
Closing the Design Loop: Bayesian Optimization Assisted
Hierarchical Analog Layout Synthesis

Mingjie Liu, Keren Zhu, Xiyuan Tang, Biying Xu, Wei Shi, Nan Sun, and David Z. Pan
ECE Department, The University of Texas at Austin, Austin, TX, USA

{jay liu, keren.zhu, xitang, biying, weishi0079}@utexas.edu, nansun@mail.utexas.edu, dpan@ece.utexas.edu

Abstract—Existing analog layout synthesis tools provide little guarantee
to post layout performance and have limited capabilities of handling
system-level designs. In this paper, we present a closed-loop hierarchical
analog layout synthesizer, capable of handling system designs. To ensure
system performance, the building block layout implementations are
optimized efficiently, utilizing post layout simulations with multi-objective
Bayesian optimization. To the best of our knowledge, this is the first work
demonstrating success in automated layout synthesis on generic analog
system designs. Experimental results show our synthesized continuous-
time ∆Σ modulator (CTDSM) achieves post layout performance of
65.9dB in signal to noise and distortion ratio (SNDR), compared with
67.8dB in the schematic design.

I. INTRODUCTION

The expanding markets of emerging applications, such as automo-
tive and Internet of Things (IoT), create large demands for analog
and mixed-signal (AMS) integrated circuits (ICs). This increasing
demand in consumer electronics calls for a shorter design cycle and
time-to-market.

Implementing analog circuit layout is a heavily manual, time-
consuming, and error-prone task. Human layout engineers often draw
the circuit layouts following conventions and guidelines from the
experienced circuit designers. The high cost of obtaining layouts and
long turnaround time in layout generation impede efficient feedback
to the designer. Moreover, the increasing layout dependent effects
in modern technology nodes makes prediction and analysis of post
layout performance difficult. Several efforts have been made to
automate analog layout synthesis to resolve the challenges above.
However, few have been adopted in practical design flows.

Traditional analog layout synthesis tools either have significant
design overhead or provide limited guarantee towards the post layout
performance. Procedural based analog layout generators [1] require
human to directly encode layout implementations, including device
placement location, routing metal layer selection, etc. These methods
have demonstrated great success in design reuse and technology mi-
grations. However, the codifying of layout implementations for differ-
ent designs is still manual, costly, and time-consuming. Optimization-
based layout tools [2]–[4] require circuit designers to manually input
layout constraints, which are enforced during placement and routing.
Heuristic constraints based methods suffer significant issues when
facing practical designs. Hand-crafted constraints are often design
specific, which lack flexibility and generality when transferring to
different designs. Performance-driven layout approaches derive equa-
tions from consider various layout effects, either analytically [5] or
through sensitivity analysis [6]. However, with increased device scal-
ing, analytical sensitivity estimates of parasitics and mismatch are no
longer accurate. The impacts of design and layout dependent effects,
such as clock coupling and IR drop, also become extremely complex
and difficult to estimate without intensive simulations empirically.
These tools are essentially open-loop one-shot layout generators,
lacking the iterative performance optimization process and relying
on human experience to consider all layout dependent effects.

On the other hand, recent advancements in analog circuit sizing
have shown significant improvements in effectively utilizing simu-
lations for performance optimizations. Simulation-based approaches
treat analog sizing as a black-box optimization problem [7], where
the circuit performance are obtained by querying the circuit simulator.
Compared with model-based approaches that require an understand-
ing of the intricate design performance trade-offs [8], simulation-
based methods rely on little prior knowledge on the circuit designs.
Gaussian process (GP) based Bayesian optimization (BO) [9], [10]
effectively combines both approaches and has demonstrated a sig-
nificant reduction in simulation cost and flexibility across different
designs. The success in analog circuit sizing demonstrates the impor-
tance of having performance simulations as feedback to the design
process and motivates us to adopt a similar approach in developing
a closed-loop analog layout synthesizer.

In this paper, we propose a closed-loop hierarchical analog layout
synthesizer with multi-objective Bayesian optimization. In contrast
to prior work [11], we assume that the circuit is well-designed and
only limit the exploration to different layout implementations. Our
approach efficiently utilizes post layout simulations to improve the
layout implementations iteratively. We demonstrate the effectiveness
of our approach at both the building block and system-level designs.
The framework is fully automated and capable of handling different
designs as input, with minor cost in setting up the simulation test
benches. Our main contributions are summarized as follows:

• We present a closed-loop hierarchical analog layout synthesizer
capable of handling system designs.

