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Abstract—Multiple patterning lithography has been widely
adopted in advanced technology nodes of VLSI manufacturing.
As a key step in the design flow, multiple patterning layout
decomposition (MPLD) is critical to design closure. Due to
the NP-hardness of the general decomposition problem, vari-
ous efficient algorithms have been proposed with high-quality
solutions. However, with increasingly complicated design flow
and peripheral processing steps, developing a high-quality layout
decomposer becomes more and more difficult, slowing down
further advancement in this field. This paper presents OpenMPL
[1], an open-source layout decomposition framework, with well-
separated peripheral processing and core solving steps. Besides,
previous algorithms or techniques are inspected and several
issues are discovered. We then propose corresponding new
algorithms to resolve these issues. The experiments demonstrate
the effectiveness of our proposed algorithms and the efficiency
of OpenMPL.

I. INTRODUCTION

MULTIPLE patterning layout decomposition (MPLD)
has been adopted to enhance the lithography reso-

lution. The key idea of MPLD is to assign features that
are close to each other to different masks, such that these
features are far away enough to be printed with existing
lithography techniques. MPLD can be divided into double
patterning layout decomposition (DPLD), triple patterning
layout decomposition (TPLD) and quadruple patterning layout
decomposition (QPLD), according to the number of masks.
This problem is difficult since it is a variation of the graph
coloring problem, which is NP-hard for k ≥ 3, where k is
the number of colors (masks).

Fig. 1 is an example of TPLD, where different colors
represent different masks. Unlike the classical graph coloring
problem, the MPLD problem has several unique characteris-
tics. 1) Stitch: a polygon feature is allowed to be split into
multiple overlapping segments to resolve coloring conflicts,
as shown by the dashed edge in Fig. 1(c). 2) Special patterns:
there are different kinds of special features in a circuit layout,
e.g., alternative power and ground lines, which may help to
simplify the graph. 3) Complex rules: besides the widely
adopted spacing constraint for the same color, there are also
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Fig. 1 An example of TPLD with stitches. (a) The input
features. (b) The constructed layout graph without stitch
candidate generation, which is a 4-clique and therefore not
3-colorable; (c) The constructed layout graph with stitch
candidate generation. Two stitch candidates are introduced and
the original 4-clique is dismissed; (d) Coloring on the layout
graph with stitch candidate generation. The final decomposed
layout with three masks (each color corresponds to one mask).
The stitch candidates are highlighted in blue.

other rules. The different color spacing constraints [2] are
related to the ordering of masks. That is, these constraints pre-
determine the colors of some features before decomposition.
All above characteristics impose different challenges to the
MPLD problem, thus specialized algorithms are in demand
to solve the MPLD problem effectively and efficiently.

To achieve high efficiency and to maintain high solution
quality, a variety of decomposition algorithms have been pro-
posed. These algorithms can be roughly categorized into three
types [3], [4]: mathematical programming and relaxation,
graph-theoretical approaches, and search-based approaches.
Mathematical programming solves the MPLD problem by
formulating it into a standard optimization model, such as
integer linear programming (ILP) for DPLD [5]–[7] and
TPLD [8]–[10]. Due to the NP-hardness of TPLD and QPLD,
a set of relaxation techniques such as semidefinite program-
ming (SDP) [8], linear programming (LP) [11], and discrete
relaxation method [12] are proposed based on ILP. Another
category is to directly perform color assignment based on
a set of graph-theoretical algorithms, e.g., the maximal in-
dependent set (MIS) [13], the shortest-path [14], [15], and
fixed-parameter tractable (FPT) algorithms [16]. Search-based
algorithms follow a divide-and-conquer principle with each
sub-graph containing a small number of nodes, e.g., less than
20. Then a search procedure is applied to find the optimal
solutions for small sub-graphs [8], [13], [17]–[20]. Besides
the researches on the single layout decomposition stage, recent
work [21], [22] pioneers a new direction that integrates layout



decomposition and mask optimization seamlessly, achieving
compelling results from a global view of the solution space.

No matter how efficient the decomposition algorithm is, the
NP-hardness of TPLD and QPLD still makes the problem
suffer from the runtime issue, especially when the graph
size is large. Therefore, many graph simplification techniques
have been developed to reduce problem size. The repre-
sentative techniques include independent component compu-
tation (ICC) [8], iterative vertex removal (IVR) [8], [17],
biconnected component extraction (BCE) [6], [7] and sub-K4
structure merging for TPLD [11].

To reduce the repeated effort in the reimplementation of the
whole decomposition framework and lower the bar of research
on MPLD, we present OpenMPL as an open platform for
developing MPLD algorithms. OpenMPL contains efficient
implementations of widely adopted graph simplification tech-
niques and state-of-the-art layout decomposition algorithms.
We carefully design the software architectures and APIs to
decouple the innovations on the core optimization steps. For
example, one can focus on developing novel graph simplifica-
tion or decomposition techniques without worrying about the
peripheral processing issues as the platform provides clean
and well-defined APIs for the kernel optimization engines.

Moreover, considering that the framework is well de-
coupled, which makes each step separated clearly, we can
inspect individual algorithm or technique easily. Through the
inspections, a set of issues are discovered and corresponding
solutions to these issues are proposed in OpenMPL. Specif-
ically, there are three possible issues which can be further
improved: (1) There exist some redundant stitches which
can be removed without decomposition quality loss; (2) The
original problem formulation and corresponding ILP method
cannot quantify the cost accurately, which makes the previous
ILP-based algorithm sub-optimal; (3) The original exact cover
(EC)-based algorithm fails to obtain the optimal solution in
some cases. All these issues are well described and solved in
this paper. Our contributions are highlighted as follows:
• We present OpenMPL [1], an open-source layout decom-

position framework, with efficient implementations of
various state-of-the-art simplification and decomposition
algorithms.

• We prove the stitch candidate redundancy in the state-
of-the-art stitch generation algorithm and propose a cor-
responding solution.

• We find the sub-optimality in the widely-adopted ILP for-
mulation and propose an optimized ILP-based algorithm
with improved performance.

• We improve the exact cover (EC)-based algorithm by
some techniques which were not revealed and studied in
the previous work.

• We conduct experiments on widely-recognized bench-
marks and new large-scale designs derived from the latest
ISPD’19 benchmark suites. The results demonstrate the
effectiveness of our proposed algorithms and techniques.

The rest of this paper is organized as follows. Section II
gives the problem formulation and discusses the design prin-
ciples, the workflow, and some other properties of OpenMPL.
Section III discusses the redundancy of the stitch candidate

and gives the corresponding stitch redundancy removal algo-
rithm. Section IV provides the non-optimal cases generated by
the previous ILP-based algorithm and the updated optimized
ILP-based algorithm is proposed. Section V introduces the
drawbacks of the previous EC-based algorithm in some cases
and proposes the optimized EC-based algorithm. Section VI
lists comprehensive experimental results, followed by conclu-
sion and future work in Section VII.

II. THE OpenMPL FRAMEWORK

In this section, we first formulate the MPLD problem,
which is the target of OpenMPL. Then, we introduce
OpenMPL by covering the design principles, workflows, and
functionalities. Finally, some additional features of OpenMPL
are discussed.

