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We consider the problem of nonparametric regression when the covariate
is d dimensional, where d > 1. In this paper, we introduce and study two non-
parametric least squares estimators (LSEs) in this setting—the entirely mono-
tonic LSE and the constrained Hardy—Krause variation LSE. We show that
these two LSEs are natural generalizations of univariate isotonic regression
and univariate total variation denoising, respectively, to multiple dimensions.
We discuss the characterization and computation of these two LSEs obtained
from n data points. We provide a detailed study of their risk properties under
the squared error loss and fixed uniform lattice design. We show that the finite
sample risk of these LSEs is always bounded from above by n~2/3 modulo
logarithmic factors depending on d; thus these nonparametric LSEs avoid the
curse of dimensionality to some extent. We also prove nearly matching mini-
max lower bounds. Further, we illustrate that these LSEs are particularly use-
ful in fitting rectangular piecewise constant functions. Specifically, we show
that the risk of the entirely monotonic LSE is almost parametric (at most 1/n
up to logarithmic factors) when the true function is well approximable by a
rectangular piecewise constant entirely monotone function with not too many
constant pieces. A similar result is also shown to hold for the constrained
Hardy—Krause variation LSE for a simple subclass of rectangular piecewise
constant functions. We believe that the proposed LSEs yield a novel approach
to estimating multivariate functions using convex optimization that avoid the
curse of dimensionality to some extent.

1. Introduction. Consider the problem of nonparametric regression where the goal is to
estimate an unknown regression function f* : [0, 11¢ — R (d > 1) from noisy observations at
fixed design points X1, ..., X, € [0, 114, Specifically, we observe responses yi, ..., y, drawn
according to the model

€)) yi=f*(x;)+&, where; i"i'vd'J\f(O,crz) fori=1,...,n,

o2 > 0is unknown, and the purpose is to nonparametrically estimate f* known to belong to a
prespecified function class. In the univariate (d = 1) case, two such important function classes
are: (i) the class of monotone nondecreasing functions in which case f* is usually estimated
by the isotonic least squares estimator (LSE) (see, e.g., Robertson et al. [46], Groeneboom
and Jongbloed [26], Barlow et al. [3], Brunk [8], Ayer et al. [2]) and (ii) the class of functions
whose fotal variation is bounded by a specific constant in which case it is natural to estimate
f* by total variation denoising (see, e.g., Rudin et al. [47], Mammen and van de Geer [37],
Chambolle et al. [10], Condat [14]). Both these estimators—isotonic regression and total
variation denoising—have a long history and are very well studied. For example, it is known
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that both these estimators produce piecewise constant fits and have finite sample risk (under
the squared error loss) bounded from above by a constant multiple of n=2/3 (see, e.g., Meyer
and Woodroofe [38], Zhang [63], Mammen and van de Geer [37]). Moreover, it is well known
that both these estimators are especially useful in fitting piecewise constant functions where
their risk is almost parametric (at most 1/n up to logarithmic factors); see, for example,
Guntuboyina and Sen [27], Dalalyan et al. [16] and Guntuboyina et al. [28] and the references
therein.

In this paper, we try to answer the following question: “What is a natural generalization
of univariate isotonic regression and univariate total variation denoising to multiple dimen-
sions?”” To answer this question, we introduce and study two (constrained) LSEs for estimat-
ing f*:[0, 1] — R where d > 1. We show that both these LSEs yield rectangular piecewise
constant fits and have finite sample risk that is bounded from above by n~2/3 (modulo loga-
rithmic factors depending on d), thereby avoiding the curse of dimensionality to some extent.
Further, we study the characterization and computation of these two estimators: the LSEs are
obtained as solutions to convex optimization problems—in fact, quadratic programs with lin-
ear constraints—and are thus easily computable. Moreover, as in the case d = 1, we illustrate
that these LSEs are particularly useful in fitting rectangular piecewise constant functions and
can have almost parametric risk (up to logarithmic factors). These results are directly analo-
gous to the univariate results mentioned in the previous paragraph, and thus justify our claim
that our proposed estimators are natural multivariate generalizations of univariate isotonic
regression and univariate total variation denoising.

Our first estimator is the LSE over ]-'lf:’M, the class of entirely monotone functions on [0, 174:

n

~ 1
(2) fem € argmin = "(y; — fx))*

rerdhy Mizi

The class ]-"gM of entirely monotone functions is formally defined in Section 2. Entire mono-
tonicity is an existing generalization in multivariate analysis of the univariate notion of mono-
tonicity (see, e.g., [1, 31, 34, 62]). Indeed, in the univariate case when d = 1, the class ]-"éM
is precisely the class of nondecreasing functions on [0, 1], and thus, for d = 1, the estima-
tor (2) reduces to the usual isotonic LSE. For d = 2, the class féM consists of all functions
£ :10, 11> - R which satisfy both f (a1, a2) < f (b1, by) and

3) f(b1,b2) — flar,b2) — f(br,a2) + f(a1,a2) = 0,

for every 0 <a; <by <1 and 0 < ap < by < 1. The formal definition of .FgM for general
d > 1 is given in Section 2. We remark that in general, entire monotonicity is different
from the usual notion of monotonicity in classical multivariate isotonic regression [46]; see
Lemma 2.1 for a connection between these two notions. We also remark that 74, is closed
under translation and nonnegative scaling; that is, if f € ng, then af 4+ b € FE};}/I for any
a > 0 and b € R. Additionally, the collection of right-continuous functions in Jgy; is pre-
cisely the collection of cumulative distribution functions of nonnegative measures on [0, 1]
(see Lemma 2.2).

Our terminology of entire monotonicity is taken from Young and Young [62]. As a word
of caution, we note that some authors (e.g., Aistleitner and Dick [1]) use the term “com-
pletely monotone” in place of “entirely monotone.” We use the latter terminology because
“completely monotone” has been used in the literature for other notions (see, e.g., [22, 24,
60]) which are unrelated to our definition of entire monotonicity. Entire monotonicity has
also been referred by other names in the literature (e.g., it has been referred to as “quasi-
monotone” in Hobson [31]).

The second main estimator that we study in this paper involves Vyko(-), the variation in
the sense of Hardy and Krause (anchored at 0), which we shorten to Hardy—Krause variation
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or HKO variation. The HKO variation of a univariate function f : [0, 1] — R is simply the
total variation of the function, that is,

k—1
“) Virko(f) = sup D1 f (i) = f (i
O=xo<x)<-<x)=1;_¢
where the supremum is over all k£ > 1 and all partitions 0 = xg < x; <--- <x; =1 of [0, 1].
Thus HKO variation is a generalization of one-dimensional total variation to multiple dimen-
sions. For d = 2, HKO variation is defined in the following way: for f : [0, 1]* — R,

Viko(f) := Vako(x — f(x,0)) + Vako(x — f(0,x))

(1) 2 1 (@2
(5) +Sup Z }f( l]-i-l’ 12+l) f('xll 'xlz-i-l)
0<ly <ky,0<lr<ky
1) (@) 1 @
— F %)+ £ g7 %)
where the first two terms in the right-hand side above are defined via the univariate definition

(4) and the supremum in the third term above is over all pairs of partitions 0 = x(()l) < xfl)

- < xk =land0= x(()z) < xl(Z) - < x,EZ) =1 of [0, 1]. Note that a special role is played

in the ﬁrst two terms of the right- hand side of (5) by the point (0, 0) and this is the reason for
the phrase “anchored at 0.” For smooth functions f : [0, 11?2 = R, it can be shown that

VHKO(f):/Ol/OI o f dx1dx2+/(;l‘af("0) /‘Bf(O )

dx10x2 0x1 d0x2
and, from the first term in the right-hand side above, it is clear that the HK0 variation is related
to the L' norm of the mixed derivative. The definition of HKO variation for general d > 1 is
given in Section 2. HKO variation is quite different from the usual definition of multivariate
total variation (see, e.g., Ziemer [65],Chapter 5) as explained briefly in Section 2.

