the underlying graph represented by P, , is sufficiently connected, that is, the
probability that we can walk from one point to another within the same trajectory
in a finite number of steps is nonzero.

The parameter a should also be chosen with k. a should be sufficiently large so
that the tails of the kernel K, , are not too heavy, especially in sparse regions of the
data. However, if k is small when « is large, then the underlying graph represented
by P, may be too sparsely connected, making it difficult to learn long-range
connections. Thus we recommend that a be fixed at a large number (for example,
a>10) and then k can be sufficiently large to ensure that points are locally
connected. In practice, we found that choosing k to be around 5 and « to be about
10 works well for all the datasets presented in this work. However, the PHATE
embedding is robust to the choice of these parameters as discussed later.

In addition to progression or trajectory structures, the reccommendations
provided in this section work well for visualizing data that naturally separate into
distinct clusters. In particular, the a-decay kernel ensures that relationships are
preserved between distinct clusters that are relatively close to each other.

o

lIx—yll,
gk(x)

©)

Kio(x,7) = ;exp[— [

Propagating affinities via diffusion. Here we discuss diffusion, that is, raising
the diffusion operator to its t-th power as shown in Supplementary Table 1 (Fig.
2d). To simplify the discussion we use the notation P for the diffusion operator,
whether defined with a fixed-bandwidth Gaussian kernel or our adaptive kernel.
This matrix is referred to as the diffusion operator, since it defines a Markovian
diffusion process that essentially only allows single-step transitions within local
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data neighborhoods whose sizes depend on the kernel parameters (¢ or k and ).
In particular, let x € X and let §, be a Dirac at x, that is, a row vector of length N
with a one at the entry corresponding to x and zeros everywhere else. The t-step
distribution of x is the row in P!, corresponding to x

PLASP =[P'] @

These distributions capture multiscale (where ¢ serves as the scale) local
neighborhoods of data points, where locality is considered via random walks

that propagate over the intrinsic manifold geometry of the data. This provides a
global and robust intrinsic data distance that preserves the overall structure of the
data. In addition to learning the global structure, powering the diffusion operator
has the effect of low-pass filtering the data such that the main pathways in it

are emphasized and small noise dimensions are diminished, thus achieving the
denoising objective of our method as well.

Choosing the diffusion time scale ¢ with von Neumann entropy. The diffusion
time scale ¢ is an important parameter that affects the embedding. The parameter

t determines the number of steps taken in a random walk. A larger f corresponds
to more steps as compared to a smaller ¢. Thus, ¢ provides a tradeoff between
encoding local and global information in the embedding. The diffusion process
can also be viewed as a low-pass filter where local noise is smoothed out on the
basis of more global structures. The parameter t determines the level of smoothing.
If t is chosen to be too small, then the embedding may be too noisy. On the other
hand, if t is chosen to be too large, then some of the signal may be smoothed away.

We formulate a new algorithm for choosing the timescale ¢. Our algorithm
quantifies the information in the powered diffusion operator with various values
of t. This is accomplished by computing the spectral or von Neumann entropy
(VNE)*"** of the powered diffusion operator. The amount of variability explained
by each dimension is equal to its eigenvalue in the eigendecomposition of the
related (non-Markov) affinity matrix that is conjugate to the Markov diffusion
operator. The VNE is calculated by computing the Shannon entropy on the
normalized eigenvalues of this matrix. Owing to noise in the data, this value is
artificially high for low values of ¢, and rapidly decreases as one powers the matrix.
Thus, we choose values that are around the ‘knee’ of this decrease.

More formally, to choose ¢, we first note that its impact on the diffusion
geometry can be determined by considering the eigenvalues of the diffusion
operator, as the corresponding eigenvectors are not impacted by the time scale. To
facilitate spectral considerations and for computational ease, we use a symmetric
conjugate

[A](x,y) =./u(x) [P](x,y)/« u(y)

of the diffusion operator P with the row-sums v. This symmetric matrix is often
called the diffusion affinity matrix. The VNE of this diffusion affinity is used to
quantify the amount of variability. It can be verified that the eigenvalues of A" are
the same as those of P', and furthermore these eigenvalues are given by the powers
{/1,"}5\:11 of the spectrum of P. Let #(t) be a probability distribution defined by
normalizing these (non-negative) eigenvalues as [(t)], = 4,/ Z;\]:Ol ﬂ}.’. Then, the

VNE H(t) of A’ (and equivalently of P*) is given by the entropy of 5(t), that is,
N
H(t)=— t)].1 t)]. 5
(==Y In(t)}logln(t)], (5)

where we use the convention of 0log(0) 2 0. The VNE H(¢) is dominated by the
relatively large eigenvalues, while eigenvalues that are relatively small contribute
little. Therefore, it provides a measure of the number of the relatively significant
eigenvalues.

The VNE generally decreases as t increases. As mentioned previously, the initial
decrease is primarily due to a denoising of the data as less significant eigenvalues
(likely corresponding to noise) decrease rapidly to zero. The more significant
eigenvalues (likely corresponding to signal) decrease much more slowly. Thus the
overall rate of decrease in H(t) is high initially as the data is denoised but then low
for larger values of t as the signal is smoothed. As t — co, eventually all but the first
eigenvalue decrease to zero and so H(t) — 0.

To choose t, we plot H(t) as a function of ¢ as in the first plot of Supplementary
Fig. 2c. Choosing ¢ from among the values where H(f) is decreasing rapidly
generally results in noisy visualizations and embeddings (Supplementary Fig.
2¢). Very large values of ¢ result in a visualization where some of the branches or
trajectories are combined together and some of the signal is lost (fourth plot in
Supplementary Fig. 2¢c). Good PHATE visualizations can be obtained by choosing
t from among the values where the decrease in H(t) is relatively slow, that is, the set
of values around the ‘knee’ in the plot of H(t) (Supplementary Fig. 2c and Fig. 1).
This is the set of values for which much of the noise in the data has been smoothed
away and most of the signal is still intact. The PHATE visualization is fairly robust
to the choice of ¢ in this range, as discussed later.

