
Universally-Optimal Distributed Algorithms for Known
Topologies∗

Bernhard Haeupler
CMU & ETH Zurich
USA & Switzerland

haeupler@cs.cmu.edu

David Wajc
Stanford University

USA
wajc@stanford.edu

Goran Zuzic
ETH Zurich
Switzerland

goran.zuzic@inf.ethz.ch

ABSTRACT

Many distributed optimization algorithms achieve existentially-

optimal running times, meaning that there exists some pathological

worst-case topology on which no algorithm can do better. Still,

most networks of interest allow for exponentially faster algorithms.

This motivates two questions:

(i) What network topology parameters determine the complexity

of distributed optimization?

(ii) Are there universally-optimal algorithms that are as fast as

possible on every topology?

We resolve these 25-year-old open problems in the known-topology

setting (i.e., supported CONGEST) for a wide class of global net-

work optimization problems including MST, (1+𝜖)-min cut, various

approximate shortest paths problems, sub-graph connectivity, etc.

In particular, we provide several (equivalent) graph parameters

and show they are tight universal lower bounds for the above prob-

lems, fully characterizing their inherent complexity. Our results

also imply that algorithms based on the low-congestion shortcut

framework match the above lower bound, making them universally

optimal if shortcuts are efficiently approximable.

CCS CONCEPTS

• Mathematics of computing → Graph algorithms; • Theory

of computation → Distributed algorithms; Routing and net-

work design problems;

KEYWORDS

Distributed Algorithms, Universal Optimality, Universal Lower

Bounds, Shortcuts, Shortcut Quality

ACM Reference Format:

BernhardHaeupler, DavidWajc, andGoran Zuzic. 2021. Universally-Optimal

Distributed Algorithms for Known Topologies. In Proceedings of the 53rd

Annual ACM SIGACT Symposium on Theory of Computing (STOC ’21), June

21ś25, 2021, Virtual, Italy. ACM, New York, NY, USA, 14 pages. https:

//doi.org/10.1145/3406325.3451081

∗A full version of this paper is available on arxiv [38]. Supported in part by NSF grants
CCF-1527110, CCF-1618280, CCF-1814603, CCF-1910588, NSF CAREER award CCF-
1750808, ONR award N000141912550, a Sloan Research Fellowship, a gift from Cisco
Research, and funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (ERC grant agreement 949272).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

STOC ’21, June 21ś25, 2021, Virtual, Italy

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8053-9/21/06.
https://doi.org/10.1145/3406325.3451081

1 INTRODUCTION

Much of modern large-scale graph processing and network anal-

ysis is done using systems like Google’s Pregel [53], Facebook’s

Giraph [6, 39], or Apache’s Spark GraphX [30]. These systems im-

plement synchronous message-passing algorithms, in which nodes

send (small) messages to their neighbors in each round.1

This has motivated a recent, broad, concentrated, and highly-

successful effort to advance our theoretical understanding of such

algorithms for fundamental network optimization problems, such

as minimum-spanning trees (MST) [11, 14, 45, 47, 60], shortest

paths [13, 18, 41ś43, 49, 50, 55], flows [27], and cuts [9, 23, 56]. As a

result, many fundamental optimization problems now have worst-

case-optimal CONGEST algorithms, running in Θ̃(
√
𝑛 + 𝐷) rounds

on every 𝑛-node network with diameter 𝐷 .2 In general, these run-

ning times cannot be improved due to unconditional lower bounds

[8, 12, 62] showing that there exist pathological 𝑛-node topologies

with small diameter on which any non-trivial optimization problem

requires Ω̃(
√
𝑛) rounds. Fittingly, this type of worst-case optimality

is also called existential optimality.

While these results are remarkable achievements, this paper em-

phatically argues that one cannot stop with such worst-case optimal

algorithms. In particular, existential optimality says nothing about

the performance of an algorithm compared to what is achievable

on real-world networks, which are never worst-case, and might

allow for drastically faster running times compared to a patho-

logical worst-case instance. For example, it is a well-established

fact that essentially all real-world topologies have network diam-

eters that are very small compared to the network size [58] (this

is known as the small-world effect), and essentially all mathemat-

ical models for practical networks feature diameters that are at

most polylogarithmic in 𝑛. Despite this fact, for such networks

the existentially-optimal algorithms take Θ̃(
√
𝑛) rounds, which is

neither practically relevant, nor does it correspond to any observed

practical barrier or bottleneck. This has motivated a concentrated

effort in recent years to provide improved algorithms for families of

networks of interest [23, 24, 26, 28, 31ś35, 46]. Nonetheless, many

practical networks do not fit any of the above families, and so no

practically useful algorithm is known for these networks, even if

we allow for preprocessing of a known network topology. This

strongly motivates a broader search for algorithms which adjust to

non-worst-case topologies.

1For concreteness, we limit message sizes to𝑂 (log𝑛) bits, for𝑛 the number of network
nodes. This is exactly the classic CONGEST model of distributed computation [61], or
the supported CONGEST model [65], if the network is known and preprocessing is al-
lowed. In what follows, we use the terms topology and network graph interchangeably.
2Throughout, we use 𝑂̃, Ω̃ and Θ̃ to suppress poly log𝑛 terms. E.g., 𝑂̃ (𝑓 (𝑛)) =

𝑂 (𝑓 (𝑛) log𝑂 (1) 𝑛) .

1166

This work is licensed under a Creative Commons Attribution International 4.0 License.

STOC ’21, June 21–25, 2021, Virtual, Italy Bernhard Haeupler, David Wajc, and Goran Zuzic

1.1 When Optimal Is Not Good Enough:
Universal Optimality

The search for algorithms with beyond-worst-case guarantees is

not new. Indeed, it goes back at least as far as 25 years ago, to an

influential paper of Garay, Kutten, and Peleg [20]. In that work,

Garay et al. improved upon the existentially-optimal 𝑂 (𝑛) round
minimum spanning tree (MST) algorithm of Awerbuch [3].3 In par-

ticular, they gave an 𝑂̃ (𝑛0.613+𝐷) round algorithm. This was in turn

improved to an 𝑂̃ (
√
𝑛 + 𝐷) round algorithm that is existentially-

optimal in 𝑛 and 𝐷 by Kutten and Peleg [47]. These latter two

papers started and majorly shaped the area of distributed optimiza-

tion algorithms. Garay, Kutten, and Peleg informally introduced

the concept of universal-optimality as the ultimate guarantee for

adjusting to non-worst-case topologies:

This type of optimality may be thought of as łexisten-

tialž optimality; namely, there are points in the class

of input instances under consideration for which the

algorithm is optimal. A stronger type of optimality,

which we may analogously call łuniversalž optimal-

ity, occurs when the proposed algorithm solves the

problem optimally on every instance.

[...]

The interesting question that arises is, therefore, whether

it is possible to identify the inherent graph param-

eters associated with the distributed complexity of

various fundamental network problems, and develop

universally-optimal algorithms. [20]

However, formalizing this concept is not as straightforward as

it seemsÐtwo different readings of the above quote allows for a

variety of subtly-but-crucially different formal definitions. In this

paper we provide two sensible definitions. (See Section 3 for a fully

formal treatment.)

An algorithm A is instance optimal if, every instance (i.e., a net-

work𝐺 and problem-specific input), its runtime is 𝑂̃ (1)-competitive

with every other always-correct algorithm, including the fastest

algorithm for that instance. While interesting and useful in more

restrictive contexts, we show that instance optimality is provably

unachievable for CONGEST problems like MST.

Next, we say an algorithm A is universally optimal if, for ev-

ery network 𝐺 , worst-case runtime of A over all inputs on 𝐺 is

𝑂̃ (1)-competitive with the worst-case runtime of any other always-

correct algorithm, particularly the fastest algorithm for 𝐺 . Equiv-

alently, this definition (implicitly) asks about the inherent graph

parameter 𝑋Π (𝐺) such that there is a correct algorithm for a prob-

lemΠ running in 𝑂̃ (𝑋Π (𝐺)) rounds on𝐺 , and any correct algorithm

for Π requires Ω̃(𝑋Π (𝐺)) rounds (on some input). While it is not

clear whether there exists a single algorithm with such a property

for any non-trivial task, we prove such an algorithm does exist for

many distributed problems.

Note that 𝑋Π is problem-specific by definition, since different

problems Π could be characterized by different graph parameters.

Remarkably, we show that all the problem studied in this paper

3Note that there exists a pathological worst-case topology requiring Ω (𝑛) rounds to
solve MST: an 𝑛-node ring graph.

form a łuniversal complexity classž, and share a common parameter

which captures their complexity.

1.2 Our Results

We resolve both questions of Garay, Kutten, and Peleg [20] in the

supported CONGEST model: we identify graph parameters that

fully characterize the inherent complexity of distributed global net-

work optimization, and prove the existence of universally-optimal

distributed algorithms that match those parameters.

Specifically, we show that a graph parameter ShortcutQuality

(𝐺) is a universal CONGEST lower bound for many important dis-

tributed optimization problemsÐmeaning that every correct algo-

rithm requires at least Ω̃(ShortcutQuality(𝐺)) rounds to com-

pute the output on any network𝐺 . The main challenge in obtaining

such a result is the very rich space of possible algorithms that might

produce correct results on some specially-crafted network𝐺 , possi-

bly outperforming shortcut-based algorithms. To show this is not

possible, we utilize prior work on network coding gaps that relate

general algorithms for certain simple communication problems to

shortcut quality [36]. We then combine this result with a combina-

torial construction that shows how to find good-quality shortcuts

if there exist fast distributed algorithms for subgraph connectivity

verification (Section 5), a problem which readily reduces to many

other distributed optimization problems [8]. This universal lower

bound holds even when the topology is known, i.e., even in the

supported CONGEST model.

The parameter ShortcutQuality(𝐺) is particularly notable

since it is a key parameter in the running time of distributed al-

gorithms that are based on the so-called łlow-congestion short-

cut frameworkž (see Section 2.2). A long line of work has shown

that many distributed optimization problems can be solved in

𝑂̃ (ShortcutQuality(𝐺)) rounds if one can efficiently construct

near-optimal shortcuts. However, such constructions were only

known for special types of graphs. We obtain efficient construc-

tions for all graphs in the known-topology settings by connecting

the question to recent advancements in hop-constrained oblivious

routings [29] (see Section 6). Putting this together, we obtain the

following result.

Theorem 1.1. [Informal] The problems MST, (1 + 𝜀)-
minimum cut, sub-graph connectivity, various approximate

shortest path problems (and more) admit a universally-

optimal supported-CONGEST algorithm based on the low-

congestion shortcut framework.

Moreover, we identify several different graph parameters beside

ShortcutQuality(𝐺) that are universal CONGEST lower bounds

(for the same set of problems). While the pararmeters are equiv-

alent up to 𝑂̃ (1) factors, they provide different interpretations of

the barriers that preclude fast algorithms for distributed network

optimization.

1167

Universally-Optimal Distributed Algorithms for Known Topologies STOC ’21, June 21–25, 2021, Virtual, Italy

1.3 Related Work

Probably the most well-studied global optimization problem in the

distributed message-passing literature, and the one that best illus-

trates the search for universal optimality, is the minimum spanning

tree (MST) problem. It was precisely the study of this problem

which initiated the quest for universal optimality, as put forth in

1993 by Garay, Kutten, and Peleg [20, 21]. This problem was first

studied in a distributed setting in the seminal work of Gallager,

Humblet, and Spira [19], who gave an 𝑂 (𝑛 log𝑛)-round MST algo-

rithm. This was later improved by Awerbuch [3] to 𝑂 (𝑛) rounds,
which is existentially optimal in 𝑛. Garay et al. [21], advocating

for a more refined analysis, moved closer to the universal lower

bound of Ω(𝐷), giving an 𝑂̃ (𝐷 +𝑛0.613)-round MST algorithm. This

was improved to 𝑂̃ (𝐷 +
√
𝑛) by Kutten and Peleg [47]. Peleg and

Rubinovich [62] constructed networks proving this bound is also

existentially optimal in 𝑛 and 𝐷 . These networks were then used to

prove lower bounds for approximate MST by Elkin [12], and many

other problems by Das Sarma et al. [8]. Many algorithms matching

this existentially-optimal 𝑂̃ (𝐷 +
√
𝑛) upper bound were obtained

over the years [11, 14, 47, 60], including using the low-congestion

shortcut framework [23].

