Universally-Optimal Distributed Algorithms for Known
Topologies’

Bernhard Haeupler David Wajc Goran Zuzic
CMU & ETH Zurich Stanford University ETH Zurich
USA & Switzerland USA Switzerland

haeupler@cs.cmu.edu

ABSTRACT

Many distributed optimization algorithms achieve existentially-
optimal running times, meaning that there exists some pathological
worst-case topology on which no algorithm can do better. Still,
most networks of interest allow for exponentially faster algorithms.
This motivates two questions:

(i) What network topology parameters determine the complexity
of distributed optimization?

(ii) Are there universally-optimal algorithms that are as fast as
possible on every topology?

We resolve these 25-year-old open problems in the known-topology
setting (i.e., supported CONGEST) for a wide class of global net-
work optimization problems including MST, (1+¢€)-min cut, various
approximate shortest paths problems, sub-graph connectivity, etc.

In particular, we provide several (equivalent) graph parameters
and show they are tight universal lower bounds for the above prob-
lems, fully characterizing their inherent complexity. Our results
also imply that algorithms based on the low-congestion shortcut
framework match the above lower bound, making them universally
optimal if shortcuts are efficiently approximable.

CCS CONCEPTS

» Mathematics of computing — Graph algorithms; - Theory
of computation — Distributed algorithms; Routing and net-
work design problems;

KEYWORDS

Distributed Algorithms, Universal Optimality, Universal Lower
Bounds, Shortcuts, Shortcut Quality

ACM Reference Format:

Bernhard Haeupler, David Wajc, and Goran Zuzic. 2021. Universally-Optimal
Distributed Algorithms for Known Topologies. In Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing (STOC ’21), June
21-25, 2021, Virtual, Italy. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3406325.3451081

*A full version of this paper is available on arxiv [38]. Supported in part by NSF grants
CCF-1527110, CCF-1618280, CCF-1814603, CCF-1910588, NSF CAREER award CCF-
1750808, ONR award N000141912550, a Sloan Research Fellowship, a gift from Cisco
Research, and funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (ERC grant agreement 949272).

This work is licensed under a Creative Commons Attribution International 4.0 License.

STOC °21, June 21-25, 2021, Virtual, Italy

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8053-9/21/06.
https://doi.org/10.1145/3406325.3451081

1166

wajc@stanford.edu

goran.zuzic@inf.ethz.ch

1 INTRODUCTION

Much of modern large-scale graph processing and network anal-
ysis is done using systems like Google’s Pregel [53], Facebook’s
Giraph [6, 39], or Apache’s Spark GraphX [30]. These systems im-
plement synchronous message-passing algorithms, in which nodes
send (small) messages to their neighbors in each round.!

This has motivated a recent, broad, concentrated, and highly-
successful effort to advance our theoretical understanding of such
algorithms for fundamental network optimization problems, such
as minimum-spanning trees (MST) [11, 14, 45, 47, 60], shortest
paths [13, 18, 41-43, 49, 50, 55], flows [27], and cuts [9, 23, 56]. As a
result, many fundamental optimization problems now have worst-
case-optimal CONGEST algorithms, running in ©(y/n + D) rounds
on every n-node network with diameter D.? In general, these run-
ning times cannot be improved due to unconditional lower bounds
[8, 12, 62] showing that there exist pathological n-node topologies
with small diameter on which any non-trivial optimization problem
requires ((+/n) rounds. Fittingly, this type of worst-case optimality
is also called existential optimality.

While these results are remarkable achievements, this paper em-
phatically argues that one cannot stop with such worst-case optimal
algorithms. In particular, existential optimality says nothing about
the performance of an algorithm compared to what is achievable
on real-world networks, which are never worst-case, and might
allow for drastically faster running times compared to a patho-
logical worst-case instance. For example, it is a well-established
fact that essentially all real-world topologies have network diam-
eters that are very small compared to the network size [58] (this
is known as the small-world effect), and essentially all mathemat-
ical models for practical networks feature diameters that are at
most polylogarithmic in n. Despite this fact, for such networks
the existentially-optimal algorithms take ©(+/n) rounds, which is
neither practically relevant, nor does it correspond to any observed
practical barrier or bottleneck. This has motivated a concentrated
effort in recent years to provide improved algorithms for families of
networks of interest [23, 24, 26, 28, 31-35, 46]. Nonetheless, many
practical networks do not fit any of the above families, and so no
practically useful algorithm is known for these networks, even if
we allow for preprocessing of a known network topology. This
strongly motivates a broader search for algorithms which adjust to
non-worst-case topologies.

!For concreteness, we limit message sizes to O (log n) bits, for n the number of network
nodes. This is exactly the classic CONGEST model of distributed computation [61], or
the supported CONGEST model [65], if the network is known and preprocessing is al-
lowed. In what follows, we use the terms topology and network graph interchangeably.
2Throughout, we use O, Q and © to suppress polylogn terms. E.g., O(f(n)) =
O(f(n)1og®W n).

STOC ’21, June 21-25, 2021, Virtual, Italy

1.1 When Optimal Is Not Good Enough:
Universal Optimality

The search for algorithms with beyond-worst-case guarantees is
not new. Indeed, it goes back at least as far as 25 years ago, to an
influential paper of Garay, Kutten, and Peleg [20]. In that work,
Garay et al. improved upon the existentially-optimal O(n) round
minimum spanning tree (MST) algorithm of Awerbuch [3].? In par-
ticular, they gave an O(n%-*'3+D) round algorithm. This was in turn
improved to an O(v/n + D) round algorithm that is existentially-
optimal in n and D by Kutten and Peleg [47]. These latter two
papers started and majorly shaped the area of distributed optimiza-
tion algorithms. Garay, Kutten, and Peleg informally introduced
the concept of universal-optimality as the ultimate guarantee for
adjusting to non-worst-case topologies:

This type of optimality may be thought of as “existen-
tial” optimality; namely, there are points in the class
of input instances under consideration for which the
algorithm is optimal. A stronger type of optimality,
which we may analogously call “universal” optimal-
ity, occurs when the proposed algorithm solves the
problem optimally on every instance.

(-]

The interesting question that arises is, therefore, whether
it is possible to identify the inherent graph param-
eters associated with the distributed complexity of
various fundamental network problems, and develop
universally-optimal algorithms. [20]

However, formalizing this concept is not as straightforward as
it seems—two different readings of the above quote allows for a
variety of subtly-but-crucially different formal definitions. In this
paper we provide two sensible definitions. (See Section 3 for a fully
formal treatment.)

An algorithm A is instance optimal if, every instance (i.e., a net-
work G and problem-specific input), its runtime is O(1)-competitive
with every other always-correct algorithm, including the fastest
algorithm for that instance. While interesting and useful in more
restrictive contexts, we show that instance optimality is provably
unachievable for CONGEST problems like MST.

Next, we say an algorithm A is universally optimal if, for ev-
ery network G, worst-case runtime of A over all inputs on G is
O(1)-competitive with the worst-case runtime of any other always-
correct algorithm, particularly the fastest algorithm for G. Equiv-
alently, this definition (implicitly) asks about the inherent graph
parameter X1(G) such that there is a correct algorithm for a prob-
lem IT running in O (X7 (G)) rounds on G, and any correct algorithm
for IT requires Q (X1 (G)) rounds (on some input). While it is not
clear whether there exists a single algorithm with such a property
for any non-trivial task, we prove such an algorithm does exist for
many distributed problems.

Note that X7y is problem-specific by definition, since different

problems IT could be characterized by different graph parameters.
Remarkably, we show that all the problem studied in this paper

3Note that there exists a pathological worst-case topology requiring Q () rounds to
solve MST: an n-node ring graph.

1167

Bernhard Haeupler, David Wajc, and Goran Zuzic

form a “universal complexity class”, and share a common parameter
which captures their complexity.

1.2 Our Results

We resolve both questions of Garay, Kutten, and Peleg [20] in the
supported CONGEST model: we identify graph parameters that
fully characterize the inherent complexity of distributed global net-
work optimization, and prove the existence of universally-optimal
distributed algorithms that match those parameters.

Specifically, we show that a graph parameter SHORTCUTQUALITY
(G) is a universal CONGEST lower bound for many important dis-
tributed optimization problems—meaning that every correct algo-
rithm requires at least Q(SHORTCUTQUALITY(G)) rounds to com-
pute the output on any network G. The main challenge in obtaining
such a result is the very rich space of possible algorithms that might
produce correct results on some specially-crafted network G, possi-
bly outperforming shortcut-based algorithms. To show this is not
possible, we utilize prior work on network coding gaps that relate
general algorithms for certain simple communication problems to
shortcut quality [36]. We then combine this result with a combina-
torial construction that shows how to find good-quality shortcuts
if there exist fast distributed algorithms for subgraph connectivity
verification (Section 5), a problem which readily reduces to many
other distributed optimization problems [8]. This universal lower
bound holds even when the topology is known, i.e., even in the
supported CONGEST model.

The parameter SHORTCUTQUALITY(G) is particularly notable
since it is a key parameter in the running time of distributed al-
gorithms that are based on the so-called “low-congestion short-
cut framework” (see Section 2.2). A long line of work has shown
that many distributed optimization problems can be solved in
O(SHORTCUTQUALITY(G)) rounds if one can efficiently construct
near-optimal shortcuts. However, such constructions were only
known for special types of graphs. We obtain efficient construc-
tions for all graphs in the known-topology settings by connecting
the question to recent advancements in hop-constrained oblivious
routings [29] (see Section 6). Putting this together, we obtain the
following result.

Theorem 1.1. [Informal] The problems MST, (1 + ¢)-
minimum cut, sub-graph connectivity, various approximate
shortest path problems (and more) admit a universally-
optimal supported-CONGEST algorithm based on the low-
congestion shortcut framework.

Moreover, we identify several different graph parameters beside
SHORTCUTQUALITY(G) that are universal CONGEST lower bounds
(for the same set of problems). While the pararmeters are equiv-
alent up to O(1) factors, they provide different interpretations of
the barriers that preclude fast algorithms for distributed network
optimization.

