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ABSTRACT

Network design problems aim to compute low-cost structures such
as routes, trees and subgraphs. Often, it is natural and desirable to
require that these structures have small hop length or hop diameter.
Unfortunately, optimization problems with hop constraints are
much harder and less well understood than their hop-unconstrained
counterparts. A significant algorithmic barrier in this setting is the
fact that hop-constrained distances in graphs are very far from
being a metric.

We show that, nonetheless, hop-constrained distances can be
approximated by distributions over “partial tree metrics” We build
this result into a powerful and versatile algorithmic tool which,
similarly to classic probabilistic tree embeddings, reduces hop-
constrained problems in general graphs to hop-unconstrained prob-
lems on trees. We then use this tool to give the first poly-logarithmic
bicriteria approximations for the hop-constrained variants of many
classic network design problems. These include Steiner forest, group
Steiner tree, group Steiner forest, buy-at-bulk network design as
well as online and oblivious versions of many of these problems.
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1 INTRODUCTION

The field of network design studies how to efficiently construct and
use large networks. Over the past several decades researchers have
paid particular attention to the construction of low-cost computer
and transportation networks that enable specified communication
and delivery demands.

Formally, these problems require computation of low-cost struc-
tures in graphs, such as paths, trees or subgraphs, that satisfy spec-
ified connectivity requirements. For example, there has been ex-
tensive work on how, given a weighted graph G = (V, E, w) with
n nodes, one can compute a subgraph H C G of minimum weight
that connects: all vertices (minimum spanning tree (MST)); all ver-
tices in an input S C V (Steiner tree); at least k nodes (k-MST);
at least k terminals from an input S C V (k-Steiner tree); at least
one vertex from each set S; for a given collection of vertex sets
S1,...,Sk C V (group Steiner tree); s; € V to t; € V for every pair in
{(si,ti)}i (Steiner forest); and some vertex in S; C V to some vertex
in T; € V for every pair in {(S;, T;)}; (group Steiner forest a.k.a.
generalized connectivity). To model the uncertainty and dynamic
nature of networks, these problems are often generalized to their
online variants where the demands to be connected are revealed
over discrete time steps. An even stronger model of uncertainty is
the oblivious setting where an algorithm must specify how it will
satisfy each possible demand before it even knows the demands;
demands are then revealed and the algorithm buys its pre-specified
solution.

However, connectivity alone is often not sufficient for fast and
reliable networks. Indeed, we often also desire that our networks
be hop-constrained; namely we desire that demands are not just
appropriately connected but connected with a path consisting of
a low number of edges (a.k.a. hops). By reducing the number of
traversed edges, hop constraints facilitate fast communication [6,
25]. Furthermore, low-hop networks tend to also be more reliable: if
a transmission over an edge fails with some probability, the greater
the number of hops between the source and destination, the greater
the probability that this transmission fails [60, 63].

Unfortunately, adding hop constraints to network design prob-
lems makes them significantly harder. MST is solvable in polyno-
mial time but MST with hop constraints is known to admit no
o(log n) poly-time approximation algorithm [14]. Similarly, Steiner
forest has a constant approximation [5] but hop-constrained
Steiner forest has no poly-time 0(210514 ")-approximation for any
constant £ > 0 [29].! Indeed, although there has been extensive
work on approximation algorithms for simple connectivity prob-
lems like spanning tree and Steiner tree with hop constraints [9, 42,
43, 46, 47, 49, 52, 59], nothing is known regarding algorithms for

1Under standard complexity assumptions.



STOC ’21, June 21-25, 2021, Virtual, Italy

many well-studied generalizations of these problems with hop con-
straints. For instance, no non-trivial approximation algorithms are
known for Steiner forest, group Steiner tree, group Steiner forest
or online Steiner tree with hop constraints.

By allowing an algorithm to “pretend” that the input graph is
a tree, probabilistic tree embeddings have had enormous success
as the foundation of many poly-log approximation algorithms for
network design; thus, we might naturally expect them to be useful
for hop-constrained network design. Specifically, a long and cele-
brated line of work [8, 15, 33, 44] culminated in the embedding of
Fakcharoenphol, Rao and Talwar [33]—henceforth “FRT”—which
showed that any metric can be O(log n)-approximated by a distri-
bution D over trees.” Consequently, a typical template for many
network design algorithms is to (1) embed the metric induced by
weighted graph G into a T ~ D; (2) solve the input problem on
T (which is typically much easier than the problem on G) and; (3)
project the solution on T back into G. For example, such a template
gives poly-log approximations for group Steiner tree and group
Steiner forest [35, 56]. In the h-hop-constrained setting for some
h > 1, the natural notion of distance to consider between vertices u
and v is the h-hop-constrained distance—the length of the shortest
path between u and v according to w with at most h hops. Thus, to
use tree embeddings for hop-constrained network design we must
first understand how to approximate these distances with trees.

1.1 Our Contributions

In this paper we initiate the study of metric approximations for
hop-constrained distances and their use in algorithms for hop-
constrained network design. Broadly, our results fall into four cate-
gories.

1.1.1  Impossibility of Approximating Hop-Constrained Distances
with Metrics. We begin by observing that hop-constrained distances
are inapproximable by metrics (Section 4.1). Not only are hop-
constrained distances not a metric (since they do not satisfy the
triangle inequality) but given a hop constraint there are weighted
graphs where any metric that approximates hop-constrained dis-
tances does so with an Q(L) multiplicative error where L is the
aspect ratio (Lemma 4.3). This lower bound is matched by a trivial
upper bound (Lemma 4.4). Since the expected distance between two
nodes in a distribution over metrics is itself a metric, our impossibil-
ity result also rules out approximating hop-constrained distances
with distributions over metrics as in FRT. This observation is proved
by careful analysis of a simple example: a path graph.

1.1.2  Approximating Hop-Constrained Distances with Partial Tree
Metrics. Despite these apparent roadblocks, we show that—somewhat
surprisingly—it is indeed possible to to approximate hop-constrained
distances with trees (Sections 4.2, 4.3). We show that a distribution
over “partial tree metrics” can approximate hop-constrained dis-
tances with an expected distance stretch of O(log nloglog n) and
a worst-case distance stretch of O(log? n) with an O(log? n) relax-
ation in the hop constraint (Theorem 4.8). This result differs from
FRT in two notable ways: (1) our partial tree metrics are partial
in the sense that they contain only a constant fraction of nodes
from the input graph—indeed, this is what allows us to overcome

2See Section 2 for a formal statement.
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the impossibility of approximating hop-constrained distances with
metrics; (2) our result provides a worst-case guarantee, unlike FRT
which only gives a guarantee in expectation. We show this result
by first proving a decomposition lemma (Lemma 4.11), which ap-
plies padded decompositions to a “mixture metric” that combines
hops and (unconstrained) distances. We then recursively apply this
decomposition, using different combinations of hops and distances
in our recursive calls.

1.1.3  h-Hop Partial Tree Embeddings. We next build embeddings
for hop-constrained network design from our metric approxima-
tions (Section 5). Specifically, we show that one can construct a dis-
tribution over “h-hop partial tree embeddings” of hop-constrained
distances with expected distance stretch O(log nloglogn) and a
worst-case distance stretch O(log? n) with an O(log® n) relaxation
in the hop constraint (Theorem 5.6). Further, we show that these
embeddings can be used for hop-constrained network design as
in the above template for network design that uses FRT. Notably,
our embeddings reduce many hop-constrained network design
problems to their non-hop-constrained versions on trees. Since our
embeddings, like our partial tree metrics, are also partial, we build
on these embeddings by constructing “h-hop copy tree embeddings,”
which represent many draws from our distribution over partial tree
embeddings as a single tree.> Like our tree metrics and unlike FRT,
our tree embeddings are partial and give worst-case guarantees.
Moreover, our embeddings follow almost immediately from our
metric approximations. However, a notable difference between our
embeddings and those of FRT is that demonstrating that they can
be used for hop-constrained network design requires a non-trivial
amount of work. In particular, while appropriately projecting from
an input graph to a tree embedding is trivial in the FRT case, the par-
tialness of our embeddings makes this projection significantly more
troublesome. Thus, we develop a projection theorem (Theorem 5.8),
which informally shows that a natural projection from G to one of
our tree embeddings appropriately preserves cost and connectivity.
We prove our projection theorem using “h-hop-connectors” which
are, informally, a hop-constrained version of Euler tours. We em-
phasize that this projection theorem is only used in the analysis of
our algorithms.

1.1.4  Applications to Hop-Constrained Network Design. Lastly, we
use our embeddings to develop the first non-trivial approxima-
tion algorithms for the hop-constrained versions of many classic
network design problems (Sections 6). As detailed in Table 1, we
give numerous (poly-log, poly-log) bicriteria algorithms for hop-
constrained network design problems that relax both the cost and
hop constraint of the solution. As noted above, bicriterianess is
necessary for any poly-log approximation for Steiner forest and its
generalizations. Furthermore, while the results in Table 1 are stated
in utmost generality, many special cases of our results were to our
knowledge not previously known. For example, our algorithm for
hop-constrained oblivious Steiner forest immediately gives new
algorithms for hop-constrained Steiner forest, hop-constrained
online Steiner tree and hop-constrained online Steiner forest, as
well as min-cost h-spanner. Similarly, our algorithm for oblivious

3In a previous version of this work “h-hop copy tree embeddings” were called “h-hop
repetition tree embeddings.”
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network design immediately gives new algorithms for the hop-
constrained version of the well-studied buy-at-bulk network de-
sign problem [11]. All of our algorithms for these problems use the
above mentioned tree embedding template with either our h-hop
partial tree embeddings or our h-hop copy tree embeddings.

