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Abstract—We study the max-affine regression model, where
the unknown regression function is modeled as a maximum of a
fixed number of affine functions. In recent work [1], we showed
that end-to-end parameter estimates were obtainable using
this model with an alternating minimization (AM) algorithm
provided the covariates (or designs) were normally distributed,
and chosen independently of the underlying parameters. In this
paper, we show that AM is significantly more robust than the
setting of [1]: It converges locally under small-ball design as-
sumptions (which is a much broader class, including bounded log-
concave distributions), and even when the underlying parameters
are chosen with knowledge of the realized covariates. Once again,
the final rate obtained by the procedure is near-parametric and
minimax optimal (up to a polylogarithmic factor) as a function of
the dimension, sample size, and noise variance. As a by-product
of our analysis, we obtain convergence guarantees on a classical
algorithm for the (real) phase retrieval problem in the presence
of noise under considerably weaker assumptions on the design
distribution than was previously known.

I. INTRODUCTION

The max-affine regression model is given by

Y = max
1≤j≤k

(
〈X, θ∗j 〉+ b∗j

)
+ ε, (1)

where Y is a scalar response, X is a d-dimensional covariate
vector and the noise ε is drawn from a (univariate) distribution
that is zero-mean and sub-Gaussian, with unknown sub-
Gaussian parameter σ. Furthermore, the noise ε is inde-
pendent of the random covariates X . Assuming k ≥ 1 is
a known integer, we study the problem of estimating the
unknown parameters θ∗1 , . . . , θ

∗
k ∈ Rd and b∗1, . . . , b

∗
k ∈ R

from independent observations (x1, y1), . . . , (xn, yn) drawn
according to the model (1). We often use the convenient
notation β∗j := (θ∗j , b

∗
j ) ∈ Rd+1 and ξi := (xi, 1) ∈ Rd+1 to

denote augmented parameters and covariates, respectively.

The model (1) appears in multiple contexts. The case k = 1
corresponds to linear regression, and setting k = 2 strictly
generalizes the (real) phase retrieval problem: note that phase
retrieval corresponds to the special case

Y = |〈X, θ∗〉|+ ε, (2)

which can be obtained by setting θ∗1 = −θ∗2 and b1 = b2 = 0.
Also, since the function x 7→ max1≤j≤k(〈x, θ∗j 〉 + b∗j ) is
always convex, estimation under the model (1) can be used to
fit convex functions to data. Indeed, imposing such piece-wise
affine structure is known to be an effective method by which
to avoid the curse of dimensionality in applications of convex
regression and its relatives [2]–[5].

∗Avishek Ghosh and Ashwin Pananjady contributed equally to this work.

In the companion paper that forms the basis for this work [1],
we studied the Gaussian design case X ∼ N (0, Id), and
where the parameters θ∗1 , . . . , θ

∗
k ∈ Rd and b∗1, . . . , b

∗
k ∈ R

were fixed independently of the covariates. We proposed a
computationally efficient, end-to-end algorithm for estimating
the parameters {β∗j }kj=1. This algorithm consisted of two
steps: a spectral method to obtain an “initialization”, and
an alternating minimization (AM) algorithm 1. The focus of
the current paper is on the AM algorithm, and so in order to
set the stage, let us describe iteration t of this algorithm in
more detail. At the start of this iteration, we have the parameter
estimates {β(t)

j }kj=1. From these, we compute any partition of
the n samples, indexed by the sets

S
(t)
j ≡ Sj(β

(t)
1 , . . . , β

(t)
k ) for 1 ≤ j ≤ k,

such that for each sample index i ∈ S(t)
j , we have 〈ξi, β(t)

j 〉 ≥
maxj 6=j′〈ξi, β(t)

j′ 〉. In order to obtain the next set of parameters,
we compute a least squares solution within each partition,
returning parameters {β(t+1)

j }kj=1 such that

β
(t+1)
j ∈ argmin

β∈Rd+1

∑
i∈S(t)

j

(yi − 〈ξi, β〉)2 for each 1 ≤ j ≤ k.