Universally-Optimal Distributed Algorithms for Known Topologies

1.3 Related Work

Probably the most well-studied global optimization problem in the
distributed message-passing literature, and the one that best illus-
trates the search for universal optimality, is the minimum spanning
tree (MST) problem. It was precisely the study of this problem
which initiated the quest for universal optimality, as put forth in
1993 by Garay, Kutten, and Peleg [20, 21]. This problem was first
studied in a distributed setting in the seminal work of Gallager,
Humblet, and Spira [19], who gave an O(nlog n)-round MST algo-
rithm. This was later improved by Awerbuch [3] to O(n) rounds,
which is existentially optimal in n. Garay et al. [21], advocating
for a more refined analysis, moved closer to the universal lower
bound of Q(D), giving an O(D+n%%13)-round MST algorithm. This
was improved to O(D + y/n) by Kutten and Peleg [47]. Peleg and
Rubinovich [62] constructed networks proving this bound is also
existentially optimal in n and D. These networks were then used to
prove lower bounds for approximate MST by Elkin [12], and many
other problems by Das Sarma et al. [8]. Many algorithms matching
this existentially-optimal O(D + y/n) upper bound were obtained
over the years [11, 14, 47, 60], including using the low-congestion
shortcut framework [23].

The above results foreshadowed much work on studying other
graph parameters which allow for improved running time for the
MST problem. One example is restricting the diameter. For exam-
ple, for graphs of diameter 1 (i.e., the congested clique model), a
sequence of works [25, 40, 51] culminated in an O(1)-time algo-
rithm [44, 59]. For small-constant diameter, Lotker et al. [52] gave an
O(log n) algorithm for diameter-2 graphs, and Q(</n) and Q(+/n)
lower bounds for graphs of diameter 3 and 4, with algorithms
matching these bounds recently obtained using the low-congestion
shortcut framework [46]. Indeed, the shortcut framework has been
the driving force behind numerous improved results for restricted
graph families [23, 24, 28, 32-35, 46]. For most of these results, the
worst-case shortcut quality of a graph in the graph family serves
as an upper bound for these algorithms’ running time. Our work
shows that shortcut quality is precisely the optimal running time
for any graph, proving that this graph parameter is a universal
lower bound for distributed algorithms, and that this lower bound
is achievable algorithmically by efficient supported-CONGEST al-
gorithms.

The power of preprocessing. In this work we study CONGEST
algorithms [61], both under the assumption that the topology is
unknown or known to the nodes. The latter is the supported CON-
GEST model, introduced by Schmid and Suomela [65], who were
motivated by Software-Defined Networking (SDN). As they ar-
gued, in SDN enabled networks, the underlying communication
topology is known, while the input (e.g., edge weights, subgraph
to test connectivity of, etc) may vary. It is therefore natural to
preprocess the graph in advance in order to support the solution
of possible inputs defined on this graph. In this model Ghaffari
[22] gave a polynomial-time preprocessing k-broadcast algorithm
which is optimal among routing-based distributed algorithms on the
given input. It was noted in [16, 17, 65] that, while preprocessing
intuitively seems very powerful, CONGEST lower bounds [1, 8]
generally hold even in the supported model. Due to this, [17] asks

1168

STOC ’21, June 21-25, 2021, Virtual, Italy

whether preprocessing offers any benefit at all, and they offer sev-
eral (specifically-made) tasks that do exhibit a separation. However,
the question remains open for well-studied problems in the field.
This paper offers a partial answer to this question that, up to effi-
cient construction of near-optimal shortcuts, preprocessing does
not help for many well-known problems.

Strengthened notions of optimality. Various notions of opti-
mality similar to instance optimality have been studied in depth in
many fields, and some algorithms achieving these desired properties
are known in various computational models. Instance optimality
with respect to a certain class of algorithms has been proven in
aggregation algorithms for database systems [15], shared memory
distributed algorithms [10], geometric algorithms [2], and distribu-
tion testing and learning algorithms [68, 69]. Indeed, the entire field
of online algorithms concerns itself with the notion of competitive
analysis, which can be seen as a form of instance optimality [5, 54].
For other models, stronger notions of optimality were long sought
after, but remain elusive. For example, one of the oldest open ques-
tions in computer science is the dynamic optimality conjecture of
Sleator and Tarjan [67], which states that splay trees are instance-
optimal among all binary search trees. The problems studied here
join the growing list of problems in various computational models
for which such instance-optimal algorithms are known. This no-
tion of instance optimality was discussed in the distributed setting
by Elkin [11], who achieved instance optimality with respect to
coarsening will-maintaining protocols in the LOCAL model (see
Section 3.2 for a comparison between this work and our results).

1.4 Paper Outline

We define the computational models and problems studied in this
paper, and discuss necessary technical background in Section 2.
We then formalize the notion of universal optimality in Section 3,
and point out some delicate points concerning this notion. In Sec-
tion 4 we give a technical overview of the paper, presenting the
key ideas behind our matching bounds for supported CONGEST,
and point out a number of asymptotically equivalent tight uni-
versal bounds which follow from our work. We then substantiate
our universal lower bound in Section 5, deferring the most tech-
nically involved part of this lower bound—proving the existence
of disjointness gadgets—to the full version. We then present our
matching supported CONGEST upper bound in terms of shortcut
quality in Section 6. We conclude with a discussion of open ques-
tions in Section 7. Due to space constraints, a number of proofs are
deferred to the full version of the paper, most notably a discussion
of sub-diameter bounds in the supported CONGEST model. (See
also discussion in Section 3.2.)

2 PRELIMINARIES
2.1 Models and Problems

We will focus on the following two models of communication.

CONGEST [61]. In this setting, a network is given as a connected
undirected graph G = (V, E) with diameter D and n := |V| nodes.
Initially, nodes know n and D and their unique O(log n)-bit ID, IDs
of their neighbors, and their problem-specific inputs. Communi-
cation occurs in synchronous rounds; during a round, each node

STOC ’21, June 21-25, 2021, Virtual, Italy

can send O(logn) bits to each of its neighbors. The goal is to de-
sign protocols that minimize the number of rounds until all nodes
are guaranteed to output a solution (some global function of the
problem-specific inputs) and terminate.

Supported CONGEST [65]. This setting is same as the classic
CONGEST setting, with the addition that each node knows all
unique IDs and the entire topology G at the start of the computa-
tion. Note that this is equivalent to the CONGEST where poly(n)-
round preprocessing is allowed before the problem-specific input
is revealed.

The following problems will be used throughout the paper. No-
tably, the spanning connected subgraph verification problem will
serve as the core of our lower bounds.

Spanning connected subgraph [8]. A subgraph H of G is speci-
fied by having each node known which of its incident edges belong
to H. The problem is solved when all nodes know whether or not
H is connected and spans all nodes of G.

MST, shortest path, min-cut. Every node knows the O(logn)-
bit weights of each of its edges. The problem is solved when all
nodes know the value of the final solution (i.e., the weight of the
MST/min-cut/shortest path), and which of its adjacent edges belong
to the solution.

These problem definitions follow [8] in requiring that all nodes
know the weight of the final solution. This is needed in the reduc-
tions from the spanning connected subgraph problem given in [8],
allowing us to leverage them in this paper. Our results seamlessly
carry over to the arguably more natural problem variant where
each node only needs to know which of its incident edges are in
the solution (see the full paper for details).

2.2 The Low-Congestion Shortcut Framework

In this section we briefly summarize the low-congestion shortcut
framework [23]. The framework is the state-of-the-art for message-
passing algorithms for all global network optimization problems
we study that go beyond worst-case topologies. This framework
was devised to demonstrate that the Q(+/n) lower bound [8, 62]
does not hold for at least some natural topologies such as planar
graphs. Since then, shortcuts have been used to achieve o(+/n)
running times on many different graph topologies (see [32] for an
overview).

The framework introduces the following simple and natural
communication problem, called part-wise aggregation.

Definition 2.1. [Part-wise aggregation] Given disjoint and con-
nected subsets of nodes P = (Py,...,Py), where P; C V are called
parts, and (private) O(log n)-bit input values at each node, compute
within each part in parallel a simple aggregate function. For instance,
each node may want to compute the minimum value in its part.

The part-wise aggregation problem naturally arises in divide-
and-conquer algorithms, such as Bortivka’s MST algorithm [57],
in which a network is sub-divided and simple distributed compu-
tations need to be performed in each part. More importantly and
surprisingly, many other, seemingly unrelated, distributed network
optimization problems like finding approximate min-cuts [23], a

1169

Bernhard Haeupler, David Wajc, and Goran Zuzic

DFS-tree [26], or solving various (approximate) shortest path prob-
lems [31] similarly reduce to solving O(1) part-wise aggregation
instances.

Unfortunately, the parts in such applications can be very “long
and windy”, inducing subgraphs with very large strong diameter,
even if the underlying network topology has nice properties and
a small diameter. Therefore, in order to communicate efficiently,
parts have to utilize edges from the rest of the graph to decrease
the number of communication hops (i.e., the dilation). On the other
hand, overusing an edge might cause congestion issues. Balancing
between congestion and dilation naturally leads to the following
definition of low-congestion shortcuts [23].

Definition 2.2. [Shortcut quality] A shortcut for parts (Py, . .., Py)
is (Hi,...,Hy), where H; is a subset of edges of G. The shortcut has
dilation d and congestion c if (1) the diameter of each G[P;] U H;
is at most d (i.e., between every u,v € P; there exists a path of length
at most d using edges of G[P;] U H;), and (2) each edge e is in at most
c different sets H;. The quality of the shortcut is Q = ¢ +d.

Classic routing results by Leighton, Maggs and Rao [48] show
that such a shortcut allows for the part-wise aggregation to be
solved in O(c + d) rounds, even distributedly. This motivates the
definition of quality. We say a network topology G admits low-
congestion shortcuts of quality Q if a shortcut with quality Q exists
for every partition into disjoint connected parts of G’s nodes. De-
noting the minimum such quality Q by SHORTCUTQUALITY(G), this
approach leads to algorithms whose running times are parameter-
ized by SHORTCUTQUALITY(G).

Lemma 2.3. [[8, 23, 31]] If G admits Q-quality shortcuts for every
(valid) set of parts and such shortcuts are computable by a T-round
CONGEST algorithm, then G has O(Q + T) round CONGEST algo-
rithms for minimum spanning tree, (1 + €)-min-cut, approximate
shortest-paths, and various other problems.