A. Problem Formulation

The general MPLD problem can be formulated as follows:

Problem 1 (MPLD). Given 1) a routed layout which is a
set of polygonal features; 2) the number of masks k; 3)
the minimal conflict space d; 4) other constraints like pre-
coloring constraints, the goal is to assign one or more masks
(if the stitch is enabled) to each feature so that the weighted
sum of conflict cost and stitch cost is minimized.

B. Design Principles

OpenMPL is designed for end-users, developers, and re-
searchers as a general platform for MPLD algorithms. There-
fore, we emphasize usability, efficiency, and extensibility dur-
ing development. The core design principles are highlighted
as follows. (1) Decoupled design stages. The implementa-
tion clearly separates different optimization stages, as shown
in Fig. 2. Therefore, the interdependence between them is
minimized. In this way, developers can focus on verifying
individual stages without worrying about cross-stage impacts.
(2) Graph representations throughout the core stages.
After layout graph construction, the graph simplification,
decomposition solver, and the simplified graph recovery stages
use pure graphs as input/output, without involving mask
data. This design leads to well-defined and highly separable
core algorithms, making the framework highly extensible.
(3) Efficiency and generality for different mask data. As
a mask layer can be a contact layer or a metal layer, the
processing efficiency varies significantly for different types
of layers. We design a general mask database with separate
processing routines for contact layers and metal polygon
layers for efficiency enabled by C++ polymorphism since
contact layers can be processed in a much simpler way.

C. Workflow and Functionalities

The workflow of OpenMPL is illustrated in Fig. 2. Firstly,
one chip layout information (in GDS format) file is loaded and
transformed into a layout graph (LG), which is represented
by a vector of rectangle pointers, where the rectangles are
defined in Boost. Secondly, LG is simplified by some optional
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Fig. 2 The workflow of OpenMPL.

graph simplification techniques, where some of them are
implemented in a third-party library Limbo [23]. Then, if
stitch is enabled, the stitch insertion process [8] is executed
to generate a decomposed graph (DG) with stitches. DG is
further simplified by several simplification techniques. After
the simplification, a coloring solver is called for each compo-
nent in DG to solve the component coloring problem. Finally,
our framework recovers nodes removed in the simplification
step and assigns legal color for each removed node. In the
following sub-sections, we are going to introduce all of the
functionalities in two crucial procedures of OpenMPL: graph
simplification and decomposition.

Graph simplification techniques can be used to reduce the
graph size and therefore reduce the computational complexity.
Through layout graph simplification, we only need to deal
with the smaller graph without affecting the final result.
All of the simplification techniques mentioned in Section I
are supported in our framework, including independent com-
ponent computation (ICC), iterative vertex removal (IVR),
biconnected component extraction (BCE), and sub-K4 struc-
ture merging for TPLD (Merge sub-K4). ICC is proposed
based on the fact that there are many isolated clusters in a
real layout, which enables ICC to break down the layout
graph into several independent components. IVR temporarily
removes the nodes whose degree is less than the number
of colors in an iterative manner. BCE simplifies the graph
by duplicating the bridge vertices and then removing the
bridge edges. Merge sub-K4 detects and merges specific
structures whose number of edges is exactly one less than
four-clique structures and thus is only applicable for TPLD.
Except Merge sub-K4, other implemented simplification
techniques support any number of masks. Besides these
simplification methods, we develop a simplification method
which focuses on the removal of redundant stitches. The
details are shown in Section III. Different simplification
techniques require different recovery methods. However, those
nodes which are shared among different components may be
assigned different colors after recovery. To tackle this, color
rotation [6] is implemented in our framework. Specifically,
color rotation is to rotate the color assignments of the sub-

graphs to avoid unnecessary conflict when coloring the whole
layout graph from the sub-graphs.

Graph color assignment is the most crucial step in the
flow, which impacts the final coloring results directly. In
the graph color assignment, a simplified graph is provided
and each vertex in the graph should be assigned one color
by the specified algorithm. OpenMPL has supported all of
the commonly-used algorithms in the layout decomposition
and some updated algorithms are also implemented. The
algorithms are briefly introduced in the following context:
• Original Integer Linear Programming: The details are

covered in Section IV-A. We use Gurobi [24], Lemon
[25], and CBC [26] as the ILP solvers.

• Optimized Integer Linear Programming: The details
are covered in Section IV-B.

• Semidefinite Programming: The discrete integer pro-
gramming solving process of Equation (9) is NP-hard,
thus it may suffer from run-time overhead for practical
designs. As shown in [8], [27], [28], the color assign-
ment can be formulated as a vector programming and
then relaxed and solved by semidefinite programming in
polynomial time. Given the solutions of SDP, a mapping
process is used to map the solutions to coloring results.
CSDP [29] is used as the SDP solver.

• Backtracking: Backtracking [8] is a DFS fashion al-
gorithm used to find solutions in the whole solution
space. Especially, we use a simple but effective heuristic
technique to speed up the backtracking process. We set
the upper bound of the cost as 0 at the beginning to cut
branches more frequently and thus speed up the process.
If no feasible solution is found under such an upper
bound constraint, we relax the constraint by adding the
bound to 1 and repeat the procedure until finding the
optimal solution.

• Original Exact cover-based algorithm: The details are
covered in Section V-A. We implement the dancing links
data structure and EC solver, instead of calling the third-
party solver like ILP and SDP. Therefore, the runtime
of the EC-based algorithm can be optimized further
compared to other algorithms.

• Flexible Exact cover-based algorithm: The details are
covered in Section V-B.

OpenMPL also supports decomposition algorithms like max-
imal independent set (MIS) [13], linear programming (LP)
[11], etc., which cannot decompose the graph containing stitch
edges while working well on stitch-free graphs. Due to the
page limit, we leave the details on the tool release page [1].

D. Additional Features

Some additional features are supported for better usability,
efficiency and extensibility. 1) OpenMPL supports multi-
threading operations by OpenMP [30] and users can specify
the number of threads. Graph components are solved in par-
allel and layout decomposition algorithms also support multi-
threading computations; 2) We can identify all the possible
positions of stitches through pattern projections [8] in stitch
insertion, which is one of the most critical steps to parse a



layout. One example of stitch is shown in Fig. 1. There are
lots of candidate positions to insert a stitch, and only some
are chosen as the final stitches. 3) In practice, a pattern in
the layout may be a polygon or rectangle. Consequently, the
storage may vary from case to case. OpenMPL provides a
shape-friendly system considering this case and users can
specify the shape, POLYGON or RECTANGLE, to guarantee
the performance to avoid unnecessary calculations. For polyg-
onal inputs, to simplify the storage structure design and save
space, OpenMPL first decomposes the polygons to rectangles.
After reading the whole input file, DFS is utilized to find
connected components and re-union rectangles into polygons.
For rectangle circuits, we directly store these patterns without
further operations.

III. STITCH REDUNDANCY REMOVAL

In this section, we briefly introduce the widely used stitch
candidate generation method and then propose an algorithm
for stitch redundancy removal (SRR) with mathematical proof.

