
Hop-Constrained Oblivious Routing

Mohsen Ghaffari
ETH Zurich
Switzerland

ghaffari@inf.ethz.ch

Bernhard Haeupler
Carnegie Mellon University & ETH

Zurich
USA & Switzerland

haeupler@cs.cmu.edu

Goran Zuzic
ETH Zurich
Switzerland

goran.zuzic@inf.ethz.ch

ABSTRACT

We prove the existence of an oblivious routing scheme that is

poly(log𝑛)-competitive in terms of (𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 + 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛), thus
resolving a well-known question in oblivious routing.

Concretely, consider an undirected network and a set of packets

each with its own source and destination. The objective is to choose

a path for each packet, from its source to its destination, so as to

minimize (𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛+𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛), defined as follows: The dilation is

the maximum path hop-length, and the congestion is the maximum

number of paths that include any single edge. The routing scheme

obliviously and randomly selects a path for each packet independent

of (the existence of) the other packets. Despite this obliviousness,

the selected paths have (𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛+𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛) within a poly(log𝑛)
factor of the best possible value. More precisely, for any integer

hop-bound ℎ, this oblivious routing scheme selects paths of length

at most ℎ · poly(log𝑛) and is poly(log𝑛)-competitive in terms of

𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 in comparison to the best possible 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 achievable

via paths of length at most ℎ hops. These paths can be sampled in

polynomial time.

This result can be viewed as an analogue of the celebrated obliv-

ious routing results of Räcke [FOCS 2002, STOC 2008], which are

𝑂 (log𝑛)-competitive in terms of 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛, but are not competi-

tive in terms of 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛.

CCS CONCEPTS

•Mathematics of computing→Graph theory;Network flows; •

Theory of computation→Routing andnetworkdesign prob-

lems; Random projections and metric embeddings.

KEYWORDS

hop-constrained oblivious routing, oblivious routing, partial tree

embeddings, congestion, dilation, hop constraints

ACM Reference Format:

MohsenGhaffari, BernhardHaeupler, andGoran Zuzic. 2021. Hop-Constrained

Oblivious Routing. In Proceedings of the 53rd Annual ACM SIGACT Sympo-

sium on Theory of Computing (STOC ’21), June 21ś25, 2021, Virtual, Italy.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3406325.3451098

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC ’21, June 21ś25, 2021, Virtual, Italy

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8053-9/21/06. . . $15.00
https://doi.org/10.1145/3406325.3451098

1 INTRODUCTION

Routing packets in computer networks is a fundamental task and a

widely studied problem. Consider the following prototypical sce-

nario:

The network is abstracted as an 𝑛-node undirected graph. Each

edge 𝑒 has the capacity to transfer 𝑐𝑒 packet per time unit, and

each packet traversing each edge takes one time unit. The network

receives a number of packet delivery requests, where the 𝑖𝑡ℎ packet

should be transmitted from source 𝑠𝑖 to destination 𝑡𝑖 . The objective

is to minimize the packet delivery completion time, i.e., to deliver

all the packets to their destinations in the shortest span of time

possible.

This paper’s contribution can be informally summarized as fol-

lows: we present the first oblivious routing scheme that is competitive

in completion time. The scheme is oblivious in the sense that for

each packet delivery request 𝑖 , the path chosen for this packet1

is decided independent of all the other packets 𝑗 ≠ 𝑖 . This obliv-

iousness property is strongly desirable in numerous networking

settings, where packet delivery requests arrive at various points in

the network and their routing has to be determined without any

central control of the state of the network. The competitiveness

guarantee is that, albeit this obliviousness restriction, all the pack-

ets are delivered to their destinations within a time that is at most

a poly(log𝑛) factor larger than the optimal time that is needed

to deliver all the packets, i.e., the completion time in the fastest

possible way to deliver all the packets.

In what follows, we describe this contribution in a more formal

manner, putting it in the context of what has been known about

packet routing algorithms in networks and especially the prior

results on oblivious routing.

1.1 Background on Routing

Route selection and scheduling: The problem of routing a set of

packets from their sources 𝑠 to destinations 𝑡 while minimizing the

completion time involves two components: (I) route selection, i.e.,

choosing the path 𝑝𝑠,𝑡 along which the packet is transferred from 𝑠

to 𝑡 , (II) scheduling the timing of the packet traversing this path 𝑝𝑠,𝑡 ,

i.e., at which time unit the packet goes through each edge 𝑒 ∈ 𝑝𝑠,𝑡 .
A celebrated result of Leighton, Maggs, and Rao [16] shows that

one can decouple these two issues with only a moderate lossÐonce

the routes are selected, we can solve scheduling nearly optimally.

Let us make this more precise. We focus on the setting where all

edge capacities are uniform (e.g., by replacing higher capacity edges

1We note that besides this path selection obliviousness, even the timing schedule of
how the packet traverses this path is essentially independent of all other packets in the
following sense: we can break time into phases each involving Θ(log𝑛) time units,
and the phase number in which the packet traverses through any edge on its chosen
path is independent of all the other packets.

1208

STOC ’21, June 21ś25, 2021, Virtual, Italy Mohsen Ghaffari, Bernhard Haeupler, and Goran Zuzic

with edge multiplicities). Suppose that the routes are selected and

consider a given set of paths {𝑝𝑠𝑖 ,𝑡𝑖 }𝑖 , one path for each packet.

Let dilation denote the length of the longest path among these.

Also, let the congestion of each edge 𝑒 be the number of paths

that include it and let the overall congestion denote the maximum

congestion over all edges 𝑒 . While the best completion time de-

pends on the exact model of how are the packets coordinated (e.g.,

centralized scheduling of packets vs. distributed scheduling), in

these settings the completion time is near-optimally characterized

by the quantity congestion + dilation. Clearly, delivering the pack-

ets along these paths requires at least max{congestion, dilation} ≥
(congestion + dilation)/2 time units (i.e., the completion time is at

least (congestion + dilation)/2). Leighton, Maggs, and Rao show a

centralized scheduling algorithm that would deliver all the pack-

ets to their destinations with completion time of 𝑂 (congestion +
dilation) time units. Moreover, just using their basic random de-

lays idea, we can define a schedule that can implemented in a

distributed setting with a near-optimal completion time of at most

𝑂 (log𝑛) · (congestion + dilation). Thanks to this simple random

delays idea, if we ignore logarithmic factors, we can the routing

question routing question boils down to the route selection problem

while minimizing congestion + dilation, which is the question we

focus on the in remainder of the paper.

Oblivious route selection: In the oblivious case, we are given a

set of sources and destinations D = {(𝑠𝑖 , 𝑡𝑖)}𝑖 , which we call the

demand. If the demand is known in advance (i.e., all {𝑠𝑖 }𝑖 and {𝑡𝑖 }𝑖
are known), the route selection problem can be solved in polynomial

time, giving a set of routes that has congestion + dilation within a

constant factor of the optimum, by a classic result of Srinivasan and

Teo [22]. Put together with the aforementioned scheduling result of

Leighton et al. [16], this gives a constant approximation algorithm

for the completion time in packet routing. However, in this scheme,

the routes selected by different requests heavily depend on each

other, and devising these routes requires central control of the entire

network. A much more common scenario in networking is that the

packet delivery requests arrive at various points in the network. It is

much more desirable if one can select the route of each packet just

based on its source and destination, and in a manner oblivious to all

the other packet routing requests. More formally, a (probabilistic)

routing scheme can be summarized as follows.

Definition 1.1. A routing scheme 𝑅 for an undirected graph

𝐺 = (𝑉 , 𝐸) is a collection of |𝑉 |2 distributions 𝑅 = {𝑅𝑢,𝑣}𝑢,𝑣∈𝑉 ,
where for each pair of nodes 𝑢, 𝑣 ∈ 𝑉 , we have one distribution 𝑅𝑢,𝑣
over paths between 𝑢 and 𝑣 .

A routing scheme can be used to obliviously route requests

{(𝑠𝑖 , 𝑡𝑖)} in the following straightforward way: Given a routing

scheme 𝑅, the 𝑖𝑡ℎ path is independently sampled from 𝑅𝑠𝑖 ,𝑡𝑖 . Note

that each request is routed independently of (the existence of) other

requests, hence the routing is oblivious.

Quality measures: Our goal is to find routing schemes which,

for every demand, guarantee that the obliviously selected paths

are competitive with the optimal (demand-dependent) set of paths

in terms of some quality measure. We can measure the quality of

the selected paths using various functions, including the maximum

or average congestion, ℓ𝑝 norm of edge congestion, the maximum

dilation, etc. Given the discussions above, our primary measure

of interest will be the summation congestion + dilation. As noted
before, thanks to the random delays technique for scheduling [16],

a routing scheme that has polylogarithmic competitiveness in terms

of the congestion+dilationmeasure provides a routing scheme that

has polylogarithmic competitiveness in terms of the completion

time to deliver all packets.

1.2 Prior Work on Oblivious Routing

We next discuss the prior work on routing schemes that are obliv-

iously competitive for other measures, and some of the known

obstacles towards being competitive in congestion + dilation.
Results on special graphs: Valiant and Brebner [24] were the first

to study oblivious packet routing. They focused on the case where

the network is a hypercube and showed that any permutation can be

routed with completion time𝑂 (log𝑛). Their path selection is based

on the łValiant’s trickž of routing from the source 𝑠𝑖 to a random

node 𝑞 and from there to the destination 𝑡𝑖 , where the paths from 𝑠𝑖
to 𝑞 and from 𝑞 to 𝑡𝑖 are greedy (fixing differing dimensions one by

one). Following them, there have been a number of routing schemes

that are obliviously competitive in terms of congestion + dilation
in a range of special graphs, including expanders, Caley graphs, fat

trees, meshes, etc. [7ś9, 17, 21, 23] See the thesis of Scheideler [21]

and the survey of Räcke [20] for more on related work.

Congestion-competitive oblivious routing: A prominent highlight

in prior work is congestion-competitive oblivious routing, a topic

which was initiated by Räcke’s seminal paper [18], and through

a beautiful line of work [3, 6, 15], culminated in the following

celebrated result of Räcke’s [19]: For every undirected graph, there

is a polynomial-time algorithm to build a routing scheme such that

for every demand D, the routing obliviously produces a collection

of routes which are 𝑂 (log𝑛)-competitive in terms of congestion,

compared to the optimal collection of (demand-dependent) routes

for D.

Theorem 1.2 (Räcke [19]). For every undirected (multi)-graph

𝐺 = (𝑉 , 𝐸), there exists a routing scheme 𝑅 = 𝑅(𝐺) such that for

every demand D = {(𝑠𝑖 , 𝑡𝑖)}𝑘𝑖=1, the maximum expected congestion

of routing D using 𝑅 is at most a 𝑂 (log𝑛)-factor larger than the

optimal congestion of D in 𝐺 .

Räcke’s routing scheme has the additional property of being

tree-based (see Section 3.1 for a formal definition). Moreover, the

current state-of-the-art approaches are all based on tree-based rout-

ing schemes, which greatly simplify the process of constructing

competitive oblivious routings. A significant challenge this paper

needed to overcome is the fact that tree-based routing schemes do

not exist in our setting of jointly minimizing the congestion and

dilation. To this end, we develop a theory of constructing routings

using partial trees which allow for greater flexibility at the cost of

increased intricacy of the construction.

Oblivious routing for congestion and dilation: Considering that

both congestion and dilation impact packet delivery, it would be

very desirable to be competitive in both, or just their summation.

Unfortunately, it is well-known that Räcke’s routing scheme is not

competitive in terms of dilation and it can select paths that are

1209

Hop-Constrained Oblivious Routing STOC ’21, June 21ś25, 2021, Virtual, Italy

arbitrarily longer than the paths in the optimal collection. Because

of this, while the routing is competitive in the congestion measure,

it is not competitive in the completion time measure, or more con-

cretely in terms of congestion + dilation. Of course, if we focus on
dilation alone, it is trivial to be competitive by simply routing each

packet along the shortest path between its source and destination.

Oblivious routing for other measures. Gupta, Hajiaghayi, and

Räcke [11] study a range of rather general measures for oblivi-

ous routing. Suppose for each commodity 𝑖 ∈ {1, ..., 𝑘}, we want
a (fractional) flow from source 𝑠𝑖 to destination 𝑡𝑖 . For a given set

of flows for the commodities, for each edge 𝑒 , let us use 𝑓𝑖 (𝑒) to
denote the amount of commodity-𝑖 flow passed through 𝑒 . Consider

a load function 𝐿 : R𝑘+ → R+ where ℓ (𝑓1 (𝑒), . . . , 𝑓𝑘 (𝑒)) defines the
load of edge 𝑒 . Gupta et al. provide two results: (A) an 𝑂 (log2 𝑛)
competitive oblivious routing algorithm for the summation of loads

of different edges, assuming that the load function ℓ is the class of

monotone sub-additive functions, (B) an𝑂 (log2 𝑛 log log𝑛) compet-

itive oblivious algorithm for the maximum of the loads of different

edges assuming that the load function is a norm. In either case,

their oblivious routing does not need to know the load function ℓ .

Englert and Räcke [11] extended this framework and presented an

𝑂 (log𝑛)-competitive oblivious algorithm for the case that the load

function is a monotone norm, and we take the ℓ𝑝 norm of the loads

of different edges as our measure for competitiveness.