Functions that are piecewise constant on axis-aligned rectangular pieces (see Defini-
tion 2.3) have finite HKO0 variation as explained in Section 2. More generally, the collection
of right-continuous functions of finite HK0 variation is precisely the same as the collection
of cumulative distribution functions of finite signed measures (see Lemma 2.5). An example
of a function with infinite HK0 variation is the indicator function of an open d-dimensional
ball contained in [0, 1]¢ (see [44], Section 12).

Our second estimator is the constrained LSE over functions with HK0 variation bounded
by some tuning parameter V > 0:

’

—~ . 1 2
(6) frxoy € argmin = (v — f(x:))".
FVako(H=<V ;5

This estimator is a generalization of total variation denoising to d > 2 because in the case
d = 1, HKO variation coincides with total variation, and thus, the above estimator performs
univariate total variation denoising, sometimes also called trend filtering of first order [10,
14, 33,37, 47, 53]. This generalization is different from the usual multivariate total variation
denoising as in Rudin et al. [47] (see Section 5 for more discussion on how fyko,v is different
from the multivariate total variation regularized estimator). It is also possible to define the
HKO variation estimator in the following penalized form:

_ N )
(7) frako,s. € argmin 4> (yi = f(x))” + AViko(f)

! i=1

for a tuning parameter A > 0. In this paper, we shall focus on the constrained form in (6)
although analogues of our results for the penalized estimator (7) can also be proved.
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Before proceeding further, let us note that entire monotonicity is related to HKOQ varia-
tion in much the same way as univariate monotonicity is related to univariate total variation.
Indeed, for functions in one variable, the following two properties are well known:

1. Every function f : [0, 1] — R of bounded variation can be written as the difference
of two monotone functions f = f; — f_ and the total variation of f equals the sum of the
variations of f} and f_.

2. If f:[0, 1] — R is nondecreasing, then its total variation on [0, 1] is simply f(1) —
f(0).

These two facts generalize almost verbatim to entire monotonicity and HKO variation (see
Lemma 2.4). Thus, in some sense, entire monotonicity is to Hardy—Krause variation as mono-
tonicity is to total variation.

Although the terminology of “entire monotonicity” does not seem to have been used previ-
ously in the statistics literature, entirely monotone functions are closely related to cumulative
distribution functions of nonnegative measures which appear routinely in statistics. HK0 vari-
ation has appeared previously in statistics in the literature on quasi-Monte Carlo (see, e.g.,
[29, 44]) as well as in the power analysis of certain sequential detection problems (see, e.g.,
[45]). Additionally Benkeser and Van Der Laan [6] (see also [54-57]) considered the class
{f : Vako(f) < V}in their “highly adaptive LASSO” estimator and exploited its connections
to the LASSO in a setting that is different from our classical nonparametric regression frame-
work. They also used the terminology of “sectional variation norm” to refer to the Hardy—
Krause variation (see also [25], Section 2). An estimator very similar to (6) was proposed by
Mammen and van de Geer [37] for d = 2 when the design points take values in a uniformly
spaced grid (this estimator of [37] is described in Section 3.1). Also, Lin [35] proposed an
estimator in the context of the Gaussian white noise model that bears some similarities to (6)
(this connection is detailed in Section 5).

The goal of this paper is to analyze the properties of the estimators (2) and (6). Here is
a description of our main results. Section 3 concerns the computation of these estimators.
Note that, as stated, the optimization problems defining our estimators (2) and (6) are convex
(albeit infinite-dimensional). We show that, given arbitrary data (xi, y1), ..., (Xu, y»), the
two estimators (2) and (6) can be computed by solving a nonnegative least squares (NNLS)
problem and a LASSO problem, respectively, with a suitable design matrix that only depends
on the design-points X1, ..., X,. It is interesting to note that the design matrices in the two
finite-dimensional problems for computing (2) and (6) are exactly the same. Our main results
in this section (Proposition 3.1 and Proposition 3.3) imply that fEM and fHKo v can be taken
to be of the form

P P
(8 fEM = Z(ﬁEM)j lz;,11 and  fako,v = Z(,BHKO,V)j Iiz; 11

j=1 j=1
for some z1, ..., z, that only depend on the design points X1, ..., X, and vectors EEM and

B\HKQV in R? which are obtained by solving the NNLS problem (24) and the LASSO prob-
lem (26), respectively. Here, ]I[zj,l] denotes the indicator of the rectangle [z;, 1] (defined via

(16)). Because NNLS and LASSO typically lead to sparse solutions, the vectors BEM and
EHK(),V will be sparse which clearly implies that fem and ﬁ{Ko,V as given above (8) will
be piecewise constant on axis-aligned rectangles. Therefore, our estimators give rectangular
piecewise constant fits to data and this generalizes the fact that univariate isotonic regression
and total variation denoising yield piecewise constant fits. In the case when the design points
X1, ..., X, form an equally spaced lattice in [0, 11 (see the definition (30) for the precise
formulation of this assumption), the points zi, ..., z, can simply be taken to be x1, ..., X,
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and, in this case, more explicit expressions can be given for the estimators (see Section 3.1
for details). It should be noted that the lattice design is quite commonly used for theoretical
studies in multidimensional nonparametric function estimation (see, e.g., [39]) especially in
connection with image analysis (see, e.g., [10, 15]).

We also investigate the accuracy properties of fEM and fHKo y via the study of their risk
behavior under the standard fixed design squared error loss function. Specifically, we define
the risk of an estimator fAby

n

—~ —~ —~ 1 —~
) R(F. ) :=BL(F. f7) where £(F. f*) = — 3 (Fx) = £ (x0)”.

i=1

We prove results on the risk of fEM and fHKoy in the case of the aforementioned lattice
design. In this setting, our main results are described below.

We analyze the risk of fem under the (well-specified) assumption that f* € FgM. We
prove in Theorem 4.1 that, forn > 1,

~ Cd,o,V*
(10) R(few %) = — g og(em)

where

V¥i= f*(1,..., 1) — £%0,...,0)

and C(d, o, V*) depends only on d, o and V* (see statement of Theorem 4.1 for the explicit
form of C(d, o, V*)). Note that the dimension d appears in (10) only through the logarith-
mic term which means that we obtain “dimension independent rates” ignoring logarithmic
factors. Some intuition for why the constraint of entire monotononicity is able to mitigate
the usual curse of dimensionality is provided in Section 5. Other nonparametric estimators
exhibiting such dimension independent rates can be found in [4, 13, 35, 40, 50, 59]. In The-
orem 4.2, we prove a minimax lower bound which implies that the dependence on d through
the logarithmic term in (10) cannot be avoided for any estimator.

We also prove in Theorem 4.4 that R(]%M f*) is smaller than the bound given by
(10) when f* € F M is rectangular piecewise constant. Loosely speaking, we say that
£ :10,11¢ — R is rectangular piecewise constant if it is constant on each set in a partition
of [0, 1]¢ into axis-aligned rectangles and the smallest cardinality of such a partition shall be
denoted by k(f) (see Definition 2.3 for the precise definitions). In Theorem 4.4, we prove
that whenever f* € ]:}E:IM is rectangular piecewise constant, we have

(11) R(fm. f*) < Cao’? (f*

for a positive constant Cy which only depends on d. Note that when k( f*) is not too large, the
right-hand side of (11) converges to zero as n — 00 at a faster rate compared to the right-hand
side of (10). Thus rectangular piecewise constant functions which also satisfy the constraint
of entire monotonicity are estimated at nearly the parametric rate (ignoring the logarithmic
factor) by the LSE ﬁgM

Let us now describe our results for the other estimator fHKo . In Theorem 4.5, we prove
that when Vyggo(f*) < V (note that V is the tuning parameter in the definition of fHKO v),
then

(log(en)) (log(elog(en)))

~ Cd,o,V 2d—1
(12) R(fuko.v, f*) < %(log(en))ﬂ3 1

Note thgt the right-hand sides of the bounds (12) and (10) are the same, and thus the esti-
mator fyko, v also achieves dimension independent rates (ignoring logarithmic factors) (see
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Section 5 for an explanation of this phenomenon). We also prove a minimax lower bound in
Theorem 4.6 which implies that the dependence on d in the logarithmic term in (12) cannot
be completely removed for any estimator.