A. Stitch Candidate Generation

Original layout doesn’t contain stitch information, thus the
framework for MPLD problem should determine the positions
to insert stitches. One example of stitch can be found in
Fig. 1(c), where c1-c2 and d1-d2 are two generated stitch
candidates. Previous works proposed solutions to generate
candidate stitches for DPL [5], [6] and TPL [9], [17]. The key
idea of stitch candidate generation is to project each feature
into its neighbor features, where the projection results are
then used to determine stitch candidates. For example, [17]
proposed a heuristic algorithm to find all legal stitch positions
in TPL using the projection results. Kahng et al. [6] used
the projection sequence to directly carry out stitch candidate
generation by some simple rules. One example of the stitch
candidate insertion by projection sequence is shown in Fig. 3,
where the middle feature a has three conflict features, b, c,and
d. Based on the projection indicated by the black dash line in
Fig. 3, the feature a is divided into 7 segments. Each segment
is labeled by the number of projected conflict features, then
we can get its projection sequence: 01212101010. The rules
of the projection sequence are different when the number of
masks varies. The general rules of the projection sequence for
TPLD can be summarized as follows [9]: If 1) the projection
sequence contains sub-sequences whose value xyz satisfies
x > y, z > y; 2) the sub-sequence is not at the beginning
or end of the projection sequence with form 01010, then
the middle positions of y should insert one stitch candidate.
As shown in Fig. 3, the middle feature a has three conflict
features, b, c, d. According to the rules stated above, one stitch
candidate is inserted into a as shown in the figure. In our
implementation, such a stitch candidate generation approach
supports any number of masks and therefore can be used
for general MPL. However, when the mask number is larger
than three, the stitch candidates may be redundant or missed
since we haven’t considered special properties for larger mask
numbers.
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Fig. 3 Projection results, where the projection sequence is
0121210 and the middle segment whose label is ”1” should
be inserted a stitch for TPLD, which is highlighted by blue.
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Fig. 4 An TPLD example of stitch redundancy removal (SRR).
The conflict edge is marked with black and the stitch edge is
blue. Dotted edges/nodes are removed. (a) The decomposed
graph before SRR. (b) Nodes a and b are merged into node
ab. (c) Node ab and node e are further removed by IVR. (d)
Node c and node d are merged into node cd.

B. Stitch Redundancy Removal

Although the current stitch candidate generation algorithm
is able to find all possible stitches [8], [17], there are a
few stitch candidates that are redundant after further graph
simplification. One example is shown in Fig. 4(a), where the
edge a-b is redundant, i.e., a, b can be assigned with the same
color without additional cost. To clarify the phenomenon, we
define C(u) as the cost of node u and compute as:

C(u) =
∑

i∈Nc(u)

c(i, u) + α
∑

i∈Ns(u)

s(i, u), (1a)

s.t. c(i, u) = min{
∑
rj∈pi

(xj == xu), 1},∀pi ∈ N c(u),

(1b)
s(i, u) = (xi 6= xu),∀ri ∈ Ns(u), (1c)
xi, xu ∈ {1, . . . , k}, (1d)

where N c(u) is the neighbor feature set of u connected
by conflict edges, Ns(u) is the neighbor node set of u
connected by stitch edges, the node/feature is defined by r/p
respectively and xi is a variable for the k available colors
of the node ri. xj == xu represents 1 if xi equals to xu
and 0 if they are inequivalent. xi 6= xu is defined in an
opposite way. Take Fig. 4(a) as an example, for the node
a, N c(a) = {cd, e}, Ns(a) = {b}, where cd represents the
original feature divided by the stitch edge c-d.

Given a coloring solution f : V → {1, ..., k}, where
{1, ..., k} is the index set of the k colors. Cf (u) is the cost
of node u when u is colored by f and computed by:

Cf (u) =
∑

i∈Nc(u)

cf (i, u) + α
∑

i∈Ns(u)

sf (i, u), (2)



where cf (i, u) and sf (i, u) are defined similarly to c(i, u)
and s(i, u) in Equation (1). The color xu for node u when
calculating Cf (u) is given by f , i.e., xu = f(u). We have
the following theorem about stitch redundancy:

Theorem 1. Given a decomposed graph G, if there exists a
stitch edge es = {u, v} and the node pair {u, v} satisfies
three constraints:

1) N c(u) = N c(v);
2) |Ns(u)\v| ≤ 1;
3) |Ns(v)\u| ≤ 1,

then at least one optimal coloring solution will assign the two
nodes with the same color.

Proof. The proof can be finished by contradiction. Assume
that all of the optimal coloring solutions assign u, v into
two different colors. Let f∗ be one of the optimal coloring
solutions and we have f∗(u) 6= f∗(v). We will show that
there is another coloring solution f ′, which assigns u, v into
the same color and has at least the same cost with f∗ and
thus makes f ′ be the optimal coloring solution. Without loss
of generality, we assume:∑

i∈Nc(u)

cf∗(i, u) ≤
∑

i∈Nc(v)

cf∗(i, v), (3)

Then f ′ is defined as follows:

f ′(i) =

{
f∗(u), if i = v;

f∗(i), otherwise.
(4)

Since the only difference between f∗ and f ′ is the color
of v, the cost difference 4 between f∗ and f ′ on G is given
by:

4 = Cf∗(v)− Cf ′(v). (5)

By Equation (2) and Equation (5), 4 can be further
interpreted as:

4 = (
∑

i∈Nc(v)

cf∗(i, v)−
∑

i∈Nc(v)

cf ′(i, v))

+ α(
∑

i∈Ns(v)

sf∗(i, v)−
∑

i∈Ns(v)

sf ′(i, v)).
(6)

For the first conflict term, combining the first constraint,
Equation (3) and Equation (4), we have:∑

i∈Nc(v)

cf∗(i, v) ≥
∑

i∈Nc(v)

cf ′(i, v). (7)

For the second stitch term, the third constraint
|Ns(v)\u| ≤ 1 indicates that:

∑
i∈Ns(v)\u

sf∗(i, v) ≤ 1

and
∑

i∈Ns(v)\u
sf ′(i, v) ≤ 1. Moreover, we have

sf∗(u, v) = 1 > sf ′(u, v) = 0 since the colors of u, v
by f∗ are different. Therefore, we have:∑

i∈Nc(v)

sf∗(i, v) ≥ 1 ≥
∑

i∈Nc(v)

sf ′(i, v). (8)

Combining Equation (6), Equation (7) and Equation (8), it
is clear to see that 4 ≥ 0 always holds, which means that we

Algorithm 1 STITCHREDUNDANCYREMOVAL

Input: S → Decomposed graph set.
1: for DG ∈ S do
2: NeedSimplification ← False;
3: for si,j ∈ DG do
4: if {i, j} satisfies constraints in theorem 1 then
5: DG′ ← Merge i, j in DG;
6: NeedSimplification ← True;
7: end if
8: end for
9: if NeedSimplification then

10: S′ ← Simplified sub-graph set by simplifying DG′;
11: STITCHREDUNDANCYREMOVAL(S′);
12: end if
13: end for

can color G by f ′ without additional cost compared with the
optimal solution f∗ and thus complete the proof.