In the code, we include an automatic method for selecting ¢ on the basis of
a knee-point detection algorithm that finds the knee by fitting two lines to the
VNE curve (https://www.mathworks.com/matlabcentral/fileexchange/35094-

knee-point). This algorithm calculates the error between the VNE plot and two
lines fitted to the data. The first line has end points at the first VNE value and the
suggested knee point. The second line has end points at the suggested knee point
and the last VNE value. The suggested knee point with the minimum error is
selected.

Potential distances. To resolve instabilities in diffusion distances and embed

the global structure captured by the diffusion geometry in low (two or three)
dimensions, we use a new diffusion-based informational distance, which we call
potential distance (Fig. 2e). It is calculated by computing the distance between
log-transformed transition probabilities from the powered diffusion operator.

The key insight in formulating the potential distance is that an informational
distance between probability distributions is more sensitive to global relationships
(between far-away points) and more stable at boundaries of manifolds than
straight pointwise comparisons of probabilities (that is, diffusion distances). This is
because the diffusion distance is sensitive to differences between the main modes
of the diffused probabilities and is largely insensitive to differences in the tails. By
contrast, the potential distance, or more generally informational distances, use a
submodular function (such as a log) to render distances sensitive to differences

in both the main modes and the tails. This gives PHATE the ability to preserve
both local and manifold-intrinsic global distances in a way that is optimized for
visualization. The resulting metric space also quantifies differences between energy
potentials that dominate ‘heat’ propagation along diffusion pathways (that is, on
the basis of the heat-equation diffusion model) between data points, instead of
simply considering transition probabilities along them.

The potential distance is inspired by information theory and stochastic
dynamics, which are both fields where probability distributions are compared for
different purposes. First, in information theory literature, information divergences
are used to measure discrepancies between probability distributions in the
information space rather than the probability space, as they are more sensitive
to differences between the tails of the distributions as described above. Second,
when analyzing dynamical systems of moving particles, it is not the pointwise
difference between absolute particle counts that is used to compare states, but
rather the ratio between these counts. Indeed, in the latter case the Boltzmann
distribution law directly relates these ratios to differences in the energy of a state in
the system. Therefore, similar to the information theory case, dynamical states are
differentiated in energy terms, rather than probability terms. We employ the same
reasoning in our case by defining our potential distance using localized diffusion
energy potentials, rather than diffusion transition probabilities.

To go from the probability space to the energy (or information) space, we log
transform the probabilities in the powered diffusion operator and consider an
L* distance between these localized energy potentials in the data as our intrinsic
data distance, which forms an M-divergence between the diffusion probability
distributions”*. Mathematically, if U, = — log(p!,) for x € X, then the t-step
potential distance is defined as

T'xy) =Ug= Ul ,x, yEX ©)

To give a more intuitive view, consider two points x and y that are on different
sides of a line of points W= {w,, w,,...,w,} (Fig. 2¢), suppose that there is a small set
of distant points Z={z,, ,,,...,z,} that are on the same side of W as y but opposite
side as x such that they are twice as far from x as from y. The representation of
each point x is as its f-step diffusion probability to all other points. So to compute
the potential distance between x and y we compare these probabilities. It is
then necessary to determine which is the right type of distance to measure the
distinction between these two probability distributions. One solution has been
the diffusion distance, which is simply the Euclidean distance between these
probability distributions. However, in the example mentioned above the diffusion
distance would be dominated by larger probabilities and the probabilities to the Z
points would not affect the distance from x to y perhaps making them seem close.
But instead, we take a divergence between the probabilities from x and y by first
log-scale transforming the probabilities and then taking their Euclidean distance,
which makes the distance sensitive to fold-change. Thus, if a probability of 0.01
from x to a point z; is changed to 0.02 from y then this has the same effect as if the
probabilities had been 0.1 and 0.2. Thus, PHATE is sensitive to small differences
in probability distribution corresponding to differences in long-range global
structure, which allows PHATE to preserve global manifold relationships using this
potential distance.

We note that the potential distance is a particular case of a wider family of
diffusion-based informational distances that view the diffusion geometry as a
statistical manifold in information geometry. See Supplementary Note 1 for details
on this family of distances.

Embedding the potential distances in low dimensions. A popular approach

for embedding diffusion geometries is to use the eigendecomposition of the
diffusion operator to build a diffusion map of the data. However, this approach
tends to isolate progression trajectories into numerous diffusion coordinates
(that is, eigenvectors of the diffusion operator; see Supplementary Fig. 1). In fact,
this specific property was used as a heuristic for ordering cells along specific

NATURE BIOTECHNOLOGY | www.nature.com/naturebiotechnology
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developmental tracks'*. Therefore, while diffusion maps preserve global structure
and denoise the data, their higher intrinsic dimensionality is not amenable for
visualization. Instead, we squeeze the variability into low dimensions using metric
MDS, a distance embedding method (Fig. 2f).

There are multiple approaches to MDS. Classical MDS’ takes a distance matrix
as input and embeds the data into a lower-dimensional space as follows. The
squared potential distance matrix is double centered:

_ _ 1o
B = 21% ] (7)

where U@ is the squared potential distance matrix (that is, each entry is squared)
and J=1- %IIT, with 1a vector of ones with length N. The classical MDS
coordinates are then obtained by an eigendecomposition of the matrix B. This is
equivalent to minimizing the following ‘strain’ function:

Strain(X,, ..., Xy) = JZW (B;— <’2i’ §j>)2/ Ziyj B,?j ®

over embedded m-dimensional coordinates X, € R" of data points in X'. We apply
clasical MDS to the potential distances of the data to obtain an initial configuration
of the data in low dimension m.