Table 1: Our bicriteria approximation results. All results are
for poly-time algorithms that succeed with high probability
(at least 1 — m) For some of the problems we assume
certain parameters are poly(n) to simplify presentation. All
results are new except for the k-Steiner tree result which is
implied by [46].

Hop-Constrained Problem Cost Apx. | Hop Apx.
Offline Problems
Relaxed k-Steiner Tree O(log2 n) O(Iog3 n)
k-Steiner Tree O(10g3 n) O(Iog3 n)
Group Steiner Tree O(log5 n) O(Iog3 n)
Group Steiner Forest O(log7 n) O(Iog3 n)
Online Problems
Group Steiner Tree O(log6 n) O(log3 n)
Group Steiner Forest O(log8 n) O(log3 n)
Oblivious Problems
Steiner Forest O(log®n) | O(log®n)
Network Design O(log*n) | O(log®n)

In this short version of our paper we omit several minor proofs
as well as our hop-constrained copy tree embeddings and all but
one of our applications. For these results please see the full version
of our paper, available on arXiv.

2 RELATED WORK

Before proceeding we give a brief overview of additional work
on approximation algorithms for hop-constrained network design
and tree embeddings. We later give related work in each of our
application sections.

2.1 Hop-Constrained Network Design

For some simple hop-constrained network design problems non-
trivial (unicriteria) approximation algorithms are known. [9] gave
an O(log n) approximation for minimum depth spanning tree on
metrics. [47] gave a O(+4/log n) for the degree-bounded minimum
diameter spanning tree problem. [49] gave a O(d logn) approxi-
mation for computing a minimum cost Steiner tree with depth at
most d. [43] gave a constant approximation for the minimum depth
Steiner tree problem on a metric.

However, hop constraints often make otherwise easy problems
so challenging that the only non-trivial approximation algorithms
known or possible are bicriteria. The apparent necessity of bicri-
terianess in hop-constrained optimization is highlighted by the
existence of many bicriteria algorithms. For example, [59] and [52]
gave an (O(logn), O(log n)) bicriteria approximation algorithms
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for MST and Steiner tree with hop constraints.* Similarly, [42] gave
a (O(log? n), O(log? n))-bicriteria algorithm for k-Steiner tree with
hop constraints which was later improved to (O(log? n), O(log n))
by [46]; here the first term is the approximation in the cost while
the second term is the approximation in the hop constraint.

Lastly, hop-constrained network design has also received con-
siderable attention from the operations research community; see,
for example, [6, 21-23, 25-27, 36-39, 51, 60-63] among many other
papers.

2.2 Tree Embeddings

The celebrated embedding of [33] showed that for any metric (V, d)
there is a distribution O of weighted trees on V so that for any
u,v € V we have d(u,v) < dr(u,v) for any tree T in the support
of O and Er. p dr(u,v) < O(logn-d(u, v)); here, dr indicates the
distance according to the weight function in T. Using these tree
embeddings with the above template reduces many graph problems
to their tree versions at the cost of O(logn) in the quality of the
resulting solution. This has lead to many algorithms with poly-
log approximations and competitive ratios for NP-hard problems
including, among many others, the k-server [13], metrical task
systems [17], offline and online group Steiner tree and group Steiner
forest [7, 35, 56], buy-at-bulk network design [11] and oblivious
routing problems [58].

There has also been considerable work on extending the power
of tree embeddings to a variety of other settings including tree
embeddings for planar graphs [48], online tree embeddings [18],
dynamic tree embeddings [24, 34], distributed tree embeddings
[45] and tree embeddings where the resulting tree is a subgraph of
the input graph [1, 4, 8, 31, 50]. Lastly, the notion of Ramsey trees
and Ramsey tree covers has been extensively used for metric-type
problems. Specifically, it is known that for every metric (V, d) and k
there is some subset S C V of size at least n' =1/ which embeds into
a tree—a so-called Ramsey tree—with distortion O(k) [2, 20, 53, 55].
Iterating (a slight strengthening of) this fact shows that there exist
collections of Ramsey trees—so-called Ramsey tree covers—where
each vertex v has some “home tree” in which the distances to v are
preserved. The guarantees of Ramsey trees and Ramsey tree covers
are insufficient for our purposes for at least two reasons: (1) there
is the obvious issue that they are only known to apply to metrics
which h-hop distances are not and; (2) since we are interested in
connectivity problems we cannot just preserve distances on one
home tree, but rather, must preserve h-hop distances on all of the
nodes in each h-hop partial tree embedding.

3 PRELIMINARIES

Before proceeding to our formal results we define conventions we
use throughout this work.

General: We let [k] := {1,2,..., k} for any non-negative integer
k. We let A U B denote the disjoint union of A and B. We often
use the Iverson bracket notation I[condition] which evaluates to 1
when the condition is true and 0 otherwise.

Graphs: Given a graph G = (V, E) we denote its vertex set by
V(G) and E(G), or simply V and E if G is clear from context. We let

4 A later paper of [57] claimed to improve this result to a (O(log n), 2)-approximation
but it is our understanding that this paper was retracted due to a bug.
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n := |V|. All graphs considered in this paper are undirected. Most
commonly, we consider undirected weighted graphs G = (V, E, w)
with weights w : E — {1,2,...,L}. The value L is called the aspect
ratio and throughout this paper we assume L = poly(n). We will let
wg be G’s weight function if G is not clear from context. Generally,
weighted graphs in this paper are assumed to be complete, i.e., E =
(‘2/) In the context of this paper this is without loss of generality.
In particular, one can transform any non-complete weighted graph
G = (V, E, w) with aspect ratio L into an equivalent complete graph
G’ with aspect ratio L’ = n? - L which gives a weight of L’ to any
edge not in E without affecting any of the results in this paper.

Subgraphs: Given a weighted graph G = (V(G), E(G), wg), we
will often consider a subgraph H = (V(H), E(H)) where V(H) C
V(G) and E(H) C E(G). Unlike G, such subgraphs will not necessar-
ily be complete. We will often identify a subset of edges E’ C E(G)
of a graph G with the subgraph induced by these edges, i.e., the sub-
graph H with E(H) = E’ and V(H) = U,eg(m) e- Given a collection
of vertices U C V(G) we will let G[U] be the “induced” subgraph
with vertex set U and edge set {{u, v} : u,v € U and {u, v} € E(G)}.
We define the weight of a subgraph wg(H) := Yccpm) wa(e) as
the sum of weights of its edges.

Well-Separated Trees: We will often work with well-separated
rooted trees. We say that a weighted rooted tree T = (V, E, w) with
root r € V is well-separated if every root-to-leaf path has weights
that are decreasing powers of 2. That is, if e’ is a child edge of e in
T then w(e’) = %w(e),

Distances and Metrics: For a set V we call any positive real
function d : V XV — Rso which is symmetric, i.e., satisfies
d(u,v) = d(v,u) for all u,v € V, and satisfies the identity of in-
discernibles, i.e., d(u,v) = 0 © u = v, a distance function (such
a function is also often called a semimetric). If d also satisfies the
triangle inequality d(u, w) < d(u,v) + d(v,u) for all u,v,w € V
then d is called a metric. We also extend the definition of d to sets
in the standard way: d(U,U’) := minycy, ey d(u, u’).

Paths, Path Length, and Hop Length: A sequence of nodes P =
(vo,v1,...,vp) in a graph G is called a path if for all i € [{] we
have {v;—1,v;} € E(G) and we say E(P) := U;{{pi-1,pi}} € E(G)
is the edge set of P. If the nodes in P are distinct we say that P
is simple. In this paper paths are not assumed to be simple. We
denote the number of hops in P with hop(P) := ¢ and call hop(P)
the hop length of P. If G = (V, E, w) is weighted, we define the
weight of a path P in G to be the sum of weights of its edges:
w(P) := Yeerp) wW(e).

Hop Distance and Hop Diameter: For a (non-complete) subgraph
H = (V(H),E(H)) of a (complete) graph G we let hop (u, v) be
the minimum number of edges of a path between u and v in H (i.e.,
using only the edges E(H)). We also define the hop diameter of H
as hop(H) := max,, ey (m) hopy (1, v).

Shortest-Path Metric and Tree Metric: For a weighted graph G the
distance between any two nodes u, v € V is defined as dg (u,v) :=
min{w(P) | path P between u, v}. It is easy to verify that dg is a
metric on V and for this reason d is called the shortest path metric
of G. Any metric d on a set V which is identical to a shortest path
metric of a weighted tree T = (V,E, w) is called a tree metric;
for this reason we will sometimes conflate a tree metric with its
corresponding tree.
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4 APPROXIMATING HOP-CONSTRAINED
DISTANCES

In this section we show that even though hop-constrained distances
are not well-approximated by any metric, they are approximated
by a distribution over what we call partial tree metrics. More specif-
ically, we consider hop-constrained distances defined as follows.