Several natural classes of network topologies, including pla-
nar networks [23], networks with bounded genus, pathwidth and
treewidth [32-34] or expansion [28], and all minor-closed network
families [35] admit good shortcuts which can be efficiently con-
structed ([28, 32, 34]). Along with Lemma 2.3, this implies ultra-fast
message-passing algorithms, often with O(1) or O(D) running
times, for a wide variety of network topologies and network op-
timization problems. In this work we show that low-congestion
shortcut-based algorithms are optimal on every network—yielding
universally optimal algorithms for the problems studied here (and
many more).

2.3 Moving Cuts

In this section we describe moving cuts, a useful tool for proving
distributed information-theoretic lower bounds. Moving cuts are
used to lift strong unconditional lower bounds from the classic
communication complexity setting into the distributed setting. This
approach was used to prove existentially-optimal (in # and D) lower
bounds in Das Sarma et al. [8], and moving cuts can be seen as a
generalization of their techniques. Moving cuts were only explicitly
defined in [36], where they were used to prove network coding gap
for simple pairwise communication tasks. (More on such tasks in
Section 2.4.)

Universally-Optimal Distributed Algorithms for Known Topologies

Before defining moving cuts, we briefly discuss the communi-
cation complexity model and distributed function computation
problems.

Distributed computation of a Boolean function f. In this
problem, two distinguished (multi-)sets of nodes {s; € V}{Yzl and
{tj € V}]i‘:1 are given. For a given function f : {0, 1 x {0,1}F >
{0,1} and inputs x, y € {0, 1}*, we want every node in G to learn
f(x,y). However, x; and y; are given only to s; and ¢; as their
respective private inputs. Nodes in G have access to shared random
coins. We are interested in the worst-case running time to complete
the above task in the supported CONGEST model. The problem is
motivated by the (classic) communication complexity model, which
is the special case of CONGEST with a two-node, single-edge graph,
where Alice controls one node (with k input bits) and Bob controls
the other node (ditto), and single-bit messages are sent in each
round. The time to compute f in this model is referred to as its
communication complexity. In this paper we are mostly interested
in the k-bit disjointness function, disj : {0, 1} x {0,1}F - {0,1},
given by disj(x,y) = 1 if for each i € [k], we have x; - y; = 0, and
disj(x, y) = 0 otherwise. Le., if x and y are indicator vectors of sets,
this function indicates whether these sets are disjoint. This function
is known to have communication complexity ©(k) [8, 64].

Having defined the distributed function computation model, we
are now ready to define our lower-bound certificate on the time to
compute a function between nodes {s; }f?zl and {ti}i?zlz a moving cut.

Definition 2.4 ([36]). LetS = {(s;, ti)}{?zl be a set of source-sink
pairs in a graph G = (V, E). A moving cut for S is an assignment of
positive integer edge lengths { : E — Z 1. We say that:

(i) ¢ has capacity y .= Y .cp(fe — 1);
(ii) ¢ has distance when distg({s,-}i.le, {tj}i?:l) > p, ie., the
¢-distance between all sinks and sources is at least f5.

The following lemma showcases the utility of moving cuts.

Lemma 2.5. IfG contains a moving cut for k pairs S = {(s;, t,-)}i.‘=1
with distance at least and capacity strictly less than k, then dis-
tributed computation of disj between {s;};cx] and {ti};c[x] takes
Q(p) time. This lower bound holds even for bounded-error randomized
algorithms that know G and S.

Broadly, Lemma 2.5 follows from a simulation argument. Given
a sufficiently-fast O(f)-time distributed algorithm for disj between
{si}f:1 and {ti}f:1 and a moving cut for {(s;, tl-)}i?zl of capacity less
than k and distance f, we show how to obtain a communication
complexity protocol with a sufficiently small complexity O(k) to
contradict the classic Q(k) communication complexity lower bound
for disjointness. This yields the lower bound. The full proof follows
the arguments (implicitly) contained in [8, 36]. See the full version
of this paper for details.

Lemma 2.5 motivates the search for moving cuts of large dis-
tance and bounded capacity. For a fixed set of k pairs S, we define
MovINGCUT(S) to be the largest distance f of a moving cut for S
of capacity strictly less than k.

1170

STOC ’21, June 21-25, 2021, Virtual, Italy

2.4 Relation of Moving Cuts to
Communication

Consider the simple communication problem for a set of pairs
S ={(si, ti)}if:l, termed multiple unicasts. In this problem, each s;
has a single-bit message x; it wishes to transmit to t;. We denote
by CoMMUNICATING(S) the time of the fastest algorithm for this
problem which knows G and S (but not the messages). One natu-
ral way to solve this problem is to store-and-forward (or “route”)
the messages x; through the network. We denote the fastest such
algorithm’s running time by RouTiNG(S). While faster solutions
can be obtained by encoding and decoding messages in interme-
diary nodes, prior work has shown the gap between the fastest
routing and unrestricted (e.g., coding-based) algorithms is at most
O(1) [36]. Indeed, the following lemma asserts as much, and shows
that moving cuts characterize the time required to complete mul-
tiple unicasts. As the model and terminology of [36] is slightly
different from ours, we provide a proof of this lemma in the full
version of this paper.

Lemma 2.6. ([36]) For any set of pair S, we have that
MovINGCUT(S) = O(CoMmMUNICATING(S)) = O(ROUTING(S)).

Furthermore, routing algorithms (and, by extension, moving
cuts) are intricately related to shortcuts. We first extend shortcuts
to (not necessarily connected) pairs in the straightforward way:
given a set of pairs S = {(s;, ti)}{;1 we say that a set of paths
{Hi}i.‘:1 with endpoints {s;, t;} are g-quality shortcuts if both their
dilation (length of the longest path) and congestion (maximum
number of paths containing any given edge) are at most q. We
define SHORTCUTQUALITY,(S) as the minimum shortcut quality
achievable for S. The seminal work of Leighton et al. [48] relates
(pairwise) shortcuts and routing algorithms.

Lemma 2.7. ([48]) For any set of pairs S, we have that ROUTING
(S) = O(SHORTCUTQUALITY,(S)).

While the above statements hold for all sets of pairs, we will
mostly be concerned with sets of pairs S which can be connected
by vertex-disjoint paths in G—which we refer to as connectable sets
of pairs. We argue that worst-case connectable pair sets charac-
terize distributed optimization, and hence we define MoviNgCuT
(G) = max{MovINGCUT(S) | S is connectable}, and analogously
for CoMmMUNICATING(G), ROUTING(G), and SHORTCUTQUALITY,
(G). These definitions together with lemmas 2.6 and 2.7 imme-
diately imply the following relationships.

Lemma 2.8. For any graph G, we have
MovINGCUT(G) = ©(CommUNICATING(G))
= O(RouTinG(G))

= (:)(SHORTCUTQUALITYZ (G)).

2.5 Oblivious Routing Schemes

Here we revisit the multiple unicasts problem for a set of pairs
S = {(si, tl-)}f:l, whose complexity is captured by the parame-
ter COMMUNICATING(S). By lemmas 2.6 and 2.7, this parameter is
also equal (up to polylog terms) to the best shortcut quality for

STOC ’21, June 21-25, 2021, Virtual, Italy

these pairs, SHORTCUTQUALITY, (S): that is, the minimum conges-
tion+dilation over all sets of paths connecting each (s;, t;) pair. If
all pairs are aware of each other and the topology, multiple unicasts
is therefore solvable optimally (up to polylogs), using standard ma-
chinery (see [36]). However, what if each s; needs to transmit its
message to t; without knowing other pairs (sj, t;) in the network?
Can we achieve such near-optimal routing with the choice of s;
being oblivious to the other pairs? The following definitions set the
groundwork needed to describe precisely such an oblivious routing
scheme.

Definition 2.9. A routing scheme for a graph G = (V,E) is a
collection R = {Rs;}s ey wWhere Rg; is a distribution over paths
between s and t. The routing scheme R has dilation d if for all
s,t € V, all paths p in the support of Rs; have at most d hops.

Fix demands between pairs D : VxV — {0, 1,..., noM +. We
say arouting scheme R = {Rs ; }s ; has a fractional routing congestion
wrt. D of cong(D,R) = maxeegEp-g,, [Ds,t -lfee p]]. We
denote by opt(h) (D) the minimum cong (D, R) over all routing
schemes R with dilation h. The (hop-constrained) oblivious routing
problem asks whether there exists a routing scheme R which is
oblivious to the demand (i.e., does not depend on D), but which
is nevertheless competitive with the optimal (hop constrained)
fractional routing congestion over all demands.

Definition 2.10. An h-hop oblivious routing scheme for a graph
G = (V,E) with hop stretch § > 1 and congestion approxima-
tion o > 1 is a routing scheme R with dilation f - h and which for
all demands D : V XV — Ry satisfies

cong(D,R) < a - opt(h)(Z)).

The following lemma, which follows by standard Chernoff bounds,
motivates the interest in such an oblivious routing in the context
of computing optimal shortcuts for a set of pairs.

Lemma 2.11. Let G be a graph, and S = {(s;, ti)} be a set of pairs.
Let h € [Q,20Q), where Q = SHORTCUTQUALITY,(G). Finally, let R
be an h-hop oblivious routing for G with hop stretch § > 1 and
congestion approximation & > 1. Then, sampling a path p ~ Rg, 1, for
each (s;, t;) € S yields O(log n) - max{a, B} - Q shortcuts for S w.h.p.

The seminal result of Ricke [63] asserts that for h = n (i.e., no
hop constraint), an A-hop oblivious routing scheme with congestion
approximation & = O(log n) exists. The main result of [29] asserts
that good hop-constrained oblivious routing exists for every hop

bound A.

Theorem 2.12. ([29]) For every graph G = (V,E) andh > 1, an
h-hop oblivious routing with hop stretch O(log® n) and congestion
approximation O(log? n - log? (hlogn)) is computable in polytime.

3 UNIVERSAL OPTIMALITY

In this section we discuss different notions of optimality either
explicitly or implicitly apparent in the literature, starting with
a high-level description. We then provide a formal definition of
universal and instance optimality.

1171

Bernhard Haeupler, David Wajc, and Goran Zuzic

3.1 Different Notions of Optimality

Existential optimality (discussed below) is the standard worst-case
asymptotic notion optimality with respect to simple graph parame-
ters prevalent in both distributed computing and throughout theo-
retical computer science at large.