While classical MDS is computationally efficient relative to other MDS
approaches, it assumes that the input distances directly correspond to low-
dimensional Euclidean distances, which is overly restrictive in our setting. Metric
MDS relaxes this assumption by only requiring the input distances to be a distance
metric. Metric MDS then embeds the data into lower dimensions by minimizing
the following ‘stress’ function:

Stress(Ry ... &y) = JZU (B~ 1%/ 2,-}- @)’ ©)

over embedded m-dimensional coordinates %, € R"™ of data points in X’

If the stress of the embedded points is zero, then the input data is faithfully
represented in the MDS embedding. The stress may be nonzero owing to noise
or if the embedded dimension m is too small to represent the data without
distortion. Thus, by choosing the number of MDS dimensions to be m=2 (or
m=3) for visualization purposes, we may trade off distortion in exchange for
readily visualizable coordinates. However, some distortion of the distances and
dissimilarities is tolerable in many of our applications as precise dissimilarities
between points on two different trajectories are not important as long as the
trajectories are visually distinguishable. By using metric MDS, we find an
embedding of the data with the desired dimension for visualization and the
minimum amount of distortion as measured by the stress. When analyzing
the PHATE coordinates (for example, for clustering or branch detection), we
use metric MDS with m chosen to explain most of the variance in the data as
determined by the eigenvalues of the diffusion operator (as is done for VME). In
this case, minimal distortion is introduced into the analysis.

A naive approach toward obtaining a truly low-dimensional embedding of
diffusion geometries is to directly apply metric MDS, from the diffusion map space
to a 2D space. However, as seen in Supplementary Figs. 3 and Supplementary
Fig. 8, direct embedding of these distances produces distorted visualizations.
Embedding the potential distances (defined in eq. 6) is more stable at boundary
conditions near end points compared to diffusion maps, even in the case of simple
curves that contain no branching points. Supplementary Figure 2a shows a half
circle embedding with diffusion distances versus distances between log-scaled
diffusion. We see that points are compressed towards the boundaries of the figure
in the former. Additionally, this figure demonstrates that in the case of a full circle
(that is, with no end points or boundary conditions), our potential embedding
(PHATE) yields the same representation as diffusion maps.

PHATE achieves an embedding that satisfies all four properties delineated
previously: PHATE preserves and emphasizes the global and local structure of the
data by: (1) alocalized affinity that is chained via diffusion to form global affinities
through the intrinsic geometry of the data; (2) denoising of the data by low-pass
filtering through diffusion; (3) providing a distance that accounts for local and
global relationships in the data and has robust boundary conditions for purposes
of visualization; and (4) capturing the data in low dimensions, using MDS, for
visualization.

We have shown by demonstration in Supplementary Figs. 3 and 8 that all of
the steps of PHATE, including the potential transform and MDS, are necessary,
as diffusion maps, t-SNE on diffusion maps and MDS on diffusion maps fail to
provide an adequate visualization in several benchmark test cases with known
ground truth (even when using the same customized a-decaying kernel we
developed for PHATE). We have also shown that PHATE is robust to the choice
of parameters.

Robustness analysis of PHATE. Here we show that the PHATE embedding is

robust to subsampling and the choice of parameters. We demonstrate this both
qualitatively and quantitatively. For the quantitative demonstrations, we simulated
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scRNA-seq data using the Splatter package” as described below. We first calculated
the geodesic pairwise distances for the noiseless data. Then for each setting,

we calculated the pairwise Euclidean distances in the 2D embedding. We then
compared the geodesic distances with the embedded distances via the Spearman
correlation coefficient to compute DEMaP. We used both the paths and groups
options of the Splatter package.

Supplementary Table 3 shows that PHATE is robust to subsampling on the
Splatter datasets. For the paths dataset, the average Spearman correlation is the
same when 95% and 50% of the data points are retained. For the groups dataset,
the correlation drops slightly when going from 95% retention to 50% retention.
Additionally, the correlation coefficient is still quite high (and better than all other
methods) when only 5% of the data points are retained. Thus, quantitatively,
PHATE is robust to subsampling.

We also demonstrate this visually. We ran PHATE on the iPSC mass cytometry
dataset'® with varying subsample sizes N. Supplementary Figure 4a shows the
PHATE embedding for N=1,000, 2,000, 5,000 and 10,000. Note that the primary
branches or trajectories that are visible when N=50,000 (Supplementary Fig. 7c)
are still visible for all subsamples. Thus, PHATE is robust to the subsampling size.
Similar results can be obtained on other datasets.

We also show that the PHATE embedding is robust to the choice of t, k, and
a. Supplementary Figure 4b shows the PHATE embedding on the iPSC mass
cytometry dataset'® with varying scale parameter t. This figure shows that the
embeddings for 50 <t <200 are nearly identical. Thus, PHATE is very visually
robust to the scale parameter ¢. Similar results can be obtained on other datasets
and with the k and a parameters.

The embedding is also quantitatively robust to the parameter choices.
Supplementary Fig. 4c,d shows heat maps of the Spearman correlation coefficient
between geodesic distances of the ground-truth data and the Euclidean distances
of the PHATE visualization applied to the simulated Splatter datasets for different
values of k, t and a. For a> 10, the correlation coefficients are very similar for
all values of k, t and a. This demonstrates that PHATE is robust to the choices of
these parameters.