The above results foreshadowed much work on studying other

graph parameters which allow for improved running time for the

MST problem. One example is restricting the diameter. For exam-

ple, for graphs of diameter 1 (i.e., the congested clique model), a

sequence of works [25, 40, 51] culminated in an 𝑂 (1)-time algo-

rithm [44, 59]. For small-constant diameter, Lotker et al. [52] gave an

𝑂 (log𝑛) algorithm for diameter-2 graphs, and Ω̃(3
√
𝑛) and Ω̃(4

√
𝑛)

lower bounds for graphs of diameter 3 and 4, with algorithms

matching these bounds recently obtained using the low-congestion

shortcut framework [46]. Indeed, the shortcut framework has been

the driving force behind numerous improved results for restricted

graph families [23, 24, 28, 32ś35, 46]. For most of these results, the

worst-case shortcut quality of a graph in the graph family serves

as an upper bound for these algorithms’ running time. Our work

shows that shortcut quality is precisely the optimal running time

for any graph, proving that this graph parameter is a universal

lower bound for distributed algorithms, and that this lower bound

is achievable algorithmically by efficient supported-CONGEST al-

gorithms.

The power of preprocessing. In this work we study CONGEST

algorithms [61], both under the assumption that the topology is

unknown or known to the nodes. The latter is the supported CON-

GEST model, introduced by Schmid and Suomela [65], who were

motivated by Software-Defined Networking (SDN). As they ar-

gued, in SDN enabled networks, the underlying communication

topology is known, while the input (e.g., edge weights, subgraph

to test connectivity of, etc) may vary. It is therefore natural to

preprocess the graph in advance in order to support the solution

of possible inputs defined on this graph. In this model Ghaffari

[22] gave a polynomial-time preprocessing 𝑘-broadcast algorithm

which is optimal among routing-based distributed algorithms on the

given input. It was noted in [16, 17, 65] that, while preprocessing

intuitively seems very powerful, CONGEST lower bounds [1, 8]

generally hold even in the supported model. Due to this, [17] asks

whether preprocessing offers any benefit at all, and they offer sev-

eral (specifically-made) tasks that do exhibit a separation. However,

the question remains open for well-studied problems in the field.

This paper offers a partial answer to this question that, up to effi-

cient construction of near-optimal shortcuts, preprocessing does

not help for many well-known problems.

Strengthened notions of optimality. Various notions of opti-

mality similar to instance optimality have been studied in depth in

many fields, and some algorithms achieving these desired properties

are known in various computational models. Instance optimality

with respect to a certain class of algorithms has been proven in

aggregation algorithms for database systems [15], shared memory

distributed algorithms [10], geometric algorithms [2], and distribu-

tion testing and learning algorithms [68, 69]. Indeed, the entire field

of online algorithms concerns itself with the notion of competitive

analysis, which can be seen as a form of instance optimality [5, 54].

For other models, stronger notions of optimality were long sought

after, but remain elusive. For example, one of the oldest open ques-

tions in computer science is the dynamic optimality conjecture of

Sleator and Tarjan [67], which states that splay trees are instance-

optimal among all binary search trees. The problems studied here

join the growing list of problems in various computational models

for which such instance-optimal algorithms are known. This no-

tion of instance optimality was discussed in the distributed setting

by Elkin [11], who achieved instance optimality with respect to

coarsening will-maintaining protocols in the LOCAL model (see

Section 3.2 for a comparison between this work and our results).

1.4 Paper Outline

We define the computational models and problems studied in this

paper, and discuss necessary technical background in Section 2.

We then formalize the notion of universal optimality in Section 3,

and point out some delicate points concerning this notion. In Sec-

tion 4 we give a technical overview of the paper, presenting the

key ideas behind our matching bounds for supported CONGEST,

and point out a number of asymptotically equivalent tight uni-

versal bounds which follow from our work. We then substantiate

our universal lower bound in Section 5, deferring the most tech-

nically involved part of this lower boundÐproving the existence

of disjointness gadgetsÐto the full version. We then present our

matching supported CONGEST upper bound in terms of shortcut

quality in Section 6. We conclude with a discussion of open ques-

tions in Section 7. Due to space constraints, a number of proofs are

deferred to the full version of the paper, most notably a discussion

of sub-diameter bounds in the supported CONGEST model. (See

also discussion in Section 3.2.)

2 PRELIMINARIES

2.1 Models and Problems

We will focus on the following two models of communication.

CONGEST [61]. In this setting, a network is given as a connected

undirected graph 𝐺 = (𝑉 , 𝐸) with diameter 𝐷 and 𝑛 := |𝑉 | nodes.
Initially, nodes know 𝑛 and 𝐷 and their unique𝑂 (log𝑛)-bit ID, IDs
of their neighbors, and their problem-specific inputs. Communi-

cation occurs in synchronous rounds; during a round, each node

1168

STOC ’21, June 21–25, 2021, Virtual, Italy Bernhard Haeupler, David Wajc, and Goran Zuzic

can send 𝑂 (log𝑛) bits to each of its neighbors. The goal is to de-

sign protocols that minimize the number of rounds until all nodes

are guaranteed to output a solution (some global function of the

problem-specific inputs) and terminate.

Supported CONGEST [65]. This setting is same as the classic

CONGEST setting, with the addition that each node knows all

unique IDs and the entire topology 𝐺 at the start of the computa-

tion. Note that this is equivalent to the CONGEST where poly(𝑛)-
round preprocessing is allowed before the problem-specific input

is revealed.

The following problems will be used throughout the paper. No-

tably, the spanning connected subgraph verification problem will

serve as the core of our lower bounds.

Spanning connected subgraph [8]. A subgraph 𝐻 of 𝐺 is speci-

fied by having each node known which of its incident edges belong

to 𝐻 . The problem is solved when all nodes know whether or not

𝐻 is connected and spans all nodes of 𝐺 .

MST, shortest path, min-cut. Every node knows the 𝑂 (log𝑛)-
bit weights of each of its edges. The problem is solved when all

nodes know the value of the final solution (i.e., the weight of the

MST/min-cut/shortest path), and which of its adjacent edges belong

to the solution.

These problem definitions follow [8] in requiring that all nodes

know the weight of the final solution. This is needed in the reduc-

tions from the spanning connected subgraph problem given in [8],

allowing us to leverage them in this paper. Our results seamlessly

carry over to the arguably more natural problem variant where

each node only needs to know which of its incident edges are in

the solution (see the full paper for details).

2.2 The Low-Congestion Shortcut Framework

In this section we briefly summarize the low-congestion shortcut

framework [23]. The framework is the state-of-the-art for message-

passing algorithms for all global network optimization problems

we study that go beyond worst-case topologies. This framework

was devised to demonstrate that the Ω̃(
√
𝑛) lower bound [8, 62]

does not hold for at least some natural topologies such as planar

graphs. Since then, shortcuts have been used to achieve 𝑜 (
√
𝑛)

running times on many different graph topologies (see [32] for an

overview).

The framework introduces the following simple and natural

communication problem, called part-wise aggregation.

Definition 2.1. [Part-wise aggregation] Given disjoint and con-

nected subsets of nodes 𝑃 = (𝑃1, . . . , 𝑃𝑘), where 𝑃𝑖 ⊆ 𝑉 are called

parts, and (private) 𝑂 (log𝑛)-bit input values at each node, compute

within each part in parallel a simple aggregate function. For instance,

each node may want to compute the minimum value in its part.

The part-wise aggregation problem naturally arises in divide-

and-conquer algorithms, such as Borůvka’s MST algorithm [57],

in which a network is sub-divided and simple distributed compu-

tations need to be performed in each part. More importantly and

surprisingly, many other, seemingly unrelated, distributed network

optimization problems like finding approximate min-cuts [23], a

DFS-tree [26], or solving various (approximate) shortest path prob-

lems [31] similarly reduce to solving 𝑂̃ (1) part-wise aggregation
instances.

Unfortunately, the parts in such applications can be very łlong

and windyž, inducing subgraphs with very large strong diameter,

even if the underlying network topology has nice properties and

a small diameter. Therefore, in order to communicate efficiently,

parts have to utilize edges from the rest of the graph to decrease

the number of communication hops (i.e., the dilation). On the other

hand, overusing an edge might cause congestion issues. Balancing

between congestion and dilation naturally leads to the following

definition of low-congestion shortcuts [23].

Definition 2.2. [Shortcut quality] A shortcut for parts (𝑃1, . . . , 𝑃𝑘)
is (𝐻1, . . . , 𝐻𝑘), where 𝐻𝑖 is a subset of edges of 𝐺 . The shortcut has

dilation 𝑑 and congestion 𝑐 if (1) the diameter of each 𝐺 [𝑃𝑖] ∪ 𝐻𝑖

is at most 𝑑 (i.e., between every 𝑢, 𝑣 ∈ 𝑃𝑖 there exists a path of length

at most 𝑑 using edges of𝐺 [𝑃𝑖] ∪𝐻𝑖), and (2) each edge 𝑒 is in at most

𝑐 different sets 𝐻𝑖 . The quality of the shortcut is 𝑄 = 𝑐 + 𝑑 .
Classic routing results by Leighton, Maggs and Rao [48] show

that such a shortcut allows for the part-wise aggregation to be

solved in 𝑂̃ (𝑐 + 𝑑) rounds, even distributedly. This motivates the

definition of quality. We say a network topology 𝐺 admits low-

congestion shortcuts of quality𝑄 if a shortcut with quality𝑄 exists

for every partition into disjoint connected parts of 𝐺 ’s nodes. De-

noting the minimum such quality𝑄 by ShortcutQuality(𝐺), this
approach leads to algorithms whose running times are parameter-

ized by ShortcutQuality(𝐺).
Lemma 2.3. [[8, 23, 31]] If 𝐺 admits 𝑄-quality shortcuts for every

(valid) set of parts and such shortcuts are computable by a 𝑇 -round

CONGEST algorithm, then 𝐺 has 𝑂̃ (𝑄 +𝑇) round CONGEST algo-

rithms for minimum spanning tree, (1 + 𝜀)-min-cut, approximate

shortest-paths, and various other problems.

Several natural classes of network topologies, including pla-

nar networks [23], networks with bounded genus, pathwidth and

treewidth [32ś34] or expansion [28], and all minor-closed network

families [35] admit good shortcuts which can be efficiently con-

structed ([28, 32, 34]). Along with Lemma 2.3, this implies ultra-fast

message-passing algorithms, often with 𝑂̃ (1) or 𝑂̃ (𝐷) running
times, for a wide variety of network topologies and network op-

timization problems. In this work we show that low-congestion

shortcut-based algorithms are optimal on every networkÐyielding

universally optimal algorithms for the problems studied here (and

many more).

2.3 Moving Cuts

In this section we describe moving cuts, a useful tool for proving

distributed information-theoretic lower bounds. Moving cuts are

used to lift strong unconditional lower bounds from the classic

communication complexity setting into the distributed setting. This

approach was used to prove existentially-optimal (in 𝑛 and𝐷) lower

bounds in Das Sarma et al. [8], and moving cuts can be seen as a

generalization of their techniques. Moving cuts were only explicitly

defined in [36], where they were used to prove network coding gap

for simple pairwise communication tasks. (More on such tasks in

Section 2.4.)

1169

Universally-Optimal Distributed Algorithms for Known Topologies STOC ’21, June 21–25, 2021, Virtual, Italy

Before defining moving cuts, we briefly discuss the communi-

cation complexity model and distributed function computation

problems.