Existential Optimality. The MST algorithm of Kutten and Pe-
leg [47], which terminates in O(D + /i) rounds on every network
with n nodes and diameter D, is optimal with respect to n and D in
the following existential sense. For every n and D = Q(log n) there
exists a network G with n nodes and diameter D, and a set of inputs
on G, such that any algorithm that is correct on all inputs requires
at least Q(D + vn) rounds.* However, the drawback of existential
optimality is immediate: it says nothing about the performance
of an algorithm compared to what is achievable on networks of
interest. For example, in every planar graph one can compute the
MST in O(D) rounds, outperforming the Q(D + v/n)-bound when
D < +/n. Another, less immediate, drawback is that existential
optimality crucially depends on the parameterization. If we param-
eterize only by n, one would not need to look past the O(n) MST
algorithm described by Awerbuch [3]. In the other extreme, one
could start searching for existential optimality with respect to an
ever-more-complicated set of parameters, ad nauseam.

Due to these drawbacks, Garay, Kutten, and Peleg [21] informally
proposed to study stronger notions of optimality (see their quote
presented in Section 1.1). Based on the quote from [21], we define
the following two notions of optimality.

Instance Optimality. We say that an algorithm is instance optimal
if it is O(1)-competitive with every other always-correct algorithm
on every network topology G and every valid input.

Universal Optimality. We define universal optimality as a useful
middle ground between (weaker) existential and (often unachiev-
able) instance optimality. We say that an algorithm is universally
optimal if for every network G, the worst-case running time across all
inputs on G is O(1)-competitive with the worst-case running time
of any other always-correct algorithm running on G. In other words,
such an algorithm is (near-)optimal for each network topology G,
when measured in terms of worst-case inputs on G.

An immediate benefit of universal optimality is that its definition
is independent of any parameterization. Moreover, if a universally-
optimal algorithm for a problem II terminates in times Xp7(G) for
graph G, this implies that X7y (+) is the fundamental graph parameter
that inherently characterizes the hardest barrier in G that prevents
faster algorithms from being achievable. The term universal-network
optimality would be somewhat more descriptive, given that we
are optimal for every network. However, throughout this paper
we chose to keep the original term “universal optimality” coined
in [20] which states the problem of identifying “inherent graph
parameters” associated with different problems, and referred to the
algorithms matching those bounds as universally optimal.

It is not clear at all whether universal (or instance) optimality
can be achieved for a non-trivial problem. Indeed, each network (or
instance) could have a single tailor-made algorithm which solves
it in record time on this specific network (or instance), at the cost
of being much slower on other networks (or instances). Requiring

4The bounds slightly change when D = o(log n), e.g., see [7, 46, 52].

Universally-Optimal Distributed Algorithms for Known Topologies

a single uniform algorithm to compete with each of these expo-
nentially many fine-tuned algorithms on every single network (or
instance) simultaneously seems almost impossibly hard. Indeed, we
show that this barrier prevents instance-optimal distributed MST
algorithms from existing both in CONGEST and the supported
CONGEST model. Surprisingly, we show that universal optimality
for distributed MST and many other problems is achievable.

3.2 Formal Definitions

In this section we give formal definitions of instance and universal
optimality. To our knowledge, this is the first paper that clearly
separates these two notions.

For some problem IT, we say that an algorithm A is always correct
if it terminates with a correct answer on every instance (i.e., every
network G and every input I), and let Ay be the class of always-
correct algorithms for I1. Denote by T# (G, I) the running time of
an algorithm A € Ay on graph G and problem-specific input I,
and let maxj T# (G, I) be the worst-case running time of algorithm
A € Agy over all inputs supported on graph G. We define universal
optimality and instance optimality for algorithms in model M (e.g.,
CONGEST, supported CONGEST, LOCAL, etc...) as follows:

Definition 3.1. (Instance Optimality) An always-correct
model-M algorithm A for problem I1 is instance optimal
if A is O(1)-competitive with every always-correct model-M
algorithm A’ for Il on every graph G, and every input I, i.e.,

VA’ € A, VG, VI T4 (G,1) = 0(1) - T (G, I).

Definition 3.2. (Universal Optimality) An always-correct
model-M algorithm A for problem II is universally op-
timal if the worst-case running time of A on G is O(1)-
competitive with that of every always-correct model-M algo-
rithm A’ forll, ie.,

VYA’ € Ay, VG max T#(G,I) = 0(1) - max T (G,).

While similar on a surface level, these two notions have vastly
different properties. Notably, in CONGEST, any instance-optimal
algorithm would need to compute an answer in O(D) rounds.

Lemma 3.3. For every problem I1 in CONGEST or supported CON-
GEST, every instance-optimal algorithm A must terminate in O(D)
rounds for every instance on a graph of diameter D.

Proor. For any instance (G,I) given by a graph G and an in-
put I we define an algorithm ﬂE G which is always-correct for
IT and also very fast when run on the instance (G,I). The algo-
rithm ﬂz Gy’ when run on an instance (G, I’), first computes the
diameter D(G’) of G’ together with a BFS-tree of G’. This can be
done in ©(D(G’) rounds using a standard guess/double parameter
search for D(G’) together with a simple flooding process. Every
node then checks whether a node in G has its ID and, if so, whether

its input and local neighborhood looks like the one of the node

1172

STOC ’21, June 21-25, 2021, Virtual, Italy

with its ID in (G, I). This step requires only a single round. Further-
more, if ﬂEGJ) is run on an instance (G’,I’) different from (G, I)
at least one node in G’ knows. In another ®(D(G’)) rounds the
algorithm .71; .1 uses the BFS-tree to aggregate this information,
i.e., to inform every node in G’ whether the instance the algorithm
is run on is identical to (G, I) or not. If the instance the algorithm
.?IE G is run on is the target instance (G, I) then each node termi-
nates with a correct output after ©(D(G’) rounds. Otherwise the
algorithm ﬂE G,1) Tuns any arbitrarily slow algorithm for II, e.g.,
ﬂz G.I) could use ©(m(G’)) rounds to aggregate all information
about (G’,I’) along the BFS-tree and then have every node termi-
nate with a correct answer to the instance (G’,I’). Note that ﬂz G.I)
has a very fast running time of @(D(G’)) = ©(D(G’)) when run
on instance (G’,I’) = (G, I) but an incredibly slow running time
of ©(m(G’)) when run on any other instance (G’,I’) # (G,1I).
Still, any algorithm ﬂz G of this kind is always-correct for I, i.e.,
{ﬂEG,I) |G, I} € Apy. Hence, for any instance (G’,1’), the fastest
always-correct algorithm terminates in at most O(D(G’)) rounds.
The running time of any instance optimal algorithm for IT has to
be at most O(1) -mingep, Ta (G 1) = O(D(G)). o

Lemma 3.3 implies that instance optimality is unattainable in the
CONGEST or supported CONGEST model for all but very simple
problems that can always be solved in O(D) rounds on any topology
with diameter D. In particular, instance optimality is impossible to
achieve for the MST problem and all the other problems we study
in this paper since, due to [8], any always-correct MST algorithm
in supported CONGEST requires Q(+/n) rounds on some instance
supported on a network of diameter D = O(logn). So, while the
notion of instance optimality has merit for other problems or mod-
els, for the problems studied here in supported CONGEST, this
notion is unachievable. On the other hand, we show that universal
optimality can be achieved for the problems we study in supported
CONGEST.

To illustrate some differences between instance and universal
optimality, we note that the latter is not directly ruled out by the
Q(+/n) lower bound of [8]: Consider the worst-case network Gyy ¢
from [8]. For this network the Q(y/n) supported CONGEST lower
bound applies for some input, hence for any always-correct A’ we
have that max; T/ (Gwe, I) = Q(+y/n). When presented with Gy ¢
it is therefore sufficient for a universally-optimal algorithm A to
terminate in O(+y/n) rounds on Gy c.

However any universally optimal MST algorithm still has to
simultaneously compete with a large collection of algorithms, each
of which can be fine-tuned for a different specific network topology
(while being arbitrarily slow on others). For example: suppose that
M is CONGEST and some problem ITI allows for a fast (e.g., O(D)
or even O(1) round) CONGEST algorithm when the underlying
network is promised to be a specific topology G (e.g., computing the
edges of an MST can be done instantly if the topology is promised
to be a (specific) tree). Then any universally-optimal algorithm for
IT must complete in O(D) rounds on any such topology G since
there exists again a fine-tuned always-correct algorithms which
checks for G in O(D) rounds. The trouble of course is that each
of the specialized algorithms only needs to run a single check,

STOC ’21, June 21-25, 2021, Virtual, Italy

whether the topology matches its specialty, while a universally
optimal algorithm cannot run all of these checks simultaneously to
be competitive, as this would be equivalent to learning the topology.

Next, we show that our definition of universal optimality (unlike
the definition of instance optimality) does not require to beat the
folk-lore diameter lower bound which applies to global problems
like the minimum spanning tree requires Q(D) rounds in CON-
GEST. Indeed the following lemma shows that a universal lower
bound of Q(D) applies to any always-correct MST algorithm. This
also grants any universally-optimal algorithm MST algorithm at
least Q(D) rounds. Note that for this to hold it is crucial that we
compare our running time only to always-correct algorithms and
not just algorithms that are correct on the topology G they are
evaluated on (or fast for).

Lemma 3.4. For every always-correct CONGEST MST algorithm A
and for any graph G with diameter D, the worst-case running time of
A on instances supported on G is Q(D), i.e., max; T4 (G,I) > Q(D).

Proor. If n < 2, or more generally D = O(1), the observation
is trivial. Suppose therefore that n > 3 and D > 3. Let s and ¢ be
two vertices of maximum hop distance in G. That is, dg (s, t) = D.
Consider a vertex v at distance at least % — 1 from both s and ¢
(such a vertex must exist, else dg(s,t) < D — 2). Fix a simple path
p:s~ v~ t and let e = (u,0) be some edge in p incident on
v. We next consider two instances in two different graphs, G and
G’, obtained from G by adding edge (s, t). (Note that (s, ¢) is not
an edge in G, else dg(s,t) = 1.) The instances I in G which we
consider assigns weights

1 e ep\{e}
we =92 e =e
n e é¢p,

while the instance I’ in G’ assigns the same weights to edges which
also belong to G and weight w(, ;) = 1 to (s,). By application of
Kruskal’s MST algorithm, it is easy to show that e = (u,0) is in
every MST of the instance I in graph G, while it belongs to no MST
of instance I’ in graph G’. However, after % — 2 CONGEST rounds,
no messages which are functions of the input of nodes s and ¢ may
reach o. Therefore, after % — 2 rounds, node v cannot distinguish
whether the underlying topology is G or G’ and it cannot determine
whether e = (u,v) is in the MST or not. Consequently, any always-
correct MST CONGEST algorithm must spend at least % —1rounds
on any diameter D graph. O

We briefly discuss various aspects of our notions of optimality.