According to the theorem, we can conclude that all stitch
edges satisfying constraints specified in Theorem 1 are re-
dundant and corresponding node pairs can be merged to
further simplify the graph. Motivated by this conclusion, we
propose Algorithm 1 to remove redundant stitch candidates.
The algorithm is simply described as follows: after the stitch
insertion and the graph simplification, the layout is divided
and simplified into a decomposed graph set S. For each
decomposed graph (DG) in S, the algorithm detects all stitch
edges which satisfy the constraints specified in the theorem 1
(line 4) and merges all valid stitch edges (line 5). If DG can
be further simplified (line 10) after the removal of redundant
stitch edges, the simplified graph set (S′) can be processed
again (line 11) by Algorithm 1. One simple TPLD example
is given in Fig. 4. As shown in the example, the stitch edge
a-b is redundant and thus the node pair {a, b} is merged
(Fig. 4(b)). After the removal of a-b, the graph can be further
simplified by IVR (Fig. 4(c)). Then, the stitch edge c-d in
the simplified graph is also redundant, and thus the node pair
{c, d} is merged (Fig. 4(d)).

IV. OPTIMIZED ILP-BASED ALGORITHM

In this section, we first introduce the previous cost formula-
tion and corresponding ILP-based algorithm proposed in [8],
then the non-optimal case of such formulation is provided
and discussed, followed by a new cost formulation and the
corresponding optimized ILP-based algorithm proposed by us.

A. Original ILP-based Algorithm

Given an input layout specified by features in polygonal
shapes, the layout can be translated into an undirected layout
graph G = (V,E), where every node vi ∈ V corresponds to
one feature/sub-feature in the layout and each edge eij ∈ E
is used to characterize relationships between features. E is
composed of both conflict and stitch relationship, denoted by
E = {CE∪SE}, where SE is the set of stitch edges and CE
is the set of conflict edges. One example is shown in Fig. 1(c),
where the stitch edges are orange and the conflict edges are



black. Previous work [8] formulates the MPLD problem as
below:

min
x

∑
cij + α

∑
sij , (9a)

s.t. cij = (xi == xj), ∀eij ∈ CE, (9b)
sij = (xi 6= xj), ∀eij ∈ SE, (9c)
xi ∈ {0, 1, . . . , k}, ∀xi ∈ x, (9d)

where xi is defined as in Equation (1), cij is a binary variable
representing the conflict edge eij ∈ CE, sij stands for the
stitch edge eij ∈ SE, α, which is a user-defined parameter
indicating the relative importance between the conflict cost
and the stitch cost and set as 0.1 by default, If two nodes,
vi and vj , within the minimal coloring distance are assigned
the same color, i.e., xi = xj , then cij = 1. On the contrary,
sij = 1 when two nodes connected by the stitch edge are
assigned different colors, i.e., xi 6= xj . The objective function
is to minimize the weighted sum of the conflict number and
the stitch number.

Based on the objective function shown in Equation (9),
the problem can be solved by ILP [6], [8], where xi is
represented by 1-bit 0-1 variable(s). The ILP model for
TPLD can be formulated as in Formula (10), where the
objective function of MPLD in Equation (9) can be directly
applied in ILP-based formula, as shown in Equation (10a),
constraints Equation (10c)–Equation (10g) play the same role
as Equation (9b), where 0–1 variable cij is true only if two
nodes connected by the conflict edge eij are assigned the same
color.

min
∑

eij∈CE

cij + α
∑

eij∈SE
sij (10a)

s.t. xi1 + xi2 ≤ 1, (10b)
xi1 + xj1 ≤ 1 + cij1, ∀eij ∈ CE, (10c)
(1− xi1) + (1− xj1) ≤ 1 + cij1, ∀eij ∈ CE, (10d)
xi2 + xj2 ≤ 1 + cij2, ∀eij ∈ CE, (10e)
(1− xi2) + (1− xj2) ≤ 1 + cij2, ∀eij ∈ CE, (10f)
cij1 + cij2 ≤ 1 + cij , ∀eij ∈ CE, (10g)
|xj1 − xi1| ≤ sij1, ∀eij ∈ SE, (10h)
|xj2 − xi2| ≤ sij2, ∀eij ∈ SE, (10i)
sij ≥ sij1, sij ≥ sij2, ∀eij ∈ SE, (10j)
xij ∈ {0, 1}. (10k)

In Equation (10), cij is true when both cij1 and cij2
are true by the constraint Equation (10g). 0–1 variable
cij1(cij2) demonstrates whether xi1(xi2) equals to xj1(xj2).
Therefore, cij is true only when xi = xj , i.e., vi and vj are
assigned the same color. Similarly, constraints Equation (10h)
- Equation (10j) correspond to Equation (9c), where 0–1
variable sij is true only if vi and vj are assigned different
colors.

B. New ILP-based Algorithm

It is no doubt that the cost of the MPLD problem is the
weighted sum of the conflict cost and the stitch cost. However,

(a) (b)

Fig. 5 An example of the non-optimality of the original ILP-
based algorithm. (a) The solution of the original ILP-based
algorithm, where one stitch (blue line) happens at the top
of the conflict (red line). (b) The solution of our ILP-based
algorithm, where no stitch is introduced and can obtain the
optimal solution.

the previous ILP-based algorithm [8] measures the conflict
cost by a summation of the binary variables representing
conflict edges eij ∈ CE, i.e,

∑
cij . Such a measurement

method is not accurate and ignores a simple but important
fact: conflict happens between features instead of nodes. In
other words, If the stitch candidate divides one feature into
two sub-features, which are represented by two nodes v1, v2
in the graph, and both nodes have a conflict edge with the
third node v3, i.e., e12, e13 ∈ CE, then the previous conflict
cost shown in Equation (10) will count both e13 and e23
while they represent the same conflict between features. Fig. 5
illustrates one example, where the result of the original ILP,
as shown in Fig. 5(a), introduces one more stitch. The reason
is: if the stitch edge e12 is ignored as shown in Fig. 5(b), i.e,
the two connected nodes, v1 and v2, are assigned the same
color and thus x1 = x2, the original cost function shown
in Equation (10) will calculate the cost as 2 since both e13
and e23 are true. Therefore, ILP with the original problem
formulation prefers to assign v1 and v2 with different colors,
which results in a 1.1 cost value for the original cost function.
However, it is easy to see that when this stitch is ignored,
the conflict should be 1 instead of 2 since only one conflict
between features happens.

Based on this observation, we present a new formulation
shown in Equation (11). The objective function of the new
formulation is the weighted sum of conflict cost (

∑
Cmn) and

stitch cost (
∑
sij), which exactly matches the objective of the

color assignment problem. The modified part is highlighted
by blue. P indicates the feature set before stitch insertion, ri
and rj are the sub-features after stitch insertion and belong
to pm and pn respectively. For example, d1 and d2 are the
sub-features of the original feature d in Fig. 1.