Distributed computation of a Boolean function 𝑓 . In this

problem, two distinguished (multi-)sets of nodes {𝑠𝑖 ∈ 𝑉 }𝑘𝑖=1 and
{𝑡𝑖 ∈ 𝑉 }𝑘𝑖=1 are given. For a given function 𝑓 : {0, 1}𝑘 × {0, 1}𝑘 →
{0, 1} and inputs 𝑥,𝑦 ∈ {0, 1}𝑘 , we want every node in 𝐺 to learn

𝑓 (𝑥,𝑦). However, 𝑥𝑖 and 𝑦𝑖 are given only to 𝑠𝑖 and 𝑡𝑖 as their

respective private inputs. Nodes in𝐺 have access to shared random

coins. We are interested in the worst-case running time to complete

the above task in the supported CONGEST model. The problem is

motivated by the (classic) communication complexity model, which

is the special case of CONGEST with a two-node, single-edge graph,

where Alice controls one node (with 𝑘 input bits) and Bob controls

the other node (ditto), and single-bit messages are sent in each

round. The time to compute 𝑓 in this model is referred to as its

communication complexity. In this paper we are mostly interested

in the 𝑘-bit disjointness function, disj : {0, 1}𝑘 × {0, 1}𝑘 → {0, 1},
given by disj(𝑥,𝑦) = 1 if for each 𝑖 ∈ [𝑘], we have 𝑥𝑖 · 𝑦𝑖 = 0, and

disj(𝑥,𝑦) = 0 otherwise. I.e., if 𝑥 and 𝑦 are indicator vectors of sets,

this function indicates whether these sets are disjoint. This function

is known to have communication complexity Θ(𝑘) [8, 64].

Having defined the distributed function computation model, we

are now ready to define our lower-bound certificate on the time to

compute a function between nodes {𝑠𝑖 }𝑘𝑖=1 and {𝑡𝑖 }
𝑘
𝑖=1: amoving cut.

Definition 2.4 ([36]). Let 𝑆 = {(𝑠𝑖 , 𝑡𝑖)}𝑘𝑖=1 be a set of source-sink

pairs in a graph𝐺 = (𝑉 , 𝐸). Amoving cut for 𝑆 is an assignment of

positive integer edge lengths ℓ : 𝐸 → Z≥1. We say that:

(i) ℓ has capacity 𝛾 :=
∑
𝑒∈𝐸 (ℓ𝑒 − 1);

(ii) ℓ has distance 𝛽 when distℓ ({𝑠𝑖 }𝑘𝑖=1, {𝑡 𝑗 }
𝑘
𝑗=1) ≥ 𝛽 , i.e., the

ℓ-distance between all sinks and sources is at least 𝛽 .

The following lemma showcases the utility of moving cuts.

Lemma 2.5. If𝐺 contains a moving cut for 𝑘 pairs 𝑆 = {(𝑠𝑖 , 𝑡𝑖)}𝑘𝑖=1
with distance at least 𝛽 and capacity strictly less than 𝑘 , then dis-

tributed computation of disj between {𝑠𝑖 }𝑖∈[𝑘] and {𝑡𝑖 }𝑖∈[𝑘] takes
Ω̃(𝛽) time. This lower bound holds even for bounded-error randomized

algorithms that know 𝐺 and 𝑆 .

Broadly, Lemma 2.5 follows from a simulation argument. Given

a sufficiently-fast 𝑂̃ (𝛽)-time distributed algorithm for disj between

{𝑠𝑖 }𝑘𝑖=1 and {𝑡𝑖 }
𝑘
𝑖=1 and a moving cut for {(𝑠𝑖 , 𝑡𝑖)}𝑘𝑖=1 of capacity less

than 𝑘 and distance 𝛽 , we show how to obtain a communication

complexity protocol with a sufficiently small complexity 𝑂 (𝑘) to
contradict the classic Ω(𝑘) communication complexity lower bound

for disjointness. This yields the lower bound. The full proof follows

the arguments (implicitly) contained in [8, 36]. See the full version

of this paper for details.

Lemma 2.5 motivates the search for moving cuts of large dis-

tance and bounded capacity. For a fixed set of 𝑘 pairs 𝑆 , we define

MovingCut(𝑆) to be the largest distance 𝛽 of a moving cut for 𝑆

of capacity strictly less than 𝑘 .

2.4 Relation of Moving Cuts to
Communication

Consider the simple communication problem for a set of pairs

𝑆 = {(𝑠𝑖 , 𝑡𝑖)}𝑘𝑖=1, termed multiple unicasts. In this problem, each 𝑠𝑖
has a single-bit message 𝑥𝑖 it wishes to transmit to 𝑡𝑖 . We denote

by Communicating(𝑆) the time of the fastest algorithm for this

problem which knows 𝐺 and 𝑆 (but not the messages). One natu-

ral way to solve this problem is to store-and-forward (or łroutež)

the messages 𝑥𝑖 through the network. We denote the fastest such

algorithm’s running time by Routing(S). While faster solutions

can be obtained by encoding and decoding messages in interme-

diary nodes, prior work has shown the gap between the fastest

routing and unrestricted (e.g., coding-based) algorithms is at most

𝑂̃ (1) [36]. Indeed, the following lemma asserts as much, and shows

that moving cuts characterize the time required to complete mul-

tiple unicasts. As the model and terminology of [36] is slightly

different from ours, we provide a proof of this lemma in the full

version of this paper.

Lemma 2.6. ([36]) For any set of pair 𝑆 , we have that

MovingCut(𝑆) = Θ̃(Communicating(𝑆)) = Θ̃(Routing(𝑆)) .

Furthermore, routing algorithms (and, by extension, moving

cuts) are intricately related to shortcuts. We first extend shortcuts

to (not necessarily connected) pairs in the straightforward way:

given a set of pairs 𝑆 = {(𝑠𝑖 , 𝑡𝑖)}𝑘𝑖=1 we say that a set of paths

{𝐻𝑖 }𝑘𝑖=1 with endpoints {𝑠𝑖 , 𝑡𝑖 } are 𝑞-quality shortcuts if both their

dilation (length of the longest path) and congestion (maximum

number of paths containing any given edge) are at most 𝑞. We

define ShortcutQuality2 (𝑆) as the minimum shortcut quality

achievable for 𝑆 . The seminal work of Leighton et al. [48] relates

(pairwise) shortcuts and routing algorithms.

Lemma 2.7. ([48]) For any set of pairs 𝑆 , we have that Routing

(𝑆) = Θ̃(ShortcutQuality2 (𝑆)).

While the above statements hold for all sets of pairs, we will

mostly be concerned with sets of pairs 𝑆 which can be connected

by vertex-disjoint paths in𝐺Ðwhich we refer to as connectable sets

of pairs. We argue that worst-case connectable pair sets charac-

terize distributed optimization, and hence we defineMovingCut

(𝐺) := max{MovingCut(𝑆) | 𝑆 is connectable}, and analogously

for Communicating(𝐺), Routing(𝐺), and ShortcutQuality2
(𝐺). These definitions together with lemmas 2.6 and 2.7 imme-

diately imply the following relationships.

Lemma 2.8. For any graph 𝐺 , we have

MovingCut(𝐺) = Θ̃(Communicating(𝐺))
= Θ̃(Routing(𝐺))
= Θ̃(ShortcutQuality2 (𝐺)) .

2.5 Oblivious Routing Schemes

Here we revisit the multiple unicasts problem for a set of pairs

𝑆 = {(𝑠𝑖 , 𝑡𝑖)}𝑘𝑖=1, whose complexity is captured by the parame-

ter Communicating(𝑆). By lemmas 2.6 and 2.7, this parameter is

also equal (up to polylog terms) to the best shortcut quality for

1170

STOC ’21, June 21–25, 2021, Virtual, Italy Bernhard Haeupler, David Wajc, and Goran Zuzic

these pairs, ShortcutQuality2 (𝑆): that is, the minimum conges-

tion+dilation over all sets of paths connecting each (𝑠𝑖 , 𝑡𝑖) pair. If
all pairs are aware of each other and the topology, multiple unicasts

is therefore solvable optimally (up to polylogs), using standard ma-

chinery (see [36]). However, what if each 𝑠𝑖 needs to transmit its

message to 𝑡𝑖 without knowing other pairs (𝑠 𝑗 , 𝑡 𝑗) in the network?

Can we achieve such near-optimal routing with the choice of 𝑠𝑖
being oblivious to the other pairs? The following definitions set the

groundwork needed to describe precisely such an oblivious routing

scheme.

Definition 2.9. A routing scheme for a graph 𝐺 = (𝑉 , 𝐸) is a
collection 𝑅 = {𝑅𝑠,𝑡 }𝑠,𝑡 ∈𝑉 where 𝑅𝑠,𝑡 is a distribution over paths

between 𝑠 and 𝑡 . The routing scheme 𝑅 has dilation 𝑑 if for all

𝑠, 𝑡 ∈ 𝑉 , all paths 𝑝 in the support of 𝑅𝑠,𝑡 have at most 𝑑 hops.

Fix demands between pairs D : 𝑉 ×𝑉 → {0, 1, . . . , 𝑛𝑂 (1) }. We

say a routing scheme𝑅 = {𝑅𝑠,𝑡 }𝑠,𝑡 has a fractional routing congestion
w.r.t. D of cong(D, 𝑅) := max𝑒∈𝐸 E𝑝∼𝑅𝑠,𝑡

[
D𝑠,𝑡 · 1[𝑒 ∈ 𝑝]

]
. We

denote by opt(ℎ) (D) the minimum cong(D, 𝑅) over all routing
schemes 𝑅 with dilation ℎ. The (hop-constrained) oblivious routing

problem asks whether there exists a routing scheme 𝑅 which is

oblivious to the demand (i.e., does not depend on D), but which

is nevertheless competitive with the optimal (hop constrained)

fractional routing congestion over all demands.

Definition 2.10. Anℎ-hop oblivious routing scheme for a graph

𝐺 = (𝑉 , 𝐸) with hop stretch 𝛽 ≥ 1 and congestion approxima-

tion 𝛼 ≥ 1 is a routing scheme 𝑅 with dilation 𝛽 · ℎ and which for

all demands D : 𝑉 ×𝑉 → R≥0 satisfies

cong(D, 𝑅) ≤ 𝛼 · opt(ℎ) (D).

The following lemma,which follows by standard Chernoff bounds,

motivates the interest in such an oblivious routing in the context

of computing optimal shortcuts for a set of pairs.

Lemma 2.11. Let 𝐺 be a graph, and 𝑆 = {(𝑠𝑖 , 𝑡𝑖)} be a set of pairs.
Let ℎ ∈ [𝑄, 2𝑄), where 𝑄 = ShortcutQuality2 (𝐺). Finally, let 𝑅
be an ℎ-hop oblivious routing for 𝐺 with hop stretch 𝛽 ≥ 1 and

congestion approximation 𝛼 ≥ 1. Then, sampling a path 𝑝 ∼ 𝑅𝑠𝑖 ,𝑡𝑖 for

each (𝑠𝑖 , 𝑡𝑖) ∈ 𝑆 yields 𝑂 (log𝑛) ·max{𝛼, 𝛽} ·𝑄 shortcuts for 𝑆 w.h.p.

The seminal result of Räcke [63] asserts that for ℎ = 𝑛 (i.e., no

hop constraint), anℎ-hop oblivious routing scheme with congestion

approximation 𝛼 = 𝑂 (log𝑛) exists. The main result of [29] asserts

that good hop-constrained oblivious routing exists for every hop

bound ℎ.

Theorem 2.12. ([29]) For every graph 𝐺 = (𝑉 , 𝐸) and ℎ ≥ 1, an

ℎ-hop oblivious routing with hop stretch 𝑂 (log6 𝑛) and congestion

approximation 𝑂 (log2 𝑛 · log2 (ℎ log𝑛)) is computable in polytime.

3 UNIVERSAL OPTIMALITY

In this section we discuss different notions of optimality either

explicitly or implicitly apparent in the literature, starting with

a high-level description. We then provide a formal definition of

universal and instance optimality.

3.1 Different Notions of Optimality

Existential optimality (discussed below) is the standard worst-case

asymptotic notion optimality with respect to simple graph parame-

ters prevalent in both distributed computing and throughout theo-

retical computer science at large.