An impossibility? The goal of being competitive in both dilation

and congestion has been discussed in the literature of oblivious

routing as an ultimate goal [2, 20]. However, the discussion often

soon concludes in an łimpossibilityž: Suppose that we interpret

the goal as being competitive in terms of congestion and also in

terms of dilation, simultaneously. This is not possible. Consider two

neighboring nodes𝑢 and 𝑣 that, besides the edge between them, are

also connected with Θ(√𝑛) disjoint paths of length Θ(√𝑛). If there
are
√
𝑛 that should go from 𝑢 to 𝑣 , to be poly(log𝑛)-competitive in

congestion, at least
√
𝑛 − poly(log𝑛) of packets should be routed

through those long paths. In an obliviously-competitive routing

scheme, that means each packet should be routed through that long

path with probability 1 − 𝑜 (1). But then, if we consider a demand

with just one packet, the optimal dilation is simply 1, while this

routing schemewill have dilation = Θ(√𝑛) with probability 1−𝑜 (1).
We note that this example also shows that, even if we make the

summation congestion + dilation as our measure for competitive-

ness, poly(log𝑛)-competitive oblivious routing appears impossible.

Indeed, noting this apparent impossibility for general graphs, Asp-

nes et al. [2] asked for a workaround in their list of prominent open

problems in distributed computing. Their suggestion was that it

might be still feasible for special networks: łAnother important open

problem is to find classes of networks in which oblivious routing gives

C+D [i.e., congestion + dilation] close to the off-line optimal... Such a

result have immediate consequences in packet scheduling algorithms.ž

Our aim in this paper is to have a solution for all graphs. This

calls for re-examining the above impossibility argument. The astute

reader notices that, in this simple example, changing the require-

ment slightly makes the problem possible and still perfectly useful:

if we are given a target dilation upper bound ℎ, which is within

poly(log𝑛) factor of the optimal dilation for the input instance,

then the routing scheme can select the routes so as to remain below

this target ℎ and still be poly(log𝑛)-competitive in terms of the

congestion. Similarly, when congestion + dilation is the measure,

given a poly(log𝑛) factor upper bound on the value of the opti-

mum, we can get a poly(log𝑛)-competitive oblivious routing in

terms of congestion + dilation. Of course, in these definitions, the

routes may depend on the given dilation upper bound, or the upper

bound on congestion + dilation. The assumption of having these

upper bounds can be removed by standard ideas such as guessing

and doubling. Furthermore, this choice also has the added flexibil-

ity of exploring the optimal trade-off between feasible values for

congestion and dilation. We note that even though in this simple

example the problem becomes possible and easy, achieving such a

result for general graphs is far from trivial. Indeed, since we can

set the upper bound arbitrarily high, this is a strictly stronger re-

quirement than requirement competitiveness in congestion alone

(as in results of [18, 19] mentioned above). This is exactly the goal

that we achieve in this paper.

1.3 Our Contribution

We show a routing scheme that, given a dilation bound ℎ, is obliv-

iously poly(log𝑛)-competitive in terms of congestion compared

to the best congestion achievable via paths of length ℎ, and our

routing scheme uses paths of length at most ℎ · poly(log𝑛).

Theorem 1.3. (Informal) For every undirected (multi)-graph𝐺 =

(𝑉 , 𝐸) and every dilation bound ℎ ≥ 1, there exists a routing scheme

𝑅 = 𝑅(𝐺,ℎ) such that for every demandD = {(𝑠𝑖 , 𝑡𝑖)}𝑘𝑖=1, the selected
paths have a hop-length of at most ℎ · 𝑂 (log7 𝑛), and in which the

expected maximum congestion is within an𝑂 (log2 𝑛 · log2 (ℎ log𝑛))
factor of the optimum congestion when routing along paths of length

at most ℎ.

See Theorem 3.1 for the formal statement. Theorem 1.3 directly

gives us a way of obtaining a routing scheme that is obliviously

competitive in terms of the completion time. As explained above,

thanks to known scheduling results, we can simply focus on the

summation congestion+dilation. If we set ℎ to be the optimal value

of congestion + dilation, or a constant-factor approximation of it,

the produced routing is poly(log𝑛)-competitive in congestion +
dilation, and thus also poly(log𝑛)-competitive in terms of the com-

pletion time, via random delays [16].

2 PRELIMINARIES

We first give some common notation we use throughout the paper.

General: We denote by [𝑘] = {1, 2, . . . , 𝑘} for some non-negative

integer 𝑘 and𝐴⊔𝐵 denotes the disjoint union of𝐴 and 𝐵. We often

use the Iverson bracket notation I[condition] which evaluates to

1 when the condition is true and 0 otherwise. We assume that all

graphs are undirected and we typically assume the existence of an

underlying graph 𝐺 = (𝑉 , 𝐸) with 𝑛 := |𝑉 |.

Weighted graphs: A weighted graph 𝐺 = (𝑉 , 𝐸,𝑤) is an undi-

rected graph (𝑉 , 𝐸) along with weights 𝑤 : 𝐸 → [1/𝐿, 𝐿]. Equiv-
alently, a capacitated graph 𝐺 = (𝑉 , 𝐸, 𝑐) is an undirected graph

along with capacities 𝑐 : 𝐸 → [1/𝐿, 𝐿]. Here, the value 𝐿 is the as-

pect ratio and throughout this paper we assume that 𝐿 = poly(𝑛).

1210

STOC ’21, June 21ś25, 2021, Virtual, Italy Mohsen Ghaffari, Bernhard Haeupler, and Goran Zuzic

Many intermediate results only apply to complete graphs, i.e., where

𝐸 =
(𝑉
2

)
, hence we will explicitly disambiguate between general and

complete weighted graphs. In the context of this paper, assuming

graphs are complete is mostly without loss of generality. In partic-

ular, one can often transform any non-complete weighted graph

𝐺 = (𝑉 , 𝐸,𝑤) with aspect ratio 𝐿 into an equivalent complete graph

𝐺 ′ with aspect ratio 𝐿′ = 𝑛2 · 𝐿 which gives a weight of 𝐿′ (or 1/𝐿′
in maximization problems) to any edge not in 𝐸 without affecting

the results. We use both𝑤𝑒 and𝑤 (𝑒) to refer to the weights.

Distances and hop-constraints: Let 𝑝 = (𝑝0, 𝑝1, . . . , 𝑝ℓ) be a path
in𝐺 = (𝑉 , 𝐸,𝑤).We denote the number of hops in 𝑝 with hop(𝑝) :=
ℓ and the sum of weights of the edges in the path with 𝑤 (𝑝).
Paths are assumed to be non-simple unless explicitly stated oth-

erwise. We define the distance between 𝑢, 𝑣 ∈ 𝑉 as 𝑑𝐺 (𝑢, 𝑣) :=
min{𝑤 (𝑝) | path 𝑝 between 𝑢, 𝑣}. Furthermore, we define the hop-

constrained distance with ℎ > 0 as 𝑑
(ℎ)
𝐺
(𝑢, 𝑣) := min{𝑤𝐺 (𝑝) |

path 𝑝 between 𝑢, 𝑣 with hop(𝑤) ≤ 𝑘}.
Trees: Trees can be either unweighted 𝑇 = (𝑉 , 𝐸) or weighted

𝑇 = (𝑉 , 𝐸,𝑤). Trees are often rooted, in the sense that there is a

special node 𝑟 ∈ 𝑉 . With 𝑇𝑢,𝑣 we denote the (unique) path on 𝑇

between 𝑢 and 𝑣 . For example, in a weighted tree 𝑇 it holds that

𝑑𝑇 (𝑢, 𝑣) = 𝑤𝑇 (𝑇𝑢,𝑣) for all 𝑢, 𝑣 ∈ 𝑉 .

2.1 Approximating Hop-Constrained Distances

In this section, we describe an important ingredient from prior work:

partial tree embeddings, and how to use them to approximate hop-

constrained distances. To give some context, the seminal results of

[4, 5, 12] have shown that any metric space can be approximately

embedded into a (distribution over) weighted trees. This has led to

major advances in the field of approximation algorithms because

many NP-hard problems on general graphs can be exactly solved

on trees in polynomial time (see, for instance, the survey [13]).

However, such tree embedding results are not applicable to prob-

lems involving hop-constrained distances 𝑑
(ℎ)
𝐺

since they do not

form a metric space. To address this issue, very recent work [14]

proposed using partial tree embeddings, where only a fraction of

nodes are embedded in any single tree. Their paper also shows that

using standard (non-partial) trees in such a setting necessarily leads

to unsatisfactory polynomial losses in approximation. We formalize

the notion of embedding a graph into a tree.

Definition 2.1. A partial tree embedding (𝑇,𝑇𝐺) on a graph

𝐺 = (𝑉 (𝐺), 𝐸 (𝐺)) consists of a rooted and tree 𝑇 = (𝑉 (𝑇), 𝐸 (𝑇))
with𝑉 (𝑇) ⊆ 𝑉 (𝐺), and a mapping𝑇𝐺 which maps every tree edge

{𝑢, 𝑣} = 𝑒 ∈ 𝐸 (𝑇) to paths 𝑇𝐺
𝑒 in 𝐺 that are between 𝑢 and 𝑣 .

We extend the notation from Definition 2.1 to nodes in 𝑇 which

are not adjacent: For any two vertices 𝑢, 𝑣 ∈ 𝑉 (𝑇), if 𝑒𝑖 is the
𝑖𝑡ℎ edge in 𝑇𝑢𝑣 (ordered from 𝑢 to 𝑣) then 𝑇𝐺

𝑢𝑣 := 𝑇𝐺
𝑒1 ⊕ 𝑇𝐺

𝑒2 ⊕ . . .

where ⊕ is concatenation. Finally, we extend the notion to weighted
graphs 𝐺 where the distances in the embedding must łdominatež

the distances in 𝐺 .

Definition 2.2. A partial tree embedding (𝑇,𝑇𝐺) is dominating

if (i) it is defined over a weighted graph 𝐺 = (𝑉 (𝐺), 𝐸 (𝐺),𝑤𝐺),
(ii) 𝑇 = (𝑉 (𝑇), 𝐸 (𝑇),𝑤𝑇) is a weighted tree, and (iii) 𝑤𝐺 (𝑇𝐺

𝑢,𝑣) ≤
𝑑𝑇 (𝑢, 𝑣) for all {𝑢, 𝑣} ∈ 𝐸 (𝐺).

Note that if (𝑇,𝑇𝐺) is a dominating partial tree embedding, we

have that𝑤𝐺 (𝑇𝐺
𝑢,𝑣) ≤ 𝑑𝑇 (𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝑉 (𝑇).

Distributions over partial tree embedding are sufficiently expres-

sive to approximate hop-constrained distances 𝑑
(ℎ)
𝐺

in any graph

𝐺 . However, the approximation here is bicriteria: the distances are

stretched by a factor 𝛼 ≥ 1 and the hop lengths are stretched by a

factor 𝛽 ≥ 1. Furthermore, while some nodes are missing from any

particular tree, each node 𝑣 ∈ 𝑉 (𝐺) must be embedded in at least

1 − 𝜀 fraction of the trees.

Definition 2.3 (ℎ-Hop Partial Embedding Distribution). An ℎ-hop

partial embedding distribution is a distribution over dominating

partial tree embeddings T on a weighted graph 𝐺 . We annotate T
with the following properties:

• T has hop stretch 𝛽 ≥ 1 if each partial tree embedding

(𝑇,𝑇𝐺) ∈ supp(T) has hop(𝑇𝐺
𝑢,𝑣) ≤ 𝛽 · ℎ for all 𝑢, 𝑣 ∈ 𝑉 (𝑇).

• T has exclusion probability 𝜀 > 0 if each node 𝑣 ∈ 𝑉 (𝐺)
we have Pr[𝑣 ∈ 𝑉 (𝑇)] ≥ 1 − 𝜀.
• T has expected distance stretch 𝛼 ≥ 1 if

E(𝑇, ·)∼T [𝑑𝑇 (𝑢, 𝑣) · I[𝑢, 𝑣 ∈ 𝑉 (𝑇)]] ≤ 𝛼 · 𝑑 (ℎ)
𝐺
(𝑢, 𝑣)

for all 𝑢, 𝑣 ∈ 𝑉 (𝐺).
Theorem 2.4 ([14]). For every (complete) weighted graph𝐺 with

polynomially-bounded weights, every ℎ ≥ 1, and every 0 < 𝜀 < 1/3
there exists an ℎ-hop partial embedding distribution with hop stretch

𝑂 (log
3 𝑛
𝜀), expected distance stretch𝑂 (log𝑛 · log

log𝑛
𝜀), and exclusion

probability 𝜀. Moreover, the distribution can be sampled in polynomial

time.

We elaborate on the notion in which 𝑑 (ℎ) is approximated by

ℎ-hop partial embedding distributions. An alternative way to view

the expected distance stretch 𝛼 is to interpret it as a variant of the

expected stretch of the conditional distribution, i.e, for 𝜀 < 1/3 we
have

E(𝑇, ·)∼T [𝑑𝑇 (𝑢, 𝑣) · I[𝑢, 𝑣 ∈ 𝑉 (𝑇)]] =

= Θ

(
E(𝑇, ·)∼T [𝑑𝑇 (𝑢, 𝑣) | 𝑢, 𝑣 ∈ 𝑉 (𝑇)]

)
.

With this in mind and the fact that partial embedding distributions

T are over dominating embeddings, we can rewrite the guarantee

of Definition 2.3 in the following way for every 𝑢, 𝑣 ∈ 𝑉 (𝐺):

𝑑
(𝛽 ·ℎ)
𝐺

(𝑢, 𝑣) ≤ E(𝑇, ·)∼T [𝑑𝑇 (𝑢, 𝑣) | 𝑢, 𝑣 ∈ 𝑉 (𝑇)] ≤ 𝑂 (𝛼) · 𝑑 (ℎ)
𝐺
(𝑢, 𝑣) .

2.2 Hop-Constrained Oblivious Routings

In this section we give a formal definition of hop-constrained obliv-

ious routings.