• We ensure the post layout performance of building block circuits
with a design specific exploration strategy assisted by multi-
objective Bayesian optimization.

• We incorporate automatic symmetry constraint detection both
between devices and subcircuits.

• We integrate analytical placement with analog routing, enforcing
the extracted symmetry constraints.

• We expose parameters in the synthesis flow for human-guided
system-level design optimization.

• The entire framework is open-source.1

The rest of this paper is organized as follows: Section II gives
the background on performance optimization and multi-objective
Bayesian optimization; Section III explains the implementation of
the proposed closed-loop hierarchical layout synthesis framework;
Section IV demonstrates the experimental result on both building
block and system level designs; Section V concludes the paper.

II. BACKGROUND AND PRELIMINARIES

In this section, we first give the problem formulation for post
layout performance optimization in Sec. II-A. Then we give a brief

1https://github.com/magical-eda/MAGICAL

overview of Gaussian process regression in Sec. II-B and multi-
objective Bayesian optimization in Sec. II-C.

A. Problem Formulation

Prior works of analog layout synthesis [12] attempt to guarantee
post layout performance by finetuning the circuit sizing parameters or
changing the circuit topology. The recent work of Hakhamaneshi et
al. [11] leverages deep neural network and evolutionary algorithm to
optimize circuit sizing with simulation results and layout generated
from BAG [1].

In contrast to these prior works, we assume that the circuit is al-
ready well-designed with thorough consideration. We focus primarily
on the physical design process of generating layouts attempting to
achieve performance comparable to schematic simulations. Instead
of weighting and aggregating different performance costs, we adopt
the formulation of a multi-objective optimization problem:

min(f1(x), · · ·, fm(x)), (1)

where fi(x) represent the post layout performance metric obtained
through simulation and x ∈ Rd are the design specific layout
parameters in Sec. III-D.

B. Gaussian Process Regression

Gaussian process [13] is a non-parametric statistical surrogate
model used to expedite the optimization of computational expensive
systems. Gaussian process regression (GPR) places a GP prior over
the latent function with a mean function m(x) and covariance kernel
function k(x, x′).

In our setting, we use the constant mean function m(x) = µ0. We
select the kernel function as the Radial Basis Function:

kRBF (x, x′) = σ2 exp(−
d∑
j=1

(xj − x′j)2

2l2j
), (2)

where hyperparameters σ2 and lj are the signal variance and
length-scales along the jth dimension. By giving the training data
D ∈ {X, y}, the kernel function hyperparameters θ = {σ, lj} could
be obtained by maximizing the marginal log likelihood function L(θ):

L(θ) = −1

2
yᵀK−1

θ y − 1

2
log |Kθ| −

n

2
log 2π, (3)

where Kθ is the covariance matrix between all possible pairs of
(x, x′) in the data set.

Subsequently, given a new data point x∗, the prediction mean and
variance are derived as follows:

µ(x∗) = µ0 + k(x∗, X)K−1
θ y, (4)

σ(x∗)2 = σ2 − k(x∗, X)K−1
θ k(X,x∗). (5)

In contrast to parametric models with only predictive scalar outputs,
GPR also allows the model to measure uncertainty in the terms
of σ(x∗). This allows more efficient trade-offs between exploration
versus exploitation in surrogate model based optimization algorithms.

C. Multi-Objective Bayesian Optimization

Bayesian optimization is a black-box optimization method, effi-
cient for handling expensive evaluation objectives over continuous
domains. The key ingredients of BO include a probabilistic surrogate
model of the objective function and an acquisition function for
deciding the next sample point while balancing between exploration
and exploitation. A commonly used surrogate model is the GP in
Sec.II-B, which predicts both the mean and variance of the objective
across the optimization domain. A simple yet widely used acquisition

function for single objective BO is the probability of improvement
over the incumbent target τ :

PI(x) =

∫ τ

−∞
φ(y)dy, (6)

where φ(y) is the posterior probability density function (PDF), in the
case of GP is N(µ(x), σ(x)2).

r

y

A

y1

y2

B

Fig. 1: Non-dominant region and exclusive hypervolume.