Existential Optimality. The MST algorithm of Kutten and Pe-

leg [47], which terminates in 𝑂̃ (𝐷 +
√
𝑛) rounds on every network

with 𝑛 nodes and diameter 𝐷 , is optimal with respect to 𝑛 and 𝐷 in

the following existential sense. For every 𝑛 and 𝐷 = Ω(log𝑛) there
exists a network𝐺 with 𝑛 nodes and diameter 𝐷 , and a set of inputs

on 𝐺 , such that any algorithm that is correct on all inputs requires

at least Ω̃(𝐷 +
√
𝑛) rounds.4 However, the drawback of existential

optimality is immediate: it says nothing about the performance

of an algorithm compared to what is achievable on networks of

interest. For example, in every planar graph one can compute the

MST in 𝑂̃ (𝐷) rounds, outperforming the Ω̃(𝐷 +
√
𝑛)-bound when

𝐷 ≪
√
𝑛. Another, less immediate, drawback is that existential

optimality crucially depends on the parameterization. If we param-

eterize only by 𝑛, one would not need to look past the 𝑂 (𝑛) MST

algorithm described by Awerbuch [3]. In the other extreme, one

could start searching for existential optimality with respect to an

ever-more-complicated set of parameters, ad nauseam.

Due to these drawbacks, Garay, Kutten, and Peleg [21] informally

proposed to study stronger notions of optimality (see their quote

presented in Section 1.1). Based on the quote from [21], we define

the following two notions of optimality.

Instance Optimality.We say that an algorithm is instance optimal

if it is 𝑂̃ (1)-competitive with every other always-correct algorithm

on every network topology 𝐺 and every valid input.

Universal Optimality. We define universal optimality as a useful

middle ground between (weaker) existential and (often unachiev-

able) instance optimality. We say that an algorithm is universally

optimal if for every network 𝐺 , the worst-case running time across all

inputs on𝐺 is 𝑂̃ (1)-competitive with the worst-case running time

of any other always-correct algorithm running on𝐺 . In other words,

such an algorithm is (near-)optimal for each network topology 𝐺 ,

when measured in terms of worst-case inputs on 𝐺 .

An immediate benefit of universal optimality is that its definition

is independent of any parameterization. Moreover, if a universally-

optimal algorithm for a problem Π terminates in times 𝑋Π (𝐺) for
graph𝐺 , this implies that𝑋Π (·) is the fundamental graph parameter

that inherently characterizes the hardest barrier in 𝐺 that prevents

faster algorithms from being achievable. The term universal-network

optimality would be somewhat more descriptive, given that we

are optimal for every network. However, throughout this paper

we chose to keep the original term łuniversal optimalityž coined

in [20] which states the problem of identifying łinherent graph

parametersž associated with different problems, and referred to the

algorithms matching those bounds as universally optimal.

It is not clear at all whether universal (or instance) optimality

can be achieved for a non-trivial problem. Indeed, each network (or

instance) could have a single tailor-made algorithm which solves

it in record time on this specific network (or instance), at the cost

of being much slower on other networks (or instances). Requiring

4The bounds slightly change when 𝐷 = 𝑜 (log𝑛) , e.g., see [7, 46, 52].

1171

Universally-Optimal Distributed Algorithms for Known Topologies STOC ’21, June 21–25, 2021, Virtual, Italy

a single uniform algorithm to compete with each of these expo-

nentially many fine-tuned algorithms on every single network (or

instance) simultaneously seems almost impossibly hard. Indeed, we

show that this barrier prevents instance-optimal distributed MST

algorithms from existing both in CONGEST and the supported

CONGEST model. Surprisingly, we show that universal optimality

for distributed MST and many other problems is achievable.

3.2 Formal Definitions

In this section we give formal definitions of instance and universal

optimality. To our knowledge, this is the first paper that clearly

separates these two notions.

For some problemΠ, we say that an algorithmA is always correct

if it terminates with a correct answer on every instance (i.e., every

network 𝐺 and every input 𝐼), and let AΠ be the class of always-

correct algorithms for Π. Denote by 𝑇A (𝐺, 𝐼) the running time of

an algorithm A ∈ AΠ on graph 𝐺 and problem-specific input 𝐼 ,

and let max𝐼 𝑇A (𝐺, 𝐼) be the worst-case running time of algorithm

A ∈ AΠ over all inputs supported on graph𝐺 . We define universal

optimality and instance optimality for algorithms in modelM (e.g.,

CONGEST, supported CONGEST, LOCAL, etc...) as follows:

Definition 3.1. (Instance Optimality) An always-correct

model-M algorithm A for problem Π is instance optimal

ifA is 𝑂̃ (1)-competitive with every always-correct model-M
algorithm A ′ for Π on every graph 𝐺 , and every input 𝐼 , i.e.,

∀A ′ ∈ AΠ, ∀𝐺, ∀𝐼 𝑇A (𝐺, 𝐼) = 𝑂̃ (1) ·𝑇A′ (𝐺, 𝐼) .

Definition 3.2. (Universal Optimality) An always-correct

model-M algorithm A for problem Π is universally op-

timal if the worst-case running time of A on 𝐺 is 𝑂̃ (1)-
competitive with that of every always-correct model-M algo-

rithm A ′ for Π, i.e.,

∀A ′ ∈ AΠ, ∀𝐺 max
𝐼

𝑇A (𝐺, 𝐼) = 𝑂̃ (1) ·max
𝐼

𝑇A′ (𝐺, 𝐼).

While similar on a surface level, these two notions have vastly

different properties. Notably, in CONGEST, any instance-optimal

algorithm would need to compute an answer in 𝑂̃ (𝐷) rounds.

Lemma 3.3. For every problem Π in CONGEST or supported CON-

GEST, every instance-optimal algorithm A must terminate in 𝑂̃ (𝐷)
rounds for every instance on a graph of diameter 𝐷 .

Proof. For any instance (𝐺, 𝐼) given by a graph 𝐺 and an in-

put 𝐼 we define an algorithm A ′
(𝐺,𝐼) which is always-correct for

Π and also very fast when run on the instance (𝐺, 𝐼). The algo-

rithm A ′
(𝐺,𝐼) , when run on an instance (𝐺 ′, 𝐼 ′), first computes the

diameter 𝐷 (𝐺 ′) of 𝐺 ′ together with a BFS-tree of 𝐺 ′. This can be

done in Θ(𝐷 (𝐺 ′) rounds using a standard guess/double parameter

search for 𝐷 (𝐺 ′) together with a simple flooding process. Every

node then checks whether a node in𝐺 has its ID and, if so, whether

its input and local neighborhood looks like the one of the node

with its ID in (𝐺, 𝐼). This step requires only a single round. Further-

more, if A ′
(𝐺,𝐼) is run on an instance (𝐺 ′, 𝐼 ′) different from (𝐺, 𝐼)

at least one node in 𝐺 ′ knows. In another Θ(𝐷 (𝐺 ′)) rounds the
algorithm A ′

(𝐺,𝐼) uses the BFS-tree to aggregate this information,

i.e., to inform every node in𝐺 ′ whether the instance the algorithm
is run on is identical to (𝐺, 𝐼) or not. If the instance the algorithm
A ′

(𝐺,𝐼) is run on is the target instance (𝐺, 𝐼) then each node termi-

nates with a correct output after Θ(𝐷 (𝐺 ′) rounds. Otherwise the
algorithm A ′

(𝐺,𝐼) runs any arbitrarily slow algorithm for Π, e.g.,

A ′
(𝐺,𝐼) could use Θ̃(𝑚(𝐺 ′)) rounds to aggregate all information

about (𝐺 ′, 𝐼 ′) along the BFS-tree and then have every node termi-

nate with a correct answer to the instance (𝐺 ′, 𝐼 ′). Note thatA ′
(𝐺,𝐼)

has a very fast running time of Θ(𝐷 (𝐺 ′)) = Θ(𝐷 (𝐺 ′)) when run

on instance (𝐺 ′, 𝐼 ′) = (𝐺, 𝐼) but an incredibly slow running time

of Θ̃(𝑚(𝐺 ′)) when run on any other instance (𝐺 ′, 𝐼 ′) ≠ (𝐺, 𝐼).
Still, any algorithm A ′

(𝐺,𝐼) of this kind is always-correct for Π, i.e.,

{A ′
(𝐺,𝐼) |𝐺, 𝐼 } ⊆ AΠ . Hence, for any instance (𝐺 ′, 𝐼 ′), the fastest

always-correct algorithm terminates in at most 𝑂 (𝐷 (𝐺 ′)) rounds.
The running time of any instance optimal algorithm for Π has to

be at most 𝑂̃ (1) ·minA′∈AΠ
𝑇A′ (𝐺, 𝐼) = 𝑂̃ (𝐷 (𝐺)). □

Lemma 3.3 implies that instance optimality is unattainable in the

CONGEST or supported CONGEST model for all but very simple

problems that can always be solved in 𝑂̃ (𝐷) rounds on any topology
with diameter 𝐷 . In particular, instance optimality is impossible to

achieve for the MST problem and all the other problems we study

in this paper since, due to [8], any always-correct MST algorithm

in supported CONGEST requires Ω̃(
√
𝑛) rounds on some instance

supported on a network of diameter 𝐷 = 𝑂 (log𝑛). So, while the
notion of instance optimality has merit for other problems or mod-

els, for the problems studied here in supported CONGEST, this

notion is unachievable. On the other hand, we show that universal

optimality can be achieved for the problems we study in supported

CONGEST.

To illustrate some differences between instance and universal

optimality, we note that the latter is not directly ruled out by the

Ω̃(
√
𝑛) lower bound of [8]: Consider the worst-case network 𝐺𝑊𝐶

from [8]. For this network the Ω̃(
√
𝑛) supported CONGEST lower

bound applies for some input, hence for any always-correct A ′ we
have thatmax𝐼 𝑇A′ (𝐺𝑊𝐶 , 𝐼) ≥ Ω̃(

√
𝑛). When presented with𝐺𝑊𝐶

it is therefore sufficient for a universally-optimal algorithm A to

terminate in 𝑂̃ (
√
𝑛) rounds on 𝐺𝑊𝐶 .

However any universally optimal MST algorithm still has to

simultaneously compete with a large collection of algorithms, each

of which can be fine-tuned for a different specific network topology

(while being arbitrarily slow on others). For example: suppose that

M is CONGEST and some problem Π allows for a fast (e.g., 𝑂 (𝐷)
or even 𝑂 (1) round) CONGEST algorithm when the underlying

network is promised to be a specific topology𝐺 (e.g., computing the

edges of an MST can be done instantly if the topology is promised

to be a (specific) tree). Then any universally-optimal algorithm for

Π must complete in 𝑂̃ (𝐷) rounds on any such topology 𝐺 since

there exists again a fine-tuned always-correct algorithms which

checks for 𝐺 in 𝑂 (𝐷) rounds. The trouble of course is that each
of the specialized algorithms only needs to run a single check,

1172

STOC ’21, June 21–25, 2021, Virtual, Italy Bernhard Haeupler, David Wajc, and Goran Zuzic

whether the topology matches its specialty, while a universally

optimal algorithm cannot run all of these checks simultaneously to

be competitive, as this would be equivalent to learning the topology.

Next, we show that our definition of universal optimality (unlike

the definition of instance optimality) does not require to beat the

folk-lore diameter lower bound which applies to global problems

like the minimum spanning tree requires Ω(𝐷) rounds in CON-

GEST. Indeed the following lemma shows that a universal lower

bound of Ω(𝐷) applies to any always-correct MST algorithm. This

also grants any universally-optimal algorithm MST algorithm at

least Ω(𝐷) rounds. Note that for this to hold it is crucial that we

compare our running time only to always-correct algorithms and

not just algorithms that are correct on the topology 𝐺 they are

evaluated on (or fast for).

Lemma 3.4. For every always-correct CONGEST MST algorithm A
and for any graph𝐺 with diameter 𝐷 , the worst-case running time of

A on instances supported on𝐺 is Ω(𝐷), i.e.,max𝐼 𝑇A (𝐺, 𝐼) ≥ Ω(𝐷).