Fractional demands and routings.The discussion in the intro-

duction mostly focused on integral demands and routingsÐwhere

the demand was a sequence of (𝑠𝑖 , 𝑡𝑖) pairs and the routes were

single paths between 𝑠𝑖 and 𝑡𝑖 . However, we express our technical

results in the more generalÐfractionalÐsetting (see further discus-

sion about this later in this section). To this end, a set of requests

{(𝑠𝑖 , 𝑡𝑖)}𝑖 are abstracted and generalized via the (fractional) demand

matrix D : 𝑉 × 𝑉 → R≥0 where D𝑠,𝑡 intuitively represents the

number of requests between 𝑠 and 𝑡 . In other words, {(𝑠𝑖 , 𝑡𝑖)}𝑖 would
correspond to the demand (matrix) D𝑢,𝑣 := |{𝑖 : 𝑠𝑖 = 𝑢, 𝑡𝑖 = 𝑣}|.

1211

Hop-Constrained Oblivious Routing STOC ’21, June 21ś25, 2021, Virtual, Italy

Similarly, a path between 𝑠 and 𝑡 will typically be replaced by a

distribution of paths between 𝑠 and 𝑡 . This requires us to slightly re-

visit the notions of dilation and congestion, which were previously

defined only in the integral case. The dilation of a distribution of

paths is ℎ if the distribution is supported over paths of at most ℎ

hops. Next, we formally introduce the notion of flows, capacitated

graphs and congestion.

Definition 2.5 (Flows). A flow 𝑓 is a non-negative vector indexed

over the edges of the underlying graph𝐺 , i.e., 𝑓 ∈ R𝐸 (𝐺)≥0 . Each (pos-

sibly non-simple) path 𝑝 has a naturally associated flow which we

denote as flow𝐺 (𝑝) = flow𝐺 (𝑝) = (flow𝐺 (𝑝, 𝑒))𝑒∈𝐸 (𝐺) ∈ R𝐸 (𝐺)≥0
where flow𝐺 (𝑝, 𝑒) is defined as the number of times 𝑝 goes through

𝑒 .

We express our results on capacitated graphs, which generalize

multi-graphs, in the sense that a multi-graph with 𝑘𝑒 copies of an

edge 𝑒 corresponds to a capacitated graph with an edge capacity

𝑐𝑒 := 𝑘𝑒 . This allows us to define the congestion of a flow with

respect to capacities.

Definition 2.6 (Capacitated graphs and congestion). Capacitated

graphs 𝐺 = (𝑉 , 𝐸, 𝑐) are undirected graphs with capacities 𝑐 :

𝐸 → [1/𝐿, 𝐿], where 𝐿 = poly(𝑛) is the aspect ratio. Given a flow

𝑓 ∈ R𝐸≥0, we define the congestion cong𝐺 (𝑓) = max𝑒∈𝐸 𝑓𝑒/𝑐𝑒 to
be the maximum ratio of flow over capacity, across all edges.

Optimally routing a demand via a (hop-constrained) rout-

ing scheme. Given a particular demand D, we are interested in

the best hop-constrained (fractional) routing 𝑅 = {𝑅𝑠,𝑡 }𝑠,𝑡 ∈𝑉 of D.

This is formalized in the following definition.

Definition 2.7 (Optimal hop-constrained routings). A demand is a

matrixD : 𝑉 ×𝑉 → R≥0. Given a demandD and a routing scheme

{𝑅𝑠,𝑡 }𝑠,𝑡 ∈𝑉×𝑉 for a capacitated graph𝐺 , we define the congestion

of routing D using 𝑅 as

cong𝐺 (D, 𝑅) = cong𝐺

(
∑

𝑠,𝑡

E𝑝∼𝑃𝑠,𝑡 [flow(𝑝) · D𝑠,𝑡]
)

.

Finally, given a demandD and a hop constraintℎ ≥ 1, we define the

optimal ℎ-hop routing of D, denoted by opt(ℎ) (D), as the min-

imum congestion cong𝐺 (D, 𝑅) over all possible routing schemes

𝑅 = {𝑅𝑠,𝑡 }𝑠,𝑡 ∈𝑉 supported over paths of at most ℎ hops.

We reiterate that all routings and distributions in our paper are

fractional, in the sense that a unit demand from 𝑠 to 𝑡 is carried

over a distribution of paths, incurring fractional congestion on each

one of these paths. Another important point of emphasis in the

definition of opt(ℎ) (D) is that the routing scheme 𝑃 can depend

on the demand D, i.e., is adaptive to the demand. In contrast, a

good oblivious routing is a single routing scheme that is obliviously

competitive with respect to all demands D. We now define the

principal concept in our paper.

Definition 2.8. An ℎ-hop oblivious routing for a graph 𝐺 =

(𝑉 , 𝐸) is a routing scheme 𝑅 that is additionally annotated in the

following way:

(1) 𝑅 has hop stretch 𝛽 ≥ 1 if for all 𝑠, 𝑡 ∈ 𝑉 all paths 𝑝 ∈
supp(𝑅𝑠,𝑡) have hop(𝑝) ≤ 𝛽 · ℎ.

(2) 𝑅 has congestion approximation 𝛼 ≥ 1 if for all demands

D : 𝑉 × 𝑉 → R≥0 we have that cong𝐺 (D, 𝑅) ≤ 𝛼 ·
opt(ℎ) (D).

Integral vs. fractional routings. Our choice to express our

results in the fractional setting has multiple benefits. For one, the

demand in our (fractional) setting is scale-invariant, in that a routing

scheme that is competitive with respect to D will be competitive

with respect to 𝛾 · D, for any 𝛾 > 0. Furthermore, one can easily

recover the integral setting from the fractional one, making our

choice more general. We elaborate on this. Suppose we are given

an ℎ-hop oblivious routing 𝑅 with hop stretch 𝛽 and congestion

approximation𝛼 ≫ log𝑛. Given a set of requests {(𝑠𝑖 , 𝑡𝑖)}𝑖 , suppose
that some set of paths {𝑝∗𝑖 }𝑖 with at most ℎ hops connecting the

source-sink pairs has optimal congestion 𝐶∗. For each request 𝑖 we

independently randomly sample a path 𝑝 ′𝑖 ∼ 𝑅𝑠𝑖 ,𝑡𝑖 .

We now argue that {𝑝 ′𝑖 } has dilation 𝛽 · ℎ and congestion at

most 𝑂 (𝛼) ·𝐶∗ with high probability. The dilation bound follows

from definition. We now argue that for each edge 𝑒 the expected

number of times {𝑝 ′𝑖 } crosses 𝑒 is 𝛼 · 𝐶∗ · 𝑐𝑒 . First, for all 𝑢, 𝑣 we
set D𝑢,𝑣 := |{𝑖 : 𝑠𝑖 = 𝑢, 𝑡𝑖 = 𝑣}| and then let 𝑃𝑢,𝑣 be a uniform

distribution over the D𝑢,𝑣 paths with endpoints 𝑢, 𝑣 . We note that

opt(ℎ) (D) ≤ cong𝐺 (D, 𝑃) ≤ 𝐶∗, where the first inequality is by

definition and second is due to cong𝐺 (D, 𝑃) being exactly equal

to the congestion of a set of paths {𝑝∗𝑖 }𝑖 . Therefore, the expected
number of drawn paths {𝑝 ′𝑖 } crossing an edge 𝑒 is at most 𝛼 · 𝑐𝑒 ·
opt(ℎ) (D) ≤ 𝛼 · 𝑐𝑒 ·𝐶∗, as required.

We now argue that the congestion of {𝑝 ′𝑖 }𝑖 is at most 𝛼 · 𝐶∗
with high probability. Since each path was drawn independently at

random and the paths can always assumed to be simple (simplying

a path does not increase the congestion or the dilation), the number

of paths {𝑝 ′𝑖 } crossing an edge 𝑒 can be seen as a sum of indepen-

dent {0, 1}-variables. We can apply a standard Chernoff bound and

conclude that this number is at most 𝑂 (𝑐𝑒 · 𝛼 · 𝐶∗ + log𝑛) with
high probability. Since 𝐶∗ · 𝑐𝑒 ≥ 1 and 𝛼 ≫ log𝑛, we have that

𝑂 (𝑐𝑒 · 𝛼 ·𝐶∗ + log𝑛) = 𝑂 (𝑐𝑒 · 𝛼 ·𝐶∗) with high probability. Union

bounding over all edges, we conclude that the congestion of {𝑝 ′𝑖 }𝑖
is at most 𝑂 (𝛼) ·𝐶∗ with high probability, as required.

3 HOP-CONSTRAINED OBLIVIOUS ROUTING:
A TECHNICAL OVERVIEW

We now formally state our main result.

Theorem 3.1. For every (general) capacitated graph𝐺 = (𝑉 , 𝐸, 𝑐)
and every ℎ ≥ 1, there exists an ℎ-hop oblivious routing with hop

stretch 𝑂 (log7 𝑛) and congestion approximation 𝑂 (log2 𝑛 · log2 (ℎ
log𝑛)).

Remark. Notice that there is a small discrepancy between the

definition of congestion in Theorem 3.1 and its informal counter-

part Theorem 1.3. The former talks about fractional routings (e.g.,

maximum expected congestion), while the later is about integral

routings (e.g., expected maximum congestion). However, our for-

mal statement (Theorem 3.1) implies the informal one, as argued in

Section 2.2.

The rest of the paper is structures as follows. In Section 3.1 we

explainwhy previous (tree-based) approaches fail to attain oblivious

routings with hop constraints. In Section 3.2 we give an overview

1212

STOC ’21, June 21ś25, 2021, Virtual, Italy Mohsen Ghaffari, Bernhard Haeupler, and Goran Zuzic

of the routing scheme that achieves the guarantees of the hop-

constrained oblivious routing. Finally, in Section 4 we prove the

guarantees of our routing scheme.

3.1 Tree-Based Hop-Constrained Oblivious
Routings Cannot Have Good Guarantees

In this section, we showcase a barrier that prevented prior ap-

proaches from achieving poly(log𝑛)-competitive hop-constrained

oblivious routing. State-of-the-art oblivious routings are generally

tree-based routings2 [6, 11, 19, 20, 25], i.e., where a demand from 𝑠

to 𝑡 is routed by randomly sampling a tree 𝑇 from a fixed distribu-

tion T and then picking the tree-defined path 𝑇𝐺
𝑢,𝑣 . We show that

tree-based hop-constrained oblivious routings cannot have good

guarantees.

Definition 3.2. A complete tree embedding (𝑇,𝑇𝐺) of a graph
𝐺 = (𝑉 (𝐺), 𝐸 (𝐺)) consists of a tree 𝑇 = (𝑉 (𝑇), 𝐸 (𝑇)) where
𝑉 (𝐺) = 𝑉 (𝑇), and a mapping𝑇𝐺 which maps every edge 𝑒 ∈ 𝐸 (𝐺)
to a path in 𝐺 between 𝑒’s endpoints.

We extend the definition of 𝑇𝐺
𝑢,𝑣 when 𝑢, 𝑣 are not adjacent in the

natural way as in Definition 2.1. Note that the tree from the com-

plete tree embedding is not necessarily a subtree of 𝐺 , but it does

contain all nodes of 𝐺 .

Definition 3.3. A tree-based routing scheme 𝑅T is a routing

scheme that is induced by a distribution over complete tree embed-

dings T in the following way: we sample from 𝑅T𝑠,𝑡 by sampling an

embedding (𝑇,𝑇𝐺) ∼ T and returning 𝑇𝐺
𝑠,𝑡 .

The D (1) demand. For a capacitated graph 𝐺 = (𝑉 , 𝐸, 𝑐) we de-
fine a special demand D (1) which has a unit demand across every

edge 𝑒 (for each unit of capacity), i.e., D (1)𝑠,𝑡 := I[{𝑠, 𝑡} ∈ 𝐸] · 𝑐 {𝑠,𝑡 } .
This demand is particularly important for both the congestion-

only and hop-constrained oblivious routings, as we shortly explain.

Tree-based routings are especially suitable for constructing oblivi-

ous routings due to the following well-known fact. If a tree-based

oblivious routing incurs congestion approximation 𝛼 on the single

demand D (1) , then it incurs congestion approximation at most

𝛼 on all demands. This greatly simplifies the design of good tree-

based routing schemes: one only needs to ensure the single D (1)
is routed in a good manner. On the other hand, one of the many

aspects in which hop-constrained oblivious routing schemes are

significantly more difficult than congestion-only routings is that

one needs to explicitly ensure that other (non-D (1)) demands have

good approximation guarantees when routed. The following state-

ment formalizes the claim in the tree-based routing case (note that

the discussion up to this point is for the unconstrained-hop setting,

hence ℎ = ∞).

Lemma 3.4. Let 𝐺 = (𝑉 , 𝐸, 𝑐) be a capacitated graph and sup-

pose that a tree-based routing scheme 𝑅T = {𝑅T𝑠,𝑡 }𝑠,𝑡 ∈𝑉 achieves

cong𝐺 (D (1) , 𝑅T) ≤ 𝛼 , where D (1) : 𝑉 ×𝑉 → R≥0 with D (1)𝑠,𝑡 :=

I[{𝑠, 𝑡} ∈ 𝐸] · 𝑐 {𝑠,𝑡 } . Then for every demand D : 𝑉 ×𝑉 → R≥0 we
have cong𝐺 (D, 𝑅T) ≤ 𝛼 · opt(∞) (D).
2We also note that routings supported on hierarchically separated trees or HSTs can
be converted into tree-based routings with at most a constant loss in their guarantees.