Given the new formula for MPLD, the problem can also
be solved by ILP. The ILP model for TPLD is formulated in
Equation (12): here the conflict cost is calculated by

∑
Cmn

between the feature m and n instead of
∑
cij between node

i and j. In Equation (12), Cmn is true when both Cmn1 and
Cmn2 are true by the constraint formulated in Equation (12g).
0–1 variable Cmn1(Cmn2) demonstrates whether there exists
ri ∈ pm, rj ∈ pn, s.t., xi1(xi2) = xj1(xj2). By considering
Cmn, the conflict cost between features instead of nodes, our



min
x

∑
Cmn + α

∑
sij , (11a)

s.t. Cmn = min{
∑

ri∈pm,
rj∈pn,
cij∈CE

(xi == xj), 1},∀pm, pn ∈ P,

(11b)
sij = (xi 6= xj), ∀eij ∈ SE, (11c)
xi ∈ {0, 1, 2}, ∀xi ∈ x. (11d)

min
∑

cij∈CE,ri∈pm,rj∈pn

Cmn + α
∑

eij∈SE
sij , (12a)

s.t. xi1 + xi2 ≤ 1, (12b)
xi1 + xj1 ≤ 1 + Cmn1,

∀cij ∈ CE, ri ∈ pm, rj ∈ pn, (12c)
(1− xi1) + (1− xj1) ≤ 1 + Cmn1,

∀cij ∈ CE, ri ∈ pm, rj ∈ pn, (12d)
xi2 + xj2 ≤ 1 + Cmn2,

∀cij ∈ CE, ri ∈ pm, rj ∈ pn, (12e)
(1− xi2) + (1− xj2) ≤ 1 + Cmn2,

∀cij ∈ CE, ri ∈ pm, rj ∈ pn, (12f)
Cmn1 + Cmn2 ≤ 1 + Cmn,

∀cij ∈ CE, ri ∈ pm, rj ∈ pn. (12g)

new ILP-based algorithm is able to capture the conflict cost
accurately.

V. FLEXIBLE EXACT COVER-BASED ALGORITHM

In this section, we first introduce the exact cover (EC)-
based algorithm proposed by [19], and then some non-optimal
examples are discussed. Finally, we propose a flexible EC-
based algorithm, which achieves a trade-off between quality
and runtime and therefore outperforms the previous algorithm
on the quality with a sacrifice in the runtime.

A. Exact Cover (EC)-based Algorithm

Though our ILP is able to obtain the optimal solution of the
objective function, it suffers from runtime for large graphs.
EC-based algorithm [19] models the MPLD problem as an
exact cover problem, which can be efficiently solved by a
customized and augmented combination of dancing links data
structure and Algorithm X∗ (DLX). Generally speaking, the
layout is represented by a homogeneous graph. The graph is
further translated into a 0-1 matrix and then can be solved as
an exact cover problem of the obtained matrix. Each column
index in the matrix can be viewed as the element of a universe
U to be covered, and each row can be viewed as a subset of
the universe. The final solution (a set of rows) of the exact
cover problem is then translated back to the solution (coloring
results of each node) of the graph coloring problem.

The details of the EC-based algorithm are shown in Al-
gorithm 2. The input of the algorithm is a no-stitch graph

Algorithm 2 EXACTCOVERSOLVER

Input: Gp ← No-stitch graph;
Ourput: Coloring solution;

1: Convert Gp into exact cover matrix M ;
2: Call X∗ with Gp and M ;
3: if X∗ exits with a solution then
4: return the found solution;
5: else
6: Construct the stitch-inserted graph G′p based on Gp;
7: Construct the new exact cover matrix M ′ based on M ;
8: while no solution is found do
9: Call X∗ with G′p and M ′;

10: if X∗ exits without a solution then
11: Remove the exact conflict edge in G′p and M ′;
12: end if
13: end while
14: return the found solution;
15: end if

Gp = {Vp, Ep}, which is obtained from the layout features
and each feature represents exactly one node in Gp. The
algorithm first tries to solve the exact cover problem induced
by the graph coloring problem on Gp, in which no stitch is
introduced (lines 1–4). To be more specific, the target graph
Gp is translated into a corresponding exact cover matrix M
(line 1). Then, algorithm X∗ is called to solve M (line 2). The
details of algorithm X∗ are illustrated in [19]. If one feasible
solution is found by X∗, then the solution is returned (lines
3–4). Otherwise, the algorithm is going to solve the exact
cover problem induced by the graph coloring problem on the
stitch-inserted graph G′p (lines 5–15). Here, G′p = {V ′p , E′p}
is obtained by splitting the nodes in Gp whose corresponding
features have stitch candidates and new edges are added
following the distance constraints (line 6). The algorithm then
builds up the new matrix M ′ based on M (line 7) and calls
algorithm X∗ to solve M ′ (line 9). Furthermore, if graph G′p
is still un-colorable, the detected exact conflict edge will be
remarked as the reason for un-colorability and removed in G′p
and M ′ (line 11). Such a procedure is repeated until G′p is
colorable and the final coloring solution is found (lines 8–13).

In the exact cover matrix M translated from Gp, all nodes
in Vp are inserted into the universe U . In addition, for each
edge e ∈ Ep, k elements ec, s.t. c ∈ {1, ..., k} are inserted
into U for the k-coloring problem. Therefore, the total size of
U (also the column size of M ) is O(|Vp|+ k|Ep|). For each
node v ∈ Vp, k subsets Sv

c , s.t. c ∈ {1, ..., k} corresponding to
k available colors are created, where each subset contains the
node element v ∈ U and ec for each edge e = {u, v} ∈ Ep.
ec is inserted into both Sv

c and Su
c and thus prevents u, v from

being assigned to the same color, which represents the conflict
constraint between u and v. Therefore, the total size of the
subsets (also the row size of M ) is O(k|Vp| + k|Ep|). One
DPLD example of the translation from Gp to M is shown in
Fig. 6, where row 1,4,6 are selected as the final solution of
the exact cover problem so that the corresponding coloring
solution is given and shown in Fig. 6.

In the converted matrix with stitch insertion, M ′, besides
the original rows (subsets) in M , additional rows are added
below the original rows. Specifically, for each stitch can-
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didate ec, which splits the parent node v ∈ Vp into two
nodes v′1, v

′
2 ∈ V ′p , k(k − 1) subsets Sv

c1c2 , s.t., c1, c2 ∈
{1, ..., k}, c1 6= c2 corresponding to k(k − 1) available
coloring solutions of v′1 and v′2 are created, where each subset
contains the node element v ∈ U and ec1 , ec2 for each edge
ec1 = {v′1, v′} ∈ E′p, ec2 = {v′2, v′} ∈ E′p. ec1(ec2) inserted
in Sv

c1c2 is to prevent v′1(v
′
2) and v′ from being assigned to the

same color. Therefore, the total number of newly-added rows
is O(k2|Es|), where |Es| is the number of stitch candidates
in all features of Gp. Fig. 7 gives an example of G′p and M ′,
where the 7th row is selected as the part of the final solution
so that one stitch candidate is used to avoid the conflict. When
graph G′p is still un-colorable, the exact conflict edge detected
by algorithm X∗ is marked and removed. Such procedure is
repeated until G′p is colorable and the final coloring solution
is found.

B. Flexible Exact Cover-based algorithm

Exact cover-based algorithm shows impressive performance
improvement due to the efficient augmenting DLX. However,
the algorithm cannot always guarantee the optimality of the
results. Here,we propose two techniques to improve the exact
cover-based algorithm.