Proof. If 𝑛 ≤ 2, or more generally 𝐷 = 𝑂 (1), the observation
is trivial. Suppose therefore that 𝑛 ≥ 3 and 𝐷 ≥ 3. Let 𝑠 and 𝑡 be

two vertices of maximum hop distance in 𝐺 . That is, 𝑑𝐺 (𝑠, 𝑡) = 𝐷 .

Consider a vertex 𝑣 at distance at least 𝐷
2 − 1 from both 𝑠 and 𝑡

(such a vertex must exist, else 𝑑𝐺 (𝑠, 𝑡) ≤ 𝐷 − 2). Fix a simple path

𝑝 : 𝑠 ⇝ 𝑣 ⇝ 𝑡 , and let 𝑒 = (𝑢, 𝑣) be some edge in 𝑝 incident on

𝑣 . We next consider two instances in two different graphs,𝐺 and

𝐺 ′, obtained from 𝐺 by adding edge (𝑠, 𝑡). (Note that (𝑠, 𝑡) is not
an edge in 𝐺 , else 𝑑𝐺 (𝑠, 𝑡) = 1.) The instances 𝐼 in 𝐺 which we

consider assigns weights

𝑤𝑒′ =




1 𝑒 ′ ∈ 𝑝 \ {𝑒}
2 𝑒 ′ = 𝑒

𝑛 𝑒 ′ ∉ 𝑝,

while the instance 𝐼 ′ in𝐺 ′ assigns the same weights to edges which

also belong to 𝐺 and weight 𝑤 (𝑠,𝑡) = 1 to (𝑠, 𝑡). By application of

Kruskal’s MST algorithm, it is easy to show that 𝑒 = (𝑢, 𝑣) is in
every MST of the instance 𝐼 in graph𝐺 , while it belongs to no MST

of instance 𝐼 ′ in graph𝐺 ′. However, after 𝐷
2 − 2 CONGEST rounds,

no messages which are functions of the input of nodes 𝑠 and 𝑡 may

reach 𝑣 . Therefore, after 𝐷
2 − 2 rounds, node 𝑣 cannot distinguish

whether the underlying topology is𝐺 or𝐺 ′ and it cannot determine

whether 𝑒 = (𝑢, 𝑣) is in the MST or not. Consequently, any always-

correct MST CONGEST algorithm must spend at least 𝐷
2 −1 rounds

on any diameter 𝐷 graph. □

We briefly discuss various aspects of our notions of optimality.

Universal optimality in supported CONGEST.WhenM is sup-

ported CONGEST, a universally-optimal algorithm A can per-

form arbitrary computations on the network topology before the

problem-specific input is revealed to it. This enlarges the space of

possible universally-optimal algorithms compared to the (classic)

CONGEST. On the other hand, the relative power of the łcompetitor

algorithmž A ′ is not significantly impacted between the two mod-

els; the argument behind the proof of Lemma 3.3 implies that the

running time of the best always-correct CONGEST and supported

CONGEST algorithm on any input 𝐼 supported on 𝐺 never differ

by more than an (often insignificant) 𝑂 (𝐷) term.

Coarsening instance-optimal MST in LOCAL. Elkin [11] de-

fines the class of łcoarsening will-maintainingž protocols as those

that, in each round, maintain a set of edges which contain an MST,

and eventually converge to the correct solution. The paper con-

siders the LOCAL model (i.e., CONGEST with unlimited message

sizes) and concludes that one can construct instance-optimal (coars-

ening will-maintaining) algorithms. Specifically, the paper defines

the so-called MST-radius 𝜇 (𝐺, 𝐼) (a function of both the network

𝐺 and the input 𝐼) and argues it is a lower bound for any always-

correct LOCAL algorithm in the above class; the upper bound of

𝑂 (𝜇 (𝐺, 𝐼)) can also be achieved. The results also extend to the CON-
GEST model, giving a 𝑂̃ (𝜇 (𝐺, 𝐼) +

√
𝑛), and can be argued that this

algorithm is instance optimal up to an additive 𝑂̃ (
√
𝑛). A few no-

table differences between the definitions in Elkin’s paper [11] and

ours are imminent: in the former, protocols do not need to detect

when to terminate, but rather converge towards the answer. This

change of the model makes the results incomparable to oursÐevery

always-correct CONGEST algorithm has a universal lower bound of

Ω(𝐷), which can often be significantly larger than the MST-radius.

Is the diameter always a universal lower bound? The results

in this paper typically ignore additive 𝑂̃ (𝐷) terms. For interesting

models and problems for the scope of this paper, this choice can

be formally justified with the universal lower bound of Lemma 3.4.

However, our universal and instance optimality formalism is inter-

esting even in settings where sub-diameter results are possible, i.e.,

where the Ω(𝐷) lower bound does not hold. For example, suppose

that we define the MST problem to be solved when each node in-

cident to an edge 𝑒 knows whether 𝑒 is part of the MST or not. In

the known-topology setting (i.e., supported CONGEST), when 𝑇 is

a tree, a universally-optimal algorithm takes 1 ≪ 𝐷 round, since

each edge must be in the MST. This MST problem in supported

CONGEST has the maximum diameter of a biconnected compo-

nent, rather than the diameter of𝐺 , as a universal lower boundÐsee

the full paper for an exploration of such issues. We also note that

this MST problem in (non-supported) CONGEST still has an Ω(𝐷)
universal lower bound.

In the following section we outline our approach for proving

the existence (and design) of universally-optimal algorithms for the

problems studied in this paper.

4 TECHNICAL OVERVIEW

In this section we outline the key steps for obtaining universally-

optimal algorithms in the supported CONGEST model, and high-

light additional results implied by our work.

The problem we use as our running example (and as the core of

our lower bounds) is the spanning connected subgraph verification

problem (defined in Section 2). By known reductions from spanning

connected subgraph verification Das Sarma et al. [8], lower bound

for the above problem extend to lower bounds for MST, cut, min-cut,

s-source distance, shallow light trees, min-routing cost trees and

many other problems as well as to any non-trivial approximations

for these problems. In order to provide universal lower bounds for

these problems, we therefore prove such universal lower bounds

for this verification problem.

1173

Universally-Optimal Distributed Algorithms for Known Topologies STOC ’21, June 21–25, 2021, Virtual, Italy

4.1 Generalizing the Existential Lower Bound
to General Topologies

To achieve our results we first give a robust definition of aworst-case

subnetwork, which generalizes the pathological worst-case topology

of the existential lower bound of Das Sarma et al. [8] to subnetworks

in general graphs. This generalization builds on insights and crucial

definitions from a recent work of the authors [36], which connects

the CONGEST lower bound of Das Sarma et al. [8] to network

coding gaps for multiple unicasts. Once the new definition is in

place it is easy to verify that the proof of [8] generalizes to our

worst-case subnetworks. DefiningWCsubnetwork(𝐺) to be the
size of the largest such worst-case subnetwork in 𝐺 then gives

a lower bounds for any network, instead of just a single graph

that is carefully chosen to facilitate the lower bound proof.5 One

particularly nice aspect of this universal lower bound is that it

brings the full strength and generality of the lower bound of [8] to

general topologies. In particular, it applies to a myriad of different

optimization and verification problems, holds for deterministic

and randomized algorithm alike, holds for known topologies, and

extends in full strength to any non-trivial approximations.

Lemma 4.1. For any graph𝐺 , any always-correct supported

CONGEST spanning connected subgraph verification algo-

rithmA𝐺 takes Ω̃(WCsubnetwork(𝐺)+𝐷) rounds on some

input supported on 𝐺 . This holds even if A𝐺 is randomized

and knows 𝐺 .

4.2 Shortcut Quality Is a Universal Lower
Bound

A priori, it is not clear how strong or interesting the lower bound of

WCsubnetwork(𝐺) is. By definition, it only applies to networks

with subnetworks displaying similar characteristics to the patho-

logical worst-case topology from [8], which seems very specific.

Surprisingly, however, we prove an equivalence (up to polylog

terms) between this graph parameter and several other graph pa-

rameters, including and most importantly a universal lower bound

of ShortcutQuality(𝐺). (We elaborate on these in Section 4.4.)

Lemma 4.2. For any graph 𝐺 ,

ShortcutQuality(𝐺) = Θ̃(WCsubnetwork(𝐺) + 𝐷) .

From this equivalence and our universal lower bound in terms of

the worst-case subnetwork, we obtain our main result: a universal

lower bound in terms of the graph’s shortcut quality.

Theorem 4.3. For any graph 𝐺 , any always-correct

message-passing supported CONGEST algorithm A𝐺

for spanning connected subgraph verification takes

Ω̃(ShortcutQuality(𝐺)) rounds on some input supported

on 𝐺 . This holds even if A𝐺 is randomized and knows 𝐺 .

5Indeed, Das Sarma et al. [8] state concerning their existential lower bound that łThe
choice of graph𝐺 is critical.ž

By standard reductions presented it Das Sarma et al. [8], we

deduce that ShortcutQuality(𝐺) serves as a lower bound for

various distributed optimization and verification problems.

Corollary 4.4. Let 𝐺 be a graph, Π be either MST, (1 + 𝜀)-min-cut,

or approximate shortest paths, and A𝐺 an always-correct supported-

CONGEST algorithm for Π. Then, A𝐺 takes Ω̃(ShortcutQuality
(𝐺)) rounds on at least one input supported on 𝐺 .

As a corollary of Theorem 4.3 and the aforementioned reductions

of [8], we find that the parameter ShortcutQuality(𝐺) is also a

universal lower bound for the complexity of the very same opti-

mization problems for which the low-congestion framework has

already established algorithmic results with running times mostly

depending on ShortcutQuality(𝐺). Indeed, by Lemma 2.3, an

algorithm constructing 𝑂̃ (1)-approximately optimal shortcuts in

time 𝑂̃ (ShortcutQuality(𝐺)) would result in algorithms with

running time 𝑂̃ (ShortcutQuality(𝐺)), which would be univer-

sally optimal, by Theorem 4.3. We provide precisely such shortcut

construction in the known topology setting.

Theorem 4.5. There exists a supported CONGEST algorithm

that, for any 𝑘 disjoint sets of connected parts {𝑃𝑖 ⊆ 𝑉 }𝑘𝑖=1 in
a network 𝐺 , constructs 𝑂̃ (ShortcutQuality(𝐺))-quality
shortcut on {𝑃𝑖 }𝑖 in 𝑂̃ (ShortcutQuality(𝐺)) rounds.

4.3 Universal Optimality in Supported
CONGEST

The above results combined directly imply universally-optimal

supported CONGEST algorithms for any problem that has a good

shortcut-based distributed algorithm.

Theorem 1.1. [Informal] The problems MST, (1 + 𝜀)-minimum cut,

sub-graph connectivity, various approximate shortest path problems

(and more) admit a universally-optimal supported-CONGEST algo-

rithm based on the low-congestion shortcut framework.

Proof. Fix a graph 𝐺 , and let 𝑄 := ShortcutQuality(𝐺). By
Theorem 4.5 , there exists a supported CONGEST algorithm which

for any connected parts computes 𝑂̃ (𝑄)-quality shortcuts in 𝑂̃ (𝑄)
time. But then, by Lemma 2.3, there exists an algorithm for comput-

ing MST, (1+ 𝜀)-min cut, approximate shortest paths, and spanning

connected subgraph verification, all in 𝑂̃ (𝑄) rounds. Call the ob-
tained algorithm A. That is,

max
𝐼

𝑇A (𝐺, 𝐼) = 𝑂̃ (ShortcutQuality(𝐺)) .

On the other hand, by Theorem 4.3 and its Corollary 4.4, for any

algorithm A ′, we have that

max
𝐼

𝑇A′ (𝐺, 𝐼) = Ω̃(ShortcutQuality(𝐺)) .

