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High-dimensional, high-throughput data are accumulating at 
a staggering rate, especially of biological systems measured 
using single-cell transcriptomics and other genomic and 

epigenetic assays. Because humans are visual learners, it is impor-
tant that these datasets are presented to researchers in intuitive ways 
to understand both the overall shape and the fine granular structure 
of the data. This is especially important in biological systems, where 
structure exists at many different scales and a faithful visualization 
can lead to hypothesis generation.

There are many dimensionality-reduction methods for visu-
alization1–11, of which the most commonly used are principal-
component analysis (PCA)11 and t-distributed stochastic neighbor 
embedding (t-SNE)1–3. However, these methods are suboptimal 
for exploring high-dimensional biological data. First, such meth-
ods tend to be sensitive to noise. Biomedical data is generally very 
noisy, and methods like PCA and Isomap4 fail to explicitly remove 
this noise for visualization, rendering fine-grained local structure 
impossible to recognize. Second, nonlinear visualization methods 
such as t-SNE often scramble the global structure in data. Third, 
many dimensionality-reduction methods (for example, PCA and 
diffusion maps) fail to optimize for two-dimensional (2D) visual-
ization as they are not specifically designed for visualization.

Furthermore, common implementations of dimensionality-
reduction methods often lack computational scalability. The vol-
ume of biomedical data being generated is growing at a scale that far 
outpaces Moore’s law. State-of-the-art methods such as multidimen-
sional scaling (MDS) and t-SNE were originally presented (see refs. 1,7)  

as proofs-of-concept with somewhat naive implementations, which 
do not scale well to datasets with hundreds of thousands, let alone 
millions, of data points owing to speed or memory constraints. 
Although some heuristic improvements may be made3,8, most avail-
able packages still follow the original implementation and thus 
cannot run on big data, which severely limits the usability of these 
methods in the medium-to-long term.

Finally, we note that some methods try to alleviate visualiza-
tion challenges by directly imposing a fixed geometry or intrinsic 
structure on the data. However, methods that impose a structure 
on the data generally have no way of alerting the user whether 
the structural assumption is correct. For example, any data will be 
transformed to fit a tree with Monocle212 or clusters with t-SNE. 
While such methods are useful for data that fit their prior assump-
tions, they can generate misleading results otherwise, and are often 
ill suited for hypothesis generation or data exploration.

To address the above concerns, we have designed a dimensional-
ity-reduction method for visualization named potential of heat dif-
fusion for affinity-based transition embedding (PHATE). PHATE 
generates a low-dimensional embedding specific for visualization, 
which provides an accurate, denoised representation of both local 
and global structure of a dataset in the required number of dimen-
sions without imposing any strong assumptions on the structure of 
the data, and is highly scalable both in memory and runtime. To 
achieve this, we combine ideas from manifold learning, informa-
tion geometry and data-driven diffusion geometry, and integrate 
them with current state-of-the-art methods. The result is that  
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high-dimensional and nonlinear structures, such as clusters, non-
linear progressions and branches, become apparent in two or three 
dimensions and can be extracted for further analysis (Fig. 1a).

We develop a new metric called DEMaP to quantify the abil-
ity of an embedding to preserve denoised manifold distances, we 
show that PHATE consistently outperforms 11 other methods on 
synthetically generated data with known ground truth. We also use 
PHATE to visualize several biological and non-biological real-world 
datasets, showing the capacity of PHATE to visualize datasets with 
many different underlying structures including trajectories, clus-
ters, disconnected and intersecting manifolds, and more (Fig. 1). To 
demonstrate the ability of PHATE to reveal new biological insights, 
we apply PHATE to a newly generated single-cell RNA sequenc-
ing (scRNA-seq) dataset of human embryonic stem cells grown as 
embryoid bodies over a period of 27 d to observe differentiation 
into diverse cell lineages. PHATE successfully captures all known 
branches of development within this system as well as differentia-
tion pathways, and enables the isolation of rare populations on the 
basis of surface markers, which we validate experimentally.

Results
Visualizing complex, high-dimensional data in a way that is both 
easy to understand and faithful to the data is a difficult task. Such a 
visualization method needs to preserve local and global structure in 
the high-dimensional data, denoise the data so that the underlying 
structure is clearly visible and preserve as much information as pos-
sible in low (two to three) dimensions. Additionally, a visualization 
method should be robust in the sense that the revealed structure of 
the data is insensitive to user configurations of the algorithm and 
scalable to the large sizes of modern data.

Popular dimensionality-reduction methods are deficient in one 
or more of these attributes. For example, t-SNE1 focuses on pre-
serving local structure, often at the expense of the global struc-
ture (Fig. 1b,c), while PCA focuses on preserving global structure 
at the expense of the local structure (Fig. 1b,c). Although PCA is 
often used for denoising as a preprocessing step, both PCA and  
t-SNE provide noisy visualizations when the data is noisy, which can 
obscure the structure of the data (Fig. 1b,c). By contrast, diffusion 
maps13 effectively denoise data and learn the local and global struc-
ture. However, diffusion maps typically encode this information in 
higher dimensions14, which are not amenable to visualization, and 
can introduce distortions in the visualization under certain condi-
tions (Supplementary Figs. 1 and 2).

PHATE is designed to overcome these weaknesses and provide 
a visualization that preserves the local and global structure of the 
data, denoises the data and presents as much information as possi-
ble into low dimensions. There are three major steps in the PHATE 
algorithm (Fig. 2):

	1.	 Encode local data information via local similarities (Fig. 2a–c). 
For some data types, such as Hi-C chromatin conformation 
maps15, the local relationships are encoded directly in the meas-
urements. However, for most data types, the local similarities 
must be learned. We assume that component-wise, the data are 
well-modeled as lying on a manifold. Effectively this means that 
local relationships between data points, even when noisy, are 
meaningful with respect to the overall structure of the data, as 
they can be chained together to learn global relationships along 
the manifold. We apply a kernel function that we developed 
(called the α-decay kernel) to Euclidean distances to accurately 
encode the local structure of the data even when the data are not 
uniformly sampled along the underlying manifold structure.

	2.	 Encode global relationships in data using the potential dis-
tance (Fig. 2d,e). Diffusing through data is a concept that was 
popularized in the derivation of diffusion maps13. Diffusion  
is performed by first transforming the local similarities into 

probabilities that measure the probability of transitioning from 
one data point to another in a single step of a random walk 
and then powering this operator to t steps to give t-step walk 
probabilities. Thus, both the local and global manifold distanc-
es are represented in the newly-calculated multistep transition 
probabilities, which are referred to as the diffusion probabili-
ties. For example, two points that have multiple potential short 
paths that connect them will have a higher diffusion probability 
than two points that either have only long paths or relatively 
few paths connecting them. By considering all possible random 
walks, the diffusion process also denoises the data by down-
weighting spurious paths created by noise. However, directly 
embedding the diffusion probabilities into two and three di-
mensions via eigenvalue decomposition results in either a loss 
of information (Supplementary Fig. 1) or an unstable embed-
ding (Supplementary Figs. 2a and 3d, respectively). In PHATE 
we interpret the diffusion probability of each point to all other 
points as the ‘global context of the data point’, and derive an 
information-theoretic potential distance between each pair of 
cells that compares the entire global context. Potential distance 
is computed as a divergence between the associated diffusion 
probability distributions of the two cells to all other cells. Thus 
the relationship of each cell to both near neighbors and distant 
points is accounted for in this distance. Notably, many diver-
gences use a sublinear transformation of probability distribu-
tions (such as a log-scale transformation), which prevents near-
est neighbors from dominating the distance.

	3.	 Embed potential distance information into low dimensions for 
visualization (Fig. 2e–f). The information in the potential dis-
tances are then squeezed into low dimensions for visualization 
via metric MDS, which creates an embedding by matching the 
distances in the low-dimensional space to the input distances. 
Unlike PCA, this ensures that all variability is squeezed into 
two dimensions for a maximally informative embedding.

These steps are outlined in Table 1. All of these steps are neces-
sary to create a good visualization that preserves local and global 
structure in the high-dimensional data, denoises the data and pres-
ents as much information as possible in low dimensions. Further 
details on all of the steps of PHATE are included in the Methods, 
Supplementary Table 1 and Supplementary Note 1. PHATE is also 
robust to the choice of parameters (Methods; Supplementary Fig. 
4) and produces the same results every time it is run, regardless of 
random seed (Supplementary Fig. 5).

In addition to the exact computation of PHATE, we developed 
an efficient and scalable version of PHATE that produces near-iden-
tical results. In this version, PHATE uses landmark subsampling, 
sparse matrices and randomized matrix decompositions. For more 
details on the scalability of PHATE see the Methods, Supplementary 
Table 2 and Supplementary Fig. 6, which shows the fast runtime of 
PHATE on datasets of different sizes, including a dataset of 1.3 mil-
lion cells (2.5 h) and a network of 1.8 million nodes (12 min).

Extracting information from PHATE. PHATE embeddings con-
tain a large amount of information on the structure of the data, 
namely, local transitions, progressions, branches or splits in pro-
gressions and end states of progression. Here we present new meth-
ods that provide suggested end points, branch points and branches 
on the basis of the information from higher-dimensional PHATE 
embeddings (Fig. 3). These may not always correspond to real deci-
sion points, but provide an annotation to aid the user in interpreting 
the PHATE visual.

•	 Branch-point identification with local intrinsic dimensionality. 
In biological data, branch points often encapsulate switch-like 
decisions where cells sharply veer towards one of a small number  
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of fates (Supplementary Fig. 7a). Identifying branch points is 
of critical importance for analyzing such decisions. We make a 
key observation that most points in PHATE plots of biological  

data lie on low-dimensional progressions with some noise as 
demonstrated in Fig. 3a. As branch points lie at the intersections of 
such progressions, they have higher local intrinsic dimensionality  
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and can thus be identified by estimating the local intrinsic 
dimension. Figure 3a shows that points of intersection in the 
artificial tree data indeed have higher local intrinsic dimension-
ality than points on branches.