Scalability of PHATE. The native form of PHATE is limited in scalability owing

to the computationally intensive steps of computing potential distances between

all pairs of points, computing metric MDS and storing the diffused operator in
memory the diffused operator. Thus, we describe here, and in Supplementary Table
2, an alternative way to compute a PHATE embedding that is highly scalable and
provides a good approximation of the native PHATE described previously. The
scalable version of PHATE uses a slight difference in computing t-step diffusion
probabilities between points. It requires that every other step that the diffusion
takes goes through one of a small number of landmarks. Each landmark is selected
to be a central point that is representative of a portion of the manifold, selected by
spectrally clustering manifold dimensions.

First, we construct the a-decaying kernel on the entire dataset. This can be
calculated efficiently and stored as a sparse matrix by using radius-based nearest-
neighbor searches and thresholding (that is, setting to zero) connections between
points below a specified value (for example, 0.0001), as we regard them numerically
insignificant for the constructed diffusion process. The resulting affinity matrix
K, , will be sparse as long as a is sufficiently large (for example, @ > 10) to enforce
sharp decay of the captured local affinities. The full diffusion operator P is
constructed from K; , by normalizing by row-sums as described previously.

However, powering the sparse diffusion operator would result in a dense
matrix, causing memory issues. To avoid this, we instead perform diffusion
between points via a series of M landmarks where M < N. We select the landmarks
by first applying PCA to the diffusion operator and then using k-means clustering
on the principal components to partition the data into M clusters. This is a
variation on spectral clustering. We then calculate the probability of transitioning
in a single step from the ith point in X’ to any point in the jth cluster for all pairs of
points and clusters. Mathematically, we can write this as

Poi(b)= ) PG (10)
7

where C; is the set of points in the jth cluster. Thus, we can view each cluster as
being represented by a landmark and the (i,f)-th entry in Py, gives the probability
of transitioning from the ith point in &’ to the jth landmark in a single step.
Similarly, we construct the matrix Py, where the (j,i)-th entry contains the
probability of transitioning from the jth landmark to the ith point in X' In this case,
we cannot simply sum the transition probabilities P(,i),§ € C;, as we also have to
consider the prior probability Q(j,£) of the &-th point (with & € C)) being the source
of a transition from a cluster C,. For this purpose we use a previously proposed
prior® and write

Py (io)= ) QGEP(E) 1)

ceG;

with Q(]a &)= zi Kk,a(f’ 1)/ Z{Ecj Zi Kk,a(é,’ i)
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We use the two constructed transition matrices to compute Py, =P, Py
which provides the probability of transitioning from landmark to landmark in a
random walk by walking through the full point space. Diffusion is then performed
by powering the matrix P,;,,. This can be written as

Psle:PMNPNMPMNPNM“'PMNPNM' (12)

From this expression, we see that powering the matrix P, is equivalent to taking
arandom walk between landmarks by walking from landmarks to points and then
back to landmarks ¢ times.

We then embed the landmarks into the PHATE space by calculating the
potential distances between landmarks and applying metric MDS to the potential
distances. Denote the resulting embedding as Yy, gman.- We then perform an out
of sample extension to all points from the landmarks by multiplying the point to
landmark transition matrix Pyy by Yj,naman to get

Ypoims = PNMYlandmarks ( 13)

As M is chosen to be vastly less than N, the memory requirements and
computational demands of powering the diffusion operator and embedding the
potential distances are much lower.

The described steps are summarized in Supplementary Table 2. In
Supplementary Fig. 6a—e we show that this constrained diffusion preserves
distances between data points in the final PHATE embedding, with the scalable
version giving near-identical results to the exact computation of PHATE.
Furthermore, in Supplementary Fig. 6b we show that the embedding achieved by
this approach is robust to the number of landmarks chosen.

We note that if the only computational bottleneck were in computing MDS,
scalable versions of MDS could be used****". However, as storing the entries of
the powered diffusion operator in memory is also an issue, we employ the use of
landmarks earlier in the process. It has also been shown that ‘compressing’ the
process of diffusion through landmarks in the fashion described here performs
better than simply applying Nystrom extension (which includes landmark MDS®)
to diffusion maps®.

The fast version of PHATE was used in Fig. 5 and Supplementary Figs. 2d,

3, 6a—e, 8, 12 and 13. All other plots were generated using the exact version of
PHATE.

To demonstrate the scalability of PHATE for data exploration on large datasets,
we applied PHATE to the 1.3 million mouse brain cell dataset from 10x (https://
community.10xgenomics.com/t5/10x-Blog/Our-1-3-million-single-cell-dataset-
is-ready-to-download/ba-p/276). Supplementary Fig. 6c shows a comparison
of PHATE to ¢-SNE, colored by 10 of the 60 clusters provided by 10x. We see
that PHATE retains cluster coherence while £-SNE shatters some of the cluster
structure.

Branch identification. Here we describe the methods we developed for identifying
branches in a PHATE visualization and selecting representative branch points and
end points.

We use the estimated local intrinsic dimensionality to identify branch points.
We can regard intrinsic dimensionality in terms of degrees of freedom in the
progression modeled by PHATE. If there is only one fate possible for a cell (that is,
a cell lies on a branch as in Fig. 3a) then there are only two directions of transition
between data points—forward or backward—and the local intrinsic dimension is
low. If on the other hand, there are multiple fates possible, then there are at least
three directions of transition possible—a single direction backwards and at least
two forward. This cannot be captured by a one-dimensional curve and will require
a higher-dimensional structure such as a plane, as shown in Fig. 3a. Thus, we can
use the concept of local intrinsic dimensionality for identifying branch points.