Universal optimality in supported CONGEST. When M is sup-
ported CONGEST, a universally-optimal algorithm A can per-
form arbitrary computations on the network topology before the
problem-specific input is revealed to it. This enlarges the space of
possible universally-optimal algorithms compared to the (classic)
CONGEST. On the other hand, the relative power of the “competitor
algorithm” A’ is not significantly impacted between the two mod-
els; the argument behind the proof of Lemma 3.3 implies that the
running time of the best always-correct CONGEST and supported
CONGEST algorithm on any input I supported on G never differ
by more than an (often insignificant) O(D) term.

1173

Bernhard Haeupler, David Wajc, and Goran Zuzic

Coarsening instance-optimal MST in LOCAL. Elkin [11] de-
fines the class of “coarsening will-maintaining” protocols as those
that, in each round, maintain a set of edges which contain an MST,
and eventually converge to the correct solution. The paper con-
siders the LOCAL model (i.e., CONGEST with unlimited message
sizes) and concludes that one can construct instance-optimal (coars-
ening will-maintaining) algorithms. Specifically, the paper defines
the so-called MST-radius p(G,I) (a function of both the network
G and the input I) and argues it is a lower bound for any always-
correct LOCAL algorithm in the above class; the upper bound of
O(p(G,I)) can also be achieved. The results also extend to the CON-
GEST model, giving a O(u(G,I) + y/n), and can be argued that this
algorithm is instance optimal up to an additive O(y/n). A few no-
table differences between the definitions in Elkin’s paper [11] and
ours are imminent: in the former, protocols do not need to detect
when to terminate, but rather converge towards the answer. This
change of the model makes the results incomparable to ours—every
always-correct CONGEST algorithm has a universal lower bound of
Q(D), which can often be significantly larger than the MST-radius.

Is the diameter always a universal lower bound? The results
in this paper typically ignore additive O(D) terms. For interesting
models and problems for the scope of this paper, this choice can
be formally justified with the universal lower bound of Lemma 3.4.
However, our universal and instance optimality formalism is inter-
esting even in settings where sub-diameter results are possible, i.e.,
where the Q(D) lower bound does not hold. For example, suppose
that we define the MST problem to be solved when each node in-
cident to an edge e knows whether e is part of the MST or not. In
the known-topology setting (i.e., supported CONGEST), when T is
a tree, a universally-optimal algorithm takes 1 < D round, since
each edge must be in the MST. This MST problem in supported
CONGEST has the maximum diameter of a biconnected compo-
nent, rather than the diameter of G, as a universal lower bound—see
the full paper for an exploration of such issues. We also note that
this MST problem in (non-supported) CONGEST still has an Q(D)
universal lower bound.

In the following section we outline our approach for proving
the existence (and design) of universally-optimal algorithms for the
problems studied in this paper.

4 TECHNICAL OVERVIEW

In this section we outline the key steps for obtaining universally-
optimal algorithms in the supported CONGEST model, and high-
light additional results implied by our work.

The problem we use as our running example (and as the core of
our lower bounds) is the spanning connected subgraph verification
problem (defined in Section 2). By known reductions from spanning
connected subgraph verification Das Sarma et al. [8], lower bound
for the above problem extend to lower bounds for MST, cut, min-cut,
s-source distance, shallow light trees, min-routing cost trees and
many other problems as well as to any non-trivial approximations
for these problems. In order to provide universal lower bounds for
these problems, we therefore prove such universal lower bounds
for this verification problem.

Universally-Optimal Distributed Algorithms for Known Topologies

4.1 Generalizing the Existential Lower Bound
to General Topologies

To achieve our results we first give a robust definition of a worst-case
subnetwork, which generalizes the pathological worst-case topology
of the existential lower bound of Das Sarma et al. [8] to subnetworks
in general graphs. This generalization builds on insights and crucial
definitions from a recent work of the authors [36], which connects
the CONGEST lower bound of Das Sarma et al. [8] to network
coding gaps for multiple unicasts. Once the new definition is in
place it is easy to verify that the proof of [8] generalizes to our
worst-case subnetworks. Defining WCSUBNETWORK(G) to be the
size of the largest such worst-case subnetwork in G then gives
a lower bounds for any network, instead of just a single graph
that is carefully chosen to facilitate the lower bound proof.”> One
particularly nice aspect of this universal lower bound is that it
brings the full strength and generality of the lower bound of [8] to
general topologies. In particular, it applies to a myriad of different
optimization and verification problems, holds for deterministic
and randomized algorithm alike, holds for known topologies, and
extends in full strength to any non-trivial approximations.

Lemma 4.1. For any graph G, any always-correct supported
CONGEST spanning connected subgraph verification algo-
rithm Ag takes Q(WCsUBNETWORK(G)+D) rounds on some
input supported on G. This holds even if Ag is randomized
and knows G.

4.2 Shortcut Quality Is a Universal Lower
Bound

A priori, it is not clear how strong or interesting the lower bound of
WCsUBNETWORK(G) is. By definition, it only applies to networks
with subnetworks displaying similar characteristics to the patho-
logical worst-case topology from [8], which seems very specific.
Surprisingly, however, we prove an equivalence (up to polylog
terms) between this graph parameter and several other graph pa-
rameters, including and most importantly a universal lower bound
of SHORTCUTQUALITY(G). (We elaborate on these in Section 4.4.)

Lemma 4.2. For any graph G,

SHORTCUTQUALITY(G) = ©(WCsUBNETWORK(G) + D).

From this equivalence and our universal lower bound in terms of
the worst-case subnetwork, we obtain our main result: a universal
lower bound in terms of the graph’s shortcut quality.

Theorem 4.3. For any graph G, any always-correct
message-passing supported CONGEST algorithm Ag
for spanning connected subgraph verification takes
Q(SHORTCUTQUALITY(G)) rounds on some input supported
on G. This holds even if Ag is randomized and knows G.

SIndeed, Das Sarma et al. [8] state concerning their existential lower bound that “The
choice of graph G is critical”

1174

STOC ’21, June 21-25, 2021, Virtual, Italy

By standard reductions presented it Das Sarma et al. [8], we
deduce that SHORTCUTQUALITY(G) serves as a lower bound for
various distributed optimization and verification problems.

Corollary 4.4. Let G be a graph, I1 be either MST, (1 + ¢)-min-cut,
or approximate shortest paths, and Ag an always-correct supported-
CONGEST algorithm for I1. Then, Ag takes Q(SHORTCUTQUALITY
(G)) rounds on at least one input supported on G.

As a corollary of Theorem 4.3 and the aforementioned reductions
of [8], we find that the parameter SHORTCUTQUALITY(G) is also a
universal lower bound for the complexity of the very same opti-
mization problems for which the low-congestion framework has
already established algorithmic results with running times mostly
depending on SHORTCUTQUALITY(G). Indeed, by Lemma 2.3, an
algorithm constructing O(1)-approximately optimal shortcuts in
time O(SHORTCUTQUALITY(G)) would result in algorithms with
running time O(SHorTCUTQUALITY(G)), which would be univer-
sally optimal, by Theorem 4.3. We provide precisely such shortcut
construction in the known topology setting.

Theorem 4.5. There exists a supported CONGEST algorithm
that, for any k disjoint sets of connected parts {P; C V}i.‘:1 in
a network G, constructs O(SHORTCUTQUALITY(G))—quality
shortcut on {P;}; in O(SHORTCUTQUALITY(G)) rounds.

4.3 Universal Optimality in Supported
CONGEST

The above results combined directly imply universally-optimal
supported CONGEST algorithms for any problem that has a good
shortcut-based distributed algorithm.

Theorem 1.1. [Informal] The problems MST, (1 + ¢)-minimum cut,
sub-graph connectivity, various approximate shortest path problems
(and more) admit a universally-optimal supported-CONGEST algo-
rithm based on the low-congestion shortcut framework.

Proor. Fix a graph G, and let Q := SHORTCUTQUALITY(G). By
Theorem 4.5 , there exists a supported CONGEST algorithm which
for any connected parts computes O(Q)-quality shortcuts in O(Q)
time. But then, by Lemma 2.3, there exists an algorithm for comput-
ing MST, (1 + ¢)-min cut, approximate shortest paths, and spanning
connected subgraph verification, all in O(Q) rounds. Call the ob-
tained algorithm A. That is,

mIax T4 (G, 1) = O(SHORTCUTQUALITY(G)).

On the other hand, by Theorem 4.3 and its Corollary 4.4, for any
algorithm A’, we have that

mlax Ta (G, I) = Q(SHORTCUTQUALITY(G)).

Combining the above bounds, we find that indeed max; T# (G, I) =
O(1) - maxj T/ (G, I). As the same holds for all graphs G, we con-
clude that A is universally optimal. O

STOC ’21, June 21-25, 2021, Virtual, Italy

4.4 Other Characterizations of a Topology’s
Inherent Distributed Complexity

In this work we show that SHORTCUTQUALITY(G) is a tight uni-
versal lower bound for our problems. However, as mentioned be-
fore, identifying, understanding, and characterizing the aspects
of a topology that influence and determine the complexity of dis-
tributed optimization problems is in itself a worthwhile goal. Indeed,
there are a multitude of reasons why a detailed understanding of
the relationship between topology and complexity is important.
Among other reasons, it (a) can be important for the design of good
networks, (b) might give important leads for understanding the
structure of existing natural and artificial networks occurring in
society, biology, and other areas, and (c) is necessary to provide
quantitative and provable running time guarantees for universally-
optimal algorithms run on a known topology G, beyond a simple
“it runs as fast as possible”.

As such, another important contribution of the tight lower bounds
proven in this paper consists of giving different characterizations
and ways to think about what makes a topology hard (or easy).
For example, while WCSUBNETWORK(G) and SHORTCUTQUALITY
(G) are both quantitatively equal, the fact that they both character-
ize the complexity of distributed optimization lends itself to very
different interpretations and conclusions.