•	 End-point identification with diffusion extrema. We identify end 
points in the PHATE embedding as those that are least central 
and most distinct by computing the eigenvector centrality and 
the distinctness of a cellular state relative to the general data by 
considering the minima and maxima of diffusion eigenvectors 
(Fig. 3a) as motivated by ref. 16. After identifying branch points 
and end points, the remaining points are assigned to branches 
between two branch points or between a branch point and an 
end point using an approach that is based on a previously devel-
oped branch-point-detection method14, which compares the 
correlation and anticorrelation of neighborhood distances. Fig-
ure 3a gives a visual demonstration of this approach and details 
are given in the Methods. Figure 3b shows the results of our 
approach to identifying branch points, end points and branches 
on an artificial tree dataset, an scRNA-seq dataset of bone mar-
row17 and an induced pluripotent stem cell (iPSC) cytometry by 
time of flight (CyTOF) dataset18. Our procedure identifies the 

branches on the artificial tree perfectly and defines biologically 
meaningful branches on the other two datasets, which we will 
use for data exploration.

Comparison of PHATE to other methods. Here we compare 
PHATE to multiple dimensionality-reduction methods. We provide 
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affinities that best describe the data. For example, in Supplementary Fig. 11d we replace our affinity matrix with the Facebook connectivity matrix.

Table 1 | General steps in the PHATE algorithm

Input: Data matrix, algorithm parameters (Methods)

Output: The PHATE visualization

(1) Compute the pairwise distances from the data matrix.

(2) Transform the distances to affinities to encode local information.

(3) Learn global relationships via the diffusion process.

(4) Encode the learned relationships using the potential distance.

(5) �Embed the potential distance information into low dimensions for 
visualization.
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quantitative comparisons on simulated data where the ground truth 
is known, and provide a qualitative comparison using both simu-
lated and real biological data.

Quantitative comparisons. Quantifying the accuracy of a dimen-
sionality reduction for visualization is an open problem in machine 
learning19–21 as it is generally impossible to greatly reduce the dimen-
sionality of a dataset without loss of information. To quantify the 
quality of a visualization, we needed a metric that judged whether 
a method preserves the information that is necessary for visual 
understanding. Previous work has focused on preserving pairwise 
distances or local neighborhoods5,22,23. However, these quantifica-
tions are not strictly desirable. For example, classical MDS is ana-
lytically the optimal solution to pairwise distance preservation in n 
dimensions7. However, MDS, as is visible in Supplementary Figs. 3 
and 8, often does not produce clear or insightful visualizations for 
complex, nonlinear data. On the other hand, preserving local neigh-
borhoods is the basis of the objective function for t-SNE1, which 
fails to incorporate global structure and is hence insufficient for our 
purposes (Supplementary Fig. 3).

Previous work has also emphasized the utility of geodesic dis-
tances in computing both dimensionality reductions4 and associ-
ated metrics20. Similar computations have been used to compare the 
output of trajectory-inference algorithms24. However, this metric 
is insufficient for our use for two reasons: (1) unlike in trajectory 
inference, the raw data is noisy, and we wish to quantify the abil-
ity of a visualization method to denoise the data; and (2) geode-
sic distances on low-dimensional visualizations fail to capture the 
inherent meaning of curvature. As visualizations do not suffer from 
the curse of dimensionality, we are able instead to use Euclidean 
distances, which capture the difference between straight and curved 
lines and which are also meaningful to the human eye.

Hence, to quantitatively compare PHATE to other visualization 
methods, we formulated the DEMaP metric. DEMaP is designed to 
encapsulate the desirable properties of a dimensionality-reduction 
method that is intended for visualization. These include: (1) the 
preservation of relationships in the data such that cells close together 
on the manifold are close together in the embedded space and cells 
that are far apart on the manifold are far apart in the embedding, 
including disconnected manifolds (for example, clusters), which 
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should be as well separated as possible; and (2) denoising, such that 
the low-dimensional embedding accurately represents the ground-
truth data and is as invariant as possible to biological and technical 
noise. DEMaP encapsulates each of these properties by comparing 
the geodesic distances on the noiseless data to the Euclidean dis-
tances of the embedding extracted from noisy data. An overview of 
DEMaP is presented in Fig. 4a (Methods).

To compare the performance of PHATE to 12 dimensionality-
reduction methods, we simulated scRNA-seq data from Splatter25. 
Splatter uses a parametric model to generate data with various 
structures, such as branches or clusters. This simulated data pro-
vides a ground-truth reference to which we can add various types of 
noise. We then use this noisy data as input for each dimensionality-
reduction algorithm, and quantify the degree to which each repre-
sentation preserves local and global structures and denoises the data 
using DEMaP. To generate a diverse set of ground-truth references, 
we simulated 50 datasets containing clusters and 50 datasets con-
taining branches (Methods).

For each method, we used the default parameters and calculated 
DEMaP on each simulated dataset using different noise settings. 
The results are presented in Fig. 4b and Supplementary Table 3. 
We found that PHATE had the highest DEMaP score in 22 of 24 
comparisons and was the top-performing method overall. Uniform 

manifold approximation and projection (UMAP) was the second 
best performing method overall but had the highest DEMaP score 
in only two of the comparisons, one of which is equal with PHATE. 
We ran further tests on cluster data using the adjusted Rand index26 
and found that on average PHATE preserves local cluster structure 
as well as, or better than, t-SNE, UMAP and PCA (Supplementary 
Fig. 9). From all of these results, we conclude that PHATE captures 
the true structure of high-dimensional data more accurately than 
existing visualization methods.

Qualitative comparisons. In addition to the quantitative compari-
son, we can visually compare the embeddings provided by different 
methods. Figure 5 shows a comparison of the PHATE visualiza-
tion to seven other methods on five single-cell datasets with known 
trajectory (Fig. 5a,d,e) and cluster (Fig. 5b,c) structures. We see 
that PHATE provides a clean and relatively denoised visualiza-
tion of the data that highlights both the local and global structure: 
local clusters or branches are visually connected to each other in 
a global structure in each of the PHATE visualizations. Many of 
these branches are consistent with cell types or clusters validated 
by the authors17,18,27,28 and are also present in other visualizations 
such as force-directed layout and t-SNE, suggesting that the struc-
tures in the PHATE embedding reflect true structure in the dataset. 
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However, force-directed layouts tends to give a noisier visualization 
with fewer clear branches. Additionally, t-SNE22 tends to shatter 
trajectories into clusters, creating the false impression that the data 
contain natural clusters. We characterize each of these visualizations 
in detail in Supplementary Note 2.

We obtained similar results by comparing PHATE to eleven 
methods on nine non-biological datasets, including four artificial 
datasets where the ground truth was known (Supplementary Fig. 3).  
Expanded comparisons on single-cell data, including addi-
tional datasets and visualization methods, are also included in 
Supplementary Fig. 8. See Supplementary Note 2 for a full discus-
sion of each method in all of these comparisons.

Data exploration with PHATE. PHATE can reveal the underlying 
structure of the data for a variety of data types. Supplementary Note 3  
discusses PHATE applied to multiple different datasets, including 
single-nucleotide polymorphism data, microbiome data, Facebook 
network data, Hi-C chromatin conformation data and facial images 
(Supplementary Figs. 10 and 11). In this section, however, we show 
the insights gained through PHATE visualization of this structure 
for single-cell data (see Methods for details on preprocessing steps).

We show that the identifiable trajectories in the PHATE visu-
alization have biological meaning that can be discerned from the 
patterns of gene expression and the mutual information between 
gene expression and the ordering of cells along the trajectories. We 
analyzed the mouse-bone-marrow scRNA-seq17 and iPSC CyTOF18 
datasets described previously. Our analysis of the iPSC CyTOF data 
is presented here while the analysis of the mouse-bone-marrow data 
is presented in Supplementary Note 3. For both of these datasets, we 
used our new methods for detecting branches and branch points. 
We then ordered the cells within each trajectory using Wanderlust29 
applied to higher-dimensional PHATE coordinates. We note that 
ordering could also be based on other pseudotime-ordering soft-
ware14,30–33. To estimate the strength of the relationship between 
gene expression and cell ordering along branches, we estimated the 
DREMI score (a weighted mutual information that eliminates biases 

to reveal shape-agnostic relationships between two variables34) 
between gene expression and the Wanderlust-based ordering within 
each branch. Genes with a high DREMI score within a branch are 
changing along the branch. We also used PHATE to analyze the 
transcriptional heterogeneity in rod bipolar cells to demonstrate the 
ability of PHATE to preserve cluster structure (Supplementary Note 
3 and Supplementary Fig. 12a).

Supplementary Figure 7c shows the mass-cytometry dataset 
from ref. 18 that shows cellular reprogramming of mouse embry-
onic fibroblasts to iPSCs with Oct4–GFP at a single-cell resolu-
tion. The protein markers measure pluripotency, differentiation, 
cell-cycle and signaling status. The cellular embedding (with 
combined timepoints) by PHATE shows a unified embedding 
that contains five main branches, further segmented in our visu-
alization, each corresponding to the identified biology18. Branch 2 
contains early reprogramming intermediates with the correct set 
of reprogramming factors Sox2+Oct4+Klf4+Nanog+ and with rela-
tively low CD73 at the beginning of the branch. Branch 2 splits into 
two additional branches. Branches 4 and 6 (Supplementary Fig. 
7) show the successful reprogramming to embryonic stem (ES)-
cell-like lineages expressing markers such as Nanog, Oct4, Lin28, 
Ssea1 and Epcam that are associated with the transition to pluripo-
tency35. Branch 5 shows a lineage that is refractory to reprogram-
ming, does not express pluripotency markers and is referred to as 
“mesoderm-like”18.

The other branches are similarly analyzed in Supplementary 
Note 3. In addition, the data features can be reweighted to 
obtain specific ‘views’ of the data (Supplementary Note 3 and 
Supplementary Fig. 13).