Proof. The claim is implicit in, e.g., [19]. Claim 3 in Section 2 of

[19] gives a definition of expected relative load 𝛼 of a distribution

over complete tree embeddings. The definition is equivalent to say-

ing that for each edge 𝑒 the expected amount of flow routed over 𝑒

when routing the D (1) demand is at most 𝛼 · 𝑐𝑒 . The Subsection
titled łOblivious Routingž of Section 3 that routing any set of de-

mands D over a distribution with expected relative load 𝛼 implies

that the achieved routing has congestion approximation at most 𝛼 ,

as required. □

Unfortunately, hop-constrained oblivious routings with polylog-

arithmic hop stretch and congestion approximation cannot come

from tree-based routings. This observation prevents all prior work

for general graphs the authors are aware of from achieving good-

quality routings that control both the congestion and dilation.

Lemma 3.5. There exists an infinite family of graphs with unit

capacities and diameter 4 such that for every graph 𝐺 in the family

the following holds. For every ℎ ≥ 1, any tree-based ℎ-hop oblivious

routing 𝑅T for 𝐺 with hop stretch 𝛽 and congestion approximation 𝛼

has 𝛼 · 𝛽 · ℎ ≥ Ω(√𝑛).

Proof. By definition of hop stretch, we have that 𝑅T is sup-

ported over paths of length at most 𝛽ℎ. Furthermore, due to the

congestion approximation being at most 𝛼 , the congestion of 𝑅T

on the demand D (1) is 𝛼 · opt(ℎ) (D) = 𝛼 . Since 𝑅T is a tree-

based routing, we conclude via Lemma 3.4 that for all demands

D the congestion of 𝑅T on D is 𝛼-competitive with opt(∞) (D):
cong𝐺 (D, 𝑅T) ≤ 𝛼 · opt(∞) (D). In other words, 𝑅T is also a ∞-
hop oblivious routing with congestion approximation 𝛼 (in spite of

being supported only on paths of length 𝛽ℎ).

We now construct a graph𝐺 with𝑛+1 vertices which exhibits our
bound. We take

√
𝑛 paths 𝑝1, 𝑝2, . . . , 𝑝√𝑛 of length hop(𝑝𝑖) =

√
𝑛−1.

Label the first and last node of 𝑝𝑖 with 𝑠𝑖 and 𝑡𝑖 . For each path 𝑝𝑖
we connect each 𝑗𝑡ℎ node to the 𝑗𝑡ℎ node of 𝑝1. Finally, we create

a new node 𝑟 and connect it to all nodes on 𝑝1 with edges we

call łuplinksž. The diameter of 𝐺 is clearly 4 (e.g., the hop distance

between any node and 𝑟 is 2). We consider the demand D𝑠,𝑡 =

I[∃𝑖 such that (𝑠, 𝑡) = (𝑠𝑖 , 𝑡𝑖)]. Clearly, opt(∞) (D) ≤ 1 since the

demand between 𝑠𝑖 and 𝑡𝑖 can be sent across the (√𝑛 − 1)-hop
path 𝑝𝑖 , resulting in congestion 1. Furthermore, any path between

the start and end of some 𝑝𝑖 of hop length at most 𝛽ℎ must cross

one of the first 𝛽ℎ uplinks. Since there are
√
𝑛 such demands, we

conclude that the congestion of at least one of the uplinks is
√
𝑛

𝛽 ·ℎ ≤
𝛼 · opt(ℎ) (D) = 𝛼 . □

Remark. The
√
𝑛 bound can be improved to Ω̃(𝑛) for unit-

capacity graphs of diameter 𝑂 (log𝑛) using the well-known worst-

case network family from [10].

3.2 An Overview of the Hop-Constrained
Oblivious Routing

In this section, we give an overview of our hop-constrained oblivi-

ous routing.

While one cannot obtain hop-constrained oblivious routings via

tree-based routings (i.e., complete tree embeddings, as argued in

Section 3.1), we show that distributions over partial tree embeddings

1213

Hop-Constrained Oblivious Routing STOC ’21, June 21ś25, 2021, Virtual, Italy

yield useful results. We first introduce the notion of D (1) -routers,
which are distributions over partial tree embeddings T and are a

crucial building block of hop-constrained oblivious routings. We de-

scribe several important aspects ofD (1) -routers before we formally

define them in Definition 3.6.

(1) First, we explain how T induces an łrouting schemež 𝑅T =

{𝑅T𝑠,𝑡 }𝑠,𝑡 . For some 𝑠, 𝑡 ∈ 𝑉 (𝐺) we sample a partial tree em-

bedding (𝑇,𝑇𝐺) ∈ T ; if 𝑠, 𝑡 ∈ 𝑉 (𝑇) we return𝑇𝐺
𝑠,𝑡 ; otherwise,

we simply return a special symbol ⊥ which represents łfail-

urež. Clearly, 𝑅T is not a valid routing scheme in the sense

of Definition 1.1 since ⊥ ∈ supp(𝑅𝑠,𝑡), but this is somewhat

unavoidable when dealing with partial tree embeddings.

(2) D (1) -routers for a graph 𝐺 get their name from being able

to route the D (1) demand, defined as D (1)𝑠,𝑡 := I[{𝑠, 𝑡} ∈
𝐸 (𝐺)] · 𝑐 {𝑠,𝑡 } . While this does not directly guarantee good

congestion approximation on all demands (unlike tree-based

routings, c.f. Lemma 3.4), it does lead to certain useful prop-

erties. First, we formalize what we mean by routing theD (1)
demand over routing scheme 𝑅T which is induced by a distri-

bution over partial tree embeddings T . For a demand D we

define cong𝐺 (D, 𝑅T) as the maximum expected congestion

while only routing non-failures:

cong𝐺 (D, 𝑅T)

= cong𝐺

(
∑

𝑠,𝑡

E𝑝∼𝑅T𝑠,𝑡
[
I[𝑝 ≠ ⊥] · flow(𝑝) · D𝑠,𝑡

]
)

= cong𝐺

(
∑

𝑠,𝑡

E(𝑇,𝑇𝐺)∼T
[
I[𝑠, 𝑡 ∈ 𝑉 (𝑇)] · flow(𝑇𝐺

𝑠,𝑡) · D𝑠,𝑡

])

.

Finally, we say that a D (1) -router has congestion approx-

imation 𝛼 if cong𝐺 (D (1) , 𝑅T) ≤ 𝛼 .

(3) In our hop-constrained setting, we need to control the hop

length of the paths over which T routes. For this reason,

we define the dilation of T to be 𝛽 if T is supported over

partial tree embeddings (𝑇,𝑇𝐺) where hop(𝑇𝐺
𝑠,𝑡) ≤ 𝛽 for all

𝑠, 𝑡 ∈ 𝑉 (𝑇).
(4) When talking about distributions over partial tree embed-

dings, a new parameter called exclusion probability be-

comes important. The exclusion probability is 𝜀 if for each

node 𝑣 ∈ 𝑉 (𝐺) the probability that 𝑣 is excluded from the

tree (𝑇, ·) ∼ T is at most 𝜀. Note that this parameter also

appears when talking about partial tree embeddings that

approximate hop-constrained distances (Section 2.1).

We now give a formal definition equivalent to the above descrip-

tion and state its existence lemma.

Definition 3.6. A D (1) -router is a distribution over partial tree

embeddings T on a capacitated graph 𝐺 that is additionally anno-

tated in the following way:

(1) T hasdilation 𝛽 ≥ 1 if each partial tree embedding (𝑇,𝑇𝐺) ∈
supp(T) has hop(𝑇𝐺

𝑢,𝑣) ≤ 𝛽 for all 𝑢, 𝑣 ∈ 𝑉 (𝑇).
(2) T has exclusion probability 𝜀 > 0 if each node 𝑣 ∈ 𝑉 (𝐺)

we have Pr[𝑣 ∈ 𝑉 (𝑇)] ≥ 1 − 𝜀.

(3) T has congestion 𝛼 ≥ 1 if

cong𝐺

(∑

{𝑢,𝑣 }∈𝐸 (𝐺)
𝑐 {𝑢,𝑣 } ·

E(𝑇,𝑇𝐺)∼T
[
I[𝑢, 𝑣 ∈ 𝑉 (𝑇)] · flow(𝑇𝐺

𝑢,𝑣)
])
≤ 𝛼.

Lemma 3.7. For every (complete) capacitated graph 𝐺 and 0 <

𝜀 < 1/3 there exists a D (1) -router with dilation 𝑂 (log
3 𝑛
𝜀), exclusion

probability 𝜀, and congestion 𝑂 (log𝑛 · log log𝑛
𝜀).

Proof deferred to Appendix A.

Having constructed D (1) -routers, the next and final step is to

łliftž them into a proper hop-constrained oblivious routing. In this

section, we aim only to give an overview, hence we will only show

the sampling algorithm and defer arguing about its correctness to

Section 4. Algorithm 1 shows how to sample the ℎ-hop oblivious

routing 𝑅 = {𝑅𝑠,𝑡 }𝑠,𝑡 ∈𝑉 that satisfies the constraints of our main

result, Theorem 3.1.

Algorithm 1 Sample a path 𝑝 ∼ 𝑅𝑠,𝑡 , given a graph 𝐺 , 𝑠, 𝑡 ∈ 𝑉 (𝐺),
and a hop constraint ℎ ≥ 1.

1: Create a łcompletionž 𝐻 = (𝑉 ,
(𝑉
2

)
, 𝑐𝐻) of 𝐺 = (𝑉 , 𝐸, 𝑐𝐺).

2: 𝑐𝐻 (𝑒) := 𝑐𝐺 (𝑒) if 𝑒 ∈ 𝐸,
3: 𝑐𝐻 (𝑒) := 𝑛−𝑂 (1) ·min𝑒∈𝑒 𝑐𝐺 (𝑒) otherwise.

4: Let T1 be a D (1) -router on 𝐻 with exclusion probability 𝜀1 =

1/(4ℎ)
5: Sample 𝑟 := 𝑂 (log𝑛) trees 𝑇1,𝑇2, . . . ,𝑇𝑟 ∼ T1 conditioned on

𝑠, 𝑡 ∈ 𝑉 (𝑇𝑖).
6: Assign 𝑞1 := (𝑇1)𝐺𝑠,𝑡 , 𝑞2 := (𝑇2)𝐺𝑠,𝑡 , . . . , 𝑞𝑟 := (𝑇𝑟)𝐺𝑠,𝑡 .
7: Let T2 be a D (1) -router on 𝐻 with exclusion probability 𝜀2 =

1/𝑂 (ℎ log4 𝑛).
8: Sample a tree (𝐹, 𝐹𝐺) ∼ T2 and let 𝑝 := 𝐹𝐺𝑠,𝑡 .

9: Simplify 𝑝 by eliminating all cycles.

10: Repeat the sampling of 𝐹 and 𝑝 if
⋃𝑟

𝑖=1𝑉 (𝑞𝑖) ⊈ 𝑉 (𝑇).
11: Repeat the sampling of 𝐹 and 𝑝 if 𝐸 (𝑝) ⊈ 𝐸 (𝐺).

12: Return 𝑝 .

We note that the final routing scheme 𝑅 is a conditional distri-

bution induced by partial tree embeddings T2, conditioned on (1)

the sampled tree 𝐹 containing the nodes of𝑂 (log𝑛) sampled paths

from T1, and (2) the sampled path using only edges in 𝐺 (i.e., not

using virtual edges constructed during the completion of 𝐺).

4 LIFTING THE D (1)-ROUTER TO A
HOP-CONSTRAINED OBLIVIOUS ROUTING

In this section, we describe and prove how to construct hop-constr-

ained oblivious routings satisfying Theorem 3.1 from D (1) -routers.
From a high-level, we first show that D (1) -routers can be used to

route other demandsD ≠ D (1) if one allows for a constant fraction
of failures (Section 4.1). Next, we show a method of łcorrectingž

the number of failures down to 𝑛−𝑂 (1) with a polylogarithmic

increase in congestion approximation and hop stretch guarantees

(Section 4.2). Finally, we show how to eliminate failures entirely

and extend our results to non-complete graphs (Section 4.3).

1214

STOC ’21, June 21ś25, 2021, Virtual, Italy Mohsen Ghaffari, Bernhard Haeupler, and Goran Zuzic

4.1 Hop-Constrained Subflow Routing

In this section, we argue that D (1) -routers are indeed useful for

demandsD ≠ D (1) . This is not unexpected: for tree-based routings
in the congestion-only setting, a good D (1) -router immediately

gives a good oblivious routing (Lemma 3.4). However, when dealing

with distributions over partial tree embedding, one needs to take

special care of failures ⊥ that can arise when nodes are missing

from the partial tree embeddings.

We introduce the concept of subdistributions. Suppose that we

have a random variable 𝑥 which, sometimes, produces an unusable

result. To model this, we introduce another random variable 𝑦,

which can either be equal to 𝑥 (in case of success) or be ⊥ in case

of failures. Moreover, the probability of failure is controlled. The

distributions of such variables 𝑥 and 𝑦 satisfy the following relation.

Definition 4.1. Let𝑋 be a distribution over a set𝑈 . A distribution

𝑌 over 𝑈 ∪ {⊥} is an 𝛾-subdistribution of 𝑋 if for all 𝑢 ∈ 𝑈 it

holds that Pr[𝑌 = 𝑢] ≤ Pr[𝑋 = 𝑢] and Pr[𝑌 = ⊥] ≤ 𝛾 .

An equivalent definition of 𝑌 being a subdistribution of 𝑋 is to

say that we can construct a probability space with random variables

𝑥 ∼ 𝑋 and 𝑦 ∼ 𝑌 such that 𝑦 ∈ {𝑥,⊥}.
To simplify notation, in this section we will often conflate a

distribution 𝑋 and a random variable 𝑥 ∼ 𝑋 . Naturally, one has

to be careful in doing so since defining random variables requires

defining a probability space. Sometimes there is no ambiguity about

how to properly formalize the space (e.g., Definition 4.2, where

linearity of expectation makes differences immaterial). However, in

places where it matters, we will be careful to make the space clear

from the context.