Indeed, SHORTCUTQUALITY(G) can be seen as the best routing
schedules for the partwise aggregation problem, which is the very
natural communication primitive underlying distributed divide-
and-conquer style algorithms (see, e.g., [32]). Shortcut quality being
a tight universal lower bound further demonstrates the key role
partwise aggregation plays for distributed optimization algorithms,
even to the extent that the complexity of many very different opti-
mization tasks is dominated by how fast this simple aggregation
procedure can be performed on a given topology.

The tightness of WCsuBNETWORK(G) as a lower bound, on the
other hand, points to the pathological network structure identified
by Peleg and Rubinovich [8, 62] as indeed the only way in which a
topology can be hard for optimization. Put otherwise, a topology
is exactly as hard as the worst obstruction of this type within a
network.

As part of our proof of Theorem 4.2 we identify, define, and ex-
pose several other graph parameters which similarly characterize
the complexity of a topology G, such as, MoviNGCUT(G), ROUTING
(G) and others. Many of these parameters have very different fla-
vors. For example the MovINGCUT(G) parameter can be seen as
identifying crucial communication bottlenecks within a topology
via a sequence of cuts. It is also known [36] to characterize the
time needed to solve a simple multiple unicast communication
problem which requires information to be sent between different
sender-receiver pairs in the network. RouTING(G) relates to the
same communication problem, but with the restriction that infor-
mation is routed (without any coding) which, by Leighton, Maggs,
and Rao [48], is equivalent to the best congestion and dilation of
paths connecting the sender-receiver pairs. We give precise def-
initions and further explanations for these and other equivalent
universal lower bound parameters in the technical sections of this
paper. We hope that they will help to further illuminate different
aspects of the topology-complexity interplay.

1175

Bernhard Haeupler, David Wajc, and Goran Zuzic

5 SHORTCUT QUALITY IS A UNIVERSAL
LOWER BOUND

In this section we present our proof of our universal lower bounds
in terms of shortcut quality. In particular, this section is dedicated
to proving the following theorem.

Theorem 5.1. Let A be any always-correct algorithm for spanning
connected subgraph and let Teonn(G) = maxy T#(G,I) denote the
worst-case running time of A on the network G. Then we have that:

Teonn (G) = Q(SHORTCUTQUALITY(G)).

We defer most proofs of this section to the full version, focusing
only on a high-level overview here. We start by introducing dis-
Jjointness gadgets, which are pathological sub-graphs for distributed
optimization, and outline their use in proving distributed lower
bounds, in Section 5.1. In order to obtain informative lower bounds
from these gadgets, we then relate the worst such subgraph to
the highest distance of any moving cut in G, MoviNGCUT(G), in
Section 5.2. This is the technical meat of this work, and a non-
negligible fraction of the full version of this paper is dedicated to
proving this relation. We then relate the obtained lower bounds to
shortcut quality in Section 5.3. Finally, we conclude with the proof
of Theorem 5.1, as well as discussions of its implications to other
distributed problems, in Section 5.4.

5.1 Lower Bound Witnesses

In this section we define S-disjointness gadgets, a structure that con-
nects together information-theoretic bounds with higher-level dis-
tributed optimization problems like MST. The structure can be seen
as a generalization of previous existential lower bounds that show
many distributed problems cannot be solved faster than Q(D++/n)
on a specific graph family [8, 12, 62]. We argue that f-disjointness
gadgets are the “right” way to generalize their approaches to arbi-
trary graphs.

Definition 5.2. A -disjointness gadget (P, T,) in graph G consists
of a set of vertex-disjoint paths P # (0, each of length at least three;
a tree T C G which intersects each path in P exactly at its endpoint
vertices; and a moving cut of capacity strictly less than |P| and distance

B with respect to the pairs {(s;, t,)}lu__yl of endpoints of paths p; € P.

Figure 1: A disjointness gadget’s path and tree, given by
straight and rounded blue lines, respectively.

As we show, such disjointness gadgets are precisely the worst-
case subgraphs which cause distributed verification (and optimiza-
tion) to be hard. In particular, denoting by WCSUBNETWORK(G) the

Universally-Optimal Distributed Algorithms for Known Topologies

highest value of § for which there exists a f-disjointness gadget
in G (or zero, if none exists). This quantifies the most pathological
subgraph in G. We prove the following.

Lemma 5.3. Let A be any always-correct algorithm for spanning
connected subgraph and let Teonn (G) = maxy T4 (G,I) denote the
worst-case running time of A on the network G. Then we have that:

Teonn (G) = Q(WCsuBNETWORK(G) + D).

The non-trivial part of this lemma is the lower bound Te.onn (G) =
Q(WCsuBNETWORK(G)). Our proof of this bound (see full version)
follows the approach implicit in [8]. Broadly, we use a disjointness
gadget (P, T, ¢) to construct a subgraph H determined by private
|P|-bit inputs x, y for the endpoints of the paths, such that H is a
spanning and connected subgraph of G if and only if disj(x,y) =
1. Combined with Lemma 2.5, this equivalence and the moving
cut ¢ yield a lower bound on subgraph connectivity in a graph G
containing a f-disjointness gadget. In following sections we show
how to use this bound to prove lower bounds for this problem in
any graph G.

5.2 Disjointness Gadgets in Any Graph

The first challenge in deriving an informative lower bound on the
time for spanning connected subgraph verification from Lemma 5.3
is that graphs need not contain disjointness gadgets. For example,
as disjointness gadgets induce cycles, trivially no such gadgets exist
in a tree. Consequently, for trees Lemma 5.3 only recreates the
trivial lower bound of Q(D).

The following theorem implies that for any graphs where the pa-
rameter MovINGCUT(G) is sufficiently larger than D, disjointness
gadgets do exist. More precisely, we prove the following theorem.

Theorem 5.4. For any graph G,
WCsUuBNETWORK(G) + D = ©@(MoviNcCUT(G)).

Theorem 5.4 is the technical core of this paper, and much of
the paper’s full version is dedicated to its proof. At a (very) high
level, what we prove there is that, while disjointness gadgets do not
always exist, some relaxation of them always does. In particular,
we show that for any graph G and set of connectable pairs S in
G, some relaxed notion of disjointness gadgets always exists for a
subset S” C S of size |S’| = Q(|S]). We then show how to extend a
moving cut of distance > 9D on S to (strict) disjointness gadgets:
construct a relaxed disjointness gadget on a large subset of S (since
S are connectable), then clean-up the structure using f > 9D to
transform it to a (strict) f-disjointness gadget.

5.3 Relating MovingCuT(G) to
SHORTCUTQUALITY(G)

So far we have shown that (up to polylog multiplicative terms and

additive O(D) terms), the time to solve subgraph connectivity is at

least the length of the worst moving cut in G, which we denote by

MovINGCUT(G). More precisely, so far we proved that

Teonn(G) = ©(WCsUBNETWORK(G) + D) = O(MovINGCUT(G)).

In this section we show that the above terms we have proven to
be equivalent (up to polylog factors) are in turn equivalent to the
graph’s shortcut quality.

1176

STOC ’21, June 21-25, 2021, Virtual, Italy

Indeed, by lemmas 2.6 and 2.7, we have that MoviINGCuUT(G) =
@)(SHORTCUT@JALITY2 (G)). The following lemma proves an equiv-
alence (up to polylog factors) between shortcut quality for pairs to
the graph’s shortcut quality (for parts).

Lemma 5.5. For any graph G,
SHORTCUTQUALITY(G) = ©(SHORTCUTQUALITY, (G)).

Broadly, we use heavy-light decompositions [66] of spanning
trees of parts, to show how to obtain shortcuts for parts by glu-
ing together a polylogarithmic number of shortcuts for connected
pairs.® The overall dilation and congestion of the obtained shortcuts
for the parts are at most polylogarithmically worse than those of
the shortcuts for the pairs. (See the full version for a proof.)

5.4 Putting It All Together

In this section we review our main result, whereby shortcut qual-
ity serves as a universal lower bound for the spanning connected
subgraph problem, as well as numerous other problems.

Theorem 5.1. Let A be any always-correct algorithm for spanning
connected subgraph and let Teonn(G) = maxy T (G,I) denote the
worst-case running time of A on the network G. Then we have that:

Teonn(G) = Q(SHORTCUTQUALITY(G)).

Proor. Putting all the lemmas above together, we have

Teonn(G) = ©(WCsUBNETWORK(G) + D) Lemma 5.3
= ©(MovINGCuT(G)) Theorem 5.4
= ©(CoMMUNICATING(G)) Lemma 2.8
= O(RouTING(G)) Lemma 2.8
= é(SHORTCUTQpALITYZ(G)) Lemma 2.8
= C:)(SHORTCUTQpALITY(G)) Lemma5.5 O

We note that the above proof entails a proof of Lemma 4.2, as
well as the equivalence between the number of tight universal lower
bounds for our problems discussed in Section 4.4.

Known reductions presented in Das Sarma et al. [8] extend the
same universal lower bounds of Theorem 5.1 to numerous problems
such as the MST, shallow-light tree, SSSP, min-cut and others. The
reductions hold for both non-trivial approximation factors as well
as randomized algorithms.

Since MST (and all above problems, for some approximation
ratios) can be solved using O(1) applications of partwise aggre-
gation, Theorem 5.1 implies a similar Q(SHORTCUTQUALITY(G))
lower bound for the partwise aggregation problem. In Section 6 we
present a polytime algorithm matching this lower bound, resulting
in polytime universally-optimal supported CONGEST algorithms
for all problems studied in this paper.

®See [37] for a similar application of heavy-light decompositions to the reduction of
multicast routing to unicast routing.

STOC ’21, June 21-25, 2021, Virtual, Italy

6 MATCHING THE LOWER BOUND:
ALGORITHMS FOR SHORTCUT
CONSTRUCTION

In this section we give our shortcut construction for the supported
CONGEST model which efficiently constructs shortcuts of quality
O(Q) in O(Q) rounds, where Q = SHORTCUTQUALITY(G) is the
best possible shortcut quality.

Theorem 4.5. There exists a supported CONGEST algorithm that,
foranyk disj(jint sets of connected parts {P; C V}if:1 in a network
G, constructs O(SHORTCUTQUALITY(G))-quality shortcut on {P;}; in
O(SHORTCUTQUALITY(G)) rounds.

By Lemma 2.3, numerous problems, including MST, approximate
min-cut, approximate shortest path problems, and verification prob-
lems can therefore be solved in O(SHORTCUTQUALITY(G)) rounds
when the topology is known. On the other hand, from Section 5 we
know that all these problems are harder than the subgraph connec-
tivity problem, which requires at least Q(SHORTCUTQUALITY(G))
rounds on any network G, by Theorem 5.1. These matching bounds
together give Theorem 1.1.