Definition 4.1 (Hop-Constrained Distances). For a (complete)
weighted graph G = (V,E,w) and a hop constraint h > 1 we
define the h-hop distance between any two nodes u,v € V as

dg')(u, v) := min{w(P) | path P € G between u, v s.t. hop(P) < h}

As we have assumed that our graph G is complete without loss
of generality (see Section 3), the above is always well-defined for
any u,v € V.

4.1 Hop-Constrained Distances Are
Inapproximable by Metrics

We begin by observing that, not only is d(Gh) not a metric, but it is,
in general, innaproximable by any metric.

)

It is easy to verify that dgl is a valid distance function on V(G).

Indeed d(Gh) is clearly symmetric, i.e., d(h)(u, v) = dah (v,u), and
satisfies the identity of indiscernibles, i.e., dP ) =0 u=0.
However, it is also simple to see that hop-constrained distances
are not necessarily metrics since they do not obey the triangle
inequality. Indeed, the existence of a short h-hop path from u to
v and a short h-hop path from v to w does not imply that the
existence of a short h-hop path between u and w. More formally it
is possible that d® (u, w) > dP (u, v) + d™ (v, w). See [10] for a
similar observation.

Of course with a factor 2 relaxation in the hop constraint the
relaxed triangle inequality Ay, wy < dP (@, v) + dP (v, w)
holds for any graph G and any u,v,w € V(G). This suggests—
albeit incorrectly—that one might be able to approximate hop-
constrained distance by allowing constant slack in the hop con-
straint and length approximation as in the following definition.’

Definition 4.2. A distance function d approximates the h-hop

constrained distances dgl) for a weighted graph G = (V,E,w)
where h > 1 with distance stretch « > 1 and hop stretch f > 1 if for
all u,v € V we have

4P (w,0) < d@w,v) < - 4P (w,0).

As we next observe, no metric provides such an approximation
without a very large hop or distance stretch.

LEMMA 4.3. For any hop constraint h > 1, distance stretch o, hop
stretch f and any L > 1, there exists a graph G = (V,E, w) with

5In addition to naturally arising when trying to get hop-constrained distances to satisfy
the triangle inequality, relaxing hop distances is further motivated by the following. As
we later show, a relaxation in the hop constraint in a hop-constrained tree embedding
propagates through to an approximation on the hop diameter of the solutions we
find for our network design problems. Since, as mentioned above, some amount of
approximation on the hop diameter is necessary for many of our problems to admit
a poly-log approximation in the cost, relaxing our hop constraints in our notion of
approximating hop-constrained distances is a natural way we can set ourselves up for
success when aiming for poly-log cost approximations for our problems.
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aspect ratio L such that if a metric d approximates dgl) with distance
stretch a and hop stretch  then a(fh + 1) > L.

Indeed, an approximation with the above large stretch is always
trivially attainable. In particular, no metric can approximate dt
any better than the trivial approximation by the scaled shortest-
path metric « - dg which gives value « - dg(u,v) to each u,v € V,
as shown by the following.

LEMMA 4.4. Given any graph G = (V, E, w) with aspect ratio L
and a distance stretch a and hop stretch f satisfying a(fh+1) > L,

we have that a - dg approximates d;’ with distance stretch a and
hop stretch f.

Thus, hop-constrained distances can be maximally far from any
metric in the sense that the only way to approximate them by a
metric requires so much slack in the hop and distance stretch that
the approximation becomes trivial. Moreover, since the expected
distance between two nodes in a distribution over metrics is itself
a metric, the above result also rules out approximating dM ina
non-trivial way with distributions over metrics as in FRT. This
impossibility remains even when one allows for relaxations of the
hop constraint.

4.2 Distances Induced by Distributions Over
Partial Metrics

While Lemma 4.3 shows that no metric can approximate d(Gh) on
all vertices, it does not rule out the possibility that some metric
approximates dg) on a large subset of V. Thus, we introduce the
following concept of partial metrics.

Definition 4.5 (Partial Metric). Any metric d defined on a set V;
is called a partial metricon Vif V; C V.

We will often talk about how partial metric d approximates

(h)
dG

mean that the inequality of Definition 4.2—d(Gﬁh) (u,v) <d(u,v) <

on V; with hop and distance stretches a and § by which we

a- dgl) (u, v)—holds for every u,v € V;. Of course, a partial metric
on the empty set trivially approximates dgl) and we are ultimately

interested in estimating d®) on all pairs of nodes. For this reason,
we give the following notions of exclusion probability and how
a distribution over partial metrics can induce a distance function
between all nodes.

Definition 4.6 (Distances of Partial Metric Distributions). Let D
be a distribution of partial metrics of V for weighted graph G =
(V, e, w). We say D has exclusion probability ¢ if for all v € V we
have Prg.plv e Vy]l > 1—-¢.Ife < % then we say that D induces

the distance function dgy on V, defined as

dp(u,v) = dEEZ) [d(u,v) -I[u,v € V4]].

It is easy to verify that dyp is indeed a distance function. In
particular, we trivially have that d¢ (v, v) = 0 since d(v,v) = 0 for
all d in the support of D. An exclusion probability bounded above
by % guarantees that Pry._p[u,v € V4] > 0 for any u,v € V. This
guarantees that dp (u,v) > 0 for u # v which makes dp a valid
distance function.
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Since we are treating the distance between u and v as 0 in trees
which only contain one of u or v it may happen that dgp (4, v) <
d(u,v) which may seem strange. However, provided ¢ is at most
some fixed constant, the above notion of distance (up to constants) is
equal to the arguably more natural notion of distance
Eg~p,,[d(u,v)] where Dy, is D conditioned on both u and v
being in the drawn partial metric; for any u,v € V this distance
is always at least d(u, v). Thus, at the loss of constants the reader
may think of d ¢ (u, v) as a conditional expected distance where we
condition on u and v both being in the metric drawn from D. We
choose the above notion of distance as opposed to the conditional
expectation version as it simplifies our exposition but we emphasize
that since these two notions only differ by constants this choice
does not impact any of our results.

With these definitions in place we can define what it means for
a distribution of partial metrics to approximate hop-constrained
distances.

Definition 4.7 (Stretch of Partial Metric Distribution). A distribu-
tion D of partial metrics on V with exclusion probability at most
% approximates d® on weighted graph G = (V, E, w) for hop con-
straint h > 1 with worst-case distance stretch aywc > 1 and hop
stretch f > 1 if each d in the support of D approximates dg) on
V4 with distance stretch ay ¢ and hop stretch S, i.e. for each d in
the support of D and all u,v € V; we have

dé;ﬁh)(u,v) <duv)<a- dgl)(”’ v)-

Furthermore, D has expected distance stretch ag if for all u,v € V
we have

dp(u,0) < ag - d2 (u,0).

4.3 Approximating Hop-Constrained Distances
with Partial Tree Metrics

Even though h-hop distances are generally inapproximable by distri-
butions over metrics, we now show that they are well-
approximated by distributions over very simple partial metrics,
namely well-separated partial tree metrics.

THEOREM 4.8. For any (complete) weighted graph G, any hop-
constrainth > 1, and any 0 < ¢ < % there is a distribution D over
well-separated tree metrics each of which is a partial metric on V(G)

such that D has exclusion probability at most e and approximates dgl)

logn
€

) and hop stretch ff = O(@).

with expected distance stretch ag = O(logn - log ), worst-case
log’ n
&

distance stretch awc = O(

The rest of Section 4.3 is dedicated to the proof of Theorem 4.8.
In Section 4.3.1 we define simple “mixture metrics” and show how
combining these metrics with padded decompositions leads to ran-
dom decompositions with desirable properties. In Section 4.3.2 we
show how recursively refining these partitions gives a random
partial tree metric which proves Theorem 4.8.

4.3.1 Mixture Metrics and Padded Decompositions. To better un-
derstand the structure of hop-constrained distances, we develop
a decomposition lemma which gives structure both in terms of
weights and hops. In particular, we call a collection of disjoint ver-
tex sets C1LUCo L. . .LICk a partial vertex partition; C1LUCoLl. . .LIC} is
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a complete vertex partitionif | J; C; = V.In a nutshell, we decompose
the vertices of a weighted graph G into a partial vertex partition
where (1) both the hop diameter and weight diameter of all C;’s is
small, (2) C; and C;j for i # j are well-separated both in terms of
hops and weight and (3) almost every vertex is in the partial vertex
partition. Our decomposition combines two simple ingredient.

Our first ingredient is what we call the mixture metric which
is obtained by mixing together hop lengths and weights in the
following way.

Definition 4.9 (Mixture Metric). Given a weighted graph G =
(V,E,w), a hop scale h > 0, and a weight scale b > 0, we define
a mixture weight w' : E — Ry of an edge e € E as w’(e) =
1/h + w(e)/b. The shortest path metric induced by w’ is called the
mixture metricd’ : VXV — Rxg.