PHATE analysis of human ES cell differentiation data. To test the 
ability of PHATE to provide novel insights in a complex biological 
system, we generated and analyzed scRNA-seq data from human 
ES cells differentiating as embryoid bodies (EBs)36, a system that 
has never before been extensively analyzed at the single-cell level. 
EB differentiation is thought to recapitulate key aspects of early 
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embryogenesis and has been successfully used as the first step in 
differentiation protocols for certain types of neurons, astrocytes 
and oligodendrocytes37–40, hematopoietic, endothelial and muscle 
cells41–49, hepatocytes and pancreatic cells50,51, and germ cells52,53. 
However, the developmental trajectories through which these early 
lineage precursors emerge from human ES cells, as well as their cel-
lular and molecular identities, remain largely unknown, particularly 
in human models.

We measured approximately 31,000 cells, equally distributed 
over a 27-d differentiation time course (Supplementary Fig. 14a; 
Methods). Samples were collected at 3-d intervals and pooled for 
measurement on the 10x Chromium platform. The PHATE embed-
ding of the EB data revealed a highly ordered and clean cellular 
structure dominated by continuous progressions (Figs. 1c and 6a), 
unlike other methods such as PCA or t-SNE (Supplementary Fig. 8).  
Exploratory analysis of this system using PHATE uncovered a com-
prehensive map of four major germ layers with both known and 
new differentiation intermediates that were not captured with other 
visualization methods.

A comprehensive lineage map of embryoid bodies from PHATE. 
Importantly, PHATE retained global structure and organization 
of the data as evidenced by the retention of a strong time trend in 
the embedding, although sample time was not included in creating 
the embedding. Furthermore, PHATE revealed greater phenotypic 
diversity at later time points as seen by the larger space encom-
passed by the embedding at days 18 to 27 (Fig. 1c).

This phenotypic heterogeneity was further analyzed by both 
an automated analysis (Supplementary Note 4, Fig. 6a and 
Supplementary Tables 4 and 5) and by manual examination of the 
embedding in conjunction with the established literature on germ-
layer development (Supplementary Fig. 14b). For the manual analy-
ses, we used 80 markers from the literature to identify populations 
along the PHATE map, which gave rise to a detailed germ-layer 
specification map (Fig. 6b and Supplementary Videos 1, 2 and 3). 
These populations are shown on the PHATE visualization in Fig. 6c.  
In the lineage tree, the dots are the populations and the arrows rep-
resent transitions between the populations. Our map shows in detail 
how human ES cells give rise to germ-layer derivatives via a con-
tinuum of defined intermediate states.

Novel transitional populations in embryoid bodies. The com-
prehensive nature of the lineage map generated from the PHATE 
embedding allowed us to identify novel transitional populations 
that have not yet been characterized. Three new precursor states 
were identified in both manual and automated analyses: a bipotent 
neural crest and neural progenitor precursor, an endodermal pre-
cursor and a cardiac precursor.

Within the ectodermal lineage, differentiation begins with the 
induction of preneuroectoderm state characterized by downregu-
laton of POU5F1 and induction of OTX2. This state is resolved 
into two precursors, neuroectoderm 1 (expressing GBX2, ZIC2 
and ZIC5) and neuroectoderm 2 (expressing GBX2, OLIG2 and 
HOXD1). While neuroectoderm 1 appeared to develop along the 
canonical neuroectoderm specification route and expressed a set 
of well-established anterior neuroectoderm markers (ZIC2, ZIC5, 
PAX6, GLI3, SIX3 and SIX6), neuroectoderm 2 gave rise to a bipo-
tent precursor expressing HOXA2 and HOXB1 that subsequently 
separated into the neural crest and neural progenitor branches. 
Given its potential to generate both neuroectoderm and neural crest 
cell types, the precursor expressing HOXA2 and HOXB1 could rep-
resent the equivalent of the neural plate border cells that have been 
defined in model organisms54,55.

Within the endoderm branch, the canonical precusors expressing 
EOMES, FOXA2 and SOX17 was clustered together with a new pre-
cusor that expressed GATA3, SATB1 and KLF8 but did not express 

EOMES or FOXA2, which further differentiated into cells express-
ing the posterior endoderm markers NKX2-1, CDX2, ASCL2 and 
KLF5. Finally, a new cardiac precursor cell expressing T (TBXT), 
GATA4, CER1 and PROX1 was identified within the mesoderm lin-
eage that gave rise to cells expressing TNNT2 via a differentiation 
intermediate that expressed GATA6 and HAND1.

A more detailed analysis of the new and canonical cell types 
derived from the PHATE embedding is given in Supplementary 
Note 4.

Experimental validation of PHATE-identified lineages. We next 
used the ability of PHATE to extract data on specific regions within 
the visualization to define a set of surface markers for the isolation 
and molecular characterization of specific cell populations within 
the EB differentiation process.

We focused on two specific regions that correspond to the neu-
ral crest branch (sub-branch iii; Fig. 6a) and cardiac precursor 
sub-branch within the mesoderm branch (sub-branch vii; Fig. 6a). 
Differential expression analysis identified a set of candidate markers 
for each region (Figs. 6d,e). We focused on markers with a high Earth 
mover’s distance (EMD; Methods)56 score in the targeted sub-branch 
and low EMD scores in all other sub-branches. On the basis of these 
analyses and the availability of antibodies, ITGA4 (also known as 
CD49D) was chosen for the neural crest (the highest scoring sur-
face marker for sub-branch iii) while F3 (also known as CD142) and 
CD82 were chosen for cardiac precursors (among the top 6% of sur-
face markers and the top 3% of all genes by EMD). We FACS purified 
CD49d+CD63− and CD82+CD142+ cells and performed bulk RNA-
seq (Supplementary Fig. 14f) on these sorted populations.

To verify that we isolated the correct regions, we calculated 
the Spearman correlation between the gene-expression pattern 
of each cell and the bulk RNA-seq data from the CD49d+CD63− 
sorted cells (Figs. 6f and Supplementary Fig. 14d). The correlation 
coefficient was highest in the neural crest branch (sub-branch iii), 
which corresponded to the highest expression of CD49d. Similar 
results were obtained for the cardiac precursor cells (Figs. 6f and 
Supplementary Fig. 14e).

Taken together, our analyses show that PHATE has the potential 
to greatly accelerate the pace of biological discovery by suggesting 
hypotheses in the form of finely grained populations and identify-
ing markers with which to isolate populations. These populations 
can be probed further using alternative measurements such as epi-
genetic or protein-expression assays.

Discussion
With large amounts of high-dimensional, high-throughput biologi-
cal data being generated in many types of biological systems, there 
is a growing need for interpretable visualizations that can repre-
sent structures in data without strong prior assumptions. However, 
most existing methods are highly deficient at retaining structures 
of interest in biology. These include clusters, trajectories or pro-
gressions of various dimensionality, hybrids of the two, as well as 
local and global nonlinear relations in data. Furthermore, existing 
methods have trouble contending with the sizes of modern datasets 
and the high degree of noise inherent to biological datasets. PHATE 
provides a unique solution to these problems by creating a diffu-
sion-based informational geometry from the data, and by preserv-
ing a divergence metric between data points that is sensitive to near 
and far manifold-intrinsic distances in the data space. Additionally, 
PHATE is able to offer clean and denoised visualizations because 
the information geometry created in PHATE is based on data dif-
fusion dynamics, which are robust to noise. Thus, PHATE reveals 
intricate local as well as global structure in a denoised way.

We applied PHATE to a wide variety of datasets, including sin-
gle-cell CyTOF and RNA-seq data, as well as gut microbiome and 
single-nucleotide polymorphism data, where the data points are 
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subjects rather than cells. We also tested PHATE on network data, 
such as Hi-C and Facebook networks. In each case, PHATE was able 
to reveal structures of visual interest to humans that other methods 
entirely miss. Moreover, we have implemented PHATE in a scalable 
way that enables it to process millions of data points in a matter of 
hours. Hence, PHATE can efficiently handle the datasets that are 
now being produced using scRNA-seq technologies.

To showcase the ability of PHATE to explore data generated in 
new systems, we applied PHATE to our newly generated human EB 
differentiation dataset consisting of roughly 31,000 cells sampled 
over a differentiation time course. We found that PHATE success-
fully resolves cellular heterogeneity and correctly maps all germ-
layer lineages and branches on the basis of scRNA-seq data alone, 
without any additional assumptions on the data. Through detailed 
subpopulation and gene-expression analysis along these branches 
we identified both canonical and new differentiation intermediates. 
The insights obtained with PHATE in this system will be a valu-
able resource for researchers working on early human development, 
human ES cells and their regenerative medicine applications.

We expect numerous biological, but also non-biological, data 
types to benefit from PHATE, including applications in high-
throughput genomics, phenotyping and many other fields. As such, 
we believe that PHATE will revolutionize biomedical data explora-
tion by offering a new way of visualizing, exploring and extracting 
information from large-scale high-dimensional data.
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Methods
Here we present an expanded explanation of our computational methods, 
experimental methods and data-processing steps. For the computational details, we 
first provide a detailed overview of the PHATE algorithm followed by a robustness 
analysis of PHATE with respect to the parameters and the number of data points. 
We then provide details on the scalable version of PHATE, identifying branch 
points and branches and the EMD score analysis.

The embedding provided by PHATE is designed for visualizing global and 
local structure in the data in exploratory settings with the following properties in 
mind: (1) the visualization should capture the relevant structure in low (two to 
three) dimensions; (2) the visualization should preserve and emphasize global and 
local structure including transitions and clusters; (3) the visualization is denoised 
to enable data exploration; and (4) the visualization is robust in the sense that the 
revealed structure is insensitive to user configurations.

The mathematical steps of PHATE are provided in Supplementary Table 1. We 
now provide further details about each of the steps in the PHATE algorithm and 
explain how these steps ensure that PHATE meets the four properties described 
above. For more mathematical details of the algorithm, see Supplementary Note 1.