6.1 Constructing Shortcuts for Pairs

In order to construct shortcuts for parts, we will rely on the ability
to construct shortcuts for pairs. In particular, we will require such
shortcut construction for pairs of nodes which are oblivious of each
other. To this end, we rely on the existence of hop-constrained
oblivious routing to construct such shortcuts between pairs of
nodes, yielding the following lemma.

Lemma 6.1. There exists a supported CONGEST algorithm that,
given k disjoint node pairs S = {(s;, t;) }i (each s; knows t; and vice
versa, but not other pairs) in a graph G, constructs an O(Q)-quality
shortcut for S in O(Q) rounds, where Q = SHORTCUTQUALITY, (G).

Proor. Knowing the topology, for h = 21 22 ollognl 4y
nodes internally compute (the same) h-hop oblivious routing with
O(1) hop stretch and O(1) congestion approximation for all values
h, denoted by {RZ ¢}s.t.n- Sampling these distributions then gives
paths pé”t ~ Ril,t for each such triple (s, t, h). By Lemma 2.11 and
Theorem 2.12, for h € [Q, 2Q), the set of paths pfi’tl_ form shortcuts
for S of quality g := O(Q - log” n) = O(h - log” n).

During the shortcut construction stage, we appeal to the random-
delay-based routing protocol which implies that RouTinGg(S) =
@(SHORTCUTQJALITYZ(S)) (i-e., Lemma 2.7). In particular, for h =
2122 2 [log, nl , for each pair (s, t;), we send a message between
s; and t; via the path p;, starting at a uniformly randomly chosen
time in [g], and send this message during O(q-log n) rounds. We let
this message contain the identifiers of s; and #;, and so intermediary
nodes, which all know pfi ;> can forward this message along the

path. By standard random-delay arguments [48], if the paths p?i 4
are shortcuts of quality g, then all pairs (s;, ;) will have both of
their messages delivered w.h.p. To verify whether or not all sinks
t; receive their message, after these O(q - log n) rounds, all sinks t;
flood a single-bit message through the system, indicating whether
any sink has not received its designated message from s;. This step
takes O(D) rounds. Now, since by Lemma 2.11 we know that for

1177

Bernhard Haeupler, David Wajc, and Goran Zuzic

h € [Q, 20], the sampled shortcuts are ¢ = O(h)-quality shortcuts
w.h.p., and since D < Q = SHORTCUTQUALITY,(G), this algorithm
terminates successfully after

log, O+1
> (0(1)-2'+D) = 0(Q)
k=1

rounds w.h.p. O

Using this O (SHORTCUTQUALITY, (G))-quality shortcut construc-
tion algorithm for pairs, we tackle the more challenging problem
of O(SHORTCUTQUALITY(G))-quality shortcuts construction for
parts.

6.2 Lifting Pair Shortcuts to Part Shortcuts

In the full version we describe how to use the shortcut construc-
tion for pairs to construct general low-congestion shortcuts (using
heavy-light tree decompositions), giving the following lemma.

Lemma 6.2. Suppose there exists an algorithm that for input con-
nectable pairs S = {(s;, l‘,—)}i.‘:1 (each s; knows t; and vice versa, but
not other pairs) outputs a shortcut for S with quality O(Q) in T
rounds, where Q = SHORTCUTQUALITY,(G). Then there exists a ran-
domized CONGEST algorithm that on input disjoint and connected
parts P = (P1,..., Pr) (with each node only knowing the i for which
v € P;, if any), constructs a shortcut for P of quality O(Q) in O(T)
rounds w.h.p.

Finally, invoking Lemma 6.2 with Lemma 6.1 as its pairwise
shortcut algorithm, we obtain a supported CONGEST algorithm
which constructs O(Q)-quality shortcuts for any disjoint connected
parts in O(Q), for Q = SHORTCUTQUALITY(G). That is, we have
proved Theorem 4.5.

7 CONCLUSIONS AND OPEN QUESTIONS

In this work we give the first non-trivial universally-optimal dis-
tributed algorithms for a number of optimization and verification
problems in the supported CONGEST model of communication. In
particular, we show that the low-congestion framework yields such
universally-optimal algorithms. This framework has since shown
great promise as a basis for a unified description of the common
communication bottlenecks underlying many distributed network
optimization problems.

This work suggests a number of natural follow-up questions, of
which we mention a few here.

Universally-optimal CONGEST algorithms. Our algorithmic
results require efficient computation of shortcuts, in time at most
O(SHORTCUTQUALITY(G)). Using the recent oblivious routing re-
sult of [29], we showed how to achieve this efficiently in the sup-
ported CONGEST model. Can such shortcuts be computed in the
CONGEST model, i.e., without pre-processing or knowledge of
G? A positive answer to this question would yield universally-
optimal CONGEST algorithms for the problems tackled by the
low-congestion shortcut framework.

Universally-optimal algorithms for more problems. Our work
proves that the low-congestion framework, which yields existentially-
optimal O(D + v/n)-time algorithms for numerous distributed opti-
mization problems (see [8, 25]), in fact yields universally-optimal

Universally-Optimal Distributed Algorithms for Known Topologies

algorithms for these problems. However, some fundamental prob-
lems remain for which shortcut quality serves as a universal lower
bound (by our work), yet shortcut-based algorithms are not cur-
rently known. One such problem is exact min-cut, for which an
existentially-optimal algorithm was recently given in [9]. Another
such problem is (better) approximate SSSP, for which the best ap-
proximation guarantee of a shortcut-time algorithm is polynomial
[31], while the best existentially-optimal algorithm yields a (1 + ¢)
approximation [4]. Our work motivates the study of shortcut-based
(and shortcut-quality time) algorithms for these and other problems,
as such algorithms would be universally optimal, by our work.

Universally-Optimal Round and Message Complexity. An-
other well-studied complexity measure of message-passing algo-
rithms is their message complexity, i.e., the number of messages they
send during their execution. Pandurangan et al. [60] showed that
existentially-optimal time and message complexities are achievable
simultaneously, resolving a longstanding open problem. This was
then shown to be achievable deterministically, by Elkin [14], and
then shown to be achievable within the shortcut framework, in [34].
We note, however, that [34] relied specifically on tree-restricted
shortcuts. Can one remove this restriction? A positive resolution
to this question would yield algorithms with universally-optimal
time complexity, and optimal message complexity.

Other universal barriers to distributed computation. Our work
shows that for a wide family of problems for which (D + /n)
serves as a tight existential bound, shortcut quality serves as a tight
universal bound. Can similar tight universal bounds be proven for
problems outside this “complexity class™?

REFERENCES

[1] Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Ami Paz. Smaller cuts,
higher lower bounds. arXiv preprint arXiv:1901.01630, 2019.

Peyman Afshani, Jérémy Barbay, and Timothy M Chan. Instance-optimal geo-
metric algorithms. Journal of the ACM (JACM), 64(1):1-38, 2017.

[3] Baruch Awerbuch. Optimal distributed algorithms for minimum weight spanning
tree, counting, leader election, and related problems. In Proceedings of the 19th
Annual ACM Symposium on Theory of Computing (STOC), pages 230-240, 1987.
Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen.
Near-optimal approximate shortest paths and transshipment in distributed and
streaming models. In Proceedings of the 31st International Symposium on Dis-
tributed Computing (DISC), 2017.

[5] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis.
cambridge university press, 2005.

[6] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. One trillion edges: Graph processing at facebook-scale. Proceed-
ings of the VLDB Endowment, 8(12):1804-1815, 2015.

[7] Julia Chuzhoy, Merav Parter, and Zihan Tan. On packing low-diameter spanning
trees. In Proceedings of the 47th International Colloquium on Automata, Languages
and Programming (ICALP), pages 33:1-33:18, 2020.

[8] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,
Gopal Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification
and hardness of distributed approximation. SIAM Journal on Computing (SICOMP),
41(5):1235-1265, 2012.

[9] Michal Dory, Yuval Efron, Sagnik Mukhopadhyay, and Danupon Nanongkai.
Distributed weighted min-cut in nearly-optimal time. In Proceedings of the 53rd
Annual ACM Symposium on Theory of Computing (STOC), page To appear, 2021.

[10] Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in a

byzantine environment i: crash failures. In Theoretical Aspects of Reasoning about

Knowledge, pages 149-169, 1986.

Michael Elkin. A faster distributed protocol for constructing a minimum spanning

tree. Journal of Computer and System Sciences, 72(8):1282-1308, 2006.

[12] Michael Elkin. An unconditional lower bound on the time-approximation trade-

off for the distributed minimum spanning tree problem. SIAM Journal on Com-

guting (SICOMP). 36(2):433-456, 2006, S ‘
ichael Elkin. Distributed exact shortest paths in sublinear time. In Proceedings

of the ACM Symposium on Theory of Computing (STOC), pages 757-770, 2017.

[2

=

[4

flaa

[11

[13]

1178

[14

[15

[16

(17

oy
&

[19

[20]

[21]

[22

[28

[29

[30

[31

[32

[33

(34]

[35

[38

[39

STOC ’21, June 21-25, 2021, Virtual, Italy

Michael Elkin. A simple deterministic distributed MST algorithm, with near-
optimal time and message complexities. In Proceedings of the 36th ACM Sympo-
sium on Principles of Distributed Computing (PODC), pages 157-163, 2017.
Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms
for middleware. Journal of computer and system sciences, 66(4):614-656, 2003.
Klaus-Tycho Foerster, Juho Hirvonen, Stefan Schmid, and Jukka Suomela. On the
power of preprocessing in decentralized network optimization. In IEEE INFOCOM
2019-IEEE Conference on Computer Communications, pages 14501458, 2019.
Klaus-Tycho Foerster, Janne H Korhonen, Joel Rybicki, and Stefan Schmid. Does
preprocessing help under congestion? In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pages 259-261, 2019.

Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks cannot
compute their diameter in sublinear time. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1150-1162, 2012.

Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algo-
rithm for minimum-weight spanning trees. ACM Transactions on Programming
Languages and Systems, 5(1):66-77, 1983.

Juan A Garay, Shay Kutten, and David Peleg. A sublinear time distributed algo-
rithm for minimum-weight spanning trees. In Proceedings of the 34th Symposium
on Foundations of Computer Science (FOCS), pages 659-668, 1993.