The utility of the mixture metric is given by three easy to verify
facts: It is a metric and so is amenable to standard metric decom-
position theorems; if d’(u,v) < « in the mixture metric with hop
scale h and weight scale b, then dleh) (u,v) < a-b;ifd’(u,v) > a,
then d(@"/2 (4, v) > « - b/2.

Our second ingredient is the well-studied padded decomposi-
tion [3, 41]. Given a metric space (V, d) we denote the ball of radius
r > 0 around x € V with By(x,r) == {y € V | d(x,y) < r}.
Next, let C = C; U ... U Cy be a (partial or complete) vertex par-
tition. Then, for a subset U C V, we say that U is broken in C if
[{i | UNC; # 0} > 1. We also denote this event by U ¢ C and its
logical negation by U C C. With this notation, we define padded
decompositions:

Definition 4.10 (Padded Decompositions). Let (V,d) be a metric
space and let C be a distribution over complete vertex partitions. C
is a (ppag, A)-padded decomposition if:

(1) Diameter: max, yec; d(u,v) < AforeachC = CiUC2 U

... U Cg in the support of C and i € [k].
7" Ppa
(2) Paddedness: Prc-c[Bg(v,r) ¢ C] < ~52
and every r > 0.

foreachv € V

In other words, each part of a partition in C has diameter at
most A and the probability of a node being within r from a node

7 Ppad

in a different part is at most —;—. The value pj,,q is known as

the padding parameter.® Combining padded decompositions with
our mixture metric and its properties as observed above gives our
decomposition lemma.

LEmMMA 4.11. Let G = (V, E, w) be a weighted graph with padding
parameter pyaq. For any hop constraint h > 0, weight diameter b > 0,
and exclusion probability y > 0, there exists a distribution C over
partial vertex partitions where for every C = C; U ... U Cy. in the
support of C:

(1) Hop-Constrained Diameter: dgl)(u, v) < b fori € [k] and
u,v € Cj;
v

(hyp—)
(2) Hop-Constrained Paddedness: d; pad (u,0) = b- ﬁ

for

everyu € C; andv € Cj wherei # j.
And:

®We note that our definition of Ppad slightly differs from that of other papers, albeit
only by a constant factor.
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(3) Exclusion probability: Prc.c[v € U;e[k) Ci] < v for each
veV whereC=CiU...UCg;

(4) Path preservation: Pro.c[V(P) is broken in C] is at most
(hop(P)/h + w(P)/b) - ppaq for each path P.

Proor. Let d’ be the mixture metric of G with hop scale h and
weight scale b and let A := 2pp,4. We first take a (distribution over)
(Ppads A)-padded decompositions C" = C{LUICy L. . .LIC} using d” as
the underlying metric. Next, we construct C; C C; by starting with
C; := C; and removing all vertices v € C] where By (v,2y) € C;.
Now Pr[v ¢ Ujex) Cil < zy'Aﬂ < y for each vertex v € V, as
stipulated by (3).

Fix u,v € C;. Since every C; has d’-diameter at most A, there
exists a sequence of edges P = (e, e2,...,er) between u and v
whose d’-length is at most A. Therefore:

50N A-wle)\ A-hop(P) A-w(P)
A > (— + ! ) = + .

In other words, hop(P) < h and w(P) < b, implying that dgl)(u, v)
is at most b for any u,v € C l’ . Therefore, the same claim holds for
u,v € C; C Cj, giving (1).

Foru € C; and v € Cj where i # j we argue that d(Yh/A)(u, v) >
yb/A, ie.(2). Suppose for the sake of contradiction that the distance

dgh/A) (u,v) is at most yb/A. It follows that there exists a path P
with hop(P) < yh/A and w(P) < yb/A. However, the d’-length of P

hop(P)A | w(P)A
~—n Yt

is at most < 2y. Thus, we have contradicted how

(Yh/zppad)

we constructed C; from C]. Hence dg

since A = 2ppaq.

Finally, consider a path P from u to v and let §” := hop(P)A/h +
w(P)A/b. If P is broken in Cy U ... U Cy then By (u,6’) ¢ P. We
therefore have (4), namely we have Pr[P is broken in Ci U. .. UCy]
is at most

(w,v) > yb/2ppaq

5’ " Ppad &’

Pr[By (u,5') ¢ P] < A 5

< (hop(P)/h+w(P)/b) " Ppad-
m]

Lastly, we note that it is known that every metric has padded
decompositions with padding parameter O(logn) and so our de-
composition lemma holds with pp,q = O(logn).

LemMA 4.12 ([3, 41]). Every metric on n points admits a (ppad, A)-
padded decomposition for pp,q = O(logn) and any A > 0. Further-
more, such a decomposition can be computed in polynomial time.

4.3.2 Constructing Tree Metrics for Hop-Constrained Distances and
the Proof of Theorem 4.8. Next, we recursively apply the random
partial vertex partitions of Lemma 4.11 to obtain a distribution over
families of laminar subsets of nodes of G. This distribution will
naturally correspond to a distribution over well-separated tree met-
rics which approximate h-hop constrained distances. In particular,
a rough outline of our construction is as follows: we start with
a large weight diameter A < poly(n) and hop constraint about h
and compute the partial vertex partition C; U ... U Cr C V(G)
of Lemma 4.11. We remove from our process any vertices not in
our partial vertex partition. We then recurse on each part C; while
keeping our hop constraint constant but shrinking A by a factor
of 2. We combine the recursively constructed trees by hanging the
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(a) Graph G

(6]

(b) Lem. 4.11 decomposition

(c) Recursing (d) Merging recursions
Figure 1: An illustration of the top-level recursive call of
the embedding of Theorem 4.8 on graph G (edges omitted
from illustration). Vertices in the partial vertex partition of
Lemma 4.11 given in purple. Vertices removed from the pro-
cess given as empty circles and all other vertices given as
filled-in circles.

roots of the returned trees off of the root of a fixed but arbitrary
tree with edges of length A. The recursion stops when each C; is a
singleton. The resulting tree metric is partial since each application
of Lemma 4.11 removes a small fraction of nodes. We illustrate our
construction in Figure 1 and proceed to prove Theorem 4.8.

ProoF oF THEOREM 4.8. We describe a recursive and random-
ized procedure that induces a distribution over well-separated and
rooted trees where each tree can be interpreted as a partial tree met-
ric with the required properties. Given hop constraint h’, weight
diameter A and vertex set V/ C V where dgl’) (u,v) < A, our proce-
dure returns a rooted tree (V(T), E(T), wr) satisfying V(T) € V".
Let ppaq be the padding parameter of G; we will give our proofs in
terms of pp,q and then conclude by applying Lemma 4.12. We fix
h’ := h - k where we define x := O(e_lppad log n) throughout the
procedure. We emphasize that A’ will also be the same for all of our
recursive calls. The construction procedure is initially invoked with
the parameters V’ := V and weight scale A equal to the smallest
power of 2 which is at least the aspect ratio L < poly(n). That is,
A € [L,2L) > maxy, o d(Gh,)(u, V).

Construction procedure: We will use the Lemma 4.11 decompo-
sition with hop constraint h’, weight diameter A/2, and exclusion
probability y := ¢/O(logn) (for a sufficiently large hidden con-
stant) to obtain a partial vertex partition C; LUCa LI ... LI Cy C V'
where, plugging in our choice of parameters and the guarantees of
Lemma 4.11, we have:
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(1 maXy, veC; dgl/)(u,v) <A/2;

2 dP(ci.cj) = d¥¥(Ci,Cp) = Af(2x) for each i, j € [K]
where j # i;
@) Prlvg UK 1] < Ol forallv e V.

We recursively construct k rooted trees Ty = (V1, E1, w1),..., T =
(Vi, Ef., wi.) by calling the same procedure with our distance scale
set to A’ « A/2 on sets Cy,...,C. We construct the tree T =
(V(T),E(T), wr) returned by the procedure by connecting the
roots of T, ..., T} to the root of T; via a tree edge of weight A.
The procedure is stopped when the set of nodes V’ is a singleton,
at which point the trivial one-node tree is returned.

Exclusion probability analysis: Consider a recursive call with
v € V' and suppose that the partial vertex partition in the call is
C1U...UCg. By the properties of the partition, Pr[v ¢ U;‘:l Ci] <
e/O(logn) (for a sufficiently large constant). First, we note that
v ¢ V(T) if and only if there is a recursive call where v € V' \
(U; Ci), which happens with probability ¢/O(log n). Since v is in a
unique recursive call on each level and there are O(log n) levels, we
conclude via a union bound that this happens in at least one level
with probability at most ¢, proving that the exclusion probability
of each node v € V is a most ¢.