We now define the main concept of this section: subflow routing.

Intuitively, a subflow routing is a routing scheme𝑅 = {𝑅𝑠,𝑡 }𝑠,𝑡 ∈𝑉 (𝐺)
where we allow some paths to łfailž. Similar to D (1) -routers, the
paths that fail do not contribute to the congestion. Moreover, these

failures can be adaptive to the demand, i.e., they are demand de-

pendent, but the fraction of failures must be tightly controlled by a

new parameter 0 < 𝛾 < 1.

Definition 4.2. An ℎ-hop 𝛾-subflow routing with congestion

approximation 𝛼 ≥ 1 for a graph 𝐺 = (𝑉 , 𝐸) is a routing scheme

𝑅 = {𝑅𝑢,𝑣}𝑢,𝑣∈𝑉 with the following property. For every demand

D : 𝑉 × 𝑉 → R≥0 there exists a łrouting scheme with failuresž

𝑅′ = 𝑅′(D) = {𝑅′𝑠,𝑡 }𝑠,𝑡 ∈𝑉 where 𝑅′𝑠,𝑡 is an 𝛾-subdistribution of 𝑅𝑠,𝑡
and

cong𝐺 (
∑

𝑠,𝑡 ∈𝑉
E

[
I[𝑅′𝑠,𝑡 ≠ ⊥] · flow(𝑅′𝑠,𝑡) · D𝑠,𝑡

]
) ≤ 𝛼 · opt(ℎ) (D).

Additionally, we say that 𝑅 has hop stretch 𝛽 if for all 𝑠, 𝑡 ∈ 𝑉 all

paths 𝑝 ∈ supp(𝑅𝑠,𝑡) have hop(𝑝) ≤ 𝛽ℎ.

While in this paper we do not focus much on the computational

aspects, we will note that the user of an (ℎ-hop) 𝛾-subflow routing

cannot differentiate between failures and non-failures. They will

be obliviously corrected down to 𝑛−𝑂 (1) -fractions in Section 4.2

and then entirely eliminated in an oblivious manner in Section 4.3.

We emphasize the oblivious part since the final hop-constrained

oblivious routingmakes nomention of failures (e.g., see Algorithm 1

or Theorem 3.1). We now show that D (1) -routers are indeed 1/2-
subflow routings.

Lemma 4.3 (D (1) -routers are 1/2-subflow routings). Let

T be a D (1) -router on 𝐺 with dilation 𝛽ℎ, exclusion probability at

most 1/(4ℎ), and congestion 𝛼 ≥ 1. Let 𝑅T be the routing scheme

induced by T where the distribution 𝑅T𝑠,𝑡 corresponds to sampling

(𝑇,𝑇𝐺) ∼ T and returning 𝑇𝐺
𝑠,𝑡 if 𝑠, 𝑡 ∈ 𝑉 (𝑇) and an arbitrary path

otherwise. Then 𝑅T is an ℎ-hop 1
2 -subflow routing with congestion

approximation 𝛼 and hop stretch 𝛽 .

We remark that our definition of 𝑅T𝑠,𝑡 sometimes samples a tree

𝑇 such that 𝑠 ∉ 𝑉 (𝑇) or 𝑡 ∉ 𝑉 (𝑇), in which case we return an

arbitrary path. This is sensible because our analysis will draw a ⊥
in such cases.

Proof. For simplicity of notation, we extend the definition of

flow (which maps paths to their flows in R
𝐸 (𝐺)
≥0) to flow(⊥) = ®0.

Due to this, we can replace I[𝑝 ≠ ⊥] · flow(𝑝) = flow(𝑝).
Clearly, the dilation property of D (1) -routers implies that each

path 𝑝 ∈ supp(𝑇𝐺
𝑠,𝑡) has hop(𝑝) ≤ 𝛽ℎ, hence the hop stretch prop-

erty of 𝑅T is immediate.

Construction of subdistributions. Fix a demand D : 𝑉 (𝐺) ×
𝑉 (𝐺) → R≥0. By definition, there exists a łwitnessž routing scheme

𝑃∗ = {𝑃∗𝑠,𝑡 }𝑠,𝑡 ∈𝑉 (𝐺) that certifies the optimalℎ-hop routing solution.

In other words, the support of 𝑃∗𝑠,𝑡 is over ℎ-hop paths connecting

𝑠 and 𝑡 , and cong𝐺 (
∑
𝑠,𝑡 ∈𝑉 (𝐺) E[D𝑠,𝑡 · flow(𝑃∗𝑠,𝑡)]) = opt(ℎ) (D).

Equivalently, expanding the definition of cong𝐺 , for every {𝑢, 𝑣} ∈
𝐸 (𝐺):

∑

𝑠,𝑡 ∈𝑉 (𝐺)
E[D𝑠,𝑡 · flow(𝑃∗𝑠,𝑡 , {𝑢, 𝑣})] ≤ opt(ℎ) (D) · 𝑐 {𝑢,𝑣 } . (1)

We now construct the collection of subdistributions {𝑅′𝑠,𝑡 }𝑠,𝑡 . First,
fix 𝑠, 𝑡 ∈ 𝑉 (𝐺). Then independently (of 𝑃∗) sample (𝑇,𝑇𝐺) ∼ T .
Consider the event 𝑉 (𝑃∗𝑠,𝑡) ⊆ 𝑉 (𝑇), namely, that all nodes of a

path 𝑝 = 𝑃∗𝑠,𝑡 are in 𝑉 (𝑇), i.e., 𝑉 (𝑝) ⊆ 𝑉 (𝑇). If 𝑉 (𝑃∗𝑠,𝑡) ⊆ 𝑉 (𝑇)
then we assign 𝑅′𝑠,𝑡 = 𝑇𝐺

𝑠,𝑡 and otherwise 𝑅′𝑠,𝑡 = ⊥. It is clear that
Pr[𝑅′𝑠,𝑡 = 𝑝] ≤ Pr[𝑅𝑠,𝑡 = 𝑝] for every 𝑝 and every 𝑠, 𝑡 . Furthermore,

using the exclusion probability and a union bound, Pr[𝑅′𝑠,𝑡 = ⊥] =
Pr[𝑉 (𝑃∗𝑠,𝑡) ⊆ 𝑉 (𝑇)] ≤ hop(𝑃∗𝑠,𝑡)+1

4ℎ
≤ ℎ+1

4ℎ
≤ 1

2 . Therefore, 𝑅
′
𝑠,𝑡 is a

1
2 -subdistribution of 𝑅T𝑠,𝑡 .

Subdistribution congestion analysis. For the sake of the anal-

ysis, for each 𝑠, 𝑡 ∈ 𝑉 (𝐺) we also introduce a random flow variable

𝐶𝑠,𝑡 ∈ R𝐸 (𝐺)≥0 (in the same probability space as above) as follows.

In the event 𝑉 (𝑃∗𝑠,𝑡) ⊆ 𝑉 (𝑇) we consider the nodes on the path

𝑃∗𝑠,𝑡 = (𝑠 = 𝑣0, 𝑣1, . . . , 𝑣ℓ−1, 𝑣ℓ = 𝑡) and assign

𝐶𝑠,𝑡 := I[𝑉 (𝑃∗𝑠,𝑡) ⊆ 𝑉 (𝑇)] ·
ℓ−1∑

𝑖=0

flow(𝑇𝐺
𝑣𝑖 ,𝑣𝑖+1)

≥ I[𝑉 (𝑃∗𝑠,𝑡) ⊆ 𝑉 (𝑇)] · flow(𝑇𝐺
𝑠,𝑡) .

Note that the right-hand side inequality holds because in any partial

tree embedding flow(𝑇𝐺
𝑎,𝑐) ≤ flow(𝑇𝐺

𝑎,𝑏
) + flow(𝑇𝐺

𝑏,𝑐
) for all 𝑎, 𝑏, 𝑐 ∈

1215

Hop-Constrained Oblivious Routing STOC ’21, June 21ś25, 2021, Virtual, Italy

𝑉 (𝑇). Therefore,
∑

𝑠,𝑡

E[flow(𝑅′𝑠,𝑡)D𝑠,𝑡] =
∑

𝑠,𝑡

E

[
I[𝑉 (𝑃∗𝑠,𝑡) ⊆ 𝑉 (𝑇)] flow(𝑇𝐺

𝑠,𝑡)D𝑠,𝑡

]

≤
∑

𝑠,𝑡

E[𝐶𝑠,𝑡] · D𝑠,𝑡 . (2)

On the other hand, we now give an upper bound for
∑
𝑠,𝑡 E[𝐶𝑠,𝑡 ·

D𝑠,𝑡].
∑

𝑠,𝑡

E[𝐶𝑠,𝑡D𝑠,𝑡]

=

∑

𝑠,𝑡

D𝑠,𝑡 · E
[

I[𝑉 (𝑃∗𝑠,𝑡) ⊆ 𝑉 (𝑇)] ·
ℓ−1∑

𝑖=0

flow(𝑇𝐺
𝑣𝑖 ,𝑣𝑖+1)

]

=

∑

𝑠,𝑡

D𝑠,𝑡 · E
[
I[𝑉 (𝑃∗𝑠,𝑡) ⊆ 𝑉 (𝑇)]·

∑

{𝑢,𝑣 }∈𝐸 (𝐺)
flow(𝑃∗𝑠,𝑡 , {𝑢, 𝑣}) · flow(𝑇𝐺

𝑢,𝑣)
]

=

∑

{𝑢,𝑣 }∈𝐸 (𝐺)
E

[
flow(𝑇𝐺

𝑢,𝑣)·

∑

𝑠,𝑡

D𝑠,𝑡 · I[𝑉 (𝑃∗𝑠,𝑡) ⊆ 𝑉 (𝑇)] · flow(𝑃∗𝑠,𝑡 , {𝑢, 𝑣})
]

≤
∑

{𝑢,𝑣 }∈𝐸 (𝐺)
E[I[𝑢, 𝑣 ∈ 𝑉 (𝑇)] · flow(𝑇𝐺

𝑢,𝑣)]·

∑

𝑠,𝑡

D𝑠,𝑡 · E
[
flow(𝑃∗𝑠,𝑡 , {𝑢, 𝑣})

]

≤
∑

{𝑢,𝑣 }∈𝐸 (𝐺)
E[I[𝑢, 𝑣 ∈ 𝑉 (𝑇)] · flow(𝑇𝐺

𝑢,𝑣)]·

opt(ℎ) (D) · 𝑐 {𝑢,𝑣 } (Equation (1))

≤ opt(ℎ) (D) · 𝛼 · ®𝑐𝐺 (D (1) -router properties)

Combining the above with Equation (2) we get that

cong𝐺 (
∑

𝑠,𝑡

E[flow(𝑅′𝑠,𝑡) · D𝑠,𝑡]) ≤ 𝛼 · opt(ℎ) (D). □

4.2 Correcting Subflow Failures

In this section, we show how to drive down the failure bound𝛾 from

1/2 to 𝑛−𝑂 (1) . We construct a 𝑛−𝑂 (1) -subflow routing 𝐹 in the fol-

lowing way. Suppose that 𝑅 is an 1/2-subflow routing and fix 𝑠, 𝑡 ∈
𝑉 (𝐺). We sample 𝑟 := 𝑂 (log𝑛) paths {𝑞𝑖 }𝑟𝑖=1 from 𝑅𝑠,𝑡 and let T be

a D1-router with exclusion probability at most (2∑𝑟
𝑖=1 hop(𝑞𝑖))−1.

We sample a single tree embedding (𝑇,𝑇𝐺) ∼ T conditioned on

𝑉 (𝑇) containing all nodes of {𝑞𝑖 }𝑟𝑖=1, i.e.,
⋃𝑟

𝑖=1𝑉 (𝑞𝑖) ⊆ 𝑉 (𝑇). The
sampled path in our new routing scheme is then 𝐹𝑠,𝑡 := 𝑇𝐺

𝑠,𝑡 : we

claim 𝐹 is an 𝑛−𝑂 (1) -subflow routing.

Lemma 4.4 (Reducing 𝛾). Given an ℎ-hop 𝛾-subflow routing 𝑅

with hop stretch 𝛽 and congestion approximation 𝛼 for a (complete)

capacitated graph 𝐺 , there exists an ℎ-hop (𝛾𝑟)-subflow routing 𝐹

with hop stretch𝑂 (𝑟𝛽 log3 𝑛) and congestion approximation𝑂 (𝛼
1−𝛾 ·

log𝑛 · log(𝑟ℎ𝛽 log𝑛)), for every integer 𝑟 ≥ 2.

Proof. For simplicity of notation, we extend the definition of

flow (which maps paths to their flows in R
𝐸 (𝐺)
≥0) to flow(⊥) = ®0.

Due to this, we can replace I[𝑝 ≠ ⊥] · flow(𝑝) = flow(𝑝).
Let T be a D (1) -router with exclusion probability 1/(2𝑟ℎ𝛽),

dilation𝑂 (𝑟ℎ𝛽 log3 𝑛), and congestion𝑂 (log𝑛 · log(𝑟ℎ𝛽 log𝑛)) (via
Lemma 3.7).