For a more formal description of the algorithm, see our
companion paper [1]. The AM procedure is a heuristic to solve
the non-convex optimization problem that arises from least
squares estimation under the max-affine model, and resembles
alternating update algorithms that have been designed in related
contexts [7]–[9]. Recent theoretical investigations have shown
that in spite of the non-convexity of many of these problems,
such algorithms can exhibit favorable convergence properties
in statistical settings [10]–[14]. Having said that, it is important
to note that this is not always the case, and we often require
the procedure to be initialized in a neighborhood of the optimal
parameters defining the model [15]. Indeed, our own prior work
showed that for the max-affine model (1), the AM algorithm
converges linearly to the near-optimal statistical neighborhood
of the true parameters for Gaussian ensembles, provided it is
initialized with a spectral method.

In this paper, we show that a similar phenomenon occurs
under significantly weaker statistical assumptions. In particular,
we allow the distribution of the covariates to come from the
larger class of sub-Gaussian distributions that satisfy a small-
ball condition. In addition, we also consider the scenario of

1We note that the alternating minimization heuristic was proposed in the
context of this problem by Magnani and Boyd [6]
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universal parameter estimation, meaning that our guarantees
hold uniformly over all β∗1 , . . . , β

∗
k . This allows the parameters

to be chosen with knowledge of the realized covariates, a
setting that is common in signal processing applications like
phase retrieval [16]. In contrast, our prior work [1] only handled
the case where the parameters are fixed.

More precisely, our covariate assumption relies on the
following definition.

Definition 1. (Small-ball) A distribution PX satisfies a (ζ, cs)-
small-ball property if, for X ∼ PX and each δ > 0, we have

sup
u∈Sd−1, w∈R

Pr
{

(〈X, u〉+ w)2 ≤ δ
}
≤ (csδ)

ζ . (3)

The small-ball properties of various classes of distributions
have been studied extensively in the probability literature [17],
[18]; for instance, a simple calculation yields that provided
the density of 〈X, u〉 is bounded by

√
c for each u ∈ Sd−1,

the distribution PX satisfies the (1/2, c)-small ball property.
We now present our assumption on the covariate distribution;
recall that X ∈ Rd is said to be η-sub-Gaussian if

sup
u∈Sd−1

E[exp(λ〈X, u〉)] ≤ exp

(
λ2η2

2

)
for each λ ∈ R.

Assumption 1. The distribution PX is isotropic, η-sub-
Gaussian, and satisfies a (ζ, cs) small-ball condition.

Let us briefly state a few examples where Assumption 1 is
satisfied with particular values of the tuple (η, ζ, cs). The first is
the class of compactly supported log-concave random vectors,
which satisfy the the small ball conditions with (ζ, cs) =
(1/2, C) for an absolute constant C (see [19, Appendix G.1]).
Boundedness further implies sub-Gaussianity. As a specific
example, consider X with each entry drawn i.i.d. according to
the distribution Unif[−

√
3,
√

3], which is commonly used as a
random design in investigations of non-parametric regression
problems [20]. The associated distribution PX is isotropic by
definition, and has (η, ζ, cs) = (12, 1/2, C). Similarly, any
other uniform distribution on a bounded, isotropic convex
set would also satisfy Assumption 1. The second (canonical)
example for which Assumption 1 is satisfied is the standard
Gaussian distribution. As we verify in [19, Appendix G.2]
with χ2 tail bounds, the standard Gaussian satisfies (η, ζ, cs) =
(1, 1/2, e).

Thus, Assumption 1 is strictly more general than the
Gaussian covariate assumption. It is also important to note that
Assumption 1 allows a larger class of distributions than even
log-concave distributions; heuristically speaking, the small-
ball condition only disallows distributions that are significantly
“peakier" than the Gaussian distribution, and the sub-Gaussian
condition disallows heavy-tailed distributions. Also, while we
have only presented examples in which ζ = 1/2, there are
distributions that satisfy the small ball condition for other
values of ζ: for example, any random variable with density
f(x) ∝ e−‖x‖c for a positive constant c.

In order to make our guarantees on universal parameter
estimation more clear, let us define a few geometric quantities

induced by the model (1). For X ∼ PX , let

πj(β
∗
1 , ., β

∗
k) : = Pr{〈X, θ∗j 〉+ b∗j = max

j′∈[k]
(〈X, θ∗j′〉+ b∗j′)},

and define

πmin(β∗1 , . . . , β
∗
k) : = min

j∈[k]
πj(β

∗
1 , . . . , β

∗
k).