In univariate total variation denoising, it is known that one obtains faster rates than given
by the bound (12) when f*:[0,1] — R is piecewise constant with not too many pieces.
Indeed if f* is piecewise constant for d = 1 with k( f™) pieces, then it has been proved that

2 k()

(13) R(faxo.v, f*) < C(c)o —— log(en)

provided V = Viko(f™*) and f* satisfies a minimum length condition in that each constant
piece has length at least ¢/ k(f™*) (the multiplicative term C(c) in (13) only depends on this
c appearing in the minimum length condition). A proof of this result can be found in [28],
Corollary 2.3, and, for other similar results, see [16, 36, 41, 64]. In light of this univariate
result, it is plausible to expect a bound similar to (11) for ﬁ;Ko, v when f* is an axis-aligned
rectangular piecewise constant function provided that the tuning parameter V is taken to be
equal to Ve (/™) and provided that f* satisfies a minimum length condition. We prove such
a result for a class of simple rectangular piecewise constant functions f*: [0, 1]¢ — R of the
form

(14) ) =alxe 11(-) +ao

for some aj,ap € R and x* € [0, 1]¢ (here I stands for the indicator function). It is easy
to see that (14) represents a rectangular piecewise constant function with k(f*) < 2¢. In
Theorem 4.7, we prove that when f* is of the above form (14), then

2 2d—1

(15) R(Faxo.vs £*) < C(c,d)%(log(en))%(log(elog(en))) 2

provided the tuning parameter V equals Vugo(f*) and x* € [0, 114 satisfies a minimum size
condition (43). This latter condition, which is analogous to the minimum length condition in
the univariate case, involves a positive constant ¢ and the constant C(c, d) appearing in (15)
only depends on ¢ and the dimension d. In the specific case when d = 2, the minimum length
condition (43) can be weakened, as discussed in Appendix A of the Supplementary Material
[21].

We are unable to prove versions of (15) for more general rectangular piecewise constant
functions. However, some results in that direction have been proved in a very recent paper
by Ortelli and van de Geer [41]. Their results are of a different flavor as they work with a
similar but different estimator and a smaller loss function. Their proof techniques are also
completely different from ours.

The rest of the paper is organized as follows. The notions of entire monotonicity and
Hardy—Krause variation are formally defined for arbitrary d > 1 in Section 2 where we also
collect some of their relevant properties. In Section 3, we discuss the computational aspects
for solving the optimization problems in (2) and (6). The risk results for ]/”}\EM are given in
Section 4.1 while the risk bounds for ﬁ{Ko,V are in Section 4.2. We discuss the connections
of our contributions with other related work in Section 5. Due to space constraints, all the
proofs are moved to the Supplementary Material [21]. The proofs for our risk results are
given in Appendix C while the proofs of the results in Section 2 and Section 3 are given
in Appendix D of [21]. Additional technical results used in the proofs of Appendix C are
proved in Appendix E of [21]. The supplement also contains another risk bound for ﬁqKo,v
(Appendix A), as well a section for simulations (Appendix B) that contains some examples
and depictions of the two estimators, including an application to estimation in the bivariate
current status model.
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2. Entire monotonicity and Hardy—Krause variation. The aim of this section is to
provide formal definitions of entire monotonicity and HK0 variation for the convenience of
the reader. We roughly follow the notation of Aistleitner and Dick [1] and Owen [44].

Let us first introduce some basic notation that will be used throughout the paper. We let

0=(,...,0) and 1 =(1,...,1). Given an integer m, we take [m] := {1, ..., m}. For two
pointsa:(al,...,ad)andb:(bl,...,bd)e[O,l]d,wewrite

a<b ifandonlyif a; <b; foreveryj=1,...,d
and

ax<b ifandonlyif a; <b; foreveryj=1,...,d.

When a < b, we write

d
[a,b]:={x:a<x=<b}:= ]_[[aj,bj],

(16) =

d
[a,b) :={x:a<x<b}:=[]la;,b).
j=1

Note that [a, b] is a closed axis-aligned rectangle and it has nonempty interior when a < b.

Given a function f : [0, l]d — R and two distinct points a = (ai,...,aq4), b =
(b1, ...,by) €10, 11¢ with a < b, we define the quasi-volume A(f;[a, b]) by
Ji Ja _ )
(17) Y (=D E (b + ji(ay — b), .. ba + ja(aa — ba)),
=0 ja=0

where J; :=I{a; # b;} for each i. For example, when d = 2, it is easy to see that A(f; [a, b])
equals

f(b17b2)_f(bhaZ)_f(a1’b2)+f(a17a2) ifa<b
(18) f(b1,b2) — f(b1,a2) ifaj=brandar < by
f(b1,by) — f(ay,by) ifay=byanda; < b.

We are now ready to define entire monotonicity.

DEFINITION 2.1 (Entire monotonicity). We say that a function f : [0, 119 - R is en-
tirely monotone it

A(f;[a,b]) =0 foreveryabe[0,1]? witha<b.

In words, for a entirely monotone function f, every quasi-volume A(f; [a, b]) is nonneg-
ative. The class of such functions will be denoted by Fg&,;. By (18), note that entire mono-
tonicity is equivalent to (3) for d = 2.

A more common generalization of monotonicity to multiple dimensions is the class .7-"16[
consisting of all functions f : [0, 1] — R satisfying

(19) flai,....;aq) < f(b1,...,bg), for0<a <b;<l,i=1,...,d.

As the following result shows (see Section D.1 of the Supplementary Material [21] for a
proof), fﬁiM 18 a strict subset of ]-"16[ when d > 2 (e.g., when d = 2, functions in ng need to
additionally satisfy the second constraint in (3)) and thus the estimator (2) is distinct from the
LSE over ]-"f,[ for d > 2. This latter estimator is the classical multivariate isotonic regression
estimator [46].
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LEMMA 2.1. When d = 1, entire monotonicity coincides with monotonicity, that is,
féM = .7-"1{,[. Ford > 2, we have FSM - ff,[.

It is well known that entirely monotone functions are closely related to cumulative distri-
bution functions of nonnegative measures. The following result taken from Aistleitner and
Dick [1], Theorem 3, makes this connection precise.

LEMMA 2.2 ([1], Theorem 3).

1. For every nonnegative Borel measure v on [0, l]d, the function f(x) := v ([0, x]) be-
longs to Fiy,.

2. If f e FSM is right continuous, then there exists a unique nonnegative Borel measure
v on [0, 119 such that f(x) — f(0) = v ([0, x]).

We shall now define the notion of HKO variation. The HKO variation is defined through
another variation called the Vitali variation. Let us first define the Vitali variation of a function
f:10,1]¢ — R. To do so, we need some notation. By a partition of the univariate interval
[0, 1], we mean a set of points 0 = xp < x; < --- < xx = 1 for some k > 1. Given d such
univariate partitions:

(20) Ozx(()s)<xl(s)<---<x,§)=1, fors=1,...,d,

we can define a collection P of subsets of [0, 1]¢ consisting of all sets of the form A x

- x Ag where for each 1 <s <d, Ay = [xl(:),x,(:ll] for some 0 < I; < k; — 1. Note that
each set in P is an axis-aligned closed rectangle and the cardinality of P equals & ... kg. The
rectangles in P are not disjoint but they form a split of [0, 11¢ in the sense of Owen [44],

Definition 3, and we shall refer to P as the split generated by the d univariate partitions (20).

DEFINITION 2.2 (Vitali variation). The Vitali variation of a function f : [0, 1]¢ — R is
defined as

VO(f£:10,11%) :==sup D |A(f; A,
AeP
where A(f; A) is the quasi-volume defined in (17) and the supremum above is taken over all
splits P that are generated by d univariate partitions in the manner described above.