1) Flexible Stitch Handling: The first possible reason for
the non-optimality is the handling rules for stitch cases.
Although the exact cover-based algorithm considers all stitch
candidates on features concurrently, the example demonstrated
in [19] uses at most one stitch to resolve conflict in a single
feature since the rows in M ′ are added in the unit of stitch
candidate. However, there are some features in which multiple

stitch candidates are able to resolve multiple conflicts. One
example is shown in Fig. 8, where our algorithm uses two
stitches in the feature d and generates a result with cost 0.2,
while the original EC-based algorithm only uses one stitch
and generates a coloring result with cost 1.1. Although some
commercial decomposition tools based on [19] have consid-
ered multiple stitch cases to improve the solution quality,
related techniques are not detailed in [19]. In OpenMPL, we
formalize the flexible stitch handling method by introducing
a maximal usable stitch candidate number n and quantifying
the complexity of the EC-based algorithm with different n.

The direct reason for the non-optimality in the stitch
handling is, the rows are added in the unit of the stitch
candidate, which constrains at most one stitch candidate to
be selected for each node. To overcome such constraint,
i.e., to use an arbitrary number of stitch candidates in one
feature, we handle the stitch in the unit of node element.
We present our optimal stitch handling method as follows:
denote the maximal number of usable stitch candidates as
n, which is a controllable parameter. For each node element
v ∈ Vp, if the corresponding feature of v contains tv stitch
candidates and thus the feature is divided into tv + 1 sub-
features, the original stitch handling approach is going to
insert tv(k2 − k) rows while we insert Cm

tv (k
m+1 − k) rows,

where m is the number of used stitch candidates, which split
the feature of v into m+ 1 sub-features and is calculated by
the minimum value between n and tv , i.e., m = min{n, tv}.
In our flexible algorithm, each row indicates one possible
coloring solution for the divided m+1 sub-features. Clearly,
when n equals one, the algorithm is the same as the previous
one, i.e., only one stitch candidate is used in each feature
and the space complexity is also O(tvk

2). When n becomes
large enough, i.e., m = tv , the algorithm will use all stitch
candidates at the same time, which is more possible to be
optimal. However, the large n increases the space complexity
to O(ktv+1) and thus exponentially worsens the runtime.
One DPLD example is shown in Fig. 8, where Fig. 8(a) is
the matrix and corresponding coloring solution following the
original stitch handling approach. (d1, d2), (d3, d4) are the
sub-features divided by two stitch candidates respectively and
one conflict is introduced. Fig. 8(b) shows the results for our
flexible stitch handling, where d1, d2, and d3 are the sub-
features divided by two stitch candidates at one time, and
all conflicts are resolved by stitches. Although the proposed
stitch handling approach can obtain optimal results, it suffers
from efficiency due to the explosion of the number of newly-
added rows, especially when n and tv are large. To speed up
our algorithm without additional quality loss, we further use
a heuristic technique. Firstly, the graph follows the original
stitch handling approach, i.e., n = 1. If all conflicts are
resolved by stitches or the graph contains no features whose
number of stitch candidates is more than one, then the coloring
procedure completes and the optimal stitch handling is not
used. Otherwise, the graph is further handled by our flexible
algorithm with n as the maximal number of stitch candidates
in the features, which is closer to the optimal solution.

2) Optimized Traversal Order: Another possible reason
for the non-optimality is the traversal order of nodes for the
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Fig. 8 (a) The non-optimal case of original EC-based algo-
rithm. (b) The same case by our flexible EC-based algorithm,
in which the result is optimal.
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Fig. 9 The non-optimal case of the original EC-based al-
gorithm due to the traversal order. (a) The exact conflict(s)
selected by the original rule (red) and ours (orange). (b) The
coloring results by the original rule. (c) The coloring results
by our optimized rule.

conflict-overlapping cases. Here, we formallly define such a
case as the overlapping k-clique:

Definition 1. For a homogeneous graph G = {V,E}, where
V = {Vs, v1, v2}, G is called an overlapping k-clique if
(v1, v2) /∈ E and the subgraphs G1 = G\v1 and G2 = G\v2
are both k-cliques where k > 2.

One example of the overlapping 4-clique is given in Fig. 9,
where Vs = {a, b, c}, v1 = d and v2 = e. With the definition,
the following theorem shows the cost of the optimal solution
for an overlapping k-clique in the |Vs|-coloring problem.

Theorem 2. The optimal solution for an overlapping k-clique
in the |Vs|-coloring problem has exactly one conflict.

Proof. It is obvious that the optimal solution for a k-clique
in the |Vs|-coloring problem has exactly one conflict since
|Vs| = k−1. Therefore, the optimal solution for both G1 and
G2 has exactly one conflict, which results in a lower bound
of the conflict number for graph G as one. We then prove that
there exists a feasible solution f : V → {1, ..., k − 1} which
colors G within one conflict. Let’s define f as follows: Given
any two different nodes in Vs, vs1 and vs2 , f first assigns color
1 to vs1 and vs2 and color 2 to v1 and v2, which generates
one conflict. Then f assigns colors {3, ..., |Vs|} to the left
nodes in Vs, i.e., Vs\{vs1, vs2}. Since the size of Vs\{vs1, vs2}
is |Vs| − 2, which is the same as the size of available colors,
this coloring procedure is conflict-free. Totally, the number of
conflicts is one under this coloring scheme and such completes
the proof.

Although the minimum conflict of an overlapping k-clique
is 1 as stated in Theorem 2, the quality of the results by
algorithm X∗ is highly dependent on the traversal order.
Original algorithm X∗ in [19] traverses the node in the BFS
order unless one uncovered node has only one possible color.
The root of BFS is the node whose corresponding feature
has the largest area. If there are multiple available nodes,
nodes will be selected following a numerical order in the
implementation. However, such BFS-based traversal order
may fail to obtain the optimal solution in some overlapping k-
cliques as mentioned in [19]. Such a situation can be formally
described as:

Claim 1. The solution for an overlapping k-clique in the
|Vs|-coloring problem by algorithm X∗ with the BFS-based
traversal order proposed in [19] cannot guarantee optimality.

Proof. The proof can be finished by a simple non-optimal
case. Assume that k > 2, the corresponding feature of node v1
has the largest area, which makes v1 the root of BFS, and v2
is the node at the end of the numerical order, then the detected
exact conflict edge, i.e., the last reported conflict edge, must
be the edge between v2 and vsi , where vsi is the node in Vs.
Therefore, edge {v2, vsi } is removed and one conflict happens.
However, the sub-graph G2 is still a k-clique and contributes
to one conflict in the |Vs|-coloring problem besides the edge
{v2, vsi }. Therefore, such traversal order finally results in at
least two conflicts totally, which is not optimal.