Distance preservation. Consider the common approach of linearly embedding 
the raw data matrix itself, for example, with PCA, to preserve the global structure 
of the data. PCA finds the directions of the data that capture the largest global 
variance. However, in most cases local transitions are noisy and global transitions 
are nonlinear. Therefore, linear notions such as global variance maximization are 
insufficient to capture latent patterns in the data, and they typically result in a noisy 
visualization (Supplementary Fig. 3). To provide reliable structure preservation that 
emphasizes transitions in the data, we need to consider the intrinsic structure of 
the data. This implies and motivates preserving distances between data points (for 
example, cells) that consider gradual changes between them along these nonlinear 
transitions (Fig. 2a,b).

Local affinities and the diffusion operator. A standard choice for a distance 
metric is the Euclidean distance. However, global Euclidean distances are not 
reflective of transitions in the data, especially in biological datasets that have 
nonlinear and noisy structures. For instance, cells sampled from a developmental 
system, such as hematopoiesis or ES cell differentiation, show gradual changes 
where adjacent cells are only slightly different from each other. But these changes 
quickly aggregate into nonlinear transitions in marker expression along each 
developmental path. Therefore, we transform the global Euclidean distances into 
local affinities that quantify the similarities between nearby (in the Euclidean 
space) data points (Fig. 2c).

A common approach to transforming global (for example, Euclidean) distances 
to local similarities is to apply a kernel function to all pairs of points. A popular 
kernel function is the Gaussian kernel kε(x,y) = exp(−||x − y||2/ε) that quantifies the 
similarity between the two points x and y on the basis of their Euclidean distance. 
The bandwidth ε determines the radius (or spread) of neighborhoods captured by 
this kernel. Let X R⊂ d be a dataset with N  independent and identically distributed 
points sampled from a probability distribution R → ∞p : [0, )d  (with ∫ =p dx x( ) 1
) that is essentially supported on a low dimensional manifold M R⊆m d, where 
m is the dimension of M and ≪m d. A kernel matrix that includes all pairwise 
measures of local affinity is constructed by computing the kernel function between 
all pairs of points in X .

Embedding local affinities directly can result in a loss of global structure as is 
evident in t-SNE (Figs. 1 and 5, and Supplementary Figs. 3 and 8) or kernel PCA 
embeddings. For example, t-SNE only preserves data clusters, but not transitions 
between clusters, as it does not enforce any preservation of global structure. By 
contrast, a faithful structure-preserving embedding (and visualization) needs to go 
beyond local affinities (or distances), and also consider global relations between 
parts of the data. To accomplish this, PHATE is based on constructing a diffusion 
geometry to learn and represent the shape of the data13,58,59. This construction is 
based on computing local similarities between data points, and then walking or 
diffusing through the data using a Markovian random-walk diffusion process to 
infer more global relations (Fig. 2d).

The initial probabilities in this random walk are calculated by normalizing the 
row-sums of the kernel matrix. In the case of the Gaussian kernel described above, 
we obtain the following:

X
∑ν = ∥ ⋅ ∥ =ε ε ε

∈
x k kx x z( ) ( , ) ( , ) (1)

z
1

resulting in a N × N row-stochastic matrix

X
ν

= ∈ε
ε

ε

k
P

x y
x

x y[ ]
( , )
( )

, , (2)x y( , )

The matrix Pε is a Markov transition matrix where the probability of moving from x 
to y in a single time step is given by → = εx y PPr[ ] [ ] x y( , ). This matrix is also referred 
to as the diffusion operator.

The α-decaying kernel and adaptive bandwidth. When applying the diffusion 
map framework to data, the choice of the kernel K and bandwidth ε plays a key 
role in the results. In particular, choosing the bandwidth corresponds to a tradeoff 
between encoding global and local information in the probability matrix Pε. If the 
bandwidth is small, then single-step transitions in the random walk using Pε are 
largely confined to the nearest neighbors of each data point. In biological data, 
trajectories between major cell types may be relatively sparsely sampled. Thus, 
if the bandwidth is too small, then the neighbors of points in sparsely sampled 
regions may be excluded entirely and the trajectory structure in the probability 
matrix Pε will not be encoded. Conversely, if the bandwidth is too large, then 
the resulting probability matrix Pε loses local information as ε ⋅P[ ] x( , ) becomes 
more uniform for all X∈x , which may result in an inability to resolve different 
trajectories. Here we use an adaptive bandwidth that changes with each point to 
be equal to its kth-nearest-neighbor distance, along with an α-decaying kernel that 
controls the rate of decay of the kernel.

The original heuristic proposed13 suggests setting ε to be the smallest distance 
that still keeps the diffusion process connected. In other words, it is chosen to 
be the maximal 1-nearest-neighbor distance in the dataset. While this approach 
is useful in some cases, it is greatly affected by outliers and sparse data regions. 
Furthermore, it relies on a single manifold with constant dimension as the 
underlying data geometry, which may not be the case when the data is sampled 
from specific trajectories rather than uniformly from a manifold. Indeed, the 
intrinsic dimensionality in such cases differs between midbranch points that 
mostly capture one-dimensional trajectory geometry, and branching points that 
capture multiple trajectories crossing each other.

This issue can be mitigated by using a locally adaptive bandwidth that varies on 
the basis of the local density of the data. A common method for choosing a locally 
adaptive bandwidth is to use the k-nearest-neighbor (k-NN) distance of each point 
as the bandwidth. A point x that is within a densely sampled region will have a 
small k-NN distance. Thus, local information in these regions is still preserved. By 
contrast, if x is on a sparsely sampled trajectory, the k-NN distance will be greater 
and will encode the trajectory structure. We denote the k-NN distance of x as εk(x) 
and the corresponding diffusion operator as Pk.

A weakness of using locally adaptive bandwidths alongside kernels with 
exponential tails (for example, the Gaussian kernel) is that the tails become heavier 
(that is, decay more slowly) as the bandwidth increases. Thus for a point x in a 
sparsely sampled region where the k-NN distance is large, ⋅P[ ]k x( , ) may be close 
to a fully-supported uniform distribution owing to the heavy tails, resulting in a 
high affinity with many points that are far away. This can be mitigated by using the 
following kernel
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that we call the α-decaying kernel. The exponent α controls the rate of decay of 
the tails in the kernel Kk,α. Increasing α increases the decay rate while decreasing α 
decreases the decay rate. As α = 2 for the Gaussian kernel, choosing α > 2 will result 
in lighter tails in the kernel Kk,α as compared to the Gaussian kernel. We denote 
the resulting diffusion operator as Pk,α. This is similar to common utilizations of 
Butterworth filters in signal-processing applications60. See Supplementary Fig. 2b 
for a visualization of the effect of different values of α on this kernel function.

Our use of a locally adaptive bandwidth and the kernel Kk,α requires the 
choice of two tuning parameters: k and α. k should be sufficiently small to 
preserve local information, that is, to ensure that α ⋅P[ ]k x, ( , ) is not a fully-supported 
uniform distribution. However, k should also be sufficiently large to ensure that 
the underlying graph represented by Pk,α is sufficiently connected, that is, the 
probability that we can walk from one point to another within the same trajectory 
in a finite number of steps is nonzero.

The parameter α should also be chosen with k. α should be sufficiently large so 
that the tails of the kernel Kk,α are not too heavy, especially in sparse regions of the 
data. However, if k is small when α is large, then the underlying graph represented 
by Pk,α may be too sparsely connected, making it difficult to learn long-range 
connections. Thus we recommend that α be fixed at a large number (for example, 
α ≥ 10) and then k can be sufficiently large to ensure that points are locally 
connected. In practice, we found that choosing k to be around 5 and α to be about 
10 works well for all the datasets presented in this work. However, the PHATE 
embedding is robust to the choice of these parameters as discussed later.

In addition to progression or trajectory structures, the recommendations 
provided in this section work well for visualizing data that naturally separate into 
distinct clusters. In particular, the α-decay kernel ensures that relationships are 
preserved between distinct clusters that are relatively close to each other.

Propagating affinities via diffusion. Here we discuss diffusion, that is, raising 
the diffusion operator to its t-th power as shown in Supplementary Table 1 (Fig. 
2d). To simplify the discussion we use the notation P for the diffusion operator, 
whether defined with a fixed-bandwidth Gaussian kernel or our adaptive kernel. 
This matrix is referred to as the diffusion operator, since it defines a Markovian 
diffusion process that essentially only allows single-step transitions within local 
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data neighborhoods whose sizes depend on the kernel parameters (ε or k and α). 
In particular, let X∈x  and let δx be a Dirac at x, that is, a row vector of length N 
with a one at the entry corresponding to x and zeros everywhere else. The t-step 
distribution of x is the row in εPt  corresponding to x

δΔ= = ⋅p P P[ ] (4)t t t
x x x( , )

These distributions capture multiscale (where t serves as the scale) local 
neighborhoods of data points, where locality is considered via random walks 
that propagate over the intrinsic manifold geometry of the data. This provides a 
global and robust intrinsic data distance that preserves the overall structure of the 
data. In addition to learning the global structure, powering the diffusion operator 
has the effect of low-pass filtering the data such that the main pathways in it 
are emphasized and small noise dimensions are diminished, thus achieving the 
denoising objective of our method as well.

Choosing the diffusion time scale t with von Neumann entropy. The diffusion 
time scale t is an important parameter that affects the embedding. The parameter 
t determines the number of steps taken in a random walk. A larger t corresponds 
to more steps as compared to a smaller t. Thus, t provides a tradeoff between 
encoding local and global information in the embedding. The diffusion process 
can also be viewed as a low-pass filter where local noise is smoothed out on the 
basis of more global structures. The parameter t determines the level of smoothing. 
If t is chosen to be too small, then the embedding may be too noisy. On the other 
hand, if t is chosen to be too large, then some of the signal may be smoothed away.