The following observations about the Vitali variation will be useful for us. Note first that
when d = 1, Vitali variation is simply total variation (4) since the rectangles in this case are
intervals. The second fact is that when f is smooth (in the sense that the partial derivatives
appearing below exist and are continuous on [0, 1]¢), we have

1 1
1) V@ (£ 10, 1]d)=/0 /0 f

ad
0X1...0xq
The third observation is that V(@ (f; [0, 1]9) can be written out explicitly when f is a rect-
angular piecewise constant function. In order to state this result, let us formally define the
notion of a rectangular piecewise constant function on [0, 1]1¢. Given d univariate partitions
as in (20), let P* denote the collection of all sets of the form A; x --- x A; where for each

1 <s <d, A; is either equal to [x,(:), xl(;}r]) for some 0 < Iy < k; — 1 or the singleton {1}.

dxy...dxg.

Note that, unlike P, the sets in P* are disjoint, and hence P* forms a partition of [0, l]d. We
shall refer to P* as the partition generated by the d univariate partitions (20).
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DEFINITION 2.3 (Rectangular piecewise constant function). We say that f : [0, 1]Y — R
is rectangular piecewise constant if there exists a partition P* generated by d univariate
partitions as described above such that f is constant on each set in 77* We use ¢ to denote
the class of all rectangular piecewise constant functions on [0, 1]¢. For f € ¢, we define
k(f) as the smallest value of ki ... ks for which there exist d univariate partitions of lengths
ki, ...,kq such that f is constant on each of the sets in P* generated by these d univariate
partitions.

The following lemma (proved in Section D.2 of the Supplementary Material [21]) provides
a formula for the Vitali variation of a rectangular piecewise constant function f on [0, 1].
Note that this lemma implies, in particular, that the Vitali variation of every rectangular piece-
wise constant function is finite.

LEMMA 2.3. Suppose f is rectangular piecewise constant on [0, 11¢ with respect to a
partition P* generated by d univariate partitions and let ‘P denote the split generated by
these univariate partitions. Then

VO(£:10,11%) = D" A A)].

AeP

Despite these interesting properties, the Vitali variation is not directly suitable for our
purposes because there exist many nonconstant functions f on [0, l]d (suchas f(x,y) :=x)
whose Vitali variation is zero. This weakness of the Vitali variation is well known (see, e.g.,
Owen [44] or Aistleitner and Dick [1]) and motivates the following definition of the HK0
variation.

Given a nonempty subset of indices S C [d] ={1, ..., d}, let

(22) US:={(u1,...,ud)e[0,l]d:uj=O,j¢S}.

Note that Us is a face of [0, 1]¢ adjacent to 0. By ignoring the components not in S,
the restriction of the function f on [0, l]d to the set Ug can be viewed as a function
f [0, 1]'S! — R. The Vitali variation of f viewed as a function of [0, 1]'S! will be denoted
by

vED(£:8:10,119) == VED (710, 119).
The Hardy—Krause variation (anchored at 0) of f : [0, 1]1¢ — R is defined by
Viko(f:10,119):= Y vUSD(£: 85100, 119).

@#SCd]

That is, the HKO0 variation is the sum of the Vitali variations of f restricted to each face of
[0, 11¢ adjacent to 0. Note the special role played by the point 0 in this definition and this
is the reason for the phrase “anchored at 0.” It is also common to anchor the HK variation
at 1 (see, e.g., Aistleitner and Dick [1]) but we focus only on 0 as the anchor in this paper.
Because of the addition of the lower-dimensional Vitali variations, it is clear that the HKOQ
variation equals zero only for constant functions and this property is the reason why the HK0
variation is usually preferred to the Vitali variation.

Let us now remark that the HKO variation is quite different from the usual notion of mul-
tivariate total variation. Indeed, when f is smooth, the multivariate total variation of f only
involves the first-order partial derivatives of f. On the other hand, as can be seen from (21),
the HKO variation is defined in terms of higher order mixed partial derivatives of f.

An important property of the HKO variation is that it is finite for rectangular piecewise con-
stant functions. This is basically a consequence of Lemma 2.3 and the fact that the restriction
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of a rectangular piecewise constant function to each set Ug in (22) is also rectangular piece-
wise constant.

The following lemma formally establishes the connection between entire monotonicity
and HKO variation, as mentioned earlier in the Introduction.

LEMMA 2.4. The following properties hold:

() If f : [0, 119 — R has finite HKO variation, then there exist unique f+, f— € ng such
that f1(0) = f_(0) =0 and

f®) = f(0) = fr(x) — f-(x), xe[0,1]

and

Viko(£3 [0, 11%) = Vako(f+5 [0, 119) + Vo (f=; [0, 119).
(i) If f € Fdy, then

Viko(f5 10, 119) = £(1) — £(0).

The first fact in the above lemma is quite standard (see, e.g., [1], Theorem 2). We could
not find an exact reference for the second fact so we included a proof in Section D.3 of the
Supplementary Material [21].

Finally, let us mention that it is well known that a result analogous to Lemma 2.2 holds
for the connection between functions with finite HK0 variation and cumulative distribution
functions for signed measures. This result is stated next.

LEMMA 2.5 ([1], Theorem 3).

1. For every signed Borel measure v on [0, 114, the function f(x) :=v([0, Xx]) has finite
HKQO variation.

2. If f has finite HKO variation and is right continuous, then there exists a unique finite
signed Borel measure v on [0, 119 such that f(x) =v([0, x]).

3. Computational feasibility. The goal of this section is to describe procedures for com-
puting the two estimators (2) and (6). We shall specifically show that the estimators (2) and
(6) can be computed by solving a NNLS problem and a LASSO problem, respectively, with
a suitable design matrix that is the same for both the problems and that depends only on

X1, ..., Xy. This design matrix will be the matrix A whose columns are the distinct elements
of the finite set
(23) Q=0y,..x, ={v@®:2€[0, 11} S {0, 1})",
where

v(z) = vx,...x, @) = Iz (X1, Tz 11(%2), -, Tz, 17 (X))
We assume without loss of generality that the first columnof Aisv(0) =1=(1,...,1) e R".
Note that A has dimensions n x p where p = p(xy, ..., X,) := |Q|. By definition, there exist
distinct points z1, ...,z, € [0, 114 with z; = 0 such that the Jjth column of A is v(z;) for
each j.

Our first result below deals with problem (2). Given the design matrix A, we can define
the following NNLS problem

(24) Beme  argmin [y — ABJ2,
BeRP:$;>0,Vj>2
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where y is the n x 1 vector consisting of the observations yi, ..., y, coming from model
(1). (24) is clearly a finite dimensional convex optimization problem (in fact, a quadratic op-
timization problem with linear constraints). Its solution gy is not necessarily unique but
the vector Aﬁ em 1s the projection of the observation vector y onto the closed convex cone
{AB :min;>> B; > 0} and is thus unique. The next result (proved in Section D.6 of the Sup-
E\lementary Material [21]) shows how to obtain a solution to problem (2) using any solution

PROPOSITION 3.1.  One solution for the optimization problem (2) is

P
(25) fEm = Z(ﬁEM)/ iz; 11,
j=1
where ﬁEM = ((EEM)I, e, (BEM)p) is any solution to (24).

Thus, one way to compute the estimator (2) is to solve the NNLS problem (24) and use
the resulting coefficients in the above manner (25). It is interesting to note that the solution
(25) s a rectangular piecewise constant function and the quantity & ( fEM) (see Definition 2.3)
will be controlled by the sparsity of ﬂEM The key to proving Proposition 3.1 is the following
characterization of ]—"EM (proved in Section D.5 of the Supplementary Material [21]).

PROPOSITION 3.2 (Discretization of entirely monotone functions). For every set of de-
sign points X1, ...,X, € [0, 114, we have

{AB:B;=0,Vj =2} ={(fx1),.... () : f € Fi}.

Note that Proposition 3.2 immediately implies that for every minimizer fEM of (2), the
vector ( fEM xp), . fEM (x,)) equals Aﬂ gMm and is thus unique.