Combining the above bounds, we find that indeedmax𝐼 𝑇A (𝐺, 𝐼) =
𝑂̃ (1) ·max𝐼 𝑇A′ (𝐺, 𝐼). As the same holds for all graphs 𝐺 , we con-

clude that A is universally optimal. □

1174

STOC ’21, June 21–25, 2021, Virtual, Italy Bernhard Haeupler, David Wajc, and Goran Zuzic

4.4 Other Characterizations of a Topology’s
Inherent Distributed Complexity

In this work we show that ShortcutQuality(𝐺) is a tight uni-

versal lower bound for our problems. However, as mentioned be-

fore, identifying, understanding, and characterizing the aspects

of a topology that influence and determine the complexity of dis-

tributed optimization problems is in itself a worthwhile goal. Indeed,

there are a multitude of reasons why a detailed understanding of

the relationship between topology and complexity is important.

Among other reasons, it (a) can be important for the design of good

networks, (b) might give important leads for understanding the

structure of existing natural and artificial networks occurring in

society, biology, and other areas, and (c) is necessary to provide

quantitative and provable running time guarantees for universally-

optimal algorithms run on a known topology 𝐺 , beyond a simple

łit runs as fast as possiblež.

As such, another important contribution of the tight lower bounds

proven in this paper consists of giving different characterizations

and ways to think about what makes a topology hard (or easy).

For example, while WCsubnetwork(𝐺) and ShortcutQuality

(𝐺) are both quantitatively equal, the fact that they both character-

ize the complexity of distributed optimization lends itself to very

different interpretations and conclusions.

Indeed, ShortcutQuality(𝐺) can be seen as the best routing

schedules for the partwise aggregation problem, which is the very

natural communication primitive underlying distributed divide-

and-conquer style algorithms (see, e.g., [32]). Shortcut quality being

a tight universal lower bound further demonstrates the key role

partwise aggregation plays for distributed optimization algorithms,

even to the extent that the complexity of many very different opti-

mization tasks is dominated by how fast this simple aggregation

procedure can be performed on a given topology.

The tightness of WCsubnetwork(𝐺) as a lower bound, on the

other hand, points to the pathological network structure identified

by Peleg and Rubinovich [8, 62] as indeed the only way in which a

topology can be hard for optimization. Put otherwise, a topology

is exactly as hard as the worst obstruction of this type within a

network.

As part of our proof of Theorem 4.2 we identify, define, and ex-

pose several other graph parameters which similarly characterize

the complexity of a topology𝐺 , such as,MovingCut(𝐺), Routing
(𝐺) and others. Many of these parameters have very different fla-

vors. For example the MovingCut(𝐺) parameter can be seen as

identifying crucial communication bottlenecks within a topology

via a sequence of cuts. It is also known [36] to characterize the

time needed to solve a simple multiple unicast communication

problem which requires information to be sent between different

sender-receiver pairs in the network. Routing(𝐺) relates to the

same communication problem, but with the restriction that infor-

mation is routed (without any coding) which, by Leighton, Maggs,

and Rao [48], is equivalent to the best congestion and dilation of

paths connecting the sender-receiver pairs. We give precise def-

initions and further explanations for these and other equivalent

universal lower bound parameters in the technical sections of this

paper. We hope that they will help to further illuminate different

aspects of the topology-complexity interplay.

5 SHORTCUT QUALITY IS A UNIVERSAL
LOWER BOUND

In this section we present our proof of our universal lower bounds

in terms of shortcut quality. In particular, this section is dedicated

to proving the following theorem.

Theorem 5.1. Let A be any always-correct algorithm for spanning

connected subgraph and let 𝑇𝑐𝑜𝑛𝑛 (𝐺) = max𝐼 𝑇A (𝐺, 𝐼) denote the
worst-case running time of A on the network 𝐺 . Then we have that:

𝑇𝑐𝑜𝑛𝑛 (𝐺) = Ω̃(ShortcutQuality(𝐺)).
We defer most proofs of this section to the full version, focusing

only on a high-level overview here. We start by introducing dis-

jointness gadgets, which are pathological sub-graphs for distributed

optimization, and outline their use in proving distributed lower

bounds, in Section 5.1. In order to obtain informative lower bounds

from these gadgets, we then relate the worst such subgraph to

the highest distance of any moving cut in 𝐺 , MovingCut(𝐺), in
Section 5.2. This is the technical meat of this work, and a non-

negligible fraction of the full version of this paper is dedicated to

proving this relation. We then relate the obtained lower bounds to

shortcut quality in Section 5.3. Finally, we conclude with the proof

of Theorem 5.1, as well as discussions of its implications to other

distributed problems, in Section 5.4.

5.1 Lower Bound Witnesses

In this section we define 𝛽-disjointness gadgets, a structure that con-

nects together information-theoretic bounds with higher-level dis-

tributed optimization problems like MST. The structure can be seen

as a generalization of previous existential lower bounds that show

many distributed problems cannot be solved faster than Ω̃(𝐷 +
√
𝑛)

on a specific graph family [8, 12, 62]. We argue that 𝛽-disjointness

gadgets are the łrightž way to generalize their approaches to arbi-

trary graphs.

Definition 5.2. A 𝛽-disjointness gadget (𝑃,𝑇 , ℓ) in graph𝐺 consists

of a set of vertex-disjoint paths 𝑃 ≠ ∅, each of length at least three;

a tree 𝑇 ⊆ 𝐺 which intersects each path in 𝑃 exactly at its endpoint

vertices; and amoving cut of capacity strictly less than |𝑃 | and distance
𝛽 with respect to the pairs {(𝑠𝑖 , 𝑡𝑖)} |𝑃 |𝑖=1 of endpoints of paths 𝑝𝑖 ∈ 𝑃 .

Figure 1: A disjointness gadget’s path and tree, given by

straight and rounded blue lines, respectively.

As we show, such disjointness gadgets are precisely the worst-

case subgraphs which cause distributed verification (and optimiza-

tion) to be hard. In particular, denoting byWCsubnetwork(𝐺) the

1175

Universally-Optimal Distributed Algorithms for Known Topologies STOC ’21, June 21–25, 2021, Virtual, Italy

highest value of 𝛽 for which there exists a 𝛽-disjointness gadget

in 𝐺 (or zero, if none exists). This quantifies the most pathological

subgraph in 𝐺 . We prove the following.

Lemma 5.3. Let A be any always-correct algorithm for spanning

connected subgraph and let 𝑇𝑐𝑜𝑛𝑛 (𝐺) = max𝐼 𝑇A (𝐺, 𝐼) denote the
worst-case running time of A on the network 𝐺 . Then we have that:

𝑇𝑐𝑜𝑛𝑛 (𝐺) = Ω̃(WCsubnetwork(𝐺) + 𝐷).

The non-trivial part of this lemma is the lower bound𝑇𝑐𝑜𝑛𝑛 (𝐺) =
Ω̃(WCsubnetwork(𝐺)). Our proof of this bound (see full version)
follows the approach implicit in [8]. Broadly, we use a disjointness

gadget (𝑃,𝑇 , ℓ) to construct a subgraph 𝐻 determined by private

|𝑃 |-bit inputs 𝑥,𝑦 for the endpoints of the paths, such that 𝐻 is a

spanning and connected subgraph of 𝐺 if and only if disj(𝑥,𝑦) =
1. Combined with Lemma 2.5, this equivalence and the moving

cut ℓ yield a lower bound on subgraph connectivity in a graph 𝐺

containing a 𝛽-disjointness gadget. In following sections we show

how to use this bound to prove lower bounds for this problem in

any graph 𝐺 .

5.2 Disjointness Gadgets in Any Graph

The first challenge in deriving an informative lower bound on the

time for spanning connected subgraph verification from Lemma 5.3

is that graphs need not contain disjointness gadgets. For example,

as disjointness gadgets induce cycles, trivially no such gadgets exist

in a tree. Consequently, for trees Lemma 5.3 only recreates the

trivial lower bound of Ω̃(𝐷).
The following theorem implies that for any graphs where the pa-

rameterMovingCut(𝐺) is sufficiently larger than 𝐷 , disjointness

gadgets do exist. More precisely, we prove the following theorem.

Theorem 5.4. For any graph 𝐺 ,

WCsubnetwork(𝐺) + 𝐷 = Θ̃(MovingCut(𝐺)) .

Theorem 5.4 is the technical core of this paper, and much of

the paper’s full version is dedicated to its proof. At a (very) high

level, what we prove there is that, while disjointness gadgets do not

always exist, some relaxation of them always does. In particular,

we show that for any graph 𝐺 and set of connectable pairs 𝑆 in

𝐺 , some relaxed notion of disjointness gadgets always exists for a

subset 𝑆 ′ ⊆ 𝑆 of size |𝑆 ′ | = Ω(|𝑆 |). We then show how to extend a

moving cut of distance 𝛽 ≥ 9𝐷 on 𝑆 to (strict) disjointness gadgets:

construct a relaxed disjointness gadget on a large subset of 𝑆 (since

𝑆 are connectable), then clean-up the structure using 𝛽 ≥ 9𝐷 to

transform it to a (strict) 𝛽-disjointness gadget.

5.3 Relating MovingCut(𝐺) to
ShortcutQuality(G)

So far we have shown that (up to polylog multiplicative terms and

additive 𝑂 (𝐷) terms), the time to solve subgraph connectivity is at

least the length of the worst moving cut in 𝐺 , which we denote by

MovingCut(G). More precisely, so far we proved that

𝑇𝑐𝑜𝑛𝑛 (𝐺) ≥ Θ̃(WCsubnetwork(𝐺) + 𝐷) = Θ̃(MovingCut(𝐺)).
In this section we show that the above terms we have proven to

be equivalent (up to polylog factors) are in turn equivalent to the

graph’s shortcut quality.

Indeed, by lemmas 2.6 and 2.7, we have that MovingCut(𝐺) =
Θ̃(ShortcutQuality2 (𝐺)). The following lemma proves an equiv-

alence (up to polylog factors) between shortcut quality for pairs to

the graph’s shortcut quality (for parts).

Lemma 5.5. For any graph 𝐺 ,

ShortcutQuality(𝐺) = Θ̃(ShortcutQuality2 (𝐺)).

Broadly, we use heavy-light decompositions [66] of spanning

trees of parts, to show how to obtain shortcuts for parts by glu-

ing together a polylogarithmic number of shortcuts for connected

pairs.6 The overall dilation and congestion of the obtained shortcuts

for the parts are at most polylogarithmically worse than those of

the shortcuts for the pairs. (See the full version for a proof.)

5.4 Putting It All Together

In this section we review our main result, whereby shortcut qual-

ity serves as a universal lower bound for the spanning connected

subgraph problem, as well as numerous other problems.

Theorem 5.1. Let A be any always-correct algorithm for spanning

connected subgraph and let 𝑇𝑐𝑜𝑛𝑛 (𝐺) = max𝐼 𝑇A (𝐺, 𝐼) denote the
worst-case running time of A on the network 𝐺 . Then we have that:

𝑇𝑐𝑜𝑛𝑛 (𝐺) = Ω̃(ShortcutQuality(𝐺)).

Proof. Putting all the lemmas above together, we have

𝑇𝑐𝑜𝑛𝑛 (𝐺) ≥ Θ̃(WCsubnetwork(𝐺) + 𝐷) 𝐿𝑒𝑚𝑚𝑎 5.3

= Θ̃(MovingCut(𝐺)) 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 5.4

= Θ̃(Communicating(𝐺)) 𝐿𝑒𝑚𝑚𝑎 2.8

= Θ̃(Routing(𝐺)) 𝐿𝑒𝑚𝑚𝑎 2.8

= Θ̃(ShortcutQuality2 (𝐺)) 𝐿𝑒𝑚𝑚𝑎 2.8

= Θ̃(ShortcutQuality(𝐺)) 𝐿𝑒𝑚𝑚𝑎 5.5 □

We note that the above proof entails a proof of Lemma 4.2, as

well as the equivalence between the number of tight universal lower

bounds for our problems discussed in Section 4.4.

Known reductions presented in Das Sarma et al. [8] extend the

same universal lower bounds of Theorem 5.1 to numerous problems

such as the MST, shallow-light tree, SSSP, min-cut and others. The

reductions hold for both non-trivial approximation factors as well

as randomized algorithms.