We formulate a new algorithm for choosing the timescale t. Our algorithm 
quantifies the information in the powered diffusion operator with various values 
of t. This is accomplished by computing the spectral or von Neumann entropy 
(VNE)61,62 of the powered diffusion operator. The amount of variability explained 
by each dimension is equal to its eigenvalue in the eigendecomposition of the 
related (non-Markov) affinity matrix that is conjugate to the Markov diffusion 
operator. The VNE is calculated by computing the Shannon entropy on the 
normalized eigenvalues of this matrix. Owing to noise in the data, this value is 
artificially high for low values of t, and rapidly decreases as one powers the matrix. 
Thus, we choose values that are around the ‘knee’ of this decrease.

More formally, to choose t, we first note that its impact on the diffusion 
geometry can be determined by considering the eigenvalues of the diffusion 
operator, as the corresponding eigenvectors are not impacted by the time scale. To 
facilitate spectral considerations and for computational ease, we use a symmetric 
conjugate

ν ν= ∕A x P y[ ] ( ) [ ] ( )x y x y( , ) ( , )

of the diffusion operator P with the row-sums ν. This symmetric matrix is often 
called the diffusion affinity matrix. The VNE of this diffusion affinity is used to 
quantify the amount of variability. It can be verified that the eigenvalues of At are 
the same as those of Pt, and furthermore these eigenvalues are given by the powers 
λ =

−{ }i
t

i
N

1
1 of the spectrum of P. Let η(t) be a probability distribution defined by 

normalizing these (non-negative) eigenvalues as ∑η λ λ= ∕
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VNE H(t) of At (and equivalently of Pt) is given by the entropy of η(t), that is,

∑ η η= −
=
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1

where we use the convention of =Δ0log(0) 0. The VNE H(t) is dominated by the 
relatively large eigenvalues, while eigenvalues that are relatively small contribute 
little. Therefore, it provides a measure of the number of the relatively significant 
eigenvalues.

The VNE generally decreases as t increases. As mentioned previously, the initial 
decrease is primarily due to a denoising of the data as less significant eigenvalues 
(likely corresponding to noise) decrease rapidly to zero. The more significant 
eigenvalues (likely corresponding to signal) decrease much more slowly. Thus the 
overall rate of decrease in H(t) is high initially as the data is denoised but then low 
for larger values of t as the signal is smoothed. As → ∞t , eventually all but the first 
eigenvalue decrease to zero and so →H t( ) 0.

To choose t, we plot H(t) as a function of t as in the first plot of Supplementary 
Fig. 2c. Choosing t from among the values where H(t) is decreasing rapidly 
generally results in noisy visualizations and embeddings (Supplementary Fig. 
2c). Very large values of t result in a visualization where some of the branches or 
trajectories are combined together and some of the signal is lost (fourth plot in 
Supplementary Fig. 2c). Good PHATE visualizations can be obtained by choosing 
t from among the values where the decrease in H(t) is relatively slow, that is, the set 
of values around the ‘knee’ in the plot of H(t) (Supplementary Fig. 2c and Fig. 1). 
This is the set of values for which much of the noise in the data has been smoothed 
away and most of the signal is still intact. The PHATE visualization is fairly robust 
to the choice of t in this range, as discussed later.

In the code, we include an automatic method for selecting t on the basis of 
a knee-point detection algorithm that finds the knee by fitting two lines to the 
VNE curve (https://www.mathworks.com/matlabcentral/fileexchange/35094-

knee-point). This algorithm calculates the error between the VNE plot and two 
lines fitted to the data. The first line has end points at the first VNE value and the 
suggested knee point. The second line has end points at the suggested knee point 
and the last VNE value. The suggested knee point with the minimum error is 
selected.

Potential distances. To resolve instabilities in diffusion distances and embed 
the global structure captured by the diffusion geometry in low (two or three) 
dimensions, we use a new diffusion-based informational distance, which we call 
potential distance (Fig. 2e). It is calculated by computing the distance between 
log-transformed transition probabilities from the powered diffusion operator. 
The key insight in formulating the potential distance is that an informational 
distance between probability distributions is more sensitive to global relationships 
(between far-away points) and more stable at boundaries of manifolds than 
straight pointwise comparisons of probabilities (that is, diffusion distances). This is 
because the diffusion distance is sensitive to differences between the main modes 
of the diffused probabilities and is largely insensitive to differences in the tails. By 
contrast, the potential distance, or more generally informational distances, use a 
submodular function (such as a log) to render distances sensitive to differences 
in both the main modes and the tails. This gives PHATE the ability to preserve 
both local and manifold-intrinsic global distances in a way that is optimized for 
visualization. The resulting metric space also quantifies differences between energy 
potentials that dominate ‘heat’ propagation along diffusion pathways (that is, on 
the basis of the heat-equation diffusion model) between data points, instead of 
simply considering transition probabilities along them.

The potential distance is inspired by information theory and stochastic 
dynamics, which are both fields where probability distributions are compared for 
different purposes. First, in information theory literature, information divergences 
are used to measure discrepancies between probability distributions in the 
information space rather than the probability space, as they are more sensitive 
to differences between the tails of the distributions as described above. Second, 
when analyzing dynamical systems of moving particles, it is not the pointwise 
difference between absolute particle counts that is used to compare states, but 
rather the ratio between these counts. Indeed, in the latter case the Boltzmann 
distribution law directly relates these ratios to differences in the energy of a state in 
the system. Therefore, similar to the information theory case, dynamical states are 
differentiated in energy terms, rather than probability terms. We employ the same 
reasoning in our case by defining our potential distance using localized diffusion 
energy potentials, rather than diffusion transition probabilities.

To go from the probability space to the energy (or information) space, we log 
transform the probabilities in the powered diffusion operator and consider an 
L2 distance between these localized energy potentials in the data as our intrinsic 
data distance, which forms an M-divergence between the diffusion probability 
distributions63,64. Mathematically, if = −U plog( )t t

x x
 for X∈x , then the t-step 

potential distance is defined as

V X= ∣∣ − ∣∣ ∈U Ux y x y( , ) , , (6)t t t
x y 2

To give a more intuitive view, consider two points x and y that are on different 
sides of a line of points W = {w1, w2,…,wn} (Fig. 2e), suppose that there is a small set 
of distant points Z = {z1, z2,…,zn} that are on the same side of W as y but opposite 
side as x such that they are twice as far from x as from y. The representation of 
each point x is as its t-step diffusion probability to all other points. So to compute 
the potential distance between x and y we compare these probabilities. It is 
then necessary to determine which is the right type of distance to measure the 
distinction between these two probability distributions. One solution has been 
the diffusion distance, which is simply the Euclidean distance between these 
probability distributions. However, in the example mentioned above the diffusion 
distance would be dominated by larger probabilities and the probabilities to the Z 
points would not affect the distance from x to y perhaps making them seem close. 
But instead, we take a divergence between the probabilities from x and y by first 
log-scale transforming the probabilities and then taking their Euclidean distance, 
which makes the distance sensitive to fold-change. Thus, if a probability of 0.01 
from x to a point zi is changed to 0.02 from y then this has the same effect as if the 
probabilities had been 0.1 and 0.2. Thus, PHATE is sensitive to small differences 
in probability distribution corresponding to differences in long-range global 
structure, which allows PHATE to preserve global manifold relationships using this 
potential distance.

We note that the potential distance is a particular case of a wider family of 
diffusion-based informational distances that view the diffusion geometry as a 
statistical manifold in information geometry. See Supplementary Note 1 for details 
on this family of distances.

Embedding the potential distances in low dimensions. A popular approach 
for embedding diffusion geometries is to use the eigendecomposition of the 
diffusion operator to build a diffusion map of the data. However, this approach 
tends to isolate progression trajectories into numerous diffusion coordinates 
(that is, eigenvectors of the diffusion operator; see Supplementary Fig. 1). In fact, 
this specific property was used as a heuristic for ordering cells along specific 
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developmental tracks14. Therefore, while diffusion maps preserve global structure 
and denoise the data, their higher intrinsic dimensionality is not amenable for 
visualization. Instead, we squeeze the variability into low dimensions using metric 
MDS, a distance embedding method (Fig. 2f).

There are multiple approaches to MDS. Classical MDS7 takes a distance matrix 
as input and embeds the data into a lower-dimensional space as follows. The 
squared potential distance matrix is double centered:

V= −B J J1
2

(7)t(2)

where V t(2) is the squared potential distance matrix (that is, each entry is squared) 
and = −J I 11

N
T1 , with 1 a vector of ones with length N. The classical MDS 

coordinates are then obtained by an eigendecomposition of the matrix B. This is 
equivalent to minimizing the following ‘strain’ function:

∑ ∑̂ … ̂ = − ̂ ̂ ∕x x x xStrain( , , ) (B , ) B (8)N
i j

ij i j
i j
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,
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,

2

over embedded m-dimensional coordinates R̂ ∈xi
m of data points in X . We apply 

clasical MDS to the potential distances of the data to obtain an initial configuration 
of the data in low dimension m.

While classical MDS is computationally efficient relative to other MDS 
approaches, it assumes that the input distances directly correspond to low-
dimensional Euclidean distances, which is overly restrictive in our setting. Metric 
MDS relaxes this assumption by only requiring the input distances to be a distance 
metric. Metric MDS then embeds the data into lower dimensions by minimizing 
the following ‘stress’ function:
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over embedded m-dimensional coordinates R̂ ∈xi
m of data points in X .

If the stress of the embedded points is zero, then the input data is faithfully 
represented in the MDS embedding. The stress may be nonzero owing to noise 
or if the embedded dimension m is too small to represent the data without 
distortion. Thus, by choosing the number of MDS dimensions to be m = 2 (or 
m = 3) for visualization purposes, we may trade off distortion in exchange for 
readily visualizable coordinates. However, some distortion of the distances and 
dissimilarities is tolerable in many of our applications as precise dissimilarities 
between points on two different trajectories are not important as long as the 
trajectories are visually distinguishable. By using metric MDS, we find an 
embedding of the data with the desired dimension for visualization and the 
minimum amount of distortion as measured by the stress. When analyzing 
the PHATE coordinates (for example, for clustering or branch detection), we 
use metric MDS with m chosen to explain most of the variance in the data as 
determined by the eigenvalues of the diffusion operator (as is done for VME). In 
this case, minimal distortion is introduced into the analysis.