We now turn to problem (6). Given the matrix A and a tuning parameter V > 0, we can
define the following LASSO problem:

(26) Bukov €  argmin  |ly—AB|>.
BERP:Y. ;s |B;1<V

Again /?HKO’V may not be unique but A ﬁHKO,V is unique as it is the projection of y onto the
closed convex set

27) C(V):= {Aﬁ:2|ﬂj|§\/}.

j=2
The next result (proved in Section D.8 of the Supplementary Material [21]) shows how to
obtain a solution to (6) using any solution ﬂHKO y of (26).

PROPOSITION 3.3.  One solution for the optimization problem (6) is

P
(28) Jaxo.v =Y (Buko.v); - Iiz; .1,
=1

where Byxo.y = ((Buko.v)1, - - - » (Buko.v) ) is the solution to the LASSO problem (26).

Thus, one way to compute the estimator (6) is to solve the LASSO problem (26) and use
the resulting coefficients to construct the rectangular piecewise constant function (6). Note
the strong similarity between the two expressions (25) and (28). The following result (proved
in Section D.7 of the Supplementary Material [21]) is the key ingredient in proving the above.
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PROPOSITION 3.4.  For every set of design points X, ..., X, € [0, 11¢, we have

COV)={(f&x1),..., F&n)) : Viaxo(f; [0, 119) < V.

Proposition 3.4 immediately implies that for every minimizer ﬁ{KO,V of (6), the vector
(fuko,v (X1), ..., fHK0,v (X4)) equals AByy v and is thus unique.

We have thus shown that the LSEs defined by (2) and (6) can be computed via NNLS and
LASSO estimators with respect to the design matrix A whose columns are the elements of
the finite set Q defined in (23). Once the design matrix A is formed, we can use existing
quadratic program solvers to solve the NNLS and LASSO problems. The key to forming A
is to enumerate the elements of Q and we address this issue now. We first state the following
result which provides a worst case upper bound on p = p(xy, ..., X,), the cardinality of O.

LEMMA 3.5. The cardinality of Q satisfies
d

(29) pixixn =Y (1)

j=0

for everyxy, ..., x, € R,

Lemma 3.5 is a consequence of the Vapnik—Chervonenkis lemma [58] and is proved in
Section D.9 of the Supplementary Material [21]. Note that the upper bound (29) can be further
bounded by (en/d)?.

We emphasize here that Lemma 3.5 gives a worst case upper bound for p(xy,...,X;)
(here worst case is in terms of the design configurations Xi, ..., X, ). For specific choices of
X1, ..., Xp, the quantity p(xy, ..., X,) can be much smaller than the right-hand side of (29).
For example, if xi, ..., X, are an enumeration of the grid points {(il/nl/d, e, id/nl/d) :
i1,...,igef{l,..., nl/d}} (or form any other full grid), then p(xi, ..., X,) = n whereas the
upper bound in (29) is of order n¢. However, there exist design configurations Xi, ..., X,
where the upper bound can be tight. For instance, when d =2, if x1, ..., X, lie on the antidi-

agonal (the line segment connecting (0, 1) and (1, 0)), then p(xy,...,X,) = @, so the

upper bound "(”TH) + 1 in (29) is nearly tight for p(xy, ..., X;).

The task of enumerating Q in general can be simplified if we show that we only need
to check the value of I, 1) on the design points Xi, ..., X, for all z in some finite set S,
rather than all z € (0, 1] as in definition (23). Then we can list all |S| evaluation vectors
(and remove duplicates if necessary) to form A. The following two strategies can be used to
construct the set S:

1. Naive gridding. The simplest idea is to let S be the smallest grid that contains the
design points X, ..., X,. Thatis, let § = §; x --- x §; where §; :={(x1);, ..., (X,);} is the
set of unique jth component values among the design points. It is simple to check that for
any z € (0, 114, the value of Iz1) on the design points is the same as Ij, 17, where z’ is the
smallest element of S such that z < z’. In the worst case, |S | = n for each j, so we would
need to check at most | S| = n? vectors.

2. Componentwise minimum. A better approach is to let

S:={min{x; :i € I}:1 C[n],|I| <d},

where “min” denotes componentwise minimum of vectors. That is, for each subset of the
design points of size < d, we take the componentwise minimum and include that vector in S.
To see why this definition of S suffices, consider any z € [0, 1]¢ and note the Iz,1) has the
same values on the design points as I}, 1}, where ' ;== min{x; :i € J} and J := {i : 2z < x;}.
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Furthermore, by the same reasoning as in our VC dimension computation above, there must
exist some subset I C J of size < d such that min{x; : i € J} = min{x; : i € I}, which proves
z' € S. In the worst case, we would need to check |S| = Z?:o (;’) vectors, which is the VC
upper bound (29).

3.1. Special case: The equally-spaced lattice design. The results stated so far in the sec-
tion hold for every configuration of design points X1, ..., X, € [0, 1]¢. We now specialize to
the setting where X1, ..., X, form an equally-spaced lattice (precisely defined below). Our
theoretical results described in the next section work under this setting. Moreover, some of
the estimators from the literature that are related to ﬁ;M and ff{Ko,V are defined only under
the lattice design so a discussion of the form of our estimators in this setting will make it
easier for us to compare and contrast them with existing estimators (this comparison is the
subject of Section 5).

Given positive integers ni,...,ng with n = ny...ng, by a lattice design of dimensions
ny X --- X ng, we mean that xi, ..., X, form an enumeration of the points in
30) Ly, ..., ndZ={(il/n1,...,id/nd)10§ijSnj—l,j=1,...,d}

Note that, in this setting, the set Q (defined in (23)) can be enumerated by Q = {v(x1), ...,
v(x,), 0}. Without loss of generality, we may ignore the 0 element and assume the columns of
Aarev(xy), ..., v(X,) sothatthe i, j entry of A is given by A(i, j) = ]I[Xj,l](xi) =I{x; <x;}.
We also take x; := 0 (corresponding to i; = - - - = iy = 0) so that the first column of A is the
vector of ones. Therefore, in the lattice design setting, the optimization problems (24) and
(26) for computing the two estimators J/‘EM and ﬁ{Ko, y can be rewritten as

n n 2
(31 Bev=  argmin Z()’i - Ifx; =< Xi}ﬂj)

BeRP:B;>0Vj>2,;_ j=1
and
~ n n 2
(32) Buko,v = argmin Z()’i - Ifx; < Xi}ﬂ_,-) ,
BeRP:} s |BjISV =y j=1

respectively. It also turns out that, in the lattice design setting, the matrix A is square and in-
vertible (Lemma D.1). As a result, it is possible to write down the vectors (]/C]\EM(Xl), e,
fng (x,)) and (]’C]\-]K(),V(Xl), e, ]’C]\_IK()’V(X,,)) as solutions to more explicit constrained
quadratic optimization problems. This is the content of the next result which is proved in
Section D.10 of the Supplementary Material [21]. Here, it will be convenient to represent

vectors in R” as tensors indexed by i := (i1, ..., ig) € Z where
T:={i=(1,....i0):ij€{0,1,...,nj — 1} forevery j=1,...,d}.

In other words, we write the components of a vector # € R" by 6; for i = (i1,...,i4) € L.

We will also denote the observation corresponding to the design point (iy/ny,...,iz/ngq) by

Vi = Vi, .iq-

LEMMA 3.6. Consider the setting of the lattice design of dimensions n1 X --- X nq. For
each @ € R", associate the “differenced” vector D8 € R" whose i'"* entry is given by

1 1
Do Y Hii—j1 =0, iq — ja = OW=D" e
J1=0  ja=0

foreveryi=(iy,...,iq) € L. Then:
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1. The vector (fl\gM(il/nl, codg/ng) i= (i1, ...,ig) € ) is the solution to the opti-
mization problem

(33) argmin{Z(yi — 6)%: (DB); = 0 for all i # 0}.
ieZ

2. The vector (ﬁIKo,V(il/nl, e ig/ng) :i=(y,...,1q) € L) is the solution to the op-
timization problem

(34) argmm{X:(yl —6)%: Z|(D0),| < V}
i#0

REMARK 3.1 (The special case of d =2). When d = 2, it is easy to see that the differ-
enced vector D@ is given by

eil,iz - eil—l,iz - 9i1,i2—1 +9i1—1,i2—1 lfll > 09 i2 > O’

0i,.0—6i,—1.0 ifi; > 0,i, =0,
(Do)(il,iz) = 911. 011. 0.
0,in — 00,i,—1 ifi;=0,ip >0,
00,0 ifi; =i, =0.