For a fixed set of true parameters, the quantity
πmin(β∗1 , . . . , β

∗
k) · n is the expected number of samples that

are noisy linear combinations of one of these parameters.
Thus, even if the underlying parameters are fixed, we can only
hope to estimate these parameters when πmin(β∗1 , . . . , β

∗
k) is

sufficiently large.

The signal strength of the problem is the minimum separa-
tion

∆(β∗1 , . . . , β
∗
k) = min

j,j′:j 6=j′

∥∥θ∗j − θ∗j′∥∥2 .
We also define a notion of condition number, given by

κ(β∗1 , . . . , β
∗
k) = max

j∈[k]

maxj′ 6=j
∥∥θ∗j − θ∗j′∥∥2

minj′ 6=j

∥∥∥θ∗j − θ∗j′∥∥∥2 .
We often use the shorthand

πmin = πmin(β∗1 , . . . , β
∗
k), ∆ = ∆(β∗1 , . . . ., β

∗
k), and

κ = κ(β∗1 , . . . , β
∗
k).

when the true parameters β∗1 , . . . , β
∗
k are clear from context.

Recall that our goal was to prove a result that holds
uniformly for all true parameters {β∗j }kj=1. However, this
is clearly impossible in a general sense, since we cannot
hope to obtain consistent estimates if some parameters are
never observed in the sample. A workaround is to hold
certain geometric quantities fixed while sweeping over all
possible allowable parameters β∗j , j = 1, . . . , k. Accordingly,
for each triple of positive scalars (π,∆, κ), we define the set
of “admissible" true parameters as

Bvol(π,∆, κ) ={β1, . . . , βk : πmin(β1, . . . , βk) ≥ π ,
∆(β1, . . . , βk) ≥ ∆, κ(β1, . . . , βk) ≤ κ}.

We let the true parameters β∗1 , . . . , β
∗
k take values in the set

Bvol(π,∆, κ), and prove guarantees uniformly over all such
β∗1 , . . . , β

∗
k .

With these definitions at hand, we are now ready to discuss
our contributions.

Contributions: Suppose Assumption 1 holds, and {β(t)
j }kj=1

are the parameter estimates returned by the AM algorithm at
the t-th iteration. In Theorem 1, we show that for any ε > 0,
there is a sufficiently large iteration t such that

k∑
i=1

‖β(t)
i − β

∗
i ‖2 ≤ ε+ C

(1)
η,ζ,cs

σ2kd

nπ1+2ζ−1

min

log(kd) log
( n
kd

)
.

Such a result holds simultaneously for all (β∗1 , . . . , β
∗
k) ∈

Bvol(πmin,∆, κ) with high probability provided the sample
size is large enough and the initialization is chosen close
enough to the true parameters.
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In Corollary 1, we specialize this result to the phase retrieval
problem, showing that the AM algorithm exhibits linear
convergence provided the covariates (called “measurements”
in the signal processing literature) are drawn from an isotropic,
sub-Gaussian distribution satisfying the small-ball condition.
Since our result holds for universal parameter estimation, we
allow the underlying “signal" to be chosen adversarially, with
knowledge of the measurements. Such a robust setting is
common for phase retrieval problems. However, to the best of
our knowledge, all previous results on the AM algorithm for
phase retrieval [21], [22] only held under the assumptions of
Gaussian covariates and noiseless observations, and/or required
resampling of the measurements [14]. Ours is thus the first
work to handle non-Gaussian covariates in the presence of
noise, while also analyzing the algorithm without resampling.

Notation: For a positive integer n, let [n] : = {1, 2, . . . , n}.
For a finite set S, we use |S| to denote its cardinality. All
logarithms are to the natural base. For two sequences {an}∞n=1

and {bn}∞n=1, we write an . bn if there is a universal constant
C such that an ≤ Cbn for all n ≥ 1. The relation an & bn
is defined analogously, and we use an ∼ bn to indicate that
both an & bn and an . bn hold simultaneously. We use
c, C, c1, c2, . . . to denote universal constants that may change
from line to line, but do not depend on any of the problem
parameters. We use ‖·‖ to denote the `2 norm. Denote by Id
the d×d identity matrix. Let sgn(t) denote the sign of a scalar
t, with the convention that sgn(0) = 1.