We used the local intrinsic dimension estimation method derived in refs. ©7
to provide suggested branch points. This method uses the relationship between the
radius and volume of a d-dimensional ball. The volume increases exponentially
with the dimensionality of the data. So as the radius increases by &, the volume
increases by 8 where d is the dimensionality of the data. Thus the intrinsic
dimension can be estimated via the growth rate of a k-NN ball with radius equal
to the k-NN distance of a point. The procedure is as follows. Let Z, = {z,, ..., z,}
be a set of independent and identically distributed random vectors with values
in a compact subset of R”. Let N, be the k nearest neighbors of z ; that is,
N;j={2€Z,\{z}:]|lz—z|| < ,(z))}. The k-NN graph is formed éy assigning edges
between a point in Z, and its k nearest neighbors. The power-weighted total edge
length of the k-NN graph is related to the intrinsic dimension of the data and is

defined as

where y> 0 is a power weighting constant. Let m be the global intrinsic dimension
of all the data points in Z . It can be shown that, for large n,

L(Z)= nP"Me 4 €, (15)

where f(m)=(m—y)/m, ¢, is an error term that decreases to 0 asn — coand cisa
constant with respect to (i) (ref. ). A global intrinsic dimension estimator m can
be defined on the basis of this relationship using nonlinear least squares regression
over different values of n (refs. ©7°).

A local estimator of intrinsic dimension (i) at a point z; can be defined by
running the above procedure in a smaller neighborhood about z,. This approach
is demonstrated in Fig. 3a, where a k-NN graph is grown locally at each point in
the data. However, this estimator can have high variance within a neighborhood.
To reduce this variance, majority voting within a neighborhood of z; can be
performed:

(i) = argmax, Z W(#Ai(j) = £)

€Nk

(16)

where 1( -) is the indicator function™.

We note that other local intrinsic dimension estimation methods could be used
such as the maximum likelihood estimator in ref. ”'.

We also identify end points in the PHATE embedding. These points can
correspond to the beginning or end-states of differentiation processes. For
example, Supplementary Fig. 7a shows the PHATE visualization of the iPSC
CyTOF dataset'® with highlighted end points, or end-states, of the reprogrammed
and refractory branches. While many major end points can be identified by
inspecting the PHATE visualization, we provide a method for identifying other
end points or end-states that may be present in the higher-dimensional PHATE
embedding. We identify these states using the centrality and distinctness of data
points as described below.

First, we compute the centrality of a data point by quantifying the impact of
its removal on the connectivity of the graph representation of the data (as defined
using the local affinity matrix K, ,). Removing a point that is on a one-dimensional
progression pathway, either branching point or not, breaks the graph into multiple
parts and reduces the overall connectivity. However, removing an end point does
not result in any breaks in the graph. Therefore we expect end points to have low
centrality, as estimated using the eigenvector centrality measure of K, ..

Second, we quantify the distinctness of a cellular state relative to the general
data. We expect the beginning or end-states of differentiation processes to have the
most distinctive cellular profiles. As shown in ref. '°, we quantify this distinctness
by considering the minima and the maxima of diffusion eigenvectors (Fig. 3a).
Thus we identify end points in the embedding as those that are most distinct and
least central.

After identifying branch points and end points, the remaining points can be
assigned to branches between two branch points or between a branch point and
end point. Owing to the smoothly varying nature of centrality and local intrinsic
dimension, the previously described procedures identify regions of points as
branch points or end points rather than individual points. However, it can be
useful to reduce these regions to representative points for analysis such as branch
detection and cell ordering. To do this, we reduce these regions to representative
points using a ‘shake and bake’ procedure similar to that proposed in ref. .

This approach groups collections of branch points or end points together into
representative points on the basis of their proximity.

Let V), ={v, ..., V,} be the set of branch points and end points in the high-
dimensional PHATE coordinates that we wish to reduce. We create a Voronoi
partitioning of these points as follows. We first permute the order of 1, which we
denote as V'={v,, ..., v,}. We then take the first point v, and find all the points in
V' that are within a distance of h, where h is a scale parameter provided by the user.
These points (including v;) are assigned to the first component of the partition
and removed from the set V". This process is then repeated until all points in V),
are assigned to the partition. To ensure that each point is assigned to the nearest
component of the partition (as measured by proximity to the centroid), we next
calculate the distance of each point to all centroids of the partition, and reassign
the point to the component with the nearest centroid. This reassignment process
is repeated until a stable partition is achieved. This completes the process of
constructing the Voronoi partition.

The Voronoi partition constructed from this process may be sensitive to the
ordering of the points in V". To reduce this sensitivity, we repeat this process
multiple times (for example, 40-100) to create multiple Voronoi partitions. We
then construct a distance between points by estimating the probability that two
points are not in the same component from this partitioning process. This provides
a notion of distance that is robust to noise, random permutations and the scale
parameter . We then partition the data again using the above procedure except we
use these probability-based distances. The representative points are then selected
from the resulting centroids of this final partition.

A representative point is labeled an end point if the corresponding collection
of points contains one or more end points as identified using centrality and
distinctness. Otherwise, the representative point is labeled a branch point.

After representative points have been selected, the remaining points can be
assigned to corresponding branches. We use an approach that is based on the
branch-point-detection method in ref. '*, which compares the correlation and
anticorrelation of neighborhood distances. However, we use higher-dimensional
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PHATE coordinates instead of the diffusion maps coordinates. Figure 3a gives a
visual demonstration of this approach. Here we consider two reference cells X and

Y. We wish to determine if cells Q1 and Q2 belong to the branch between X and

Y or not. Consider QI first, which does belong to this branch. If we move from

Q1 towards X, we also move farther away from Y. Thus the distances to X and Y

of a neighborhood of points around Q1 (which will be located on the branch) are
negatively correlated with each other. Now consider Q2 which does not belong to the
branch between X and Y. In this case, if we move from Q2 towards Y, we also move
closer to X. Thus the distances to X and Y of a neighborhood of points around Q2 are
positively correlated with each other. In practice, these distance-based correlations
are computed for each possible branch and the point is assigned to the branch with
the largest anticorrelation (that is, the most negative correlation coefficient).