Since MST (and all above problems, for some approximation

ratios) can be solved using 𝑂̃ (1) applications of partwise aggre-

gation, Theorem 5.1 implies a similar Ω̃(ShortcutQuality(𝐺))
lower bound for the partwise aggregation problem. In Section 6 we

present a polytime algorithm matching this lower bound, resulting

in polytime universally-optimal supported CONGEST algorithms

for all problems studied in this paper.

6See [37] for a similar application of heavy-light decompositions to the reduction of
multicast routing to unicast routing.

1176

STOC ’21, June 21–25, 2021, Virtual, Italy Bernhard Haeupler, David Wajc, and Goran Zuzic

6 MATCHING THE LOWER BOUND:
ALGORITHMS FOR SHORTCUT
CONSTRUCTION

In this section we give our shortcut construction for the supported

CONGEST model which efficiently constructs shortcuts of quality

𝑂̃ (𝑄) in 𝑂̃ (𝑄) rounds, where 𝑄 = ShortcutQuality(𝐺) is the
best possible shortcut quality.

Theorem 4.5. There exists a supported CONGEST algorithm that,

for any 𝑘 disjoint sets of connected parts {𝑃𝑖 ⊆ 𝑉 }𝑘𝑖=1 in a network

𝐺 , constructs 𝑂̃ (ShortcutQuality(𝐺))-quality shortcut on {𝑃𝑖 }𝑖 in
𝑂̃ (ShortcutQuality(𝐺)) rounds.

By Lemma 2.3, numerous problems, including MST, approximate

min-cut, approximate shortest path problems, and verification prob-

lems can therefore be solved in 𝑂̃ (ShortcutQuality(𝐺)) rounds
when the topology is known. On the other hand, from Section 5 we

know that all these problems are harder than the subgraph connec-

tivity problem, which requires at least Ω̃(ShortcutQuality(𝐺))
rounds on any network𝐺 , by Theorem 5.1. These matching bounds

together give Theorem 1.1.

6.1 Constructing Shortcuts for Pairs

In order to construct shortcuts for parts, we will rely on the ability

to construct shortcuts for pairs. In particular, we will require such

shortcut construction for pairs of nodes which are oblivious of each

other. To this end, we rely on the existence of hop-constrained

oblivious routing to construct such shortcuts between pairs of

nodes, yielding the following lemma.

Lemma 6.1. There exists a supported CONGEST algorithm that,

given 𝑘 disjoint node pairs 𝑆 = {(𝑠𝑖 , 𝑡𝑖)}𝑖 (each 𝑠𝑖 knows 𝑡𝑖 and vice
versa, but not other pairs) in a graph 𝐺 , constructs an 𝑂̃ (𝑄)-quality
shortcut for 𝑆 in 𝑂̃ (𝑄) rounds, where 𝑄 = ShortcutQuality2 (𝐺).

Proof. Knowing the topology, for ℎ = 21, 22, . . . , 2 ⌈log2 𝑛⌉ , all
nodes internally compute (the same) ℎ-hop oblivious routing with

𝑂̃ (1) hop stretch and 𝑂̃ (1) congestion approximation for all values

ℎ, denoted by {𝑅ℎ𝑠,𝑡 }𝑠,𝑡,ℎ . Sampling these distributions then gives

paths 𝑝ℎ𝑠,𝑡 ∼ 𝑅ℎ𝑠,𝑡 for each such triple (𝑠, 𝑡, ℎ). By Lemma 2.11 and

Theorem 2.12, for ℎ ∈ [𝑄, 2𝑄), the set of paths 𝑝ℎ𝑠𝑖 ,𝑡𝑖 form shortcuts

for 𝑆 of quality 𝑞 := 𝑂 (𝑄 · log7 𝑛) = 𝑂 (ℎ · log7 𝑛).
During the shortcut construction stage, we appeal to the random-

delay-based routing protocol which implies that Routing(𝑆) =

Θ̃(ShortcutQuality2 (𝑆)) (i.e., Lemma 2.7). In particular, for ℎ =

21, 22, . . . , 2 ⌈log2 𝑛⌉ , for each pair (𝑠𝑖 , 𝑡𝑖), we send a message between

𝑠𝑖 and 𝑡𝑖 via the path 𝑝𝑖 , starting at a uniformly randomly chosen

time in [𝑞], and send this message during𝑂 (𝑞 · log𝑛) rounds. We let

this message contain the identifiers of 𝑠𝑖 and 𝑡𝑖 , and so intermediary

nodes, which all know 𝑝ℎ𝑠𝑖 ,𝑡𝑖 , can forward this message along the

path. By standard random-delay arguments [48], if the paths 𝑝ℎ𝑠𝑖 ,𝑡𝑖
are shortcuts of quality 𝑞, then all pairs (𝑠𝑖 , 𝑡𝑖) will have both of

their messages delivered w.h.p. To verify whether or not all sinks

𝑡𝑖 receive their message, after these 𝑂 (𝑞 · log𝑛) rounds, all sinks 𝑡𝑖
flood a single-bit message through the system, indicating whether

any sink has not received its designated message from 𝑠𝑖 . This step

takes 𝑂 (𝐷) rounds. Now, since by Lemma 2.11 we know that for

ℎ ∈ [𝑄, 2𝑄], the sampled shortcuts are 𝑞 = 𝑂̃ (ℎ)-quality shortcuts

w.h.p., and since 𝐷 ≤ 𝑄 = ShortcutQuality2 (𝐺), this algorithm
terminates successfully after

log2𝑄+1∑

𝑘=1

(𝑂̃ (1) · 2𝑖 + 𝐷) = 𝑂̃ (𝑄)

rounds w.h.p. □

Using this 𝑂̃ (ShortcutQuality2 (𝐺))-quality shortcut construc-
tion algorithm for pairs, we tackle the more challenging problem

of 𝑂̃ (ShortcutQuality(𝐺))-quality shortcuts construction for

parts.

6.2 Lifting Pair Shortcuts to Part Shortcuts

In the full version we describe how to use the shortcut construc-

tion for pairs to construct general low-congestion shortcuts (using

heavy-light tree decompositions), giving the following lemma.

Lemma 6.2. Suppose there exists an algorithm that for input con-

nectable pairs S = {(𝑠𝑖 , 𝑡𝑖)}𝑘𝑖=1 (each 𝑠𝑖 knows 𝑡𝑖 and vice versa, but
not other pairs) outputs a shortcut for S with quality 𝑂̃ (𝑄) in 𝑇

rounds, where 𝑄 = ShortcutQuality2 (𝐺). Then there exists a ran-

domized CONGEST algorithm that on input disjoint and connected

parts P = (𝑃1, . . . , 𝑃𝑘) (with each node only knowing the 𝑖 for which

𝑣 ∈ 𝑃𝑖 , if any), constructs a shortcut for P of quality 𝑂̃ (𝑄) in 𝑂̃ (𝑇)
rounds w.h.p.

Finally, invoking Lemma 6.2 with Lemma 6.1 as its pairwise

shortcut algorithm, we obtain a supported CONGEST algorithm

which constructs 𝑂̃ (𝑄)-quality shortcuts for any disjoint connected
parts in 𝑂̃ (𝑄), for 𝑄 = ShortcutQuality(𝐺). That is, we have

proved Theorem 4.5.

7 CONCLUSIONS AND OPEN QUESTIONS

In this work we give the first non-trivial universally-optimal dis-

tributed algorithms for a number of optimization and verification

problems in the supported CONGEST model of communication. In

particular, we show that the low-congestion framework yields such

universally-optimal algorithms. This framework has since shown

great promise as a basis for a unified description of the common

communication bottlenecks underlying many distributed network

optimization problems.

This work suggests a number of natural follow-up questions, of

which we mention a few here.

Universally-optimal CONGEST algorithms. Our algorithmic

results require efficient computation of shortcuts, in time at most

𝑂̃ (ShortcutQuality(𝐺)). Using the recent oblivious routing re-
sult of [29], we showed how to achieve this efficiently in the sup-

ported CONGEST model. Can such shortcuts be computed in the

CONGEST model, i.e., without pre-processing or knowledge of

𝐺? A positive answer to this question would yield universally-

optimal CONGEST algorithms for the problems tackled by the

low-congestion shortcut framework.

Universally-optimal algorithms formore problems.Ourwork

proves that the low-congestion framework, which yields existentially-

optimal 𝑂̃ (𝐷 +
√
𝑛)-time algorithms for numerous distributed opti-

mization problems (see [8, 25]), in fact yields universally-optimal

1177

Universally-Optimal Distributed Algorithms for Known Topologies STOC ’21, June 21–25, 2021, Virtual, Italy

algorithms for these problems. However, some fundamental prob-

lems remain for which shortcut quality serves as a universal lower

bound (by our work), yet shortcut-based algorithms are not cur-

rently known. One such problem is exact min-cut, for which an

existentially-optimal algorithm was recently given in [9]. Another

such problem is (better) approximate SSSP, for which the best ap-

proximation guarantee of a shortcut-time algorithm is polynomial

[31], while the best existentially-optimal algorithm yields a (1 + 𝜀)
approximation [4]. Our work motivates the study of shortcut-based

(and shortcut-quality time) algorithms for these and other problems,

as such algorithms would be universally optimal, by our work.

Universally-Optimal Round and Message Complexity. An-

other well-studied complexity measure of message-passing algo-

rithms is theirmessage complexity, i.e., the number of messages they

send during their execution. Pandurangan et al. [60] showed that

existentially-optimal time and message complexities are achievable

simultaneously, resolving a longstanding open problem. This was

then shown to be achievable deterministically, by Elkin [14], and

then shown to be achievable within the shortcut framework, in [34].

We note, however, that [34] relied specifically on tree-restricted

shortcuts. Can one remove this restriction? A positive resolution

to this question would yield algorithms with universally-optimal

time complexity, and optimal message complexity.

Other universal barriers to distributed computation.Ourwork

shows that for a wide family of problems for which Θ̃(𝐷 +
√
𝑛)

serves as a tight existential bound, shortcut quality serves as a tight

universal bound. Can similar tight universal bounds be proven for

problems outside this łcomplexity classž?

REFERENCES
[1] Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Ami Paz. Smaller cuts,

higher lower bounds. arXiv preprint arXiv:1901.01630, 2019.
[2] Peyman Afshani, Jérémy Barbay, and Timothy M Chan. Instance-optimal geo-

metric algorithms. Journal of the ACM (JACM), 64(1):1ś38, 2017.
[3] Baruch Awerbuch. Optimal distributed algorithms for minimumweight spanning

tree, counting, leader election, and related problems. In Proceedings of the 19th
Annual ACM Symposium on Theory of Computing (STOC), pages 230ś240, 1987.

[4] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen.
Near-optimal approximate shortest paths and transshipment in distributed and
streaming models. In Proceedings of the 31st International Symposium on Dis-
tributed Computing (DISC), 2017.

[5] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis.
cambridge university press, 2005.

[6] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. One trillion edges: Graph processing at facebook-scale. Proceed-
ings of the VLDB Endowment, 8(12):1804ś1815, 2015.

[7] Julia Chuzhoy, Merav Parter, and Zihan Tan. On packing low-diameter spanning
trees. In Proceedings of the 47th International Colloquium on Automata, Languages
and Programming (ICALP), pages 33:1ś33:18, 2020.

[8] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,
Gopal Pandurangan, David Peleg, and RogerWattenhofer. Distributed verification
and hardness of distributed approximation. SIAM Journal on Computing (SICOMP),
41(5):1235ś1265, 2012.

[9] Michal Dory, Yuval Efron, Sagnik Mukhopadhyay, and Danupon Nanongkai.
Distributed weighted min-cut in nearly-optimal time. In Proceedings of the 53rd
Annual ACM Symposium on Theory of Computing (STOC), page To appear, 2021.

[10] Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in a
byzantine environment i: crash failures. In Theoretical Aspects of Reasoning about
Knowledge, pages 149ś169, 1986.

[11] Michael Elkin. A faster distributed protocol for constructing a minimum spanning
tree. Journal of Computer and System Sciences, 72(8):1282ś1308, 2006.

[12] Michael Elkin. An unconditional lower bound on the time-approximation trade-
off for the distributed minimum spanning tree problem. SIAM Journal on Com-
puting (SICOMP), 36(2):433ś456, 2006.