II. MAIN RESULTS

Let us now state and discuss our results in precise terms.

A. Local geometric convergence of alternating minimization

For each pair 1 ≤ i 6= j ≤ k and t ≥ 0, we use the
shorthand v∗i,j = β∗i − β∗j and v(t)i,j = β

(t)
i − β

(t)
j to denote the

pairwise differences between parameters.

Theorem 1. Suppose that Assumption 1 holds. Then there
exists a pair of universal constants (c1, c2) and constants
(C

(1)
η,ζ,cs

, C
(2)
η,ζ,cs

) depending only on the triple (η, ζ, cs) such
that if the sample size satisfies the bound

n ≥ C(1)
η,ζ,cs

max {d, 10 log n} · kκ

π1+2ζ−1

min

log(n/d) (4)

then simultaneously for all true parameters β∗1 , . . . , β
∗
k ∈

Bvol(πmin,∆, κ) and all initializations satisfying

min
c>0

max
1≤j 6=j′≤k

∥∥∥cv(0)j,j′ − v∗j,j′∥∥∥
‖θ∗j − θ∗j′‖

≤ C(2)
η,ζ,cs

(
π1+2ζ−1

min

kκ
)ζ
−1

×

[
log1+ζ

−1

(
kκ

π1+2ζ−1

min

)

]
, (5a)

the estimation error at all iterations t ≥ 1 satisfies
k∑
j=1

‖β(t)
j − β

∗
j ‖2 ≤

(
3

4

)t
(

k∑
j=1

‖c∗β(0)
j − β

∗
j ‖2)

+ C
(1)
η,ζ,cs

· σ2 kd

nπ1+2ζ−1

min

log(kd) log(n/kd)

(5b)

with probability exceeding 1 − c1
{
k2

n7 + exp
(
−c2nπ2

min

)}
.

Here, c∗(> 0) minimizes the LHS of inequality (5a).

The proof of the theorem has been omitted due to space
constraints, and can be found in [19, Appendix B]. Let us
discuss the initialization conditions of the theorem in more
detail. We require the initialization β

(0)
1 , . . . , β

(0)
k to satisfy

condition (5a). In the well-balanced case (with πmin ∼ 1/k)
and treating k as a fixed constant, the initialization condi-
tion (5a) posits that the parameters are a constant “distance"
from the true parameters. Closeness here is measured in
a relative sense, i.e., between pairwise differences of the
parameter estimates as opposed to the parameters themselves.
The intuition for this is that β(0)

1 , . . . , β
(0)
k induces a partition

of samples S1(β
(0)
1 , . . . , β

(0)
k ), . . . , S1(β

(0)
1 , . . . , β

(0)
k ), and the

closeness to this to the true partition depends only on the
relative pairwise differences between parameters. Furthermore,
the initialization condition is also invariant to a global scaling
of the parameters, since scaling does not change the initial
partition of samples. Also note that the geometric convergence
guarantee (5b) holds uniformly for all initializations satisfying
condition (5a). Hence, the initialization parameters are not
additionally required to be independent of the covariates
or noise. This allows us to use the same n samples for
initialization of the parameters.

Let us now turn our attention to the bound (5b), which
consists of two terms. When t→∞, the second term of the
bound (5b) provides an estimate of the closeness of the final
parameters to the true parameters. Up to a constant, this is the
statistical error term

δsbn,σ(d, k, πmin) = σ2 kd

π1+2ζ−1

min n
log(kd) log(n/kd) (6)

that converges to 0 as n→∞, thereby providing a consistent
estimate in the large sample limit.

The first term of (5b) is an optimization error that is
best interpreted in the noiseless case σ = 0, wherein the
parameters β(t)

1 , . . . , β
(t)
k converge at a geometric rate to the

true parameters β∗1 , . . . , β
∗
k . In the noiseless case, we obtain

exact recovery of the parameters provided

n ≥ C kd

π1+2ζ−1

min

log(n/d).