EMD score analysis. The EMD is measure of dissimilarity between two probability
distributions that is particularly popular in computer vision”’. The EMD was
chosen to perform differential expression analysis in the EB scRNA-seq data owing
to its stability in estimation as compared to other divergence measures. Intuitively,
if each distribution is viewed as a pile of dirt, the EMD can be thought of as the
minimum cost of converting one pile of dirt into the other. If the distributions are
identical, then the cost is zero. When comparing univariate distributions (as we

do, that is, we only consider a single gene at a time), the EMD simplifies to the L'
distance between the cumulative distribution functions™. That is, if P and Q are the
cumulative distributions of densities p and g, respectively, then the EMD between p
and g is / |P(x) — Q(x)|dx. While the EMD is non-negative, we assign a sign to the
EMD score on the basis of the difference between the medians of the distributions.

Biological methods. The processes for generating the EB data and for
preprocessing the biological data are described here.

Generation of human embryoid body data. These experiments were approved

by the Yale Embryonic Stem Cell Research Oversight (ESCRO) committee.
Low-passage H1 hESCs were maintained on Matrigel-coated dishes in DMEM/
F12-N2B27 medium supplemented with FGF2. For EB formation, cells were
treated with Dispase, dissociated into small clumps and plated in non-adherent
plates in medium supplemented with 20% FBS, which was prescreened for EB
differentiation. Samples were collected during 3-d intervals during a 27-d-long
differentiation timecourse. An undifferentiated hESC sample was also included
(Supplementary Fig. 14a). Induction of key germ-layer markers in these EB
cultures was validated by quantitative PCR (data not shown). For single-cell
analyses, EB cultures were dissociated, FACS sorted to remove doublets and dead
cells and processed on a 10x genomics instrument to generate cDNA libraries,
which were then sequenced. Small-scale sequencing determined that we had
successfully collected data on 31,161 cells distributed throughout the timecourse.
After preprocessing the data as described below, we are left with 16,825 cell
measurements for data analysis. See also the Life Sciences Reporting Summary for
further details.

Data preprocessing. Here we discuss methods we used to preprocess the various
datasets.

Data subsampling. The full PHATE implementation scales well for sample sizes
up to approximately N=50,000. For N much larger than 50,000, computational
complexity can become an issue owing to the multiple matrix operations required.
All of the scRNA-seq datasets considered in this paper have N <50,000. Thus,

we used the full data and did not subsample these datasets. However, the mass
cytometry datasets have much larger sample sizes. To aid in branch analysis, we
randomly subsampled these datasets for analysis using uniform subsampling. For
the comparison figures (Fig. 5 and Supplementary Figs. 3 and 8), scalable PHATE
was used and subsampling was not performed except as indicated in the figures.
The PHATE embedding is robust to the number of samples chosen, which we
demonstrated in Supplementary Fig. 4.

Mass cytometry data preprocessing. We processed the mass cytometry datasets as
previously described™.

Single-cell RNA sequencing data preprocessing. This data was processed from

raw reads to molecule counts using the Cell Ranger pipeline”. Additionally, to
minimize the effects of experimental artifacts on our analysis, we preprocessed the
scRNA-seq data. We first filtered out dead cells by removing cells that had high
expression levels in mitochondrial DNA. In the case of the EB data, which had a
wide variation in library size, we then removed cells that were either below the 20th
percentile or above the 80th percentile in library size. scRNA-seq data have large
cell-to-cell variations in the number of observed molecules in each cell or library
size. Some cells are highly sampled with many transcripts, while other cells are
sampled with fewer. This variation is often caused by technical variations owing

to enzymatic steps including lysis efficiency, mRNA capture efficiency and the
efficiency of multiple amplification rounds™. Removing cells with extreme library
size values helped to correct for these technical variations. We then dropped genes
that were only expressed in a few cells and then perform library size normalization.
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Normalization was accomplished by dividing the expression level of each gene in a
cell by the library size of the corresponding cell.

After normalizing by the library size, we took the square-root transform of
the data and then performed PCA to improve the robustness and reliability of the
constructed affinity matrix K, ,. We chose the number of principal components
to retain approximately 70% of the variance in the data, which resulted in 20-50
principal components.

Gut microbiome data preprocessing. We used the cleaned L6 American Gut
data and removed samples that were near duplicates of other samples. We then
preprocessed the data using a similar approach for scRNA-seq data. We first
performed ‘library size’ normalization to account for technical variations in
different samples. We then log transformed the data and used PCA to reduce the
data to 30 dimensions.

Applying PHATE to this data revealed several outlier samples that were very far
from the rest of the data. We removed these samples and then reapplied PHATE to
the log-transformed data to obtain the results that are shown in Fig. 1d.

Chromatin immunoprecipitation-sequencing processing for Hi-C visualization.
We used narrow peak bed files and took the average peak intensity for each bin
at a resolution of 10kilobases. For visualization, we smoothed the average peak
intensity values on the basis of location using a 25-bin moving average.

DEMaP. To quantitatively compare each dimensionality-reduction tool, we
wished to calculate the degree to which each method preserves the underlying
structure of the reference dataset and removes noise. As scRNA-seq and other
biological types of data are highly noisy, visual renderings of the data that can offer
denoised embeddings that reveal the underlying structure of the data are desirable.
Therefore, the goal of our accuracy metric was to quantify the correspondence
between distances in the low-dimensional embedding and manifold distances in
the ground-truth reference.