One example of non-optimality is shown in Fig. 9(b). The
edge c-e is first marked as an exact conflict and then one more
conflict c-d is introduced because the left sub-graph a-b-c-d
still forms a 4-clique. Considering the non-optimal case of
original traversal order, we propose a heuristic traversal order
which is nearer to the optimal solution. The differences of our
optimized traversal order are organized as follows: (1) The
root of BFS is the node with the largest degree; (2) If nodes
are in the same depth in the BFS, the node with the smallest
degree is selected; (3) If there are multiple uncovered nodes
that have only one possible color, the node with the maximal
degree is selected. Through these special treatments, the new
traversal order is optimal for the k-clique and can be formally
described as:



TABLE I Effective of stitch redundancy removal (SRR)

Circuit Our EC w/o. SRR Our EC w. SRR
time (s) cost time (s) cost

test1_100 2.163 385.9 2.866 385.9
test5_101 0.013 625.3 0.008 625.3
test6_102 1.441 352.8 1.331 352.8
test8_100 2.889 6238.1 2.254 6238.1
test9_100 5.064 9651.2 3.877 9651.2
test10_100 11.716 11129.3 9.783 11129.3

average 3.881 4730.433 3.353 4730.433
ratio 1.000 1.000 0.864 1.000

TABLE II Our ILP vs. Original ILP [8] on ISCAS benchmarks

Circuit Original ILP [8] Our ILP
time (s) st# cn# cost time (s) st# cn# cost

C432 0.050 4 0 0.4 0.054 4 0 0.4
C499 0.029 0 0 0 0.017 0 0 0
C880 0.045 7 0 0.7 0.039 7 0 0.7
C1355 0.045 3 0 0.3 0.038 3 0 0.3
C1908 0.078 1 0 0.1 0.063 1 0 0.1
C2670 0.049 6 0 0.6 0.055 6 0 0.6
C3540 0.055 8 1 1.8 0.059 8 1 1.8
C5315 0.065 9 0 0.9 0.060 9 0 0.9
C6288 0.961 205 1 21.5 1.075 204 1 21.4
C7552 0.105 23 0 2.3 0.146 23 0 2.3
S1488 0.030 2 0 0.2 0.031 2 0 0.2
S38417 0.581 54 19 24.4 0.635 54 19 24.4
S35932 1.641 40 44 48 1.478 40 44 48
S38584 1.540 116 36 47.6 1.541 116 36 47.6
S15850 1.604 97 34 43.7 1.479 97 34 43.7

average 0.459 38.333 9.000 12.833 0.451 38.267 9.000 12.827
ratio 1.000 1.000 1.000 1.000 0.984 0.998 1.000 0.999

Theorem 3. The solution for an overlapping k-clique in the
|Vs|-coloring problem by algorithm X∗ with the new traversal
order guarantees optimality.

Proof. Let vsi be the root, vsi ∈ Vs since the root has the
largest degree. Because both v1 and and v2 have the smallest
degree, which will be selected firstly, the last detected conflict
is {vsi , vsj}, where vsj ∈ Vs. After the edge {vsi , vsj} is
removed, both G1 and G2 are not k-cliques and can be colored
by algorithm X∗ without additional conflict. Therefore, the
total number of conflicts by algorithm X∗ with the new
traversal order is one, which is optimal according to the
Theorem 2 and completes the proof.

One example of the new traversal order is shown in
Fig. 9(c), where our new traversal order marks b-c as the
exact conflict and thus achieves optimality.

VI. EXPERIMENTAL RESULTS

We implement OpenMPL in C++ and use Boost [31]
as the basic graphics library. All of the experiments are
tested on an Intel Core 2.9 GHz Linux machine. We conduct
experiments under two series of benchmarks. The first smaller
benchmarks are the scaled-down and modified versions of
ISCAS benchmarks, which are widely used in previous works.
The minimum coloring spacing is set to 120 nm for the
first ten cases and 100 nm for the last five cases, as in [8],
[13], [19]. The second larger benchmarks are the ISPD‘19
benchmarks for detailed routing. We use the metal layers
in the benchmark obtained by Dr.CU 2.0 [32] and set the
minimum coloring spacing as k · s + (k − 1) · w, where k

is the number of colors and set as 3 in our experiments,
s is the minimum spacing between two features and w is
the standard width of one feature. Here, we only show the
results of metal layers which can be decomposed by our ILP
within three hours (6 cases in total). Each selected layer with
id n on benchmark m is represented by m_n. For example,
test1_100 represents the layer with id 100 on the test1
benchmark of ISPD2019. We only focus on the results of
different decomposition algorithms on the TPLD problem due
to page limit, which is more difficult to obtain optimal results
compared with DPLD. More detailed results and discussions
can be found in [1]. The stitch weight α is set to 0.1, the thread
number is 8 and the graph simplification level is 3 which
represents that the framework enables three simplification
techniques:ICC, IVR, and BCE. Especially, SDP is set to
one thread due to no maintenance of CSDP now. Fig. 10
shows the decomposition results for the case C432 of ISCAS
benchmarks and the case test1_100 of ISPD benchmarks.

A. Effectiveness of Stitch Redundancy Removal

Firstly, we demonstrate the effectiveness of the proposed
stitch redundancy removal (SRR) technique. Through stitch
redundancy removal, some redundant stitch candidates can
be removed and the two connected nodes are merged into
one node. Therefore, the graph size for the decomposition
is reduced and thus the decomposition runtime is decreased
without decomposition quality loss theoretically. We only
conducted SRR on the graphs whose sizes are larger than 8.
TABLE I compares the performance and runtime on the target
graphs. Column “time (s)” is the total simplification and de-
composition runtime of graphs which have redundant stitches
to be removed. The ”cost” column is the total decomposition
cost of our EC. When the case is sparse, i.e., the case can
be easily simplified such that the total number of simplified
graphs is huge while the size of each graph is usually small,
our SRR may harm the runtime since the number of redundant
stitches is not very much while the runtime for scanning
all stitches in SRR cannot be avoided. For example, the
runtime for graphs on test1_100 is increased from 2.163
seconds to 2.866 seconds when SRR is used. Despite such a
sparse case, which may not be the major bottleneck due to
its low complexity, our SRR shows a considerable runtime
improvement in most cases. We can see that compared with
decomposing the graph by our EC directly, further applying
SRR can reduce the average runtime by 13.6% without any
performance loss.

B. Original ILP Versus Our ILP

Secondly, we compare our ILP with the original ILP
proposed by [8] on both small ISCAS benchmarks and large
ISPD benchmarks. The results are shown in TABLE II for
ISCAS benchmarks and TABLE III for ISPD benchmarks.
The column “time (s)” is the real time of decomposition
in seconds instead of CPU time. Columns “st#” and “cn#”
are the stitch number and the conflict number, “cost” is the
decomposition cost calculated by Equation (12). On the small
benchmarks, our ILP shows a slight improvement in both
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Fig. 10 An example of the decomposition results. (a) Decomposition result of the circuit C432 in the ISCAS benchmarks. (b)
Decomposition result of the 100th layer in the circuit test1 in the ISPD benchmarks.