Construction of the routing scheme 𝐹 = {𝐹𝑢,𝑣}𝑢,𝑣∈𝑉 (𝐺) . Fix
𝑢, 𝑣 ∈ 𝑉 (𝐺). We construct 𝐹𝑢,𝑣 as follows. Independently sample

𝑟 paths 𝑞𝑢,𝑣,1, 𝑞𝑢,𝑣,2, . . . , 𝑞𝑢,𝑣,𝑟 from 𝑅𝑢,𝑣 . Let 𝑆𝑢,𝑣 =
⋃𝑟

𝑖=1𝑉 (𝑞𝑢,𝑣,𝑖)
be the set of nodes on the union of the 𝑟 sampled paths. Note that

We have |𝑆𝑢,𝑣 | ≤ |{𝑢, 𝑣}| +
∑𝑟
𝑖=1

(
hop(𝑞𝑢,𝑣,𝑖) − 1

)
≤ 2+ 𝑟 (ℎ𝛽 − 1) ≤

𝑟ℎ𝛽 . Now, consider the partial tree distribution (𝑇,𝑇𝐺) from T
conditioned on 𝑆𝑢,𝑣 ⊆ 𝑉 (𝑇). We denote this conditional distribution

as łT | 𝑆𝑢,𝑣 ⊆ 𝑉 (𝑇)ž. With this notation in place, we set 𝐹𝑢,𝑣 = 𝑇𝐺
𝑢,𝑣

where (𝑇,𝑇𝐺) is (independently) sampled from T | 𝑆𝑢,𝑣 ⊆ 𝑉 (𝑇).

Hop stretch. Since T has dilation ℎ ·𝑂 (𝑟𝛽 log3 𝑛) we conclude
that the hop stretch of 𝐹 is 𝑂 (𝑟𝛽 log3 𝑛).

Construction of subdistributions. Fix a demand D : 𝑉 (𝐺) ×
𝑉 (𝐺) → R≥0. We now construct the collection of subdistributions

𝐹 ′ = {𝐹 ′𝑢,𝑣}𝑢,𝑣 . Fix 𝑢, 𝑣 ∈ 𝑉 (𝐺). We can reinterpret the construc-

tion of 𝐹𝑢,𝑣 in the following way. The original process indepen-

dently samples 𝑟 paths 𝑞𝑢,𝑣,1, . . . , 𝑞𝑢,𝑣,𝑟 ∼ 𝑅𝑢,𝑣 . We reinterpret this

as sampling 𝑟 paths𝑞′𝑢,𝑣,1, . . . , 𝑞
′
𝑢,𝑣,𝑟 independently from𝑅′𝑢,𝑣 , which

depends on the demand D (unlike 𝑅𝑢,𝑣 that does not depend on

D). This effectively stores 𝑞′𝑢,𝑣,𝑗 ← 𝑞𝑢,𝑣,𝑗 , except that we replace

𝑞′𝑢,𝑣,𝑗 ← ⊥ with probability Pr[𝑅′𝑢,𝑣 = ⊥] ≤ 𝛾 . We define a new

random variable 𝑙 ′𝑢,𝑣 to be 𝑞′𝑢,𝑣,𝑗 where 𝑗 = min{ 𝑗 : 𝑞′𝑢,𝑣,𝑗 ≠ ⊥};
otherwise we define 𝑙 ′𝑢,𝑣 = ⊥ if all 𝑞𝑢,𝑣,𝑗 = ⊥ for all 𝑗 . If 𝑙 ′𝑢,𝑣 = ⊥,
then we set 𝐹 ′𝑢,𝑣 ← ⊥. Otherwise 𝐹 ′𝑢,𝑣 ← 𝐹𝑢,𝑣 .

Property: {𝐹 ′𝑢,𝑣}𝑢,𝑣 are subdistributions of {𝐹𝑢,𝑣}𝑢,𝑣 . First, it
is clear that for 𝑥 ≠ ⊥ we have Pr[𝐹 ′𝑢,𝑣 = 𝑥] = Pr[𝐹𝑢,𝑣 = 𝑥, 𝑙 ′𝑢,𝑣 ≠

⊥] ≤ Pr[𝐹𝑢,𝑣 = 𝑥]. Furthermore, we have that 𝐹 ′𝑢,𝑣 = ⊥ only when

all 𝑟 paths {𝑞′𝑢,𝑣,𝑗 }𝑗 are sampled as⊥, which happens with probabil-

ity at most 𝛾𝑟 , therefore Pr[𝐹 ′𝑢,𝑣 = ⊥] ≤ 𝛾𝑟 . We conclude that (the

distribution of) 𝐹 ′𝑢,𝑣 is a (𝛾𝑟)-subdistribution of (the distribution

of) 𝐹𝑢,𝑣 .

The collection of subdistributions {𝑙 ′𝑠,𝑡 }𝑠,𝑡 ∈𝑉 (𝐺) has small

congestion. Each 𝑙 ′𝑠,𝑡 defines a distribution over paths connecting

𝑠 and 𝑡 , or ⊥. We argue that

cong𝐺 (E
[
∑

𝑠,𝑡

flow(𝑙 ′𝑠,𝑡) · D𝑠,𝑡

]

) ≤ 𝛼 · 1

1 − 𝛾 · opt
(ℎ) (D) . (3)

To this end, we consider the event 𝑙 ′𝑠,𝑡 ≠ ⊥. An equivalent process

of sampling 𝑙 ′𝑠,𝑡 is the following: sample a path from 𝑅′𝑠,𝑡 and repeat
until the path is not ⊥. Such a rejection sampling is clearly equiva-

lent to sampling from the conditional distribution 𝑅′𝑠,𝑡 | 𝑅′𝑠,𝑡 ≠ ⊥.
Therefore,

E[flow(𝑙 ′𝑠,𝑡)] ≤ (Pr[𝑅′𝑠,𝑡 ≠ ⊥])−1 · E[flow(𝑅′𝑠,𝑡)]

≤ 1

1 − 𝛾 · E[flow(𝑅
′
𝑠,𝑡)] .

1216

STOC ’21, June 21ś25, 2021, Virtual, Italy Mohsen Ghaffari, Bernhard Haeupler, and Goran Zuzic

Therefore, E[∑𝑠,𝑡 flow(𝑙 ′𝑠,𝑡) ·D𝑠,𝑡] ≤ 1
1−𝛾 ·E[

∑
𝑠,𝑡 flow(𝑅′𝑠,𝑡) ·D𝑠,𝑡].

Finally, due to the congestion approximation property of 𝑅′, we
have that cong𝐺 (E[

∑
𝑠,𝑡 flow(𝑅′𝑠,𝑡) · D𝑠,𝑡]) ≤ 𝛼 · 1

1−𝛾 · opt(ℎ) (D).

Property: congestion of subdistributions. We now argue

about E[∑𝑠,𝑡 flow(𝐹 ′𝑠,𝑡) · D𝑠,𝑡]. First, we introduce some notation:

we remind the reader that 𝐹𝑠,𝑡 is drawn from (an embedding from)

T | 𝑆𝑢,𝑣 ⊆ 𝑉 (𝑇). On the other hand, we define (𝑇,𝑇𝐺) to be an

independent random variable drawn from T . Finally, we define an
event 𝐸𝑉 := {𝑙 ′𝑠,𝑡 ≠ ⊥, 𝑆𝑢,𝑣 ⊆ 𝑉 (𝑇)}.

E[flow(𝐹 ′𝑠,𝑡)] = E[I[𝑙 ′𝑠,𝑡 ≠ ⊥] · flow(𝐹𝑠,𝑡)]

≤ E
[
I[𝐸𝑉] · flow(𝑇𝐺

𝑠,𝑡)
]
/Pr[𝑆𝑢,𝑣 ⊆ 𝑉 (𝑇)]

≤ 2 · E
[
I[𝐸𝑉] · flow(𝑇𝐺

𝑠,𝑡)
]

The last inequality follows from Pr[𝑆𝑢,𝑣 ⊆ 𝑉 (𝑇)] ≥ 1/2 which is

a result of a simple union bound, |𝑆𝑢,𝑣 | ≤ 𝑟ℎ𝛽 , and the exclusion

probability of T being at most 1/(2𝑟ℎ𝛽).
For each 𝑠, 𝑡 ∈ 𝑉 (𝐺) we introduce a random flow variable 𝐶𝑠,𝑡 ∈

R
𝐸 (𝐺)
≥0 as follows. In the event 𝐸𝑉 we consider the nodes on the

path 𝑙 ′𝑠,𝑡 = (𝑠 = 𝑣0, 𝑣1, . . . , 𝑣ℓ−1, 𝑣ℓ = 𝑡) and assign

𝐶𝑠,𝑡 := I[𝐸𝑉] ·
ℓ−1∑

𝑖=0

flow(𝑇𝐺
𝑣𝑖 ,𝑣𝑖+1) ≥ I[𝐸𝑉] · flow(𝑇

𝐺
𝑠,𝑡) . (4)

Note that the right-hand side inequality of Equation (4) holds be-

cause in any partial tree embedding flow(𝑇𝐺
𝑎,𝑐) ≤ flow(𝑇𝐺

𝑎,𝑏
) +

flow(𝑇𝐺
𝑏,𝑐
) for all 𝑎, 𝑏, 𝑐 ∈ 𝑉 (𝑇). Therefore,

∑

𝑠,𝑡

E[flow(𝐹 ′𝑠,𝑡) · D𝑠,𝑡] ≤ 2
∑

𝑠,𝑡

E

[
I[𝐸𝑉] · flow(𝑇𝐺

𝑠,𝑡) · D𝑠,𝑡

]

≤ 2
∑

𝑠,𝑡

E[𝐶𝑠,𝑡] · D𝑠,𝑡 . (5)

On the other hand, we now give an upper bound for
∑
𝑠,𝑡 E[𝐶𝑠,𝑡 ·

D𝑠,𝑡].
∑

𝑠,𝑡

E[𝐶𝑠,𝑡D𝑠,𝑡]

=

∑

𝑠,𝑡

D𝑠,𝑡 · E
[

I[𝐸𝑉] ·
ℓ−1∑

𝑖=0

flow(𝑇𝐺
𝑣𝑖 ,𝑣𝑖+1)

]

=

∑

𝑠,𝑡

D𝑠,𝑡 · E

I[𝐸𝑉] ·

∑

{𝑢,𝑣 }∈𝐸 (𝐺)
flow(𝑙 ′𝑠,𝑡 , {𝑢, 𝑣}) · flow(𝑇𝐺

𝑢,𝑣)

=

∑

{𝑢,𝑣 }∈𝐸 (𝐺)
E

[

flow(𝑇𝐺
𝑢,𝑣) ·

∑

𝑠,𝑡

D𝑠,𝑡 · I[𝐸𝑉] · flow(𝑙 ′𝑠,𝑡 , {𝑢, 𝑣})
]

≤
∑

{𝑢,𝑣 }∈𝐸 (𝐺)
E[I[𝑢, 𝑣 ∈ 𝑉 (𝑇)] · flow(𝑇𝐺

𝑢,𝑣)]·

∑

𝑠,𝑡

D𝑠,𝑡 · E
[
flow(𝑙 ′𝑠,𝑡 , {𝑢, 𝑣})

]

≤
∑

{𝑢,𝑣 }∈𝐸 (𝐺)
E[I[𝑢, 𝑣 ∈ 𝑉 (𝑇)] · flow(𝑇𝐺

𝑢,𝑣)]·

𝛼

1 − 𝛾 · opt
(ℎ) (D) · 𝑐 {𝑢,𝑣 } (Equation (3))

=
𝛼

1 − 𝛾 · opt
(ℎ) (D)·
∑

{𝑢,𝑣 }∈𝐸 (𝐺)
𝑐 {𝑢,𝑣 } · E[I[𝑢, 𝑣 ∈ 𝑉 (𝑇)] · flow(𝑇𝐺

𝑢,𝑣)]

=
𝛼

1 − 𝛾 · opt
(ℎ) (D) ·𝑂 (log𝑛 · log(𝑟ℎ𝛽 log𝑛)) · ®𝑐𝐺

Combining the above with Equation (5) we get that

cong𝐺 (
∑

𝑠,𝑡

E[flow(𝐹 ′𝑠,𝑡) · D𝑠,𝑡])

≤ 𝑂 (𝛼

1 − 𝛾 · log𝑛 · log(𝑟ℎ𝛽 log𝑛)) · opt
(ℎ) (D). □

We combine the results that we developed so far.

Corollary 4.5. Every (complete) capacitated graph𝐺 = (𝑉 , 𝐸, 𝑐)
and every ℎ ≥ 1, 𝑟 = 𝑂 (1), there exists an ℎ-hop (𝑛−𝑟)-subflow
routing for𝐺 with congestion approximation𝑂 (log2 𝑛 · log2 (ℎ log𝑛))
and hop stretch 𝑂 (log7 𝑛).

Proof. There exists a D (1) -router T1 on 𝐺 with dilation 𝑂 (ℎ
log3 𝑛), exclusion probability 1/(4ℎ), and congestion 𝑂 (log𝑛 log(ℎ
log𝑛)) (via Lemma 3.7).

Define 𝑅 := {𝑅𝑠,𝑡 }𝑠,𝑡 ∈𝑉 (𝐺) with 𝑅𝑠,𝑡 := 𝑇𝐺
𝑠,𝑡 , where (𝑇,𝑇𝐺) ∼ T1.

Applying Lemma 4.3), we conclude that 𝑅 is an ℎ-hop 1
2 -subflow

routingwith congestion𝑂 (log𝑛 log(ℎ log𝑛)) and hop stretch𝑂 (log3
𝑛).

Finally, correcting the failures in the subflow routing using

Lemma 4.4 by setting 𝑟 (𝐿𝑒𝑚𝑚𝑎 4.4) := 𝑟 log2 𝑛 = 𝑂 (log𝑛), we con-
struct an ℎ-hop (𝑛−𝑟)-subflow routing with congestion approxima-

tion 𝑂 (log2 𝑛 · log2 (ℎ log𝑛)), hop stretch 𝑂 (log7 𝑛). □

4.3 Putting it Together: Non-Subflow Routing
on General Graphs

In this section, we prove our main result by combining all of the

above. On a high-level, the main technical contribution of this sec-

tion is to (1) completely eliminate failures, and to (2) extend the

results from complete capacitated graphs to general capacitated

graphs. However, both of these issues can be resolved in the follow-

ing way.