To define a quantitative notion of manifold distance we use geodesic distances.
Geodesic distances are shortest-path distances on a nearest-neighbor graph of
the data weighted by the Euclidean distances between connected points*. In cases
where points are sampled noiselessly from a manifold, such as in our ground-truth
reference, geodesic distances converge exactly to distances along the manifold
of the data®””. Thus we reason that if geodesic distances between points on the
noiseless manifold are preserved by an embedding computed on the noisy data
then the data are sufficiently denoised and the manifold structure is also preserved.

We take this approach to formulate our ground-truth manifold distance as
a quantification of the degree to which each dimensionality-reduction method
preserves the pairwise geodesic distances of the noiseless data after low-dimensional
embedding of the corresponding noisy data. As the low-dimensional embedding
is often a result of a nonlinear dimensionality reduction, curves and major paths
in the data are ‘straightened’ such that Euclidean distances in the embedding space
correspond to manifold distance in the high-dimensional space’. Thus we quantify
the preservation of manifold distances as the correlation between geodesic distance
in the noiseless reference dataset and Euclidean distances in the embedding space as
a measure of structure preservation which we call DEMaP (Fig. 4a).

Construction of the artificial tree test case. The artificial tree data shown in Fig.
1b was constructed as follows. The first branch consists of 100 linearly spaced
points that progress in the first four dimensions. All other dimensions were set to
zero. The 100 points in the second branch are constant in the first four dimensions
with a constant value equal to the end point of the first branch. The next four
dimensions then progress linearly in this branch while all other dimensions were
set to zero. The third branch was constructed similarly except the progression
occurs in dimensions 9-12 instead of dimensions 5-8. All remaining branches
were constructed similarly with some variation in the length of the branches.

We then added 40 points at each end point and branch point and added zero
mean Gaussian noise with a s.d. of 7. This construction models a system where
progression along a branch corresponds to an increase in gene expression in
several genes. Before adding noise, we also constructed a small gap between the
first branch point and the orange branch that splits into a blue and purple branch
(see the top set of branches in the left part of Fig. 1b). This simulates gaps that
are often present in measured biological data. We also added additional noise
dimensions, bringing the total dimensionality of the data to 60.

Splatter simulation details. Splatter is an scRNA-seq simulation package that
uses a parametric model to generate data with various structures, such as branches
or clusters®. We use Splatter to simulate multiple ground-truth datasets for
multiple experiments. To select parameters for the simulation, we fit the Splatter
simulation to the EB data, and then modified the resulting dataset from both the
Splatter ‘paths’” and the Splatter ‘groups’ simulations as described in “Comparison
of PHATE to other methods.” Note that we do not make use of Splatter’s built-in
dropout function, as it uses a zero-inflated model and multiple studies have shown
that an undersampling (binomial) model is more appropriate’*-*. Each simulation
is performed with 3,000 simulated cells. The mean correlation coefficient and s.d.
were calculated from 20 trials.
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To generate a diverse set of ground-truth references, we simulated 50
datasets containing clusters and 50 datasets containing branches. In each of these
simulated datasets, the number and size of the clusters of branches, as well as the
global position of the clusters or branches with respect to each other, is random.
Furthermore, the local relationships between individual cells on these structures is
random. Finally, the changes in gene expression within clusters or along branches
is random. The output of this simulation is the ground-truth reference.

Next, we added biological and technical noise to the reference data. First, to
simulate stochastic gene expression we used Splatter’s biological coefficient of
variation (BCV) parameter, which controls the level of gene expression in each
cell following an inverse y-distribution. Second, to simulate the inefficient capture
of mRNA in single cells, we undersampled from the true counts using the default
BCV. Third, to demonstrate robustness to varying of total genes measured, we
randomly removed genes from the data matrix. Finally, to demonstrate robustness
to the number of cells captured, we randomly removed cells from each dataset. We
varied each of these parameters, including by default some degree of biological
variation and mRNA undersampling to each simulation.

The default parameters used in the simulation were the following:
‘batchCells=3000’; ‘nGenes=17580"; ‘mean.shape=6.6’; ‘mean.rate=0.45’; ‘lib.
loc=9.1’; ‘lib.scale=0.33’; ‘out.prob=0.016’; ‘out.facLoc=5.4’; ‘out.facScale=0.90’;
‘bev.common=0.18’; ‘bev.df=21.6’; and ‘de.prob=0.2"

We also set ‘dropout.type="none”, with a post-hoc binomial dropout
of 50%. For the groups simulation we drew the number of groups # from a
Poisson distribution with rate A =10, and then drew the ‘group.prob’ parameter
from a Dirichlet distribution with » categories and a uniform concentration
a,= -+ =a,= 1 For the paths simulation, we set ‘group.prob’ as above, and
additionally set the ith entry in the parameter ‘path.from’ as a random integer
between 0 and i — 1, drew the parameter ‘path.nonlinearProb’ from a uniform
distribution on the interval (0,1), and drew the parameter ‘path.skew’ from
a f-distribution with shape =10, #=10. Note that here the library size was
doubled from the fit value, since the EB data itself suffers from dropout. To reduce
the number of genes for the n_genes simulation, we randomly removed genes
post-hoc to avoid changing the state of the random number generator in building
the simulation.