Worst-case distance stretch and hop stretch analysis: In the final
tree T, for two nodes u,v € V(T) let ey, := argmax{wr(e) | e €
Ty, v} be the heaviest weight tree edge on the unique tree path
between u and v. The weights wr are strictly decreasing pow-
ers of 2 on any root-leaf path. Therefore, wr(ey,») < dr(u,v) <
O(wr(ey,v)). Edge ey, was created via a recursive call with the
parameters V’ and A where V/ C V,u,v € V' and d(h/)(u’, V') <
A = wr(ey,v) forall u’,v” € V’. Let C; U ... U Ci be the par-
tial vertex partition created by this recursive call where each C;
has weight diameter A/2 and d(h)(C,-,Cj) > A/(2x) when i # j.
Since u,v € V(T) we have that u € C; andv € Cj fori # j
(since otherwise e, , would not be created by this recursive call),

hence d(Gh)(u, v) > % = WT(Z‘Z"U) = O( dT(:’v)). Consequently,

dr(u,v) < O(x - dgl)(u, v)). Furthermore, since u,v € V'’ we
have that d(h/)(u, v) £ A < dr(u,v), which can be rewritten as
dBM (u,v) < dr(u,v) for B := O(x). Combining the two bounds
on d1 we have that both the worst-case distance stretch awc and
hop stretch  are O(x) = O(e ! logn- Ppad) Which gives the desired
bound when we plug in the p;,q = O(log n) padded decomposition
of Lemma 4.12.

Expected distance stretch analysis: Let A; be the weight diameter
of recursive calls at level [ € [O(log n)]. In particular, Ay € (L, 2L]
and Aj.q = Aj/2. Fix u,v € V, let P be a path in G between u

and v with at most h hops and weight § := dgl) (u,v) and let ey, o
be defined—as in the worst-case distance stretch analysis—as the
heaviest weight tree edge between u and v. As in the worst-case
stretch analysis, it suffices to bound wr (e, »). We now partition
the O(log n) levels into three phases Hy U Hy LI H3 where [ € H;
iff Ay > 6-(2x),1 € H3 iff A} < 8 - (2ppaa) and I € Hy in the
remaining case where A; € (§ - 2ppad, 6 - 2k]. We proceed to bound
the probability that e, , is created by a recursive call in H, Hy and
Hj3 which, in turn, gives a bound on the expected distance between
u and v.
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We begin with calls at levels in Hj. In particular, we argue that a
call atlevel | € H; cannot create the edge e, o (i.e., it cannot be that
A; = wr(ey,v)). This follows from the worst-case distance stretch
analysis, which stipulates that d(Gh) (u,v) > A;/(2x). However, this
would yield dgl> (u,v) > 6, a contradiction. Thus, the contribution
of edges corresponding to levels in Hy to wr(ey, o) is 0:

Z Pr[ey, » created by level [ call] - A; - I[u,v € V(T)] =0
leH,;

Next, suppose that [ € Hy and suppose e, , was created via

a level I call with the vertex set V' and partial vertex partition

Cy U...UCy C V' If this is the case, the path P between u and

v is broken in C; U ... U Cg, which by Lemma 4.11 happens with
ppad‘S

probability at most
- h N é
Ppad = Ppad w A2 A2

hop(p) = wa(p)

h Ap/2
Moreover, note that [Hz| = O(log(k/ppaq)) = O(log(e 1 logn))
since Ajyq A;/2. Therefore we have that the term
Y.1eH, Prley, v created by level [ call] - A; - I[u, v € V(T)] is at most

Ppad Ppad
. 1< .
M v R ED I (P
o leH,

leH,
< Ppad

_ Ppad

+

K

Ppadcs
A2

(6 2x) + 2ppad5|H2|)

< 8- O(ppaq log(e ™' logn)).
Lastly, for H3 notice that we can coarsely upper bound the
terms 3jep, Prley,» created by level [ call] - A; - I[u,v € V(T)]
as Y, Aj which is at most & - 4p,aq by our choice of Hs and the
fact that our weight diameters are geometrically decreasing.
Combining our upper bounds on the probability that e, o is
created in each level gives an upper bound on the expectation of
wr (ey, ), which in turn bounds the expected value of dr(u,v)
since dr(u,v) = O(wr(ey,»)). In the following we let (. ..) stand
for Pr[ey, . created by level [ call]-A;-I[u, v € V(T)]. We have that
E[wr(ey,») - I[u,v € V(T)]] is at most
O(logn)
Pr[ey, » created by level [ call] - A; - I[u, v € V(T)]

=1
Z(...)+ Z(...)+ Z(...)

leH, leH, leH;
0+ - Olppag log(e ™ logm) + 5 - (4pa0)
= 8- O(ppaa log(e ™" logn))
Plugging in the padded decompositions of Lemma 4.12, we con-

clude that the expected distance stretch is O(ppaq log(e!logn)) =
]

IA

<

O(log nlog(¢~!log n)), as required.
5 h-HOP PARTIAL TREE EMBEDDINGS

In the preceding section we demonstrated that hop-constrained
distances can be well-approximated by distributions over partial
tree metrics. In this section we describe how this result gives em-
beddings which can be used for hop-constrained network design
problems. In particular, in Section 5.1 we will define h-hop par-
tial tree embeddings which are partial tree metrics along with a
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mapping of each edge in the tree metric to a path in G. As an (al-
most) immediate corollary of our results in the previous section,
we have that one can produce such an embedding where h-hop
distances are approximately preserved by T and each path to which
we map an edge has a low number of hops and less weight than
the corresponding edge in T.

However, ultimately we are interested in using these embeddings
to instantiate the usual tree embedding template and the above
properties alone are not sufficient to do so. In particular, recall
that in the usual tree embedding template for network design we
embed our input graph into a tree, solve our problem on the tree
and then project our solution back onto the input graph. If the
problem which we solve on the tree has a much greater cost than
the optimal solution on our input graph then our solution has no
hope of being competitive with the optimal solution. Thus, we
require some way of projecting the optimal solution of G onto our
embeddings in a way that produces low-cost, feasible solutions for
our tree problems.

When tree embeddings are not partial—as in FRT—such a projec-
tion is trivial. However, the partial nature of our embeddings along
with the fact that we must preserve “h-hop connectivity” makes
arguing that such a low cost solution exists significantly more chal-
lenging than in the FRT case. Somewhat surprisingly, we show that
a natural projection of the optimal solution onto T produces an
appropriate subgraph of T, despite the fact that an FRT-like charg-
ing argument seems incapable of proving such a result. Our proofs
will be based on what may be viewed as a hop-constrained version
of Euler tours which we call h-hop connectors. We give further
intuition and details in Section 5.2. Thus, while Section 5.1 is a
straightforward extension of our results from the previous section,
the primary technical contribution of this section is the projection
result of Section 5.2 which shows that, indeed, these embeddings
may be used for tree-embedding algorithms in the usual way.

5.1 Defining h-Hop-Partial Tree Embeddings

We begin by defining our partial tree embeddings and proceed to
argue that we can map from the trees in these embeddings to our
graphs in a weight and connectivity-preserving fashion.

Definition 5.1 (Partial Tree Embedding). A partial tree embed-
ding on weighted graph G = (V(G), E(G), wg) consists of a rooted
and weighted tree T = (V(T), E(T), wr) with V(T) € V(G) and a
path TS C G for every e € E(T) between e’s endpoints satisfying
wa(TE) < wr(e).

We extend the notation from Definition 5.1 to nodes in T which
are not adjacent: for any two vertices u,v € V(T), if e; is the ith
edge in T, (ordered, say, from u to v) then T,?v = TeG1 ) Tg D...
where @ is concatenation.

We now define hop and distance stretch of partial tree embed-
dings analogously to how we defined these concepts for partial
metrics.

Definition 5.2 (h-Hop Partial Tree Embedding). A partial tree
embedding (T, {TeG}eeE(T)) is an h-hop partial tree embedding
with distance stretch « > 1 and hop stretch f > 1 for graph
G = (V(G), E(G), wg) if

(1) d" < dru,0) < a-d®(u,0) forallu,0 € V(T) € V(G);
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(2) hop(TS,)) < Bhforall u,v € V(T) C V(G).

Notice that the above definitions show that one can map sub-
graphs of a partial tree embedding (T, {TeG }eer(T)) for G to sub-
graphs of G in a cost and connectivity preserving way. In partic-
ular, given a T” C T we have that H := U,cg (1) TS satisfies (1)
wg(H) < wp(T’) and (2) if u and v are connecting in T’ then
hopg(u,h) < Ph. In the next section we give a much more in-
volved and interesting proof showing that one can also project
from subgraphs of G to T in a cost and connectivity preserving
way.

The next observation confirms that, up to an O(log n), hop stretch
and distance stretch for h-hop partial tree embeddings and par-
tial metrics are equivalent, provided the relevant trees are well-
separated.

LEMMA 5.3. Let G be a weighted graph and let h > 1 be a hop
constraint.

o If(T, {TeG}eeE(T)) is a partial tree embedding with distance
stretch a and hop stretch p then T is a partial tree metric which
approximates dgl) with distance stretch a and hop stretch f.

o Conversely, if T is a partial tree metric with hop diameter

Dt := hop(T) which approximates d(Gh) with distance stretch

a and hop stretch  then there is a collection of paths {TeG YeeE(T)
where (T, {TeG}eeE(T)) is a partial tree embedding with dis-
tance stretch a and hop stretch Dt - f.