Using this, it is easy to see that (34) can be rewritten for d =2 as

ni—1lny—1
: 2.
argmin{ Y > (yiji, — 0i.i)
i1=0 ir=0
ni—1lny—1
(35) Z Z 10i1.iy — 6iy—1,i, — Oiyin—1 + iy —1,ir—11
i1=1 ir=l1
ni—1 np—1
+ > 160 = Oi—10l + D 1600, — B0,is—11 <V
i1=1 ir=1

and a similar formula can be written for (33) for d = 2.

As mentioned in the Introduction, an estimator similar to ﬁ{KO,V has been described by
Mammen and van de Geer [37] for d = 2 under the lattice design setting. Specifically, the
estimator of [37] for the vector (f*(i1/ny,i2/n2),0<ii <n;—1,0<iy <ny—1)is given
by the solution to the optimization problem:

argmin{ Y Giri = 0i.in)?

i1,02

(36) + A1 Z 16i),ir — 0iy—1,iy — 6iy,in—1 + iy —1,ir—11
i1,ir>1
A F(D) @ (2)
+r2 ) 16; =0, +r2 )16 }
i1>1 ir>1
.. . 7 1 - 1 72 . _
where Ay and A, are positive tuning parameters, 9:'1 = le —o 0iy.i, and 91-2 =

% Zl'-'l':_ol 0i,.i,- This optimization problem is similar to (35) in that the first term in the penalty
is the same in both problems. However the remaining terms in the penalty above are different
from the terms in (35) although they are of the same spirit in that both are penalizing lower
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dimensional variations. Moreover, our estimator (35) has one tuning parameter (in the con-
strained form) and (36) has two tuning parameters in the penalized form. It should also be
noted that we defined our estimators for arbitrary design points X, ..., X, while Mammen
and van de Geer [37] only considered the lattice design for d = 2.

4. Risk results. In this section, risk bounds for the estimators ﬁgM and ﬁﬂ(o,v are pre-
sented. We define risk under the standard fixed design squared error loss function (see (9)).
Throughout this section, we assume that we are working with the lattice design of dimensions
nyx---xngwithn=ny; x---xngandn; >1forall j=1,...,d.

4.1. Risk results for ﬁgM. In this subsection, we present bounds on the risk R(fEM, 9
of f}\gM under the well-specified assumption where we assume that f* € ]:EdM. The first result
below (proved in Section C.2 of the Supplementary Material [21]) bounds the risk in terms
of the HKO0 variation of f*. Note that from part (ii) of Lemma 2.4, Vgko(f™; [0, 119) =

FHA) — f*(0) as £* € Fiy

THEOREM 4.1.  Let f*eF M and V* := Vako(f*; [0, 119). For the lattice design (30),
the estimator fgy satisfies

sl )
+ Cd_2 (log(en)) (log(e log(en)))

(37

—1

where Cg is a constant that depends only on the dimension d.
Note that the bound (10) in the Introduction is the dominant first term of this bound (37).

REMARK 4.1 (Model misspecification). Theorem 4.1 is stated under the well-specified
assumption f* € F, M In the misspecified setting where f* ¢ F; EM, our LSE fgy will not
be close to f*, but rather to

fe argmmZ F&x) — f5x),

fe‘FEM i=1

so it is reasonable to consider R( fEM f ) rather than R( fEM f¥). By the argument outlined
in Remark C.1, one can show that R( fEM f ) is upper bounded by the right-hand side of (37)
after redefining V* as Viko( f [0, 119).

As mentioned in the Introduction, when d = 1, the estimator J/‘I:;M is simply the isotonic
LSE for which Zhang [63] proved that

2y7% N 2 2
(38) R(fem, f¥) < C(‘7 nv )3 n C%log(en)

for some constant C > 0. It is interesting to note that our risk bound (37) for general d > 2 has
the same terms as the univariate bound (38) with additional logarithmic factors which depend
on d. It is natural to ask therefore if these additional logarithmic factors are indeed necessary
or merely artifacts of our analysis. The next result (a minimax lower bound) shows that every
estimator pays a logarithmic multiplicative price of logn for d = 2 and (logn)2“=2/3 ford >
3 in the first n~2/3 term. We do not, unfortunately, know if the (logn)3?/2(loglogn)?¢—1/2
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factor in the second term in (37) is necessary or artifactual, although we can prove that it can
be removed by a modification of the estimator ﬁ;M (see Theorem 4.3 below).

The next result (proved in Section C.7 of the Supplementary Material [21]) proves a lower
bound for the minimax risk:

(39) MEM..v.a(n) := inf sup Ep+L(fa, f7),
In preFd Vi (f5)<V

where the expectation is with respect to model (1).

THEOREM 4.2. Letd >2,V >0,0 >0 and let nj > csnl/d forall j=1,...,d for
some cs € (0, 1]. Then there exists a positive constant Cg depending only on d and cs, such
that the minimax risk on the lattice design (30) satisfies

Mt o v a(n) > Cd<027V >%<1og<VI ))

provided n is larger than a positive constant ¢; ;2 ,y2 depending only on d, o2/ V2, and c.
In the case d =2, this bound can be tightened to

2(d 2)

2 2
(40) Minto.v.a(n) = C<¥) log( Vf)

Note that the assumption n; > csnl/ 4 for all J 1is reasonable, since if, for instance,
ngry1 = ngi4p -+ =ng = 1 then we simply have a d’-dimensional problem where d’ < d,
which should have a smaller minimax risk.

As mentioned before, the above result shows that some dependence on dimension d in the
logarithmic term cannot be avoided for any estimator. Note also, that for d = 2, the minimax
lower bound (40) matches our upper bound in Theorem 4.1 implying minimaxity of ]‘EM for
d =2. For d > 2, there remains a gap of logn between our minimax lower bound and the
upper bound in Theorem 4.1. This gap is due to a logarithmic gap between an upper bound
and lower bound given by Blei et al. [7], Theorem 1.1, for the metric entropy of cumulative
distribution functions of probability measures on [0, 1]¢, a gap that essentially reduces to
improving estimates of a small ball probability of Brownian sheets (see discussion in [7] for
more detail and references).

As mentioned earlier, the logarithmic factor (logn)3¢/?(loglogn)?4=1/2 appearing in the
second term of (37) can be removed by a modification of the estimator ﬁgM. This is shown in
the next result. For a tuning parameter V > 0, let

ﬁgM,V € argmin - Z f(xi))
feJ:EM VHKO(f)<V
Note that this differs from the original estimator (2) only by the introduction of the additional
constraint Vygo(f) < V.

THEOREM 4.3. Let f* € f]‘;iM and V* := Vako(f*; [0, 119). Assume the lattice design
(30). If the tuning parameter V is such that V. > V*, then the estimator fgm,y satisfies

2 2 2d—1 2
v V3 1% 3
w2 %) (afes B5)) v
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Note that the second term in (4.3) is just o2 /n and smaller than the second term in (37)
but this comes at the cost of introducing a tuning parameter V' that needs to be at least V*.

We will now prove near-parametric rates for fgpm when f* is rectangular piecewise con-
stant. To motivate these results, note first that when f* is constant on [0, 1]‘1 ,we have V* =0,
and thus the bound given by (37) is o2/ up to logarithmic factors. In the next result (proved
in Section C.3 of the Supplementary Material [21]), we generalize this fact and show that f}\gM
achieves nearly the parametric rate for rectangular piecewise constant functions f* € F; d
Recall the definition of the class 93¢ of all rectangular piecewise constant functions and the
associated mapping k(f), f € 93¢, from Definition 2.3.