Juan A Garay, Shay Kutten, and David Peleg. A sublinear time distributed
algorithm for minimum-weight spanning trees. SIAM Journal on Computing
(SICOMP), 27(1):302-316, 1998.

Mohsen Ghaffari. Distributed broadcast revisited: Towards universal optimality.
In Proceedings of the 42nd International Colloquium on Automata, Languages and
Programming (ICALP), pages 638-649, 2015.

Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar
networks II: Low-congestion shortcuts, mst, and min-cut. In Proceedings of
the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
202-219, 2016.

Mohsen Ghaffari and Jason Li. New distributed algorithms in almost mixing
time via transformations from parallel algorithms. In Proceedings of the 32nd
International Symposium on Distributed Computing (DISC), pages 31:1-31:16, 2018.
Mohsen Ghaffari and Merav Parter. MST in log-star rounds of congested clique.
In Proceedings of the 35th ACM Symposium on Principles of Distributed Computing
(PODC), pages 19-28, 2016.

Mohsen Ghaffari and Merav Parter. Near-optimal distributed DFS in planar
graphs. Proceedings of the 31st International Symposium on Distributed Computing
(DISC), 91:21, 2017.

Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and
Boaz Patt-Shamir. Near-optimal distributed maximum flow. In Proceedings of
the 34th ACM Symposium on Principles of Distributed Computing (PODC), pages
81-90, 2015.

Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. Distributed MST and routing
in almost mixing time. In Proceedings of the 38th ACM Symposium on Principles
of Distributed Computing (PODC), pages 131-140, 2017.

Mohsen Ghaffari, Bernhard Haeupler, and Goran Zuzic. Hop-constrained oblivi-
ous routing. page To appear, 2021.

Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. Graphx: Graph processing in a distributed dataflow
framework. In Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 599-613, 2014.

Bernhard Haeupler and Jason Li. Faster distributed shortest path approximations
via shortcuts. In Proceedings of the 32nd International Symposium on Distributed
Computing (DISC), pages 33:1-33:14, 2018.

Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Low-congestion shortcuts
without embedding. In Proceedings of the 35th ACM Symposium on Principles of
Distributed Computing (PODC), pages 451-460, 2016.

Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Near-optimal low-
congestion shortcuts on bounded parameter graphs. In Proceedings of the 30th
International Symposium on Distributed Computing (DISC), pages 158-172, 2016.
Bernhard Haeupler, D Ellis Hershkowitz, and David Wajc. Round-and message-
optimal distributed graph algorithms. In Proceedings of the 37th ACM Symposium
on Principles of Distributed Computing (PODC), pages 119-128, 2018.

Bernhard Haeupler, Jason Li, and Goran Zuzic. Minor excluded network families
admit fast distributed algorithms. In Proceedings of the 39th ACM Symposium on
Principles of Distributed Computing (PODC), pages 465-474, 2018.

Bernhard Haeupler, David Wajc, and Goran Zuzic. Network coding gaps for
completion times of multiple unicasts. In Proceedings of the 61st Symposium on
Foundations of Computer Science (FOCS), pages 494-505, 2020.

Bernhard Haeupler, D Ellis Hershkowitz, and David Wajc. Near-optimal schedules
for simultaneous multicasts. In Proceedings of the 48th International Colloquium
on Automata, Languages and Programming (ICALP), page To appear, 2021.
Bernhard Haeupler, David Wajc, and Goran Zuzic. Universally-optimal dis-
tributed algorithms for known topologies. arXiv preprint arXiv:2104.03932, 2021.
Minyang Han and Khuzaima Daudjee. Giraph unchained: Barrierless asynchro-
nous parallel execution in pregel-like graph processing systems. Proceedings of
the VLDB Endowment, 8(9):950-961, 2015.

STOC ’21, June 21-25, 2021, Virtual, Italy

[40] James W Hegeman, Gopal Pandurangan, Sriram V Pemmaraju, Vivek B Sardesh-

[41]

[42

[43]

[44]

[45

[46]

[47

[48]

[49

[50]

[51

[52

[53]

mukh, and Michele Scquizzato. Toward optimal bounds in the congested clique:
Graph connectivity and MST. In Proceedings of the 34th ACM Symposium on
Principles of Distributed Computing (PODC), pages 91-100, 2015.

Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. An almost-
tight distributed algorithm for computing single-source shortest paths. In Pro-
ceedings of the ACM Symposium on Theory of Computing (STOC), 2016.

Stephan Holzer and Roger Wattenhofer. Optimal distributed all pairs shortest
paths and applications. In Proceedings of the ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing (PODC), pages 355-364, 2012.

C. Huang, D. Nanongkai, and T. Saranurak. Distributed exact weighted all-pairs
shortest paths in O(n’/*) rounds. In Proceedings of the IEEE Symposium on
Foundations of Computer Science (FOCS), pages 168-179, 2017.

Tomasz Jurdzinski and Krzysztof Nowicki. MST in O(1) rounds of congested
clique. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2620-2632, 2018.

Maleq Khan and Gopal Pandurangan. A fast distributed approximation algorithm
for minimum spanning trees. Distributed Computing, 20(6):391-402, 2008.
Naoki Kitamura, Hirotaka Kitagawa, Yota Otachi, and Taisuke Izumi. Low-
congestion shortcut and graph parameters. In Proceedings of the 33rd International
Symposium on Distributed Computing (DISC), pages 25:1-25:17, 2019.

Shay Kutten and David Peleg. Fast distributed construction of smallk-dominating
sets and applications. Journal of Algorithms, 28(1):40-66, 1998.

Frank Thomson Leighton, Bruce M Maggs, and Satish B Rao. Packet routing
and job-shop scheduling in O(congestion+ dilation) steps. Combinatorica, 14(2):
167-186, 1994.

Christoph Lenzen and Boaz Patt-Shamir. Fast partial distance estimation and
applications. Proceedings of the ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), pages 153-162, 2015.

Christoph Lenzen and David Peleg. Efficient distributed source detection with lim-
ited bandwidth. Proceedings of the ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing (PODC), pages 375-382, 2013.

Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. MST construction
in O(loglog n) communication rounds. SIAM Journal on Computing (SICOMP),
35(1):120-131, 2005.

Zvi Lotker, Boaz Patt-Shamir, and David Peleg. Distributed MST for constant
diameter graphs. Distributed Computing, 18(6):453-460, 2006.

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale
graph processing. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SSIGMOD), pages 135-146, 2010.

Bernhard Haeupler, David Wajc, and Goran Zuzic

Mark S Manasse, Lyle A McGeoch, and Daniel D Sleator. Competitive algorithms
for server problems. Journal of Algorithms, 11(2):208-230, 1990.

Danupon Nanongkai. Distributed approximation algorithms for weighted short-
est paths. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing (STOC), pages 565-573, 2014.

Danupon Nanongkai and Hsin-Hao Su. Almost-tight distributed minimum cut
algorithms. In Proceedings of the 28th International Symposium on Distributed
Computing (DISC), pages 439-453, 2014.

Jaroslav Nesetfil, Eva Milkova, and Helena Nesetfilova. Otakar boruvka on

minimum spanning tree problem translation of both the 1926 papers, comments,
history. Discrete Mathematics, 233(1):3-36, 2001.

Mark E] Newman. The structure and function of complex networks. SIAM review,
45(2):167-256, 2003.

Krzysztof Nowicki. A deterministic algorithm for the mst problem in constant
rounds of congested clique. page To appear, 2021.

Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. A time- and
message-optimal distributed algorithm for minimum spanning trees. In Proceed-
ings of the 49th Annual ACM Symposium on Theory of Computing (STOC), pages
743-756, 2017.

David Peleg. Distributed computing: A Locality-Sensitive Approach, volume 5.
SIAM, 2000.

David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time
complexity of distributed minimum-weight spanning tree construction. SIAM
Journal on Computing (SICOMP), 30(5):1427-1442, May 2000.

Harald Récke. Optimal hierarchical decompositions for congestion minimization
in networks. In Proceedings of the ACM Symposium on Theory of Computing
(STOC), pages 255-264, 2008.

Alexander A Razborov. On the distributional complexity of disjointness. In
Proceedings of the 17th International Colloquium on Automata, Languages and
Programming (ICALP), pages 249-253, 1990.

Stefan Schmid and Jukka Suomela. Exploiting locality in distributed sdn control.
In Proceedings of the second ACM SIGCOMM workshop on Hot topics in software
defined networking, pages 121-126, 2013.

Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees.

Journal of Computer and System Sciences, 26(3):362-391, 1983.
Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search

trees. Journal of the ACM (JACM), 32(3):652-686, 1985.

Gregory Valiant and Paul Valiant. Instance optimal learning of discrete distribu-
tions. In Proceedings of the 48th Annual ACM Symposium on Theory of Computing
(STOC), pages 142-155, 2016.

Gregory Valiant and Paul Valiant. An automatic inequality prover and instance
optimal identity testing. SIAM Journal on Computing (SICOMP), 46(1):429-455,
2017.

	Abstract
	1 Introduction
	1.1 When Optimal Is Not Good Enough: Universal Optimality
	1.2 Our Results
	1.3 Related Work
	1.4 Paper Outline

	2 Preliminaries
	2.1 Models and Problems
	2.2 The Low-Congestion Shortcut Framework
	2.3 Moving Cuts
	2.4 Relation of Moving Cuts to Communication
	2.5 Oblivious Routing Schemes

	3 Universal Optimality
	3.1 Different Notions of Optimality
	3.2 Formal Definitions

	4 Technical Overview
	4.1 Generalizing the Existential Lower Bound to General Topologies
	4.2 Shortcut Quality Is a Universal Lower Bound
	4.3 Universal Optimality in Supported CONGEST
	4.4 Other Characterizations of a Topology's Inherent Distributed Complexity

	5 Shortcut Quality is a Universal Lower Bound
	5.1 Lower Bound Witnesses
	5.2 Disjointness Gadgets in Any Graph
	5.3 Relating MovingCut(G) to ShortcutQuality(G)
	5.4 Putting It All Together

	6 Matching the Lower Bound: Algorithms for Shortcut Construction
	6.1 Constructing Shortcuts for Pairs
	6.2 Lifting Pair Shortcuts to Part Shortcuts

	7 Conclusions and Open Questions
	References