Thus, the “sample complexity" of parameter recovery is linear
in the dimension d, which is optimal. In the well-balanced
case, we require n ∼ k2+2ζ−1

d, but lower bounds based on
parameter counting suggest that the true dependence ought to
be linear. We are not aware of whether the dependence on
πmin in the noiseless case is optimal; our simulations in panel
(a) suggest that the sample complexity depends inversely on
πmin, and so closing this gap is an interesting open problem.

In Figure 1, we verify that for independent, isotropic
covariates chosen uniformly from a symmetric interval2,
intitializing the AM algorithm in a neighborhood of the true
parameters suffices to ensure that it converges to the true
parameters. Furthermore, both the sample size requirement
and final error of the algorithm exhibit the behaviors predicted
by Theorem 1.

2Such a distribution is compactly supported and log-concave, and therefore
satisfies Assumption 1
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Fig. 1. Convergence of AM when the covariates are drawn i.i.d. from the distribution Unif[−
√
3,
√
3]⊗d—in panel (a), we plot the noiseless sample

complexity of AM; we fix
∥∥β∗i ∥∥ = 1 for all i ∈ [k], σ = 0 and πmin = 1/k. We say β∗i is recovered if

∥∥∥β(t)
i − β

∗
i

∥∥∥ ≤ 0.01. For a fixed dimension d, we
run a linear search on the number of samples n, such that the empirical probability of success over 100 trials is more than 0.95, and output the least such n.

In panel (b), we plot the optimization error (in blue)
∑k
j=1 ‖β

(t)
j − β

(T )
j ‖2 and the deviation from the true parameters (in red)

∑k
j=1

∥∥∥β(t)
j − β

∗
j

∥∥∥2 /σ2

over iterations t for different σ (0.15, 0.25, 0.4, 0.5), with k = 5, d = 100, T = 50 and n = 5d, and averaged over 50 trials. Panel (c) shows that the
estimation error at T = 50 scales at the parametric rate d/n, where we have chosen a fixed k = 5 and σ = 0.25.

We now compare Theorem 1 with [1, Theorem 1] for the
special case of Gaussian covariates, where η = 1 and ζ = 1/2.
In this case, all terms of the form π3

min in [1, Theorem 1] are
replaced by terms of the form π5

min. In particular, we see that
the initialization condition (5a) is more stringent and the final
statistical rate of the estimate (corresponding to the limit t→
∞) now attains an estimation error that is a factor π−2min higher
than the corresponding rate of [1, Theorem 1]. The sample
size requirement is similarly affected. On the other hand, the
geometric convergence result (5b) now holds uniformly for all
true parameters β∗1 , . . . , β

∗
k ∈ Bvol(πmin,∆, κ), as opposed to

[1, Theorem 1], which holds only when the true parameters
are held fixed. The more stringent initialization condition and
sample size requirements can be viewed as the price to pay for
the more robust convergence of the AM algorithm. Notably,
the dependence on all other parameters remains unchanged.

B. Consequences for phase retrieval

A notable consequence of Theorem 1 is that it can be applied
to the phase retrieval model (2)—in which results are usually
proved uniformly over all true parameters [16], [23]—to yield
a convergence result under general distributional assumptions
on the covariates. In particular, setting πmin = 1/2 and k = 2
yields a local linear convergence result for the AM algorithm of
the Gershberg-Saxton-Fienup type (presented for completeness
as Algorithm 1) uniformly for all θ∗ provided the covariates
satisfy a small-ball condition. We note that other algorithms
for phase retrieval have also been shown to succeed under
such small-ball assumptions [24], [25].

Corollary 1. Suppose that Assumption 1 holds. There exists a
universal constant c1 and a pair of constants (C

(1)
η,ζ,cs

, C
(2)
η,ζ,cs

)
depending only on (η, ζ, cs) such that if

n ≥ C(1)
η,ζ,cs

max {d, 10 log n} log(n/d),

then simultaneously for all true parameters θ∗ ∈ Rd and all
initializations θ(0) satisfying

min
c>0

min
s∈{−1,1}

∥∥∥cθ(0) − sθ∗∥∥∥
‖θ∗‖ ≤ C(2)

η,ζ,cs
, (7a)

the estimation error for all t ≥ 1 satisfies

min
s∈{−1,1}

‖θ(t) − sθ∗j ‖2 ≤
(
3

4

)t
min

s∈{−1,1}
‖θ(0) − sθ∗‖2

+
c1σ

2d log(n/d)

n

with probability exceeding 1− c1n−7.