THEOREM 4.4. For every f*:[0,119 — R, the LSE fgm satisfies

-~ sk 2d-1
R(fem, f*) < inf {ﬁ(f,f )+ Cao ﬁ(log(en)) (log(elog(en))) }

d
FeRINFLy

Theorem 4.4 gives a sharp oracle inequality in the sense of [5] as it applies to every func-
tion f* (even in the misspecified case when f* ¢ FgM) and the constant in front of the first
term inside the infimum equals 1. Even though the inequality holds for every f*, the right-
hand side will be small only when f* is close to some function f in R N }' Em- This implies
that when f *eRmin .FEM, we can take f = f* in the right-hand side to obtain that the risk
of fgm decays as o2k(f*)/n up to logarithmic factors. This rate will be faster than the rate
given by Theorem 4.1 provided k(f™) is not too large. Note that one can combine the two
bounds given by Theorem 4.1 and Theorem 4.4 by taking their minimum. In the case d =1,
Theorem 4.4 reduces to the adaptive rates for isotonic regression [5, 12] but with worse log-
arithmic factors.

We would also like to mention here that 3¢ N .7-" EM 1 a smaller class compared to R4 N F
(recall that Fy; d is defined via (19)). Risk results over the class 53¢ N Fm d for the LSE over ]-"%
and other related estimators have been proved in Han et al. [30] and Deng and Zhang [17].

Before closing this subsection, let us briefly describe the main ideas underlying the proofs
of Theorems 4.1, 4.2, 4.3 and 4.4. For Theorem 4.1, we use standard results on the accuracy
of LSEs on closed convex sets which related the risk of fgm to covering numbers of local
balls of the form {f € ng L(f, Y < t?} fort >0 sufficiently small in the pseudomet-
ric given by the square-root of the loss function £. We calculated the covering numbers of
these local balls by relating the functions in .FEM to distribution functions of signed measures
on [0, 1]¢ and using existing covering number results for distribution functions of signed
measures from Blei et al. [7] and Gao [23]. The proof of Theorem 4.2 is also based on cover-
ing number arguments as we use general minimax lower bounds from Yang and Barrons [61].
Finding lower bounds for the covering numbers under the pseudometric +/£ seems somewhat
involved and we used a multlscale construction from Blei et al. [7], Section 4, for this purpose.
The bound in Theorem 4.3 for fEM y is a quick consequence of the proof of the risk bound
for fHKo v (Theorem 4.5) Wthh is stated in the next subsection. For Theorem 4.4, we used
standard results relatlng R( fEM, f¥) to a certain size-related measure (statistical dimension)
of the tangent cone to fgu at f*. When f* € ¢ (or when f* is approximable by a function
in 7}9), this tangent cone is decomposable into tangent cones of certain lower-dimensional
tangent cones. The statistical dimension of these lower-dimensional tangent cones is then
bounded via an application of Theorem 4.1 in the case when V* =0.

4 2. Risk results for fHKo v. In this subsection, we present bounds on the risk
R( fHKo v, f*) of the estimator fHKo v. Note that the estimator fHKo y involves a tuning
parameter V and therefore these results will require some conditions on V. Our first result
below assumes that V > V* := Vyggo(f*; [0, 119) and gives the n—2/3 rate up to logarithmic
factors. The proof of this result is given in Section C.4.
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THEOREM 4.5.  Assume the lattice design (30). If the tuning parameter V is such that
V > V* = Vo (f*; [0, 119), then the estimator fHKO v satisfies

~ 2y\ 3 14 v 2
@ R(uov 1= Ca(20) (oa(2+ 1)) T vl

REMARK 4.2. As mentioned earlier, Mammen and van de Geer [37] (see also the very
recent paper Ortelli and van de Geer [42]) proposed the estimator (36) that is similar to
f ko,v. Mammen and van de Geer [37] also proved a risk result for their estimator giving the
rate n ~(1+d)/(1+2d) which is strictly suboptimal compared to our rate in (41) for d > 2. This
suboptimality is likely due to the use of suboptimal covering number bounds in [37].

REMARK 4.3 (Model misspecification). Theorem 4.5 is stated under the well—speciﬁed
assumption VHKO( f* 10, 119) < V. In the misspeciﬁed setting where Vugko(f™; [0, 119 >
V, our LSE fHKo v will not be close to f*, but to f € argrnmf Viko(£)<V Y (fxi) —

£*(x;))2, so it is reasonable to consider R( fHKo v, f ) rather than R( fHKo v, f ). By the
argument outlined in Remark C.1 (in the Supplementary Material [21]), R( fEM f ) is upper
bounded by the right-hand side of (41).

In the next result, we prove a complementary minimax lower bound to Theorem 4.5 which
proves that, for d > 2, the risk of every estimator over the class {f* : Vggo(f™) < V} is
bounded from below by n~2/3(logn)*“@=D/3 (ignoring terms depending on d, V and o).
This implies that the logarithmic terms in (41) can perhaps be reduced slightly but cannot be
removed altogether and must necessarily increase with the dimension d. Let

MUK, 0,v,4(n) :=inf sup E p+L(fn, f¥),
Ju f*:Vago(f*)<V

where the expectation is with respect to model (1). Note that { f* € ng Vako(f*) <V} C
{f*: Vako(f™) < V} which implies that

MUK, 0,v,d(n) = MEM,0,v,a (1),

where MMgm o,v.¢(n) is defined in (39). This implies, in particular, that the lower bounds on
IMEM., o, v.d(n) from Theorem 4.2 are also lower bounds on 9Myk 4+ v.q(n). However, the next
result (whose proof is in Section C.6 of the Supplementary Material [21]) gives a strictly
larger lower bound for 9Myk . v 4(n) for d > 2 than that given by Theorem 4.2.

THEOREM 4.6. Letd >2,V >0,0 >0 andletnj > csnl/dfor j=1,...,d, where
¢s € (0, 1]. Then there exists a positive constant C; depending only on d and cs, such that

o2V 3 NN
MUK, o,v,d(n) ZQ](T) <log< f))

provided n is larger than a positive constant ¢; ;2,2 depending only on d, o2/ V?, and c.
In the case d =2, this bound can be tightened to

v
smHKng(n)>0<"n ) (Vf>

Theorems 4.5 and 4.6 together imply that ﬁ{KO,V is minimax optimal over {f* :
Viko(f*) < V} for d = 2 and only possibly off by a factor of (logn)!/3 for d > 2.

We next explore the possibility of near parametric rates for ﬁ-lKO,V for rectangular piece-
wise constant functions. In the univariate case d = 1, it is known (see [28], Theorem 2.2)
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that ﬁqKo,v satisfies the near-parametric risk bound (13) provided (a) the tuning parameter
V is taken to be close to V*, (b) f* is piecewise constant, and (c) the length of each constant
piece of f* is bounded from below by ¢/k(f*) for some ¢ > 0. The next result (proved in
Section C.8 of the Supplementary Material [21]) provides evidence that a similar story holds
true for estimating certain rectangular piecewise constant functions.

For a given constant 0 < ¢ < 1/2, let iﬁf (c) denote the collection of functions f :
[0, 11 — R of the form

42) f=ailx 11+ao
for some ay, ag € R and x* € [0, 1]‘1 satisfying the minimum size condition

(43) min{|Ly,, ..., N[x* 1]

..... ’ ]Ln],...,nd m [05 X*)H Z cn.

To gain more intuition about the above condition, note first that we are working with the
lattice design so that L, .. ,, = {X1, ..., X;} is the set containing all design points. Roughly
speaking, (43) ensures that x* is not too close to the boundary of [0, 1]¢ so that each of the
rectangles [x*, 1] and [0, x*) contain at least some constant fraction of the n design points.

It is clear that 9%‘11 (c) is a subset of 93¢, that is, every function of the form (42) is rectan-
gular piecewise constant. Indeed, it is easy to see that k(f) < 27 for every f € f)‘i‘f (c). The
following result (proved in Section C.8 of the Supplementary Material [21]) bounds the risk
of fuko.v for f* e %Y (c).