A naive approach toward obtaining a truly low-dimensional embedding of 
diffusion geometries is to directly apply metric MDS, from the diffusion map space 
to a 2D space. However, as seen in Supplementary Figs. 3 and Supplementary 
Fig. 8, direct embedding of these distances produces distorted visualizations. 
Embedding the potential distances (defined in eq. 6) is more stable at boundary 
conditions near end points compared to diffusion maps, even in the case of simple 
curves that contain no branching points. Supplementary Figure 2a shows a half 
circle embedding with diffusion distances versus distances between log-scaled 
diffusion. We see that points are compressed towards the boundaries of the figure 
in the former. Additionally, this figure demonstrates that in the case of a full circle 
(that is, with no end points or boundary conditions), our potential embedding 
(PHATE) yields the same representation as diffusion maps.

PHATE achieves an embedding that satisfies all four properties delineated 
previously: PHATE preserves and emphasizes the global and local structure of the 
data by: (1) a localized affinity that is chained via diffusion to form global affinities 
through the intrinsic geometry of the data; (2) denoising of the data by low-pass 
filtering through diffusion; (3) providing a distance that accounts for local and 
global relationships in the data and has robust boundary conditions for purposes 
of visualization; and (4) capturing the data in low dimensions, using MDS, for 
visualization.

We have shown by demonstration in Supplementary Figs. 3 and 8 that all of 
the steps of PHATE, including the potential transform and MDS, are necessary, 
as diffusion maps, t-SNE on diffusion maps and MDS on diffusion maps fail to 
provide an adequate visualization in several benchmark test cases with known 
ground truth (even when using the same customized α-decaying kernel we 
developed for PHATE). We have also shown that PHATE is robust to the choice  
of parameters.

Robustness analysis of PHATE. Here we show that the PHATE embedding is 
robust to subsampling and the choice of parameters. We demonstrate this both 
qualitatively and quantitatively. For the quantitative demonstrations, we simulated 

scRNA-seq data using the Splatter package25 as described below. We first calculated 
the geodesic pairwise distances for the noiseless data. Then for each setting, 
we calculated the pairwise Euclidean distances in the 2D embedding. We then 
compared the geodesic distances with the embedded distances via the Spearman 
correlation coefficient to compute DEMaP. We used both the paths and groups 
options of the Splatter package.

Supplementary Table 3 shows that PHATE is robust to subsampling on the 
Splatter datasets. For the paths dataset, the average Spearman correlation is the 
same when 95% and 50% of the data points are retained. For the groups dataset, 
the correlation drops slightly when going from 95% retention to 50% retention. 
Additionally, the correlation coefficient is still quite high (and better than all other 
methods) when only 5% of the data points are retained. Thus, quantitatively, 
PHATE is robust to subsampling.

We also demonstrate this visually. We ran PHATE on the iPSC mass cytometry 
dataset18 with varying subsample sizes N. Supplementary Figure 4a shows the 
PHATE embedding for N = 1,000, 2,000, 5,000 and 10,000. Note that the primary 
branches or trajectories that are visible when N = 50,000 (Supplementary Fig. 7c) 
are still visible for all subsamples. Thus, PHATE is robust to the subsampling size. 
Similar results can be obtained on other datasets.

We also show that the PHATE embedding is robust to the choice of t, k, and 
α. Supplementary Figure 4b shows the PHATE embedding on the iPSC mass 
cytometry dataset18 with varying scale parameter t. This figure shows that the 
embeddings for 50 ≤ t ≤ 200 are nearly identical. Thus, PHATE is very visually 
robust to the scale parameter t. Similar results can be obtained on other datasets 
and with the k and α parameters.

The embedding is also quantitatively robust to the parameter choices. 
Supplementary Fig. 4c,d shows heat maps of the Spearman correlation coefficient 
between geodesic distances of the ground-truth data and the Euclidean distances 
of the PHATE visualization applied to the simulated Splatter datasets for different 
values of k, t and α. For α ≥ 10, the correlation coefficients are very similar for 
all values of k, t and α. This demonstrates that PHATE is robust to the choices of 
these parameters.

Scalability of PHATE. The native form of PHATE is limited in scalability owing 
to the computationally intensive steps of computing potential distances between 
all pairs of points, computing metric MDS and storing the diffused operator in 
memory the diffused operator. Thus, we describe here, and in Supplementary Table 
2, an alternative way to compute a PHATE embedding that is highly scalable and 
provides a good approximation of the native PHATE described previously. The 
scalable version of PHATE uses a slight difference in computing t-step diffusion 
probabilities between points. It requires that every other step that the diffusion 
takes goes through one of a small number of ‘landmarks’. Each landmark is selected 
to be a central point that is representative of a portion of the manifold, selected by 
spectrally clustering manifold dimensions.

First, we construct the α-decaying kernel on the entire dataset. This can be 
calculated efficiently and stored as a sparse matrix by using radius-based nearest-
neighbor searches and thresholding (that is, setting to zero) connections between 
points below a specified value (for example, 0.0001), as we regard them numerically 
insignificant for the constructed diffusion process. The resulting affinity matrix 
Kk,α will be sparse as long as α is sufficiently large (for example, α ≥ 10) to enforce 
sharp decay of the captured local affinities. The full diffusion operator P is 
constructed from Kk,α by normalizing by row-sums as described previously.

However, powering the sparse diffusion operator would result in a dense 
matrix, causing memory issues. To avoid this, we instead perform diffusion 
between points via a series of M landmarks where M < N. We select the landmarks 
by first applying PCA to the diffusion operator and then using k-means clustering 
on the principal components to partition the data into M clusters. This is a 
variation on spectral clustering. We then calculate the probability of transitioning 
in a single step from the ith point in X  to any point in the jth cluster for all pairs of 
points and clusters. Mathematically, we can write this as

∑ ξ=
ξ∈

i j iP P( , ) ( , ) (10)NM
Cj

where Cj is the set of points in the jth cluster. Thus, we can view each cluster as 
being represented by a landmark and the (i,j)-th entry in PNM gives the probability 
of transitioning from the ith point in X  to the jth landmark in a single step. 
Similarly, we construct the matrix PMN where the (j,i)-th entry contains the 
probability of transitioning from the jth landmark to the ith point in X . In this case, 
we cannot simply sum the transition probabilities P(ξ,i),ξ ∈ Cj, as we also have to 
consider the prior probability Q(j,ξ) of the ξ-th point (with ξ ∈ Cj) being the source 
of a transition from a cluster Cj. For this purpose we use a previously proposed 
prior65 and write

∑ ξ ξ=
ξ∈

j i j iP Q P( , ) ( , ) ( , ) (11)MN
Cj

with ∑ ∑ ∑ξ ξ ζ= ∕α ζ α∈
j i iQ K K( , ) ( , ) ( , )

i k C i k, ,
j

.
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We use the two constructed transition matrices to compute PMM = PMNPNM, 
which provides the probability of transitioning from landmark to landmark in a 
random walk by walking through the full point space. Diffusion is then performed 
by powering the matrix PMM. This can be written as

= … .P P P P P P P (12)MM
t

MN NM MN NM MN NM

From this expression, we see that powering the matrix PMM is equivalent to taking 
a random walk between landmarks by walking from landmarks to points and then 
back to landmarks t times.

We then embed the landmarks into the PHATE space by calculating the 
potential distances between landmarks and applying metric MDS to the potential 
distances. Denote the resulting embedding as Ylandmarks. We then perform an out 
of sample extension to all points from the landmarks by multiplying the point to 
landmark transition matrix PNM by Ylandmarks to get

=Y P Y (13)NMpoints landmarks

As M is chosen to be vastly less than N, the memory requirements and 
computational demands of powering the diffusion operator and embedding the 
potential distances are much lower.

The described steps are summarized in Supplementary Table 2. In 
Supplementary Fig. 6a–e we show that this constrained diffusion preserves 
distances between data points in the final PHATE embedding, with the scalable 
version giving near-identical results to the exact computation of PHATE. 
Furthermore, in Supplementary Fig. 6b we show that the embedding achieved by 
this approach is robust to the number of landmarks chosen.

We note that if the only computational bottleneck were in computing MDS, 
scalable versions of MDS could be used8,66,67. However, as storing the entries of 
the powered diffusion operator in memory is also an issue, we employ the use of 
landmarks earlier in the process. It has also been shown that ‘compressing’ the 
process of diffusion through landmarks in the fashion described here performs 
better than simply applying Nystrom extension (which includes landmark MDS66) 
to diffusion maps68.

The fast version of PHATE was used in Fig. 5 and Supplementary Figs. 2d, 
3, 6a–e, 8, 12 and 13. All other plots were generated using the exact version of 
PHATE.

To demonstrate the scalability of PHATE for data exploration on large datasets, 
we applied PHATE to the 1.3 million mouse brain cell dataset from 10x (https://
community.10xgenomics.com/t5/10x-Blog/Our-1-3-million-single-cell-dataset-
is-ready-to-download/ba-p/276). Supplementary Fig. 6c shows a comparison 
of PHATE to t-SNE, colored by 10 of the 60 clusters provided by 10x. We see 
that PHATE retains cluster coherence while t-SNE shatters some of the cluster 
structure.

Branch identification. Here we describe the methods we developed for identifying 
branches in a PHATE visualization and selecting representative branch points and 
end points.

We use the estimated local intrinsic dimensionality to identify branch points. 
We can regard intrinsic dimensionality in terms of degrees of freedom in the 
progression modeled by PHATE. If there is only one fate possible for a cell (that is, 
a cell lies on a branch as in Fig. 3a) then there are only two directions of transition 
between data points—forward or backward—and the local intrinsic dimension is 
low. If on the other hand, there are multiple fates possible, then there are at least 
three directions of transition possible—a single direction backwards and at least 
two forward. This cannot be captured by a one-dimensional curve and will require 
a higher-dimensional structure such as a plane, as shown in Fig. 3a. Thus, we can 
use the concept of local intrinsic dimensionality for identifying branch points.