The proof of the corollary follows almost immediately
from Theorem 1, and a full argument can be found in [19,
Appendix C]. Let us now compare this with the sharpest
existing local convergence result of AM for phase retrieval
due to Waldspurger [21], which holds for Gaussian covariates
and in the noiseless setting3. Specializing Corollary 1 to the
noiseless setting, we observe that provided the ratio n/d is
larger than a fixed constant (that depends only on (η, ζ, cs)),
we obtain exact recovery of the underlying parameter, up to
a global sign, with high probability provided the covariates
(or “measurement vectors" as they are called in the signal
processing literature) are sub-Gaussian and satisfy a small-ball
condition. To the best of our knowledge, prior work on the
AM algorithm had not established provable guarantees for
non-Gaussian covariates even in the noiseless setting. In the
noisy case, Corollary 1 guarantees convergence of the iterates
to a small neighborhood around either θ∗ or −θ∗, and the size
of this neighborhood is within a logarithmic factor of being
minimax optimal [16], [26]. Once again, to the best of our
knowledge, guarantees for the AM algorithm as applied to
noisy phase retrieval did not exist in the literature.

C. Proof ideas and technical challenges

Let us sketch, at a high level, the main ideas required
to establish guarantees on the AM algorithm. Note that we
analyze AM without sample splitting across iterations, and
hence the iterates depend on the data points {ξi, yi}ni=1. One
standard way to address this issue (see [13]) is to (a) first
analyze the population updates assuming n → ∞, and (b)

3Waldspurger [21] deals with the complex phase retrieval, whose analysis
is significantly more complicated than real phase retrieval considered here.
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Algorithm 1: Alternating minimization for real phase
retrieval
Input: Data {xi, yi}ni=1; initial parameter estimate

θ(0) ∈ Rd; number of iterations T .
Output: Final estimator θ̂.

1 Initialize t← 0.
repeat

2 Compute sign vector s(t) with i-th entry as

s
(t)
i = sgn(〈xi, θ(t)〉) for each i ∈ [n]. (8a)

3 Update

θ(t+1) = arg min
θ∈Rd

n∑
i=1

(yi − s(t)i 〈xi, θ〉)
2. (8b)

until t = T ;
4 Return θ̂ = θ(T ).

use concentration inequalities to show that the updates based
on the observed samples are close to the population updates.
Unfortunately, in our setting, handling the population updates is
quite non-trivial, since it requires understanding the geometry
of the covariate distribution induced by the maxima of affine
functions. Hence, we work with the random iterates directly.

We analyze the sample-based update of the AM algorithm
by relating the error of the parameters generated by this update
to the error of the parameters from which the update is run.
This involves three steps. First, we control the behavior of
the noise using standard concentration bounds for quadratic
forms of sub-Gaussian random variables, along with bounds
on the growth function of multi-class linear classifiers [27].
We then control the prediction error of the noiseless problem,
and this step crucially uses the small-ball condition satisfied by
the covariates along with the initialization condition. Finally,
in order to translate our bounds on the prediction error into
bounds on parameter estimation, we invert specifically chosen
sub-matrices of the covariate matrix over the course of the
algorithm. Our bounds naturally depend on how these sub-
matrices are conditioned. A key technical difficulty of the
proof is to control the spectrum of these random matrices,
rows of which are drawn from (randomly) truncated variants
of the covariate distribution. Our techniques for controlling
the spectrum of these matrices is more broadly applicable, and
we expect this result to be of broader interest.

III. FUTURE WORK

Owing to the local nature of our guarantees, a natural open
question is how to obtain a good initialization for the AM
algorithm. When the covariates are Gaussian, our prior work [1]
showed that a natural spectral method combined with random
search in lower-dimensional space was able to provide such an
initialization. However, this relied heavily on Gaussianity; how
can such ideas be extended to general small-ball distributions?
In a complementary direction, understanding the behavior
of the randomly initialized AM algorithm is a known open
problem in the context of phase retrieval [21], [28]; is this
convergence robust to distributional assumptions? Finally, can
our estimation procedures for the max-affine model (1) be used
to produce estimators for convex regression and its relatives?
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