THEOREM 4.7.  Consider the lattice design (30) with n > 1. Fix f*:10,11 - R and
consider the estimator fuko,v with a tuning parameter V. Then for every 0 < ¢ < 1/2, we
have

~ . . . o’ 3 21
@4 R(fuxov,f*) < inf (L(f, f*)+ C(c,d)—(logn) = (loglogn) 2
feR{(o: n

Vako(f)=V

for a constant C(c, d) that depends only on c and d.

Theorem 4.7 applies to every function f* but the infimum on the right-hand side of (44)
is over all functions f inASR‘f (c) with Vikoe(f) = V. Therefore, Theorem 4.7 implies that
the risk of the estimator fyke v with tuning parameter V at f* is the near-parametric rate

%z(log en)34/2(loglogn)?4=D/2 provided f* is close to some function f in 9%‘11 (c) with V =
Vako(f)- As an immediate consequence, we obtain that if f* € 9‘{‘11 (¢) and V = Vggo(f™),
then

—~ 2 3d 2d—1
R(fiako.v. %) = Cle.d) >~ (log(em) ? (log(elog(em))) = .

Functions in 9%‘11 (c) are constrained to satisfy the minimum size condition (43). A comparison
of Theorem 4.7 with the corresponding univariate results shows that the near-parametric rate
cannot be achieved without any minimum size condition (see, e.g., [28] and [20], Section 4,
Remark 2.5). However, condition (43) might sometimes be too stringent for d > 2. For ex-
ample, it rules out the case when x* := (0.5, 0, ..., 0) which means that the function class
i)‘i‘ll (c¢) excludes simple functions such as f(x) := I{x; > 1/2}. In Theorem A.1 (deferred to
Appendix A of the Supplementary Material [21]), we show that when d = 2, it is possible to
obtain the same risk bound under a weaker minimum size condition which does not rule out
functions such as f(x) :=I{x; > 1/2}.

The implication of Theorems 4.7 and A.1 is that there exists a subclass of R¢ consisting of
indicators of upper right rectangles in [0, 1]¢ over which the estimator ffﬂ(o,v, when ideally
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tuned, achieves the near-parametric rate with some logarithmic factors. Simulations (see Sec-
tion B.3 of the Supplementary Material [21]) indicate that this should also be true for a larger
subclass of ;¢ consisting of all functions in 93¢ satisfying some minimum size condition, but
our proof technique does not currently work in this generality. Ortelli and van de Geer [41]
recently proved, for d = 2, near-parametric rates for the estimator (36) for a more general
class of piecewise constant functions, but for a smaller loss function. Their proof technique
is completely different from our approach.

Let us now briefly discuss the key ideas behind the proofs of Theorems 4.5, 4.6 and 4.7.
Theorem 4.5 is proved via covering number arguments which relate R(ﬁmo,v, f*) to cov-
ering numbers of { f : Vako(f) < V} and these covering numbers are controlled by invoking
connections to distribution functions of signed measures. Theorem 4.6 is proved by Assouad’s
lemma with a multiscale construction of functions with bounded HKO variation. This multi-
scale construction is involved and taken from Blei et al. [7], Section 4.

The ideas for the proof of Theorem 4.7 (and also Theorem A.1) is borrowed from the
proofs for the univariate case in Guntuboyina et al. [28] although the situation for d > 2 is
much more complicated. At a high level, we use tangent cone connections where the goal is to
control an appropriate size measure (Gaussian width) of the tangent cone of { f : Vuxo(f) <
V*} at f*. This tangent cone can be explicitly computed (see Lemma C.11). To bound its
Gaussian width, our key observation is that for functions f* in 9‘{‘11 (c), every element of the
tangent cone can be broken down into lower-dimensional elements each of which is either
nearly entirely monotone or has low HKO0 variation. The Gaussian width of the tangent cone
can then be bounded by a combination of (suitably strengthened) versions of Theorem 4.4
and Theorem 4.5. This method unfortunately does not seem to work for arbitrary functions
f* € \? because of certain technical issues which are mentioned in Remark C.2.

5. On the ‘“dimension-independent” rate n~2/3 in Theorem 4.1 and Theorem 4.5.
As mentioned previously, the dimension d appears in the bounds given by Theorem 4.1 and
Theorem 4.5 only through the logarithmic term which means that J/”]\;M and ﬁ{Ko,V attain
“dimension-independent rates” ignoring logarithmic factors. We shall provide some insight
and put these results in proper historical context in this section. In nonparametric statistics,
it is well known that the rate of estimation of smooth functions based on n observations is
n—2m/@m+d) where d is the dimension and m is the order of smoothness [51]. The constraints
of entire monotonicity and having finite HK0 variation can be loosely viewed as smoothness
constraints of order m = d. This is because, for smooth functions f, entire monotonicity is
equivalent to

ISt f
——— >0 forevery @#SC{l,...,d}
l_[jeS dx;
and the constraint of finite HK0 variation is equivalent to
ISt f
(45) — 2 L' forevery@#SC{l,...,d}.
l_[jeS 8x_,'

Because derivatives of order d appear in these expressions, these constraints should be con-
sidered as smoothness constraints of order d. Note that taking m = d in n=2"/Cm+d) gjyes
—-2/3
n .
Some other papers which studied such higher order constraints to obtain estimators having
nearly dimension-free rates include [4, 13, 35, 40, 50, 59]. In particular, Lin [35] studied
estimation under the constraint:

ISl £

46
(40) HjeS ax;

e L? forevery @ # S C{l1,...,d}.
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The difference between (45) and (46) is that L' in (45) is replaced by L? in (46). Lin [35]
proved that the minimax rate of convergence under (46) is n—2/3 (log n)2@=D/3 and con-
structed a linear estimator which is optimal over the class (46). Let us remark here that
the L2 constraint makes the class smaller compared to (45) and also enables linear es-
timators to achieve the optimal rate. However, linear estimators will not be optimal over
{f: Vako(f) < V} as is well known in d = 1 (see Donoho and Johnstone [19]) and the es-
timator of Lin [35] will also not adapt to rectangular piecewise constant functions (note that
it is not possible to extend (46) to nonsmooth functions in such a way that the constraint is
satisfied by rectangular piecewise constant functions).

Let us also mention here that, in approximation theory, it is known that classes of smooth
functions f on [0, 14 satisfying mixed partial derivative constraints such as (45) or (46)
allow one to overcome the curse of dimensionality to some extent from the perspective of
metric entropy, approximation and interpolation (see, e.g., [9, 18, 52]).

Another way to impose higher order smoothness is to impose the constraint:

d
(47) %eLl foreach j=1,...,d
x5
J
as in the Kronecker trend filtering method of order k 4+ 1 = d of Sadhanala et al. [SO] who
also proved that this leads to the dimension-free rate n~2/> up to logarithmic factors. There
are some differences between the constraints (45) and (47). For example, product functions
[, xq) = fi(xy) ... fa(xq) satisfy (45) provided each f; satisfies fjf € L while they

will satisfy (47) provided /¥ € Ly.

Finally, let us mention that, in the usual multivariate extensions of isotonic regression and
total variation denoising, one uses partial derivatives only of the first order which leads to
rates of convergence that are exponential in the dimension d. For example, the usual multi-
variate isotonic regression (see, e.g., Robertson et al. [46], Section 1.3) considers the class
]-"1(1,[ of multivariate monotone functions which only imposes first order constraints. The rate
of convergence here is given by n~ /¢ as recently shown in Han et al. [30]. This rate is ex-
ponentially slow in the dimension d. One sees the same rate behavior for the multivariate
total variation denoising estimator (which also imposes only first-order constraints) origi-
nally proposed by Rudin et al. [47] and whose theoretical behavior is studied in Chatterjee
and Goswami [11], Hiitter and Rigollet [32], Ortelli and van de Geer [43], Ruiz et al. [48]
and Sadhanala et al. [49].
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Supplement to ‘“Multivariate extensions of isotonic regression and total variation
denoising via entire monotonicity and Hardy-Krause variation” (DOI: 10.1214/20-
AOS1977SUPP; .pdf). This contains additional results and simulations as well as all the
proofs of the results of the paper.
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