TABLE III Our ILP vs. Original ILP [8] on ISPD benchmarks

Circuit Original ILP [8] Our ILP
time (s) st# cn# cost time (s) st# cn# cost

test1_100 122.249 299 243 272.9 115.075 239 219 242.9
test5_101 118.029 232 466 489.2 149.040 190 433 452
test6_102 235.359 482 115 163.2 398.106 454 108 153.4
test8_100 19.025 4616 5683 6144.6 17.277 4389 5567 6005.9
test9_100 28.365 6969 8739 9435.9 25.534 6643 8559 9223.3
test10_100 110.479 9594 9775 10734.4 99.529 8945 9555 10449.5

average 105.584 3698.667 4170.167 4540.033 134.094 3476.667 4073.500 4421.167
ratio 1.000 1.000 1.000 1.000 1.270 0.940 0.977 0.974

TABLE IV Our EC vs. Original EC [19] on ISCAS bench-
marks

Circuit Original EC [19] Our EC
time (s) st# cn# cost time (s) st# cn# cost

C432 0.005 4 0 0.4 0.008 4 0 0.4
C499 0.004 0 0 0 0.006 0 0 0
C880 0.005 7 0 0.7 0.007 7 0 0.7
C1355 0.007 3 0 0.3 0.018 3 0 0.3
C1908 0.008 1 0 0.1 0.022 1 0 0.1
C2670 0.014 6 0 0.6 0.021 6 0 0.6
C3540 0.029 8 1 1.8 0.035 8 1 1.8
C5315 0.019 9 0 0.9 0.033 9 0 0.9
C6288 0.114 203 8 28.3 0.142 204 1 21.4
C7552 0.028 21 1 3.1 0.055 21 1 3.1
S1488 0.008 2 0 0.2 0.007 2 0 0.2
S38417 0.127 54 19 24.4 0.175 54 19 24.4
S35932 0.286 48 44 48.8 0.299 40 44 48
S38584 0.291 117 36 47.7 0.323 117 36 47.7
S15850 0.285 100 34 44 0.342 100 34 44

average 0.082 38.867 9.533 13.42 0.1 38.4 9.067 12.907
ratio 1.000 1.000 1.000 1.000 1.220 0.988 0.951 0.962

the runtime and the quality. The time is reduced by 1.6%
and the stitch number is reduced by 1 on circuit C6288
while the costs on other circuits are not changed, which
indicates that such re-count case in the small benchmarks is
not frequent. On the large benchmarks, Our ILP reduces 222
stitches and 96.67 conflicts averagely, i.e., from 3698.667 to
3476.667 and from 4170.167 to 4073.5. Therefore, the average
cost is significantly reduced by 118.867 while the runtime is
increased by 27%. However, such runtime loss is acceptable
considering the unignorable quality improvement.

C. Original EC Versus Our EC

Thirdly, we compare our EC with the original EC proposed
by [19] on both small and large benchmarks. The results are
listed in TABLE IV for ISCAS benchmarks and TABLE V for
ISPD benchmarks. As discussed in Section V-B, the original
EC assumes exactly one stitch candidate to be activated for
each feature, which reduces the matrix size and thus reduces
the time complexity with a potential quality loss. Our EC
assumes that at most n stitch candidates are activated for each
feature, where n is a dynamic parameter and therefore we
can achieve a flexible balance between runtime and quality
by changing n. The results in both the small and large
benchmarks demonstrate our analysis, where n is set to 2
in our EC, i.e., at most two stitch candidates are activated for
each feature. Our EC reduces the average cost by 3.8% on the
small benchmarks and 2.9% on the large benchmarks. As a
tradeoff, the average runtime is increased from 0.082s to 0.1s
on the small benchmarks and from 6.996s to 30.776s on the
large benchmarks, which is not trivial and demonstrates one
of the drawbacks for the EC-based algorithm: the increase of
n results in an exponentially increasing on the runtime.

D. Comparison of Different Decomposers

Fourthly, we compare different decomposers in both stitch-
enabled cases and no-stitch cases. The quality results without
stitch for ISCAS benchmarks are listed in TABLE VI. Column
“Back.” is the result of backtracking algorithm introduced
in [33]. As shown in TABLE VI, our ILP, MIS [13], and
backtracking [33] in our implementation obtain the optimal



TABLE V Our EC vs. Original EC [19] on ISPD benchmarks

Circuit Original EC [19] Our EC
time (s) st# cn# cost time (s) st# cn# cost

test1_100 1.772 236 383 406.6 11.521 279 358 385.9
test5_101 3.229 282 615 643.2 21.052 303 595 625.3
test6_102 7.209 560 327 383 57.525 558 297 352.8
test8_100 5.585 4236 5994 6417.6 10.269 4561 5782 6238.1
test9_100 9.042 6329 9270 9902.9 17.139 6852 8966 9651.2
test10_100 15.14 8697 10621 11490.7 67.149 9433 10186 11129.3

average 6.996 3390 4535 4874 30.776 3664.333 4364 4730.433
ratio 1.000 1.000 1.000 1.000 4.399 1.081 0.962 0.971

TABLE VI Non-stitch Decomposition Cost Comparison on
ISCAS benchmarks

Circuit Our ILP LP [11] MIS [13] SDP [8] EC [19] Back. [33]

C432 4 4 4 4 4 4
C499 0 0 0 0 0 0
C880 7 7 7 7 7 7
C1355 3 3 3 3 3 3
C1908 1 1 1 1 1 1
C2670 6 6 6 6 6 6
C3540 9 9 9 9 9 9
C5315 9 9 9 9 9 9
C6288 205 205 205 205 205 205
C7552 22 22 22 22 22 22
S1488 2 2 2 2 2 2
S38417 95 97 95 95 97 95
S35932 157 166 157 159 163 157
S38584 230 233 230 231 231 230
S15850 212 215 212 212 215 212

average 64.133 65.267 64.133 64.333 64.933 64.133
ratio 1.000 1.018 1.000 1.003 1.012 1.000

solution while other relaxation-based or heuristic methods
degrade the result quality.

For the stitch-enabled cases, the quality comparison is
shown in TABLE VII and TABLE VIII; The runtime com-
parison is shown in TABLE IX and TABLE VIII. Especially,
backtracking is not shown in TABLE VIII, since it cannot be
processed within three hours for any layout in ISPD bench-
marks. The results of MIS [13] and LUT [17] in TABLE VII
are directly quoted from their papers. The ratio is calculated
based on the results of our ILP. For the decomposition
cost, our optimized ILP outperforms other algorithms and
achieves the best cost performance as expected. On the small
benchmarks, SDP is the worst and increases the cost by 28.4%
while the cost of our EC and backtracking are close to the
ILP. On the large benchmarks, SDP only increases the cost
by 4.4% and is better than our EC, which increases the cost
by 7%. For the runtime, the original EC is the best due to
the efficient augmenting DLX technique. Backtracking shows
a good runtime performance on the small benchmarks due to
our heuristic algorithm but fails to obtain the results on the
large benchmarks within three hours. The runtime of SDP
is much worse than our ILP on the small benchmarks, i.e.,
2.572× runtime, while much better on the large benchmarks,
whose ratio is close to our EC, i.e., 0.27 vs. 0.23.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed OpenMPL, a general framework
for the multiple patterning layout decomposition problem,

with efficient implementations of various state-of-the-art sim-
plification and decomposition algorithms. Besides the re-
implementation of previous algorithms, we optimized sev-
eral algorithms based on some typical non-optimal cases.
We presented a new simplification algorithm to remove the
redundant stitches. Then, we proposed the correct problem
formulation followed by a corresponding new ILP-based al-
gorithm, which captures the objective of the color assignment
problem accurately. Furthermore, we proposed a flexible EC-
based algorithm, which achieves a trade-off between quality
and runtime and therefore outperforms the previous algorithm
on quality with a sacrifice in the runtime. The experiments
demonstrate the effectiveness of our proposed algorithms and
the efficiency of OpenMPL. In the future, we plan to integrate
post-refinement into the workflow and further accelerate the
EC-based algorithm. We believe that this open platform paves
the road for the development of MPLD engines and will stim-
ulate more research in the near future, eventually contributing
to better manufacturability in advanced technology nodes.
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