Analogously to our results for partial metrics, we will also talk
about the exclusion probability of distributions over partial tree,
the distances they induce and how well they approximate hop-
constrained distances; in particular, the following definitions are
analogous to Definition 4.6 and Definition 4.7 respectively. For the
sake of presentation, here and later in the paper we let (T, ) be
shorthand for (T, {TeG YecE(T))-

Definition 5.4 (Distances of Partial Tree Embedding Distributions).
Let D be a distribution of partial tree embeddings on weighted
graph G = (V,E, w). We say D has exclusion probability ¢ if for all
v eV wehave Prr y.plveV(T)] 21-eIfe < % then we say
that D induces the distance function dg on V, defined as

dp(u,v) = o E;D ldr(u,v) - I[u,v € V(T)]].

Definition 5.5 (Stretch of Partial Tree Embedding Distribution). A
distribution D of h-hop partial tree embeddings on V with exclusion
probability at most % approximates d®) on weighted graph G =
(V,E, w) for hop constraint h > 1 with worst-case distance stretch
awc = 1 and hop stretch f > 1 if each (T,-) in the support of
D approximates d(Gh) on V(T) with distance stretch ayy¢ and hop
stretch f, i.e. for each (T, -) in the support of D and all u,v € V(T)
we have

déﬂh) (u,v) <dr(u,v) <a- d(Gh)(u, v).

Furthermore, D has expected distance stretch ag if for all u,v € V

we have @)
dG

Concluding, we have that there exists an efficiently-computable
distribution over partial tree embeddings with poly-logarithmic
stretches.

dp(u,v) < ag - (u,v).
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1

THEOREM 5.6. Given weighted graph G = (V,E,w),0 <€ < 3
and root r € V, there is a poly-time algorithm which samples from
a distribution over h-hop partial tree embeddings whose trees are

well-separated and rooted at r with exclusion probability e, expected
logn
€

3
) and hop stretch = O(IOng).

distance stretch ag = O(logn - log ), worst-case distance stretch
log?n
€

awc = O(

Proor. We begin by remarking that Theorem 4.8 can be adapted
so that all trees are rooted at r in the following way. First, we can
assume that r € V(T) by resampling trees until r is in V(T). By a
union bound, this increases the exclusion probability by a factor of
at most 2, leaves the hop stretch and worst-case distance stretch
unchanged, and increases the expected distance stretch by a factor
of at most ﬁ = O(1); these modifications to our sampling process
leave the statement of our theorem unchanged.

Now, suppose that a sampled tree has r € V(T); we will observe
that r can be assumed to be the root of T. In particular, recall that
in the construction of T in Theorem 4.8 we recursively constructs
trees Ty, . . ., T on the parts of a partial vertex partition and then
outputs a tree by connecting the root of Ty, . . ., T} to the root of
T;. We note that T is chosen arbitrarily, and so we can choose T;
to be the tree containing r. Since we may assume inductively that
r is the root of Ty, the tree we return has r as its root. Choosing a
root in this way does not change the guarantees of our partial tree
metrics.

Our result then follows immediately from Lemma 5.3, Theo-
rem 4.8, the observation that the construction procedures of The-
orem 4.8 and Lemma 5.3 are poly-time and the fact that well-
separated trees have hop diameter O(log n),. O

5.2 Projecting From The Graph to h-Hop
Partial Tree Embeddings

In this section we show how to project the optimal solution for
a hop-constrained problem onto a partial tree embedding to get
a low-cost subgraph which will be feasible for the optimization
problems on trees which we later solve. In particular, we show that
it is possible to project any subgraph H C G onto an h-hop partial
tree embedding (T, -) with worst-case distance stretch « in a way
that a-approximately preserves the cost of H and preserves “h-hop
connectivity”: that is, the projection of H will have cost at most
O(a - wg(H)) and if u and v are within A hops in H then they will
be connected by the projection of H onto our embedding.

In the (non-partial) tree embedding setting where we typically
only care about the connectivity structure of nodes—as in FRT—such
a projections is trivial. In particular, if T is a tree drawn from the
FRT distribution then an edge e € E(G) can be projected onto the
simple tree path Ty, C T between u and v in T and the resulting
path will have expected weight O(logn - wg(e)). Thus, we can
project a subgraph H C G to T(H) := Uy, v}epH) Tuo- If u and
v are connected in H then they are connected in T(H) and so the
connectivity of nodes is preserved. Moreover, we can upper bound
the weight of T(H) by summing up wr (T ) over all {u, v} € E(H)
to get that, in expectation, wr(T(H)) < O(logn - wg(H)) and so
the cost of the projection is appropriately low.

We might naturally try to use the same projection as is used in
the FRT case but only for the nodes embedded by T. Specifically,
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suppose that T is now the tree of a partial tree embedding with
worst-case distance stretch a. Then, we could project H to T(H) :=
U Tuo where the | is taken over all u, v such that {u, v} € E(H) and
u,v € V(T). Although we trivially have that wr (T(H)) < a-wg(H)
by summing up over edges in E(H), such a projection has no hope
of preserving h-hop-connectivity as required: if, for example, u and
v are connected by exactly one path in H with h hops then if there
is even a single node along this path which is not in V(T') then u
and v may not be connected in T (H).

We could try to fix these connectivity issues by forcing all ver-
tices in T which are within h hops in H to be connected in T as
captured by the following definition.

Definition 5.7 (T(H, h)). Let (T, -) be a partial tree embedding.
Then T(H, h) := |J Ty where the | is taken over u, v such that
u,v € V(T) and hopg (u,v) < h.

T(H, h) trivially preserve h-hop connectivity as needed: if u and
v are connected by an h-hop path in H then they will be connected
in T(H, h). However, while T(H, h) preserves h-hop connectivity,
it seems to yield a subgraph of T of potentially unboundededly-bad
cost. For example, let h = 3 and suppose H is a spider graph with
O(n) nodes in which one leg connects vertex r to center ¢ with a
cost 1 edge and the remaining ith leg connects ¢ to u; to v; with
a sufficiently small € > 0 cost edge. Further, suppose that V(T)
consists of r and all v;. T(H, h) will buy T;, for every i since there
is an h-hop path from r to v;. Our worst-case distance guarantee
ensures that wr(Try,;) is at most a - dg (v, r) = a and so we might
hope to bound the cost of T(H, h) as within O(«) times wg (H).
However, if we try to apply the usual FRT-type proof and upper
bound the cost of T(H, h) in T as ), dr(r, v;) then our sum comes
out to O(a - n). On the other hand, wg (H) ~ 1 and so wr(T(H, h))
is a factor of O(n - ) larger than wg (H) while we would like it to
only be an O(«) factor larger. Thus, whereas FRT can charge each
path in the projection of H to a unique edge of H, the partialness
of our embedding means that we must charge paths in T(H, h) to
paths in H. These paths in H may induce large congestion which
causes us to “overcharge” edges of H.

Surprisingly, in what follows we show that, while the above naive
charging argument cannot succeed, a more nuanced proof shows
that the above T(H, h) is, in fact, competitive with the optimal
solution up to small constants in the hop and distance stretch.

THEOREM 5.8. Fixh > 1, let H be a subgraph of weighted graph
G = (V,E,wg) andlet (T, -) be an 8h-hop partial tree embedding of G
with worst-case distance stretch a. Then wr (T (H, h)) < 4a - wg(H).

The basic idea of our proof will be to identify a collection of low
congestion paths in H to which we can charge T(H, h).

5.2.1  Warm-Up: Low Diameter Tree Case. To illustrate this idea
we begin by showing how to prove Theorem 5.8 in the simple case
where G is a tree with diameter at most h. In particular, on a tree
of diameter at most h we can mitigate the congestion of charged
paths by buying an Euler tour restricted to our embedded nodes;
conveniently T(H, h) will also be a subgraph of the projection of
such an Euler tour onto T.

More specifically, suppose G is a tree with diameter at most h and
let (T, -) be a partial tree embedding of G. Let Gz be the multigraph
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of G where each edge is doubled. Let t = (v1, vy, ...) be an Euler
tour of G2 and let t’ = (wy, wa, . ..) be the vertices of V(T) visited
by this tour in the order in which they are visited. That is, ¢ is
gotten from ¢ be deleting from it all vertices not in V(T) while
leaving the ordering of the remaining vertices unchanged. Notice
that vertices in V(T) might occur multiple times in t’. We let Py
be the path in G between wy and we,; and let P := {Pp},. Next,
consider T(#) which is the union of T;,,, for every u, v where u and
v form the endpoints of some path in P.

First, notice that T(H, h) € T(P). This follows since every u,v €
V(T) which are within h hops (namely all u,v € V(T)) are also
visited by ¢’ and so if T,;, is included in T(H, h) then it will also be
included in T(P). Next, notice that wr(P) < 2« - wg(H) since our
Euler tour when projected onto G visited each edge at most twice.
This proves Theorem 5.8 for the h-diameter tree case.

5.22  h-Hop Connectors. The key observation of the above warm-
up is that Euler tours allow us to mitigate the congestion induced in
our charging arguments by providing a low-congestion collection
of paths. We abstract such a collection of paths out in the form of
what we call h-hop connectors.