We used the local intrinsic dimension estimation method derived in refs. 69,70 
to provide suggested branch points. This method uses the relationship between the 
radius and volume of a d-dimensional ball. The volume increases exponentially 
with the dimensionality of the data. So as the radius increases by δ, the volume 
increases by δd where d is the dimensionality of the data. Thus the intrinsic 
dimension can be estimated via the growth rate of a k-NN ball with radius equal 
to the k-NN distance of a point. The procedure is as follows. Let = …Z z z{ , , }n n1  
be a set of independent and identically distributed random vectors with values 
in a compact subset of Rd. Let Nk j,  be the k nearest neighbors of z j; that is, 
N ϵ= ∈ ∣∣ − ∣∣ ≤z Z z z z z{ \ { } : ( )}k j n j j k j, . The k-NN graph is formed by assigning edges 
between a point in Zn and its k nearest neighbors. The power-weighted total edge 
length of the k-NN graph is related to the intrinsic dimension of the data and is 
defined as

N
∑ ∑= ∣∣ − ∣∣γ

γ
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where γ > 0 is a power weighting constant. Let m be the global intrinsic dimension 
of all the data points in Zn. It can be shown that, for large n,

ϵ= +γ
βL n cZ( ) (15)k n

m
n,

( )

where β γ= − ∕m m m( ) ( ) , ϵn is an error term that decreases to 0 as → ∞n  and c is a 
constant with respect to β(m) (ref. 69). A global intrinsic dimension estimator m̂ can 
be defined on the basis of this relationship using nonlinear least squares regression 
over different values of n (refs. 69,70).

A local estimator of intrinsic dimension ͠ im( ) at a point zi can be defined by 
running the above procedure in a smaller neighborhood about zi. This approach 
is demonstrated in Fig. 3a, where a k-NN graph is grown locally at each point in 
the data. However, this estimator can have high variance within a neighborhood. 
To reduce this variance, majority voting within a neighborhood of zi can be 
performed:

∼

N

∑̂ = = ℓℓ
∈

�i m jm( ) argmax ( ( ) ) (16)
zj k i,

where ⋅�( ) is the indicator function70.
We note that other local intrinsic dimension estimation methods could be used 

such as the maximum likelihood estimator in ref. 71.
We also identify end points in the PHATE embedding. These points can 

correspond to the beginning or end-states of differentiation processes. For 
example, Supplementary Fig. 7a shows the PHATE visualization of the iPSC 
CyTOF dataset18 with highlighted end points, or end-states, of the reprogrammed 
and refractory branches. While many major end points can be identified by 
inspecting the PHATE visualization, we provide a method for identifying other 
end points or end-states that may be present in the higher-dimensional PHATE 
embedding. We identify these states using the centrality and distinctness of data 
points as described below.

First, we compute the centrality of a data point by quantifying the impact of 
its removal on the connectivity of the graph representation of the data (as defined 
using the local affinity matrix Kk,α). Removing a point that is on a one-dimensional 
progression pathway, either branching point or not, breaks the graph into multiple 
parts and reduces the overall connectivity. However, removing an end point does 
not result in any breaks in the graph. Therefore we expect end points to have low 
centrality, as estimated using the eigenvector centrality measure of Kk,α.

Second, we quantify the distinctness of a cellular state relative to the general 
data. We expect the beginning or end-states of differentiation processes to have the 
most distinctive cellular profiles. As shown in ref. 16, we quantify this distinctness 
by considering the minima and the maxima of diffusion eigenvectors (Fig. 3a). 
Thus we identify end points in the embedding as those that are most distinct and 
least central.

After identifying branch points and end points, the remaining points can be 
assigned to branches between two branch points or between a branch point and 
end point. Owing to the smoothly varying nature of centrality and local intrinsic 
dimension, the previously described procedures identify regions of points as 
branch points or end points rather than individual points. However, it can be 
useful to reduce these regions to representative points for analysis such as branch 
detection and cell ordering. To do this, we reduce these regions to representative 
points using a ‘shake and bake’ procedure similar to that proposed in ref. 72. 
This approach groups collections of branch points or end points together into 
representative points on the basis of their proximity.

Let V = …v v{ , , }n n1  be the set of branch points and end points in the high-
dimensional PHATE coordinates that we wish to reduce. We create a Voronoi 
partitioning of these points as follows. We first permute the order of Vn, which we 
denote as V′= …′ ′v v{ , , }n1 . We then take the first point ′v1 and find all the points in 
V′ that are within a distance of h, where h is a scale parameter provided by the user. 
These points (including ′v1) are assigned to the first component of the partition 
and removed from the set V′. This process is then repeated until all points in Vn 
are assigned to the partition. To ensure that each point is assigned to the nearest 
component of the partition (as measured by proximity to the centroid), we next 
calculate the distance of each point to all centroids of the partition, and reassign 
the point to the component with the nearest centroid. This reassignment process 
is repeated until a stable partition is achieved. This completes the process of 
constructing the Voronoi partition.

The Voronoi partition constructed from this process may be sensitive to the 
ordering of the points in V′. To reduce this sensitivity, we repeat this process 
multiple times (for example, 40–100) to create multiple Voronoi partitions. We 
then construct a distance between points by estimating the probability that two 
points are not in the same component from this partitioning process. This provides 
a notion of distance that is robust to noise, random permutations and the scale 
parameter h. We then partition the data again using the above procedure except we 
use these probability-based distances. The representative points are then selected 
from the resulting centroids of this final partition.

A representative point is labeled an end point if the corresponding collection 
of points contains one or more end points as identified using centrality and 
distinctness. Otherwise, the representative point is labeled a branch point.

After representative points have been selected, the remaining points can be 
assigned to corresponding branches. We use an approach that is based on the 
branch-point-detection method in ref. 14, which compares the correlation and 
anticorrelation of neighborhood distances. However, we use higher-dimensional 
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PHATE coordinates instead of the diffusion maps coordinates. Figure 3a gives a 
visual demonstration of this approach. Here we consider two reference cells X and 
Y. We wish to determine if cells Q1 and Q2 belong to the branch between X and 
Y or not. Consider Q1 first, which does belong to this branch. If we move from 
Q1 towards X, we also move farther away from Y. Thus the distances to X and Y 
of a neighborhood of points around Q1 (which will be located on the branch) are 
negatively correlated with each other. Now consider Q2 which does not belong to the 
branch between X and Y. In this case, if we move from Q2 towards Y, we also move 
closer to X. Thus the distances to X and Y of a neighborhood of points around Q2 are 
positively correlated with each other. In practice, these distance-based correlations 
are computed for each possible branch and the point is assigned to the branch with 
the largest anticorrelation (that is, the most negative correlation coefficient).

EMD score analysis. The EMD is measure of dissimilarity between two probability 
distributions that is particularly popular in computer vision73. The EMD was 
chosen to perform differential expression analysis in the EB scRNA-seq data owing 
to its stability in estimation as compared to other divergence measures. Intuitively, 
if each distribution is viewed as a pile of dirt, the EMD can be thought of as the 
minimum cost of converting one pile of dirt into the other. If the distributions are 
identical, then the cost is zero. When comparing univariate distributions (as we 
do, that is, we only consider a single gene at a time), the EMD simplifies to the L1 
distance between the cumulative distribution functions56. That is, if P and Q are the 
cumulative distributions of densities p and q, respectively, then the EMD between p 
and q is ∫ ∣ − ∣P x Q x dx( ) ( ) . While the EMD is non-negative, we assign a sign to the 
EMD score on the basis of the difference between the medians of the distributions.

Biological methods. The processes for generating the EB data and for 
preprocessing the biological data are described here.

Generation of human embryoid body data. These experiments were approved 
by the Yale Embryonic Stem Cell Research Oversight (ESCRO) committee. 
Low-passage H1 hESCs were maintained on Matrigel-coated dishes in DMEM/
F12-N2B27 medium supplemented with FGF2. For EB formation, cells were 
treated with Dispase, dissociated into small clumps and plated in non-adherent 
plates in medium supplemented with 20% FBS, which was prescreened for EB 
differentiation. Samples were collected during 3-d intervals during a 27-d-long 
differentiation timecourse. An undifferentiated hESC sample was also included 
(Supplementary Fig. 14a). Induction of key germ-layer markers in these EB 
cultures was validated by quantitative PCR (data not shown). For single-cell 
analyses, EB cultures were dissociated, FACS sorted to remove doublets and dead 
cells and processed on a 10x genomics instrument to generate cDNA libraries, 
which were then sequenced. Small-scale sequencing determined that we had 
successfully collected data on 31,161 cells distributed throughout the timecourse. 
After preprocessing the data as described below, we are left with 16,825 cell 
measurements for data analysis. See also the Life Sciences Reporting Summary for 
further details.

Data preprocessing. Here we discuss methods we used to preprocess the various 
datasets.

Data subsampling. The full PHATE implementation scales well for sample sizes 
up to approximately N = 50,000. For N much larger than 50,000, computational 
complexity can become an issue owing to the multiple matrix operations required. 
All of the scRNA-seq datasets considered in this paper have N < 50,000. Thus, 
we used the full data and did not subsample these datasets. However, the mass 
cytometry datasets have much larger sample sizes. To aid in branch analysis, we 
randomly subsampled these datasets for analysis using uniform subsampling. For 
the comparison figures (Fig. 5 and Supplementary Figs. 3 and 8), scalable PHATE 
was used and subsampling was not performed except as indicated in the figures. 
The PHATE embedding is robust to the number of samples chosen, which we 
demonstrated in Supplementary Fig. 4.

Mass cytometry data preprocessing. We processed the mass cytometry datasets as 
previously described74.