(1) A 𝑛−𝑂 (1) -fraction of failures can readily be ignored since

they contribute an insignificant amount to the congestion.

(2) We can łcompletež a general capacitated graph into its com-

pleted counterpart by converting łnon-edgesž to edges of

sufficiently small capacity 𝑛−𝑂 (1) . We construct the hop-

constrained oblivious routing 𝑅 on the completed graph.

Note that 𝑅 is supported (with small probability) over non-

edges of the original graph. However, we can easily condition

on these paths not using non-edges, which will only insignif-

icantly increase the congestion.

Theorem 3.1. For every (general) capacitated graph𝐺 = (𝑉 , 𝐸, 𝑐)
and every ℎ ≥ 1, there exists an ℎ-hop oblivious routing with hop

stretch 𝑂 (log7 𝑛) and congestion approximation 𝑂 (log2 𝑛 · log2 (ℎ
log𝑛)).

Proof. For simplicity of notation, we extend the definition of

flow (whichmaps paths to their flows inR
𝐸 (𝐺)
≥0) to flow(⊥) = ®0. Due

1217

Hop-Constrained Oblivious Routing STOC ’21, June 21ś25, 2021, Virtual, Italy

to this, we can replace I[𝑝 ≠ ⊥] · flow(𝑝) = flow(𝑝). Furthermore,

let 𝑐min = min𝑒∈𝐸 (𝐺) 𝑐𝐺 (𝑒), 𝑐max = max𝑒∈𝐸 (𝐺) 𝑒𝐺 (𝑒), and let 𝐶 =

𝑂 (1) be a sufficiently large constant. We remind the reader that

because the capacities are polynomially bounded we have 𝑐min ≥
𝑛−𝑂 (1) and 𝑐min ≤ 𝑛𝑂 (1) .

Completing the graph.We first construct a łcompletedž capac-

itated graph 𝐻 = (𝑉 (𝐺),
(𝑉 (𝐺)

2

)
, 𝑐𝐻) where 𝑐𝐻 (𝑒) := 𝑐𝐺 (𝑒) if 𝑒 ∈

𝐸 (𝐺), or 𝑐𝐻 (𝑒) := 𝑐min ·𝑛−𝐶 if 𝑒 ∈ 𝐸 (𝐻) \ 𝐸 (𝐺). Due to this choice,
for any demand D, we have that opt

(ℎ)
𝐻
(D) ≥ 1

𝑛2𝑐max
· ∑𝑠,𝑡 D𝑠,𝑡

since we are pushing
∑
𝑠,𝑡 D𝑠,𝑡 units of flow across at most 𝑛2

edges of capacity of at most 𝑐max. Therefore, we conclude that

opt
(ℎ)
𝐻
(D) ≥ 𝑛−𝑂 (1) ·∑𝑠,𝑡 D𝑠,𝑡 .

For the rest of the proof let 𝑅 = {𝑅𝑠,𝑡 }𝑠,𝑡 ∈𝑉 (𝐺) be an ℎ-hop

(𝑛−2𝐶)-subflow routing on 𝐻 with congestion approximation 𝛼 :=

𝑂 (log2 𝑛 · log2 (ℎ log𝑛)) and hop stretch 𝑂 (log7 𝑛). Furthermore,

we can assume that the support of 𝑅𝑠,𝑡 is over simple paths since we

can always simplify each path without increasing the congestion.

𝑅 has good congestion approximation on 𝐻 without sub-

flows. Fix a demandD and let 𝑅′ = {𝑅′𝑠,𝑡 }𝑠,𝑡 ∈𝑉 (𝐺) be the collection
of (𝑛−2𝐶)-subdistributions of 𝑅 = {𝑅𝑠,𝑡 }𝑠,𝑡 with respect to D. We

also denote by 𝑅𝑠,𝑡 and 𝑅′𝑠,𝑡 the random variables (drawn from

the distribution of the same name), coupled so that 𝑅′𝑠,𝑡 ∈ {𝑅𝑠,𝑡 ,⊥}.
With this notation, we now show that the routing scheme𝑅 achieves

a good congestion approximation on (all) D.

cong𝐻 (
∑

𝑠,𝑡

E[flow𝐻 (𝑅𝑠,𝑡) · D𝑠,𝑡])

≤ cong𝐻

(
∑

𝑠,𝑡

E[flow𝐻 (𝑅′𝑠,𝑡) · D𝑠,𝑡]
)

(6)

+ cong𝐻

(
∑

𝑠,𝑡

E[I[𝑅′𝑠,𝑡 = ⊥] flow𝐻 (𝑅𝑠,𝑡) · D𝑠,𝑡]
)

≤ 𝛼 · opt(ℎ)
𝐻
(D) + cong𝐻

(
∑

𝑠,𝑡

E[I[𝑅′𝑠,𝑡 = ⊥] flow𝐻 (𝑅𝑠,𝑡) · D𝑠,𝑡]
)

≤ 𝛼 · opt(ℎ)
𝐻
(D) + Pr[𝑅′𝑠,𝑡 = ⊥] · (𝑛𝐶/𝑐min) ·

∑

𝑠,𝑡

D𝑠,𝑡 (7)

≤ 𝛼 · opt(ℎ)
𝐻
(D) + 𝑛−2𝐶 · 𝑛𝐶

𝑛𝑂 (1)
· 𝑛𝑂 (1) ·

∑

𝑠,𝑡

D𝑠,𝑡

≤ 𝛼 · opt(ℎ)
𝐻
(D) + opt(ℎ)

𝐻
(D) (8)

≤ 2𝛼 · opt(ℎ)
𝐻
(D)

Equation (7) holds because each łbadž path𝑅𝑠,𝑡 (i.e.,𝑅𝑠,𝑡 when𝑅
′
𝑠,𝑡 =

⊥) incurs atmost (min𝑒∈𝐸 (𝐻) 𝑐𝐻 (𝑒))−1 ≤ (𝑐min·𝑛−𝐶)−1 congestion
per each unit of demand (remember that we can assume paths are

simple). Equation (8) holds for sufficiently large𝐶 because 𝑛−𝑂 (1) ·
∑
𝑠,𝑡 D𝑠,𝑡 ≤ opt

(ℎ)
𝐻
(D) (as argued before). With this calculation,

we conclude that 𝑅 is an ℎ-hop oblivious routing for 𝐻 with hop

stretch𝑂 (log7 𝑛) and congestion approximation𝑂 (𝛼) = 𝑂 (log2 𝑛 ·
log2 (ℎ log𝑛)).

Routing scheme for the general graph. We now adapt the

routing scheme 𝑅 = {𝑅𝑠,𝑡 }𝑠,𝑡 ∈𝑉 (𝐺) , which is defined on the com-

pleted graph 𝐻 , to a new routing scheme 𝐹 = {𝐹𝑠,𝑡 }𝑠,𝑡 ∈𝑉 (𝐺) which
is valid on the original (general) graph 𝐺 . We simply define 𝐹𝑠,𝑡 be

𝑅𝑠,𝑡 conditioned on the sampled path traversing only edges in 𝐸 (𝐺).
We denote this conditional distribution with 𝐹𝑠,𝑡 = 𝑅𝑠,𝑡 | 𝑅𝑠,𝑡 ⊆ 𝐺 .

Fix 𝑠, 𝑡 ∈ 𝑉 (𝐺) such that there exists an ℎ-hop path in𝐺 between

𝑠 and 𝑡 . Our aim is to bound the probability that 𝑅𝑠,𝑡 uses edges

not in 𝐸 (𝐺). Let D (𝑠,𝑡) be the demand that has a single request

between 𝑠 and 𝑡 ; i.e., D (𝑠,𝑡)𝑢,𝑣 := I[(𝑢, 𝑣) = (𝑠, 𝑡)]. Since there is an
ℎ-hop path between 𝑠 and 𝑡 with edges of capacities at least 𝑐min we

have opt
(ℎ)
𝐺
(D (𝑠,𝑡)) ≤ 1

𝑐min
≤ 𝑛𝑂 (1) . Fix an edge 𝑒 ∈ 𝐸 (𝐻) \ 𝐸 (𝐺),

i.e., that does not exist in𝐺 . By the assumption that 𝑅 is an ℎ-hop

oblivious routing for 𝐻 with congestion stretch 𝑂 (𝛼) ≤ 𝑛𝑂 (1) , its
routing of D (𝑠,𝑡) on 𝐻 is 𝑛𝑂 (1) -competitive, therefore:

Pr[𝑒 ∈ 𝑅𝑠,𝑡] ≤ E[flow(𝑅𝑠,𝑡 , 𝑒)]

≤ 𝑛𝑂 (1) · opt(ℎ)
𝐻
(D) · 𝑐𝐻 (𝑒) ≤ 𝑛𝑂 (1)−𝐶 .

Union-bounding over all 𝐸 (𝐻) \ 𝐸 (𝐺) we have that
Pr[𝑅𝑠,𝑡 ⊆ 𝐺] ≤ |𝐸 (𝐻) \ 𝐸 (𝐺) | Pr[𝑒 ∈ 𝑅𝑠,𝑡]
≤ 𝑛2 · 𝑛𝑂 (1)−𝐶 ≤ 1/2 (for a sufficiently large 𝐶).

Fix an arbitrary demand D. If there exists 𝑠, 𝑡 ∈ 𝑉 (𝐺) such
that D𝑠,𝑡 > 0, but there is no ℎ-hop path between them, then

opt
(ℎ)
𝐺
(D) = ∞ and the claim is trivial. If this is not the case, we

bound the congestion of the routing scheme 𝐹𝑠,𝑡 (which is condi-

tioned on going only over edges in 𝐺):

cong𝐺

(
∑

𝑠,𝑡

E[flow𝐺 (𝐹𝑠,𝑡) · D𝑠,𝑡]
)

≤ cong𝐺

(
∑

𝑠,𝑡

E[I[𝑅𝑠,𝑡 ⊆ 𝐺] · flow𝐺 (𝑅𝑠,𝑡) · D𝑠,𝑡]
)

/Pr[𝑅𝑠,𝑡 ⊆ 𝐺]

≤ 2 · cong𝐻

(
∑

𝑠,𝑡

E[flow𝐻 (𝑅𝑠,𝑡) · D𝑠,𝑡]
)

(9)

≤ 𝑂 (𝛼) · opt(ℎ)
𝐻
(D)

≤ 𝑂 (𝛼) · opt(ℎ)
𝐺
(D). (10)

Equation (9) follows because all paths in the preceding equation

go only over edges in 𝐺 ; both 𝐺 and 𝐻 agree on the capacities

of such edges. Equation (10) follows from 𝑐𝐻 (𝑒) ≥ 𝑐𝐺 (𝑒), hence
opt
(ℎ)
𝐻
(D) ≤ opt

(ℎ)
𝐺
(D). We conclude that 𝐹 is an ℎ-hop oblivious

routing on 𝐺 with hop stretch 𝑂 (log7 𝑛) and congestion approxi-

mation 𝑂 (log2 𝑛 · log2 (ℎ log𝑛)) for all demands D. □

ACKNOWLEDGEMENTS

This research was supported in part by European Research Coun-

cil (ERC) under the European Union’s Horizon 2020 research and

innovation program (grant agreement No. 853109 and grant agree-

ment No. 949272), by NSF grants CCF-1527110, CCF-1618280, CCF-

1814603, CCF-1910588, NSF CAREER award CCF-1750808, a Sloan

Research Fellowship, and the Swiss National Foundation (project

grant 200021-184735).

1218

STOC ’21, June 21ś25, 2021, Virtual, Italy Mohsen Ghaffari, Bernhard Haeupler, and Goran Zuzic

A CONSTRUCTION OF D (1)-ROUTERS

Lemma 3.7. For every (complete) capacitated graph 𝐺 and 0 <

𝜀 < 1/3 there exists a D (1) -router with dilation 𝑂 (log
3 𝑛
𝜀), exclusion

probability 𝜀, and congestion 𝑂 (log𝑛 · log log𝑛
𝜀).