For the ground-truth simulations, we set bcv.common to 0, did not perform
binomial dropout, and did not remove genes or cells. For the BCV simulation, we
performed 50% post-hoc binomial dropout, did not remove genes or cells and set
bev.common to 0, 0.25 and 0.5. For the dropout simulation, we set bcv.common
to 0.18, did not remove genes or cells and performed 0%, 50% and 95% post-hoc
binomial dropout. For the subsample simulation, we set bcv.common to 0.18,
performed 50% post-hoc binomial dropout, did not remove genes and subsampled
rows of the matrix to retain 95%, 50% and 5% of the total cells. For the n_genes
simulation, we set bcv.common to 0.18, performed 50% post-hoc binomial
dropout, did not remove cells and subsampled columns of the matrix to retain
17,000, 10,000, and 2,000 genes.

PHATE experimental details. For all of the quantitative comparisons, we
have used the default parameter settings for the PHATE plots. For the majority
of the qualitative comparisons in Fig. 5 and Supplementary 3 and 8, we also
used the default parameter settings for all methods. Exceptions to this are the
artificial tree (Supplementary Fig. 3a), the intersecting circles (Supplementary
Fig. 3d) and the MNIST dataset (Supplementary Fig. 31). In these cases,

the PHATE parameters have been tuned to give a clearer separation of the
branches. However, in general, the default PHATE settings give good results
on most datasets, especially those that are complex, high-dimensional and
noisy as demonstrated empirically in “Robustness analysis of PHATE” The
default settings are also used in Supplementary Figs. 2d, 6a—e, 12 and 13. For all
other PHATE plots, the parameters were tuned slightly to better highlight the
structure of the data.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The embryoid body scRNA-seq and bulk RNA-seq datasets generated and analyzed
during the current study are available from the Mendeley Data repository at https://
doi.org/10.17632/v6n743h5ng.1. Supplementary Figure 14a contains images of the
raw single cells while Supplementary Fig. 14f contains scatter plots showing the
gating procedure for fluorescence activated cell sorting populations for the bulk
RNA-seq data.

Code availability
Python, R and Matlab implementations of PHATE are available on GitHub (https://
github.com/KrishnaswamyLab/PHATE) for academic use.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed
|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

X OO

D The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested

X X

|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

D A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

X

D For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

X X X

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection The Cell Ranger pipeline, version 1.2.0, was used for cell separation. FACS data were collected using BD FACSDiva V6.0.

Data analysis Data were analyzed using standard functions in MATLAB version 2018a, Python 3.7, and custom code developed by the authors available
at https://github.com/krishnaswamylab/PHATE. Code for estimating intrinsic dimension can be found at http://tbayes.eecs.umich.edu/
kmcarter/smoothing. FlowJo V10 was used for flow cytometry analysis. Wanderlust was run as part of the cyt3 MATLAB package which is
available at https://github.com/dpeerlab/cyt3.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The embryoid body scRNA-seq and bulk RNA-seq datasets generated and analyzed during the current study are available in the Mendeley Data repository at http://
dx.doi.org/10.17632/v6n743h5ng.1. Figure 14SA contains images of the raw single cells while Figure S14F contains scatter plots showing the gating procedure for
FACS sorting cell populations for the bulk RNA-seq data.
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Flow cytometry analysis of H1 derived embryoid bodies were conducted on n=3 stained wells.

Data exclusions  No exclusion was done prior to loading to 10X single cell sorting. After obtaining the sgRNA-seq data, dead cells were excluded based on high
mitochondrial DNA expression. Then cells were excluded based on high or low library size. These exclusion criteria were not predetermined.
See Online Methods for details.

Replication For flow cytometry analysis, all replication attempts were successful.

Randomization  All derived embryoid bodies were pooled, and the sample was randomly split into two tubes prior to dissociation, staining (CD49d/CD63;
CD92/CD142) and FACS procedures

Blinding None

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
|Z Eukaryotic cell lines |:| |Z Flow cytometry
|:| Palaeontology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms

|:| Human research participants

XXX X[ s

[] clinical data
Antibodies

Antibodies used FITC Mouse Anti-Human CD63 (supplier: BD; catalog number: 561924; clone name: Clone H5C6; dilution: 20 pl per million cells in
100 pl staining volume); Alexa Fluor® 647 Mouse Anti-Human Tspan-27 (CD82) (supplier: BD; catalog number: 564341; clone
name: Clone 423524; dilution: 5 pul per million cells in 100 pl staining volume); PE anti-human CD142 (supplier: BIOLEGEND;
catalog number: 365203; clone name: Clone NY2; dilution: 5 pl per million cells in 100 pl staining volume); PE Mouse Anti-Human
CD49d (supplier: BD; catalog number: 560972; clone name: Clone 9F10; dilution: 20 ul per million cells in 100 pl staining volume)

Validation The antibodies used are all commercialized monoclonal, react to human, flow cytometry antibodies. The manufacturers'

websites contain the validation information.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) H1 (WAO1) (WiCell Research Institute, Inc.)
Authentication H1 (WAQ1) is authenticated by Karyotype analysis and staining for pluripotent stem cell markers
Mycoplasma contamination H1 (WAOQ1) is free of Myoplasma and tested by Yale Pathology Department Lab

Commonly misidentified lines  none
(See ICLAC register)
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Flow Cytometry

Plots
Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|Z All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.
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Methodology
Sample preparation H1 (WAO1) formed embryoid bodies were dissociated to single cells by Accutase.
Instrument BD LSR I
Software FlowJo V10

Cell population abundance  Purity of samples was determined by re-sorting the samples. The purity for all the experiments was calculated to be between
90-95%.

Gating strategy Single cells were selected based on SSC-A/FSC-A. Live cells were selected based on DAPI staining. Alexa 488, Alexa 647, and PE
gates were defined based on negative controls (H1 cells in pluripotent state).

|Z| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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