Single-cell RNA sequencing data preprocessing. This data was processed from 
raw reads to molecule counts using the Cell Ranger pipeline75. Additionally, to 
minimize the effects of experimental artifacts on our analysis, we preprocessed the 
scRNA-seq data. We first filtered out dead cells by removing cells that had high 
expression levels in mitochondrial DNA. In the case of the EB data, which had a 
wide variation in library size, we then removed cells that were either below the 20th 
percentile or above the 80th percentile in library size. scRNA-seq data have large 
cell-to-cell variations in the number of observed molecules in each cell or library 
size. Some cells are highly sampled with many transcripts, while other cells are 
sampled with fewer. This variation is often caused by technical variations owing 
to enzymatic steps including lysis efficiency, mRNA capture efficiency and the 
efficiency of multiple amplification rounds76. Removing cells with extreme library 
size values helped to correct for these technical variations. We then dropped genes 
that were only expressed in a few cells and then perform library size normalization. 

Normalization was accomplished by dividing the expression level of each gene in a 
cell by the library size of the corresponding cell.

After normalizing by the library size, we took the square-root transform of 
the data and then performed PCA to improve the robustness and reliability of the 
constructed affinity matrix Kk,α. We chose the number of principal components 
to retain approximately 70% of the variance in the data, which resulted in 20–50 
principal components.

Gut microbiome data preprocessing. We used the cleaned L6 American Gut 
data and removed samples that were near duplicates of other samples. We then 
preprocessed the data using a similar approach for scRNA-seq data. We first 
performed ‘library size’ normalization to account for technical variations in 
different samples. We then log transformed the data and used PCA to reduce the 
data to 30 dimensions.

Applying PHATE to this data revealed several outlier samples that were very far 
from the rest of the data. We removed these samples and then reapplied PHATE to 
the log-transformed data to obtain the results that are shown in Fig. 1d.

Chromatin immunoprecipitation–sequencing processing for Hi-C visualization. 
We used narrow peak bed files and took the average peak intensity for each bin 
at a resolution of 10 kilobases. For visualization, we smoothed the average peak 
intensity values on the basis of location using a 25-bin moving average.

DEMaP. To quantitatively compare each dimensionality-reduction tool, we 
wished to calculate the degree to which each method preserves the underlying 
structure of the reference dataset and removes noise. As scRNA-seq and other 
biological types of data are highly noisy, visual renderings of the data that can offer 
denoised embeddings that reveal the underlying structure of the data are desirable. 
Therefore, the goal of our accuracy metric was to quantify the correspondence 
between distances in the low-dimensional embedding and manifold distances in 
the ground-truth reference.

To define a quantitative notion of manifold distance we use geodesic distances. 
Geodesic distances are shortest-path distances on a nearest-neighbor graph of 
the data weighted by the Euclidean distances between connected points4. In cases 
where points are sampled noiselessly from a manifold, such as in our ground-truth 
reference, geodesic distances converge exactly to distances along the manifold 
of the data4,77. Thus we reason that if geodesic distances between points on the 
noiseless manifold are preserved by an embedding computed on the noisy data 
then the data are sufficiently denoised and the manifold structure is also preserved.

We take this approach to formulate our ground-truth manifold distance as 
a quantification of the degree to which each dimensionality-reduction method 
preserves the pairwise geodesic distances of the noiseless data after low-dimensional 
embedding of the corresponding noisy data. As the low-dimensional embedding 
is often a result of a nonlinear dimensionality reduction, curves and major paths 
in the data are ‘straightened’ such that Euclidean distances in the embedding space 
correspond to manifold distance in the high-dimensional space7. Thus we quantify 
the preservation of manifold distances as the correlation between geodesic distance 
in the noiseless reference dataset and Euclidean distances in the embedding space as 
a measure of structure preservation which we call DEMaP (Fig. 4a).

Construction of the artificial tree test case. The artificial tree data shown in Fig. 
1b was constructed as follows. The first branch consists of 100 linearly spaced 
points that progress in the first four dimensions. All other dimensions were set to 
zero. The 100 points in the second branch are constant in the first four dimensions 
with a constant value equal to the end point of the first branch. The next four 
dimensions then progress linearly in this branch while all other dimensions were 
set to zero. The third branch was constructed similarly except the progression 
occurs in dimensions 9–12 instead of dimensions 5–8. All remaining branches 
were constructed similarly with some variation in the length of the branches. 
We then added 40 points at each end point and branch point and added zero 
mean Gaussian noise with a s.d. of 7. This construction models a system where 
progression along a branch corresponds to an increase in gene expression in 
several genes. Before adding noise, we also constructed a small gap between the 
first branch point and the orange branch that splits into a blue and purple branch 
(see the top set of branches in the left part of Fig. 1b). This simulates gaps that 
are often present in measured biological data. We also added additional noise 
dimensions, bringing the total dimensionality of the data to 60.

Splatter simulation details. Splatter is an scRNA-seq simulation package that 
uses a parametric model to generate data with various structures, such as branches 
or clusters25. We use Splatter to simulate multiple ground-truth datasets for 
multiple experiments. To select parameters for the simulation, we fit the Splatter 
simulation to the EB data, and then modified the resulting dataset from both the 
Splatter ‘paths’ and the Splatter ‘groups’ simulations as described in “Comparison 
of PHATE to other methods.” Note that we do not make use of Splatter’s built-in 
dropout function, as it uses a zero-inflated model and multiple studies have shown 
that an undersampling (binomial) model is more appropriate78–82. Each simulation 
is performed with 3,000 simulated cells. The mean correlation coefficient and s.d. 
were calculated from 20 trials.
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To generate a diverse set of ground-truth references, we simulated 50 
datasets containing clusters and 50 datasets containing branches. In each of these 
simulated datasets, the number and size of the clusters of branches, as well as the 
global position of the clusters or branches with respect to each other, is random. 
Furthermore, the local relationships between individual cells on these structures is 
random. Finally, the changes in gene expression within clusters or along branches 
is random. The output of this simulation is the ground-truth reference.

Next, we added biological and technical noise to the reference data. First, to 
simulate stochastic gene expression we used Splatter’s biological coefficient of 
variation (BCV) parameter, which controls the level of gene expression in each 
cell following an inverse γ-distribution. Second, to simulate the inefficient capture 
of mRNA in single cells, we undersampled from the true counts using the default 
BCV. Third, to demonstrate robustness to varying of total genes measured, we 
randomly removed genes from the data matrix. Finally, to demonstrate robustness 
to the number of cells captured, we randomly removed cells from each dataset. We 
varied each of these parameters, including by default some degree of biological 
variation and mRNA undersampling to each simulation.

The default parameters used in the simulation were the following: 
‘batchCells=3000’; ‘nGenes=17580’; ‘mean.shape=6.6’; ‘mean.rate=0.45’; ‘lib.
loc=9.1’; ‘lib.scale=0.33’; ‘out.prob=0.016’; ‘out.facLoc=5.4’; ‘out.facScale=0.90’; 
‘bcv.common=0.18’; ‘bcv.df=21.6’; and ‘de.prob=0.2’.

We also set ‘dropout.type=“none”’, with a post-hoc binomial dropout 
of 50%. For the groups simulation we drew the number of groups n from a 
Poisson distribution with rate λ = 10, and then drew the ‘group.prob’ parameter 
from a Dirichlet distribution with n categories and a uniform concentration 
α α= ⋯ = = 1n1 . For the paths simulation, we set ‘group.prob’ as above, and 
additionally set the ith entry in the parameter ‘path.from’ as a random integer 
between 0 and i − 1, drew the parameter ‘path.nonlinearProb’ from a uniform 
distribution on the interval (0,1), and drew the parameter ‘path.skew’ from 
a β-distribution with shape α = 10, β = 10. Note that here the library size was 
doubled from the fit value, since the EB data itself suffers from dropout. To reduce 
the number of genes for the n_genes simulation, we randomly removed genes 
post-hoc to avoid changing the state of the random number generator in building 
the simulation.

For the ground-truth simulations, we set bcv.common to 0, did not perform 
binomial dropout, and did not remove genes or cells. For the BCV simulation, we 
performed 50% post-hoc binomial dropout, did not remove genes or cells and set 
bcv.common to 0, 0.25 and 0.5. For the dropout simulation, we set bcv.common 
to 0.18, did not remove genes or cells and performed 0%, 50% and 95% post-hoc 
binomial dropout. For the subsample simulation, we set bcv.common to 0.18, 
performed 50% post-hoc binomial dropout, did not remove genes and subsampled 
rows of the matrix to retain 95%, 50% and 5% of the total cells. For the n_genes 
simulation, we set bcv.common to 0.18, performed 50% post-hoc binomial 
dropout, did not remove cells and subsampled columns of the matrix to retain 
17,000, 10,000, and 2,000 genes.

PHATE experimental details. For all of the quantitative comparisons, we 
have used the default parameter settings for the PHATE plots. For the majority 
of the qualitative comparisons in Fig. 5 and Supplementary 3 and 8, we also 
used the default parameter settings for all methods. Exceptions to this are the 
artificial tree (Supplementary Fig. 3a), the intersecting circles (Supplementary 
Fig. 3d) and the MNIST dataset (Supplementary Fig. 3l). In these cases, 
the PHATE parameters have been tuned to give a clearer separation of the 
branches. However, in general, the default PHATE settings give good results 
on most datasets, especially those that are complex, high-dimensional and 
noisy as demonstrated empirically in “Robustness analysis of PHATE.” The 
default settings are also used in Supplementary Figs. 2d, 6a–e, 12 and 13. For all 
other PHATE plots, the parameters were tuned slightly to better highlight the 
structure of the data.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The embryoid body scRNA-seq and bulk RNA-seq datasets generated and analyzed 
during the current study are available from the Mendeley Data repository at https://
doi.org/10.17632/v6n743h5ng.1. Supplementary Figure 14a contains images of the 
raw single cells while Supplementary Fig. 14f contains scatter plots showing the 
gating procedure for fluorescence activated cell sorting populations for the bulk 
RNA-seq data.

Code availability
Python, R and Matlab implementations of PHATE are available on GitHub (https://
github.com/KrishnaswamyLab/PHATE) for academic use.
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