Proof. We write a linear program over D (1) -routers with the

goal of minimizing the congestion 𝛼 while satisfying the dila-

tion and exclusion probability properties. Let (𝑇1,𝑇𝐺
1), (𝑇2,𝑇𝐺

2),
. . . , (𝑇𝑄 ,𝑇𝐺

𝑄
) the (finite) set of possible partial tree embeddings of

𝐺 satisfying the dilation property, i.e., where hop(𝑇𝐺
𝑢,𝑣) ≤ 𝑂 (log

3 𝑛
𝜀)

for all 𝑢, 𝑣 ∈ 𝑉 (𝑇). Given a vector 𝜆 ∈ {𝑥 ∈ R𝑄≥0 |
∑

𝑗 𝑥 𝑗 =

1} we denote with T (𝜆) the distribution over {(𝑇𝑖 ,𝑇𝐺
𝑖)}𝑖 where

Pr[T (𝜆) = (𝑇𝑖 ,𝑇𝐺
𝑖)] = 𝜆𝑖 . Furthermore, let Λ the set of vec-

tors 𝜆 = (𝜆𝑖)𝑖 satisfying the exclusion probability property, i.e.,

Pr(𝑇, ·)∼T (𝜆) [𝑣 ∈ 𝑉 (𝑇)] ≥ 1 − 𝜀 for all 𝑣 ∈ 𝑉 (𝐺).
We now present the linear program. Note that cong𝐺 (𝑥) ≤ 𝛼

can be written as 𝑥𝑒 ≤ 𝛼 · 𝑐𝑒 where 𝑐𝑒 is the capacity of an edge 𝑒

in 𝐺 .

min
𝛼,𝜆

. 𝛼

such that 𝜆 ∈ Λ, and

∀𝑒 ∈ 𝐸 (𝐺)
∑

{𝑢,𝑣 }∈𝐸 (𝐺)
𝑐 {𝑢,𝑣 } · E(𝑇,𝑇𝐺)∼T (𝜆)

[

I[𝑢, 𝑣 ∈ 𝑉 (𝑇)] · flow(𝑇𝐺
𝑢,𝑣, 𝑒)

]
≤ 𝛼 · 𝑐𝑒

We dualize the linear program. Note that the primal can be

written as min{𝛼 | 𝑀𝜆 ≤ 𝛼, 𝜆 ∈ Λ} for an appropriately chosen

matrix 𝑀 since cong𝐺 (𝑥) is simply max{𝑥𝑒/𝑐𝑒 }𝑒 . Therefore, we
use the dualization formula

min{𝛼 | 𝑀𝜆 ≤ 𝛼, 𝜆 ∈ Λ} = max
ℓ≥0,1𝑇 ℓ=1

min
𝜆∈Λ

ℓ𝑇𝑀𝜆.

Using these values, we rewrite the right-hand side of the equation.

ℓ𝑇𝑀𝜆

=

∑

𝑒∈𝐸 (𝐺)
ℓ𝑒 · E(𝑇,𝑇𝐺)∼T (𝜆)

[

∑

{𝑢,𝑣 }∈𝐸 (𝐺)
𝑐 {𝑢,𝑣 } · I[𝑢, 𝑣 ∈ 𝑉 (𝑇)] · flow(𝑇𝐺

𝑢,𝑣, 𝑒)
]
/𝑐𝑒

=

∑

{𝑢,𝑣 }∈𝐸 (𝐺)
𝑐 {𝑢,𝑣 } · E(𝑇,𝑇𝐺)∼T (𝜆)

[

I[𝑢, 𝑣 ∈ 𝑉 (𝑇)]
∑

𝑒∈𝐸 (𝐺)
ℓ𝑒/𝑐𝑒 · flow(𝑇𝐺

𝑢,𝑣, 𝑒)
]

=

∑

{𝑢,𝑣 }∈𝐸 (𝐺)
𝑐 {𝑢,𝑣 } · E(𝑇,𝑇𝐺)∼T (𝜆)

[
I[𝑢, 𝑣 ∈ 𝑉 (𝑇)] ·𝑤𝐺′ (ℓ) (𝑇𝐺

𝑢,𝑣)
]

In the last line, we introduced a new weighted graph 𝐺 ′(ℓ) that
is defined as having the same node set and edge set as 𝐺 , while

its weights 𝑤𝐺 (ℓ) are set to 𝑤𝐺 (ℓ) (𝑒) = ℓ𝑒/𝑐𝑒 ≥ 0. With this, we

present the dual:

max
𝛽,ℓ

. 𝛽

such that

∀𝜆 ∈ Λ
∑

{𝑢,𝑣 }∈𝐸 (𝐺)
𝑐 {𝑢,𝑣 } · E(𝑇,𝑇𝐺)∼T (𝜆)

[

I[𝑢, 𝑣 ∈ 𝑉 (𝑇)] ·𝑤𝐺′ (ℓ) (𝑇𝐺
𝑢,𝑣)

]
≥ 𝛽

ℓ ≥ 0,
∑

𝑒∈𝐸 (𝐺)
ℓ𝑒 = 1

By inspecting to dual, we see that in order to show that the

optimal value of the linear program is at most 𝛽 , it is sufficient to

show that for every distribution (ℓ𝑒)𝑒∈𝐸 (𝐺) there exists a 𝜆 ∈ Λ

where ℓ𝑇𝑀𝜆 ≤ 𝛽 . To this end, fix any (ℓ𝑒)𝑒 and consider 𝐺 ′(ℓ)
as defined above. Via Theorem 2.4, there exists a 1-hop partial

embedding distribution T ′ with exclusion probability 𝜀, hop stretch
𝑂 (log

3 𝑛
𝜀), and expected distance stretch 𝑂 (log𝑛 · log log𝑛

𝜀), i.e.,

E(𝑇,𝑇𝐺)∼T′
[
I[𝑢, 𝑣 ∈ 𝑉 (𝑇)] ·𝑤𝐺′ (ℓ) (𝑇𝐺

𝑢,𝑣)
]
≤

𝑤𝐺′ (ℓ) ({𝑢, 𝑣}) ·𝑂 (log𝑛 · log
log𝑛

𝜀
) .

Note that T ′ can be represented as T (𝜆′) for some 𝜆′ ∈ Λ since the

distribution satisfies the exclusion property and each embedding in

the support satisfies the dilation properties (due to the hop stretch).

Therefore, for 𝜆 = 𝜆′ we have:

ℓ𝑇𝑀𝜆 =

∑

{𝑢,𝑣 }∈𝐸 (𝐺)
𝑐 {𝑢,𝑣 } ·

· E(𝑇,𝑇𝐺)∼T (𝜆′)
[
I[𝑢, 𝑣 ∈ 𝑉 (𝑇)] ·𝑤𝐺′ (ℓ) (𝑇𝐺

𝑢,𝑣)
]

≤
∑

{𝑢,𝑣 }∈𝐸 (𝐺)
𝑐 {𝑢,𝑣 } ·𝑤𝐺′ (ℓ) ({𝑢, 𝑣}) ·𝑂 (log𝑛 · log

log𝑛

𝜀
)

= 𝑂 (log𝑛 · log log𝑛

𝜀
)

∑

{𝑢,𝑣 }∈𝐸 (𝐺)
𝑐 {𝑢,𝑣 } ·

ℓ{𝑢,𝑣 }
𝑐 {𝑢,𝑣 }

= 𝑂 (log𝑛 · log log𝑛

𝜀
)

In other words, we conclude that the optimal value of the linear

program is at most 𝑂 (log𝑛 · log log𝑛
𝜀), showing that there exists a

distribution over partial tree embeddings of𝐺 that are aD (1) -router
with dilation 𝑂 (log

3 𝑛
𝜀) (implied by 𝜆 ∈ Λ), exclusion probability

𝜀 (implied by 𝜆 ∈ Λ), and congestion 𝑂 (log𝑛 · log log𝑛
𝜀) (optimal

linear program value).

Remark. We note that the proof above leaves out the following

detail. Theorem 2.4 assumes that the weighted graph 𝐺 ′(ℓ) has
polynomially-bounded weights. However, the straightforward du-

alization process offers no such guarantees. However, this is easily

remedied by standard arguments. For instance, the framework of

multiplicative weights [1] shows that one can 2-approximate the

value of a linear program by only considering duals with polyn-

omially-bounded coefficients. □

1219

Hop-Constrained Oblivious Routing STOC ’21, June 21ś25, 2021, Virtual, Italy

B COMPUTATIONAL ASPECTS

This paper primarily focuses on the existence of hop-constrained

oblivious routings without talking about how to efficiently con-

struct them. However, it is relatively straightforward to give a

randomized construction of such routings in polynomial time. Ex-

amining Algorithm 1 that constructs these routings, we observe

that all of the steps involved are straightforward to implement in

polynomial time except constructing D (1) -routers. Moreover, the

existence of D1-routers is proven via strong duality, making it less

clear how to make the result algorithmic. However, the standard

technique of multiplicative weights [1] allows us to do just that

and recover a polynomial-time sampling of D1-routers, and there-

fore also of hop-constrained oblivious routings. We note that (in

the framework of multiplicative weights), the width of the oracle

corresponds to the (maximum) expectation that a distribution of

partial tree embeddings incurs over some edge 𝑒 when routing the

D (1) demand. Since the capacities are polynomially-bounded, we

conclude that the width of the oracle is polynomial.

We leave it as an open problem whether hop-constrained oblivi-

ous routings can be constructed in almost-linear, 𝑂 (𝑚1+𝑜 (1)), time.

REFERENCES
[1] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The Multiplicative Weights

Update Method: a Meta-Algorithm and Applications. Theory of Computing 8, 1
(2012), 121ś164.

[2] James Aspnes, Costas Busch, Shlomi Dolev, Panagiota Fatourou, Chryssis Geor-
giou, Alexander A Shvartsman, Paul G Spirakis, and Roger Wattenhofer. 2006.
Eight Open Problems in Distributed Computing. Bulletin of the EATCS 90 (2006),
109ś126.

[3] Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and Harald Räcke. 2004.
Optimal oblivious routing in polynomial time. J. Comput. System Sci. 69, 3 (2004),
383ś394.

[4] Yair Bartal. 1996. Probabilistic approximation of metric spaces and its algorithmic
applications. In Proceedings of 37th Conference on Foundations of Computer Science.
IEEE, 184ś193.

[5] Yair Bartal. 1998. On approximating arbitrary metrices by tree metrics. In Pro-
ceedings of the thirtieth annual ACM symposium on Theory of computing. 161ś168.

[6] Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Räcke. 2003. A practi-
cal algorithm for constructing oblivious routing schemes. In Proceedings of the
fifteenth annual ACM symposium on Parallel algorithms and architectures. 24ś33.

[7] Costas Busch and Malik Magdon-Ismail. 2010. Optimal oblivious routing in
hole-free networks. In International Conference on Heterogeneous Networking for

Quality, Reliability, Security and Robustness. Springer, 421ś437.
[8] Costas Busch, Malik Magdon-Ismail, and Jing Xi. 2005. Oblivious routing on

geometric networks. In Proceedings of the seventeenth annual ACM symposium on
Parallelism in algorithms and architectures. 316ś324.

[9] Costas Busch, Malik Magdon-Ismail, and Jing Xi. 2008. Optimal oblivious path
selection on the mesh. IEEE Trans. Comput. 57, 5 (2008), 660ś671.

[10] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,
Gopal Pandurangan, David Peleg, and Roger Wattenhofer. 2012. Distributed veri-
fication and hardness of distributed approximation. SIAM Journal on Computing
(SICOMP) 41, 5 (2012), 1235ś1265.

[11] Matthias Englert and Harald Räcke. 2009. Oblivious routing for the Lp-norm.
In 2009 50th Annual IEEE Symposium on Foundations of Computer Science. IEEE,
32ś40.

[12] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. 2003. A tight bound on
approximating arbitrary metrics by tree metrics. In Proceedings of the thirty-fifth
annual ACM symposium on Theory of computing. 448ś455.

[13] Anupam Gupta and Jochen Könemann. 2011. Approximation algorithms for
network design: A survey. Surveys in Operations Research and Management
Science 16, 1 (2011), 3ś20.

[14] BernhardHaeupler, D Ellis Hershkowitz, andGoran Zuzic. 2020. Tree Embeddings
for Hop-Constrained Network Design. arXiv preprint (2020).

[15] Chris Harrelson, Kirsten Hildrum, and Satish Rao. 2003. A polynomial-time tree
decomposition to minimize congestion. In Proceedings of the fifteenth annual
ACM symposium on Parallel algorithms and architectures. 34ś43.

[16] Frank Thomson Leighton, Bruce MMaggs, and Satish B Rao. 1994. Packet routing
and job-shop scheduling in𝑂(congestion+ dilation) steps. Combinatorica 14, 2
(1994), 167ś186.

[17] Michael O Rabin. 1989. Efficient dispersal of information for security, load
balancing, and fault tolerance. Journal of the ACM (JACM) 36, 2 (1989), 335ś348.

[18] Harald Racke. 2002. Minimizing congestion in general networks. In The 43rd
Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings.
IEEE, 43ś52.

[19] Harald Räcke. 2008. Optimal hierarchical decompositions for congestion mini-
mization in networks. In Proceedings of the fortieth annual ACM symposium on
Theory of computing. 255ś264.

[20] Harald Räcke. 2009. Survey on oblivious routing strategies. In Conference on
Computability in Europe. Springer, 419ś429.

[21] Christian Scheideler. 2006. Universal routing strategies for interconnection networks.
Vol. 1390. Springer.

[22] Aravind Srinivasan and Chung-Piaw Teo. 2001. A constant-factor approximation
algorithm for packet routing and balancing local vs. global criteria. SIAM J.
Comput. 30, 6 (2001), 2051ś2068.

[23] Eli Upfal. 1984. Efficient schemes for parallel communication. Journal of the
ACM (JACM) 31, 3 (1984), 507ś517.

[24] Leslie G Valiant and Gordon J Brebner. 1981. Universal schemes for parallel
communication. In Proceedings of the thirteenth annual ACM symposium on Theory
of computing. 263ś277.

[25] David P Williamson and David B Shmoys. 2011. The design of approximation
algorithms. Cambridge university press.

1220

	Abstract
	1 Introduction
	1.1 Background on Routing
	1.2 Prior Work on Oblivious Routing
	1.3 Our Contribution

	2 Preliminaries
	2.1 Approximating Hop-Constrained Distances
	2.2 Hop-Constrained Oblivious Routings

	3 Hop-Constrained Oblivious Routing: A Technical Overview
	3.1 Tree-Based Hop-Constrained Oblivious Routings Cannot Have Good Guarantees
	3.2 An Overview of the Hop-Constrained Oblivious Routing

	4 Lifting the D(1)-router to a Hop-Constrained Oblivious Routing
	4.1 Hop-Constrained Subflow Routing
	4.2 Correcting Subflow Failures
	4.3 Putting it Together: Non-Subflow Routing on General Graphs

	A Construction of D(1)-routers
	B Computational Aspects
	References