For undirected and unweighted graph G = (V,E) with W C V,
we let (") (W) be all simple paths between vertices in W with at
most h hops. That is, each P € P(h)(W) has vertices in W as its
first and last vertices and satisfies [P N W| = 2 and hop(P) < h.
Given a collection of paths P in G between vertices in W, we abuse
notation and let (W, ®) be the graph with vertex set W and an
edge {u, v} iff there is a P € P with endpoints {u, v}. We will refer
to (W, P (W)) as the h-hop connectivity graph of W. We let
ce(P) := |P € P : e € P| be the congestion of e with respect to
a collection of paths . With this notation in hand, we give our
definition of h-hop connectors which we illustrate in Figure 2.

Definition 5.9 (h-Hop Connector). Let G = (V, E) be an undirected
and unweighted graph, let A > 1 and let W C V. An h-hop connec-
tor $ of W with congestion C and hop stretch f is a collection of
paths in G between vertices of W such that:

(1) Connecting:if u,v C W are connected in (W, ph) (W)) then

they are connected in (W, P);
(2) Edge Congestion: For all e € E we have c.(P) < C;
(3) Hop Stretch:hop(P) < -hforall P € P.

It is easy to observe that the existence of good h-hop connectors
are sufficient to show Theorem 5.8.

LEMMA 5.10. Fixh > 1,letH C G be a subgraph of weighted graph
G = (V,E,wg) and let (T,-) be a (Bh)-hop partial tree embedding
of G with worst-case distance stretch ac. If H has an h-hop connector
on V(T) with hop stretch  and congestion C then wr(T(H, h)) is at
most Ca - wg (H).

Proor. Let P be the stated h-hop connector, let S := {(u,v) :
(u,...,v) € P} be the endpoints of its path and also let T(P) :=
U(u,v)es Tuo be the subgraph of T corresponding to . By the
connecting property of our h-hop connector any u, v which are
within h hops in H must also be connected in T(#) and so T(H, h) C
T(P). Combining this with the edge congestion and hop stretch of
our h-hop connector with the worst-case distance stretch of T we
have wr (T(H, h)) < wr(T(P)) < Ca - wg(H). O
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Hvﬁ

(a) Graph G (b) (W, Pp)
(c)PinG d) (w, P)

Figure 2: An illustration of an h-hop connector with con-
gestion 1 and hop stretch 2 on a graph G for a vertex set
W € V(G) with h = 3. Vertices of W given as solid black cir-
cles; all other vertices of G given as white circles. Edges in
(W, ) and paths in P colored according to their correspon-
dence.

Thus, we devote the remainder of this section to showing that ev-
ery graph has an h-hop connector with hop stretch 8 and congestion
4.

A simple proof similar to the above warm-up shows that trees
with low diameter have good h-hop connectors.

LEMMA 5.11. Let G = (V,E) be a tree with diameter at most fh
for h > 1. Then, G has an h-hop connector with congestion at most 2
and hop stretch at most f for every W C V.

PRrROOF. Suppose G is a tree. Let G be the multigraph of G where
each edge is doubled. Let t = (v1,v2,...) be an Euler tour of G
and let t’ = (wq, wa, .. .) be the vertices of W visited by this tour in
the order in which they are visited. That is, ¢’ is gotten from ¢ be
deleting from it all vertices not in W while leaving the ordering of
the remaining vertices unchanged. Notice that vertices in W might
occur multiple times in t’. We let Py be the path in G between wy
and we, 1 and let P := {Pp}e.

Since every vertex in W occurs at least once in ¢ we have that
all vertices in W are connected in (W, P). Since ¢ used each edge
of Gz once, it follows that c. () < 2. Lastly, hop(P,) < Sh for all
P, € P since each Py is a simple path in a tree with diameter at
most Sh. O

We proceed to show how to construct an A-hop connector with
congestion 4 and hop stretch 8 on any graph. We first reduce the
general graph case to the forest case: we show that, up to a factor
of 2 in the hop stretch, every graph G has as a subgraph a forest F
where an h-hop connector for F is an h-hop connector for G. We
then reduce the forest case to the low diameter tree case by cutting
each tree in F at O(h)-spaced annuli from an arbitrary root so that
the resulting trees have low diameter. We apply Lemma 5.11 to the
resulting low-diameter trees. More specifically, we perform these
cuts and applications of Lemma 5.11 twice with two different offsets
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to get back paths 1 and $,; we then take our h-hop connector to
be P := P1 U Ps.

We begin with a simple technical lemma which shows that the
graphs induced by the connected components of the h-hop con-
nectivity graph are disjoint. For a collection of paths  in G we let
G[P] := G[Upep V(P)] be the graph induced by the union of all
such paths.

LEMMA 5.12. Let G = (V,E) be a graph, let W C V, and let
U and U’ be the vertices of two distinct connected components of
W, PWW)). Then G[PM(U)] and G[PM(U")] are vertex-
disjoint.

Applying the above lemma, we show that, up to a factor of 2 in
the hop stretch, we may assume that our graph is a forest. We let

P(Gh) (W) be all paths with at most A hops between vertices in W in
graph G.

LEMMA 5.13. Let G = (V,E) be a graph, let W C V. Then there
exists a subgraph F C G which is a forest where u,v € W are

connected in (W, Pgl)(W)) iff u,v are connected in (W, 7)1(,2,1) w)).

Proor. We will iteratively construct F. Specifically, for each

connected component of (W, P(Gh) (W)) with vertex set U we will
maintain a collection of paths Py where these paths are all con-
tained in G[P(h) (U)] and F is the graph induced by the union of
all these paths. It follows that by Lemma 5.12 if G[Py] is a tree
then the connected components of our final solution are indeed
a forest. We will maintain the following invariants for our Pys
where hopgs (v, U) := minycry hops (v, u):

(1) U’ :==U N V(G[Py]) is connected in (U’, Py);

(2) G[Pyu] is a tree;

(3) hop(P) < 2h for every P € Py;

(4) hopg(p,1(v,U) < hfor every v € V(G[Py]).

We initialize Py to contain a path consisting of exactly one
(arbitrary) vertex in U. Notice that our construction trivially satisfies
these invariants initially.

Next, we repeat the following until U’ = U. Let u be a vertex in
U \ U’ where u has a path P of at most h hops to a vertex in U’;
such a u and P must exist by the definition of U. Let x be the first
vertex in P N G[Py ] where we imagine that P starts at u and let
Py x be the subpath of P from u to x. By invariant 4 we also know
there is some path in G[Py] from x to a u’ € U’ with at most h
hops; call this path Py, and let P’ be the concatenation of Py, and
Py; we add P’ to Py. Notice that this adds u to U’ and so this
process will eventually terminate at which point U’ = U.

Let us argue that our invariants hold. Our first invariant holds
since before adding u to U’, U’ was connected and after adding u
to U’, u is connected to u’ by P’. Our second invariant holds since
x was the first vertex in G[Py] incident to P. Our third invariant
holds since Py and Py, were each of at most h hops. Our fourth
invariant holds since the only new vertices we add to G[Py] are
the vertices of Py, all of which are within h hops of u.

Lastly, notice that once U’ = U for every U, our claim follows

from invariants 1,2 and 3. O

By turning our graph into a forest with Lemma 5.13 and then
cutting the constituent trees at O(h)-spaced level sets with two
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different initial offsets, we can conclude that every graph has h-hop
connectors with constant congestion and hop stretch.

LEmMA 5.14. Let G = (V,E) be a graph. Then G has an h-hop
connector with congestion 4 and hop stretch 8 for every W C V.

Proor. By Lemma 5.13 we know that there is a forest F such

that u, v are connected in (W, P(Gh)(W) iff u, v are connected in

(w, PI(,Zh) (W)). Let T be a tree in this forest and notice that to get
an h-hop connector on G with hop stretch 8 and congestion 4, it
suffices to find a 2h-hop connector on T with hop stretch 4 and
congestion 4.

We do so as follows. Root T arbitrarily at root r and let Ty, To, . . .
be the subtrees resulting from cutting T once every 4h levels and let
T/.T,, ... be the subtrees resulting from cutting T every 4h levels
with an initial offset of 2h. That is, T; = T[V(T;)] and v € V(T;) iff
4h(i—1) < dr(v,r) < 4h-iand T/ = T[V(T)] where v € V(T}) iff
max(4h(i—1)—2h,0) < dr(v,r) < 4h-i—2h. Notice that each T; and
T/ has diameter at most 4(2h). Thus, by Lemma 5.11 we know that
each T; and Tl.’ have 2h-hop connectors P; and 7’1.' with congestion
at most 2 and hop stretch at most 4. Thus, we let $; := {#;}; and
Py = {Pi’}i and we let our h-hop connector for T be P := P1 U P;.

Let us argue that # is a 2h-hop connector on T with hop stretch
8 and congestion 4. The bound on the congestion is immediate from
Lemma 5.11 and the fact that each edge occurs in at most 2 trees
among all T; and T/. To see why # is connecting notice that if u, v
are within 2h hops of one another in T by some path P then this
path must be fully contained in some T; or T7; it follows that u and
v will be connected in some P; or Pi’ and so connected in P. Lastly,
our hop bound is immediate by Lemma 5.11 since each T; and T}
has diameter at most 4(2h). O

Combining Lemma 5.14 with Lemma 5.10 immediately gives
Theorem 5.8.