[13] Michael Elkin. Distributed exact shortest paths in sublinear time. In Proceedings
of the ACM Symposium on Theory of Computing (STOC), pages 757ś770, 2017.

[14] Michael Elkin. A simple deterministic distributed MST algorithm, with near-
optimal time and message complexities. In Proceedings of the 36th ACM Sympo-
sium on Principles of Distributed Computing (PODC), pages 157ś163, 2017.

[15] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms
for middleware. Journal of computer and system sciences, 66(4):614ś656, 2003.

[16] Klaus-Tycho Foerster, Juho Hirvonen, Stefan Schmid, and Jukka Suomela. On the
power of preprocessing in decentralized network optimization. In IEEE INFOCOM
2019-IEEE Conference on Computer Communications, pages 1450ś1458, 2019.

[17] Klaus-Tycho Foerster, Janne H Korhonen, Joel Rybicki, and Stefan Schmid. Does
preprocessing help under congestion? In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pages 259ś261, 2019.

[18] Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks cannot
compute their diameter in sublinear time. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1150ś1162, 2012.

[19] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algo-
rithm for minimum-weight spanning trees. ACM Transactions on Programming
Languages and Systems, 5(1):66ś77, 1983.

[20] Juan A Garay, Shay Kutten, and David Peleg. A sublinear time distributed algo-
rithm for minimum-weight spanning trees. In Proceedings of the 34th Symposium
on Foundations of Computer Science (FOCS), pages 659ś668, 1993.

[21] Juan A Garay, Shay Kutten, and David Peleg. A sublinear time distributed
algorithm for minimum-weight spanning trees. SIAM Journal on Computing
(SICOMP), 27(1):302ś316, 1998.

[22] Mohsen Ghaffari. Distributed broadcast revisited: Towards universal optimality.
In Proceedings of the 42nd International Colloquium on Automata, Languages and
Programming (ICALP), pages 638ś649, 2015.

[23] Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar
networks II: Low-congestion shortcuts, mst, and min-cut. In Proceedings of
the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
202ś219, 2016.

[24] Mohsen Ghaffari and Jason Li. New distributed algorithms in almost mixing
time via transformations from parallel algorithms. In Proceedings of the 32nd
International Symposium on Distributed Computing (DISC), pages 31:1ś31:16, 2018.

[25] Mohsen Ghaffari and Merav Parter. MST in log-star rounds of congested clique.
In Proceedings of the 35th ACM Symposium on Principles of Distributed Computing
(PODC), pages 19ś28, 2016.

[26] Mohsen Ghaffari and Merav Parter. Near-optimal distributed DFS in planar
graphs. Proceedings of the 31st International Symposium on Distributed Computing
(DISC), 91:21, 2017.

[27] Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and
Boaz Patt-Shamir. Near-optimal distributed maximum flow. In Proceedings of
the 34th ACM Symposium on Principles of Distributed Computing (PODC), pages
81ś90, 2015.

[28] Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. Distributed MST and routing
in almost mixing time. In Proceedings of the 38th ACM Symposium on Principles
of Distributed Computing (PODC), pages 131ś140, 2017.

[29] Mohsen Ghaffari, Bernhard Haeupler, and Goran Zuzic. Hop-constrained oblivi-
ous routing. page To appear, 2021.

[30] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. Graphx: Graph processing in a distributed dataflow
framework. In Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 599ś613, 2014.

[31] Bernhard Haeupler and Jason Li. Faster distributed shortest path approximations
via shortcuts. In Proceedings of the 32nd International Symposium on Distributed
Computing (DISC), pages 33:1ś33:14, 2018.

[32] Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Low-congestion shortcuts
without embedding. In Proceedings of the 35th ACM Symposium on Principles of
Distributed Computing (PODC), pages 451ś460, 2016.

[33] Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Near-optimal low-
congestion shortcuts on bounded parameter graphs. In Proceedings of the 30th
International Symposium on Distributed Computing (DISC), pages 158ś172, 2016.

[34] Bernhard Haeupler, D Ellis Hershkowitz, and David Wajc. Round-and message-
optimal distributed graph algorithms. In Proceedings of the 37th ACM Symposium
on Principles of Distributed Computing (PODC), pages 119ś128, 2018.

[35] Bernhard Haeupler, Jason Li, and Goran Zuzic. Minor excluded network families
admit fast distributed algorithms. In Proceedings of the 39th ACM Symposium on
Principles of Distributed Computing (PODC), pages 465ś474, 2018.

[36] Bernhard Haeupler, David Wajc, and Goran Zuzic. Network coding gaps for
completion times of multiple unicasts. In Proceedings of the 61st Symposium on
Foundations of Computer Science (FOCS), pages 494ś505, 2020.

[37] BernhardHaeupler, D Ellis Hershkowitz, and DavidWajc. Near-optimal schedules
for simultaneous multicasts. In Proceedings of the 48th International Colloquium
on Automata, Languages and Programming (ICALP), page To appear, 2021.

[38] Bernhard Haeupler, David Wajc, and Goran Zuzic. Universally-optimal dis-
tributed algorithms for known topologies. arXiv preprint arXiv:2104.03932, 2021.

[39] Minyang Han and Khuzaima Daudjee. Giraph unchained: Barrierless asynchro-
nous parallel execution in pregel-like graph processing systems. Proceedings of
the VLDB Endowment, 8(9):950ś961, 2015.

1178

STOC ’21, June 21–25, 2021, Virtual, Italy Bernhard Haeupler, David Wajc, and Goran Zuzic

[40] James W Hegeman, Gopal Pandurangan, Sriram V Pemmaraju, Vivek B Sardesh-
mukh, and Michele Scquizzato. Toward optimal bounds in the congested clique:
Graph connectivity and MST. In Proceedings of the 34th ACM Symposium on
Principles of Distributed Computing (PODC), pages 91ś100, 2015.

[41] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. An almost-
tight distributed algorithm for computing single-source shortest paths. In Pro-
ceedings of the ACM Symposium on Theory of Computing (STOC), 2016.

[42] Stephan Holzer and Roger Wattenhofer. Optimal distributed all pairs shortest
paths and applications. In Proceedings of the ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing (PODC), pages 355ś364, 2012.

[43] C. Huang, D. Nanongkai, and T. Saranurak. Distributed exact weighted all-pairs

shortest paths in 𝑂̃ (𝑛5/4) rounds. In Proceedings of the IEEE Symposium on
Foundations of Computer Science (FOCS), pages 168ś179, 2017.

[44] Tomasz Jurdziński and Krzysztof Nowicki. MST in𝑂 (1) rounds of congested
clique. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2620ś2632, 2018.

[45] Maleq Khan and Gopal Pandurangan. A fast distributed approximation algorithm
for minimum spanning trees. Distributed Computing, 20(6):391ś402, 2008.

[46] Naoki Kitamura, Hirotaka Kitagawa, Yota Otachi, and Taisuke Izumi. Low-
congestion shortcut and graph parameters. In Proceedings of the 33rd International
Symposium on Distributed Computing (DISC), pages 25:1ś25:17, 2019.

[47] Shay Kutten and David Peleg. Fast distributed construction of smallk-dominating
sets and applications. Journal of Algorithms, 28(1):40ś66, 1998.

[48] Frank Thomson Leighton, Bruce M Maggs, and Satish B Rao. Packet routing
and job-shop scheduling in𝑂(congestion+ dilation) steps. Combinatorica, 14(2):
167ś186, 1994.

[49] Christoph Lenzen and Boaz Patt-Shamir. Fast partial distance estimation and
applications. Proceedings of the ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), pages 153ś162, 2015.

[50] Christoph Lenzen and David Peleg. Efficient distributed source detectionwith lim-
ited bandwidth. Proceedings of the ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing (PODC), pages 375ś382, 2013.

[51] Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. MST construction
in𝑂 (log log𝑛) communication rounds. SIAM Journal on Computing (SICOMP),
35(1):120ś131, 2005.

[52] Zvi Lotker, Boaz Patt-Shamir, and David Peleg. Distributed MST for constant
diameter graphs. Distributed Computing, 18(6):453ś460, 2006.

[53] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale
graph processing. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 135ś146, 2010.

[54] Mark S Manasse, Lyle A McGeoch, and Daniel D Sleator. Competitive algorithms
for server problems. Journal of Algorithms, 11(2):208ś230, 1990.

[55] Danupon Nanongkai. Distributed approximation algorithms for weighted short-
est paths. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing (STOC), pages 565ś573, 2014.

[56] Danupon Nanongkai and Hsin-Hao Su. Almost-tight distributed minimum cut
algorithms. In Proceedings of the 28th International Symposium on Distributed
Computing (DISC), pages 439ś453, 2014.

[57] Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. Otakar boruvka on
minimum spanning tree problem translation of both the 1926 papers, comments,
history. Discrete Mathematics, 233(1):3ś36, 2001.

[58] Mark EJ Newman. The structure and function of complex networks. SIAM review,
45(2):167ś256, 2003.

[59] Krzysztof Nowicki. A deterministic algorithm for the mst problem in constant
rounds of congested clique. page To appear, 2021.

[60] Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. A time- and
message-optimal distributed algorithm for minimum spanning trees. In Proceed-
ings of the 49th Annual ACM Symposium on Theory of Computing (STOC), pages
743ś756, 2017.

[61] David Peleg. Distributed computing: A Locality-Sensitive Approach, volume 5.
SIAM, 2000.

[62] David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time
complexity of distributed minimum-weight spanning tree construction. SIAM
Journal on Computing (SICOMP), 30(5):1427ś1442, May 2000.

[63] Harald Räcke. Optimal hierarchical decompositions for congestion minimization
in networks. In Proceedings of the ACM Symposium on Theory of Computing
(STOC), pages 255ś264, 2008.

[64] Alexander A Razborov. On the distributional complexity of disjointness. In
Proceedings of the 17th International Colloquium on Automata, Languages and
Programming (ICALP), pages 249ś253, 1990.

[65] Stefan Schmid and Jukka Suomela. Exploiting locality in distributed sdn control.
In Proceedings of the second ACM SIGCOMM workshop on Hot topics in software
defined networking, pages 121ś126, 2013.

[66] Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees.
Journal of Computer and System Sciences, 26(3):362ś391, 1983.

[67] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search
trees. Journal of the ACM (JACM), 32(3):652ś686, 1985.

[68] Gregory Valiant and Paul Valiant. Instance optimal learning of discrete distribu-
tions. In Proceedings of the 48th Annual ACM Symposium on Theory of Computing
(STOC), pages 142ś155, 2016.

[69] Gregory Valiant and Paul Valiant. An automatic inequality prover and instance
optimal identity testing. SIAM Journal on Computing (SICOMP), 46(1):429ś455,
2017.

1179

	Abstract
	1 Introduction
	1.1 When Optimal Is Not Good Enough: Universal Optimality
	1.2 Our Results
	1.3 Related Work
	1.4 Paper Outline

	2 Preliminaries
	2.1 Models and Problems
	2.2 The Low-Congestion Shortcut Framework
	2.3 Moving Cuts
	2.4 Relation of Moving Cuts to Communication
	2.5 Oblivious Routing Schemes

	3 Universal Optimality
	3.1 Different Notions of Optimality
	3.2 Formal Definitions

	4 Technical Overview
	4.1 Generalizing the Existential Lower Bound to General Topologies
	4.2 Shortcut Quality Is a Universal Lower Bound
	4.3 Universal Optimality in Supported CONGEST
	4.4 Other Characterizations of a Topology's Inherent Distributed Complexity

	5 Shortcut Quality is a Universal Lower Bound
	5.1 Lower Bound Witnesses
	5.2 Disjointness Gadgets in Any Graph
	5.3 Relating MovingCut(G) to ShortcutQuality(G)
	5.4 Putting It All Together

	6 Matching the Lower Bound: Algorithms for Shortcut Construction
	6.1 Constructing Shortcuts for Pairs
	6.2 Lifting Pair Shortcuts to Part Shortcuts

	7 Conclusions and Open Questions
	References