Before proceeding to our applications, we remark on a subtle
issue regarding independence and expected distance stretch ver-
sus worst case distance stretch. Theorem 5.8 bounded the cost of
projecting a subgraphs of G onto a partial tree embedding of G
based on the tree embedding’s worst-case distance stretch; one
might naturally wonder if similar results are possible in terms of
the expected distance stretch of a distribution over partial tree
embeddings. Here, dependence issues and the partialness of our
embeddings work against us. Specifically, one would have to argue
that T(H, h)—and, in particular, the relevant h-hop connector for
T(H, h)—has low cost in expectation where (T, -) is drawn from a
distribution. However, while it is true that for a fixed H and T the
relevant h-hop connector for H and T has low cost in expectation
over the entire distribution of tree embeddings, it need not be the
case that this h-hop connector has low cost when we condition on
the fact that T is the tree we drew from our distribution. In short,
Lemma 5.10 seems to fail to hold for the expectation case.

6 APPLICATION OF h-HOP PARTIAL TREE
EMBEDDINGS TO OBLIVIOUS
HOP-CONSTRAINED STEINER FOREST

In this section we apply our embeddings of d ") to give approxi-
mation algorithms for hop-constrained (oblivious) Steiner forest.
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While we give our results for oblivious hop-constrained Steiner
forest, it is easy to see that an approximation algorithm for the
oblivious version gives an approximation algorithm with the same
approximation ratios for the online and offline versions of the prob-
lem; to our knowledge nothing was known for any of these variants
prior to our work.

In Steiner forest we are given a weighted graph G = (V,E, w).

o Offline: In offline Steiner forest we are also given a collection
of pairs of nodes {(s;, ¢;)};. Our goal is to find a subgraph
H C G so that every s; is connected to every ¢; in H.

o Online:In online Steiner forest in each time stept = 1,2,...a
new pair of vertices (u;, vy ) is revealed and we must maintain
a solution Hy for each t where Hy—1 C H; which connects
pairs in {(u1,v1), . .., (us, vs)}.

o Oblivious: In oblivious Steiner forest we must specify a path
Py for each pair of vertices (u, v) € VXV before seeing any
demands. The demands {(s;, ¢;)}; are then revealed, inducing
our solution H := | J; Ps; ;.

In all three problems the cost of our solution H is defined as
w(H) = Yccp(m) w(e)- In the oblivious and offline versions, our
approximation ratio is w(H)/OPT where OPT is the cost of the
optimal offline solution for the given demand pairs. The compet-
itive ratio of our solution in the online case is max; w(H;)/OPT;
where OPT; is the minimum cost subgraph of G connecting pairs
in {(ug,v1), ..., (us, ve)}.

In the hop-constrained versions of each of these problems we are
additionally given a hop constraint » > 1 and if (s;, ;) is a demand
pair then our solution H must satisfy hopg(si,t;) < h for all i.
The optimal solution against which we measure our approximation
ratio is similarly hop-constrained. Notice that, unlike in the Steiner
forest problem where we may assume without loss of generality
that each connected component of H is a tree, in hop-constrained
Steiner forest each connected component of H might not be a tree.

We give some brief highlights from work in Steiner forest and
hop-constrained Steiner forest: while NP-hard [5] gave the first
constant approximation for offline Steiner forest; [19] gave an (op-
timal) O(log k) approximation for online Steiner forest and [40]
gave the first non-trivial approximation algorithm for oblivious
Steiner forest, an O(log? n) approximation. There has also been
quite a bit of work on approximation algorithms for h-spanners
which can be seen as a special case of offline hop-constrained
Steiner forest; see, for example, [30] and references therein. No-
tably for our purposes, [32] and [28] show that unless it holds
that NP ¢ BPTIME(2Polylogn) hop-constrained Steiner forest ad-

mits no O(Zk’gl_e ) approximation; this immediately rules out
the possibility of a poly-log (unicriteria) approximation for hop-
constrained Steiner forest. We also note that a recent work of [12]
gave results for hop-constrained Steiner forest from a parameter-
ized complexity perspective.

Roughly, our algorithm follows the tree-embedding template: we
first apply our h-hop partial tree embeddings to reduce oblivious
hop-constrained Steiner forest to oblivious Steiner forest on a tree;
we then observe that oblivious Steiner forest is trivially solvable on
trees and project our solution back to G. The only minor caveats are:
(1) since our tree embeddings will only embed a constant fraction
of nodes, we must repeat this process O(log n) times and (2) for
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each tree embedding we must use Theorem 5.8 to argue that there
is a cheap, feasible solution for the relevant Steiner forest problem
on each tree.

Formally, our algorithm to compute our solution H is as follows.
We begin by applying Theorem 5.6 to sample 8h-hop partial tree
embeddings T1, Ty, ..., Ty where k := O(logn) for a sufficiently
large hidden constant, ¢ = .1 and an arbitrary root. Given u,v € V,
assign the pair (u, v) to an arbitrary T; such that u,v € V(T;) (we
will argue that such a T; exists with high probability). Next, we let
our path for u,v be Py = (T])l?v the projection of the tree path
between u and v onto G. We now analyze this algorithm.

THEOREM 6.1. There is a poly-time algorithm which given an in-
stance of h-hop-constrained oblivious Steiner forest returns a collection
of paths such that the induced solution H for any demand set satisfies
w(H) < O(OPT - log® n) and hopy (si, t;) < O(h-log> n) with high
probability.

Proor. We use the above algorithm. We begin by arguing that
H connects every s; to t; for every i with high probability with
a path of at most O(log® n - h) edges. Fix a vertex v. A standard
Chernoff-and-union-bound-type argument shows that v is in at
least .8k of the T; with high probability. Specifically, let X; be the
random variable which indicates if v is in V(T}), let X := }; X;
and apply a Chernoff bound to X.

Taking a union bound over all v we have that with high proba-
bility every v is in at least .8k of the Tj. Since we have k total Tj, by
the pigeonhole principle it follows that any pair of vertices (s;, t;)
simultaneously occur in at least .6k of the Tj, meaning that for
each such pair there is a T; where we buy (Tj)sGiti and so s; will be
connected to t; in our solution. Since hop((Tj)stti) < O(h-logn)
by Theorem 5.6, it follows that hopg(si, t;) < O(h - log® n).

We next argue that our solution satisfies the stated cost bound.
Let Ht, be the minimal subgraph of T connecting all pairs assigned
to Tj and let Hj := UeeHTj (Tj)g; be the projection of Hr; onto G.
Notice that it suffices to argue that wr, (Hr,) < O(OPT - log? n) for
every j since if this held we would have by Theorem 5.6 that the
cost of our solution is w(H) < 3; w(Hj) < ¥; ZeEHTj w((Tj)f) <

2 ZeeHTj wr;(e) = Xjwr;(Hr;) < O(OPT - log® n). However,
applying Theorem 5.8 to the optimal solution H* on G shows that
T(H*, h) is a feasible solution for the Steiner forest problem on T;
which connects all pairs assigned to T; with cost at most O(log?n -
OPT). Since Hy, is the optimal solution for such a Steiner forest

problem, it follows that wr; (Hr;) < O(OPT - log? n). O

<

7 CONCLUSION AND FUTURE WORK

In this work we showed that, while far from any metric, hop-
constrained distances are well-approximated by partial tree metrics.
We used this fact to develop new embeddings for hop-
constrained distances which we then used to give the first bicrite-
ria (poly-log, poly-log) approximation algorithms for many classic
network design problems.

We conclude by giving directions for future work. Reducing the
stretch in our embeddings, or proving lower bounds stronger than
those immediately implied by the FRT lower bounds is our main
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open question. Improving the upper bounds in our embeddings—
as in the FRT setting—has the benefit that doing so immediately
improves the approximation ratios for the many algorithms we
gave in this paper. We note that, like the embeddings of [16], our
embeddings are built around the paddedness of certain decomposi-
tions and these embeddings were later improved by FRT [33]. One
might naturally wonder, then, if an FRT-like analysis might improve
our stretch guarantees; from what we can tell no such FRT-type
proof seems capable of improving our bounds. Another point to
note is that we lose an O(log n) in the hop stretch when moving
from partial tree metrics to partial tree embeddings. This loss does
not seem to have an analogue in the (non-partial) tree embedding
setting and it is not clear if such a loss is necessary.

Moreover, while tree embeddings have proven useful for many
network design problems, there are many other problems such as
k-server [13], metrical task systems [17] and requirement cuts [54]
where tree embeddings enabled the first poly-log approximations.
Thus, while the focus of our paper has been on the hop-constrained
versions of network design problems, we expect that our embed-
dings will prove useful for the hop-constrained versions of many
of these other problems.

Lastly, as we discussed at the end of Section 5, our h-hop partial
tree embeddings are built on the worst-case stretch guarantees of
our partial metrics; it would be interesting if it were possible to
construct embeddings based on the expected stretch guarantees of
our partial metrics. Such a result would immediately give several
randomized algorithms for hop-constrained problems with low
expected cost.
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