In the case of multi-objective Bayesian optimization (MOBO), the
acquisition function needs to be augmented to assess the improve-
ment over a Pareto set. We utilize hypervolume-based probability
of improvement [14] as the acquisition function for quantitatively
measuring the expected improvement:

PIhv(x) =

∫
y∈A

I(y, P)

m∏
i=1

φi(yi)dyi, (7)

where A is the non-dominated region, I(y, P) is the exclusive
hypervolume [15], and φi(yi) ∼ N(µi(x), σi(x)2) is the PDF for
the ith objective function. As shown in Fig. 1, the colored region
A denote the non-dominate region of the Pareto set bounded by a
reference point r. The blue-colored region B indicates the exclusive
hypervolume of y relative to the Pareto set. The benefit of PIhv as
the acquisition function is that the evaluation of multiple objectives
could be concentrated to a single closed-form representation.

III. HIERARCHICAL ANALOG LAYOUT SYNTHESIS

In this section, we briefly explain the proposed hierarchical analog
layout synthesis methodology. In this paper we mainly focus on the
synthesis framework and refer the readers to our prior work [16],
[17] for implementation details. We first explain the bottom-up
design methodology in Sec. III-A. The automatic symmetry constraint
detection, analog placement and routing are briefly explained in
Sec III-B and Sec. III-C. Section III-D summarizes the parameters
of the layout generation process. Finally, the closed-loop layout
synthesis framework is presented in Sec. III-E.

A. Hierarchical Design Methodology

Human designers, as well as prior works on analog sizing [12]
adopt a top-down design methodology, where system-level perfor-
mance are translated to lower-level building block specifications.
Thus most schematics of analog systems naturally contain hierarchy
information, which largely captures the designers’ intent.

The layout design process, on the other hand, should be bottom-up,
where the building block circuits layout needs to be completed before
the top-level layout could be implemented. Though several works
have documented similar approaches for analog layout synthesis [3],
[12], most of these works focus on further decomposing building

block circuits (amplifiers) into smaller subcircuits (e.g. differential
input, bias circuits, and cascade topology). To the best of our knowl-
edge, no prior work on analog layout synthesis has demonstrated
success on generic analog system-level designs.

We adopt the bottom-up design methodology for analog layout
synthesis. The hierarchical analog layout synthesis flow is shown
in Algorithm 1. After parsing the circuit netlist, the hierarchy tree is
constructed, with nodes representing sub-block circuits, and the edges
indicating dependencies. The layout for the system is generated by re-
cursively visiting the hierarchy tree and clearing layout dependencies.
In this approach, the top-level layouts would always be implemented
after all its dependent circuit layouts are completed. In addition to
determining dependencies, the sub-blocks are automatically labeled
into the following types:
• Devices: Transistors, resistors, and capacitors.
• Standard Cells: Digital standard cells.
• Building Blocks: Circuits consisting only of devices.
• Macro Blocks: Circuits that reference other building blocks or

macro blocks.
The device and standard cell layouts could be obtained with a PCell
generator or directly from the technology process design kit (PDK).
Building blocks and macro blocks have to be placed and routed
with different considerations of symmetry constraints, which will be
explained in detail in the following sections.

Algorithm 1 Hierarchical Analog Layout Synthesis

Input: Hierarchical Netlist N
Output: System Layout L

1: Generate hierarchy tree T
2: Node v ← T.root
3: LayGen(v,T)
4: function LayGen(v,T)
5: if v is device or standard cell then
6: Obtain layout Lv from PDK
7: else
8: for u in v.children do
9: if Lu is not implemented then

10: Lu ← LayGen(u,T)
11: Generate symmetry constraints
12: Place and route Lv
13: return Layout Lv
14: end function

B. Symmetry Constraint Detection

Symmetry constraints are one of the most essential and widely
adopted constraints applied during analog layout synthesis. Since the
characteristics of symmetry among devices and between building
blocks are vastly different, we use different methods to generate
symmetry constraints for building blocks and macro blocks. We
classify symmetry constraints into two categories and briefly discuss
our constraint detection method for each type.

1) Device Symmetry: Only the symmetry constraints between
devices need to be considered for building blocks. We adopt a method
similar to the works of [18]. The building block circuit is abstracted
into a graph. A pattern library of the commonly used differential
topology of transistors is predefined. We use graph isomorphic
algorithms to detect matching patterns on the building block circuits
with the pattern library. The circuit graph is then traversed from the
matched patterns to recognize new symmetry constraints of passive

devices and self symmetry devices. The symmetry between bias
circuits and net symmetry are also generated during graph traversal.
The graph traversal step is analogous to following the differential
current in the small-signal analysis.

2) System Symmetry: We define system symmetry as the constraint
between two building blocks or macro blocks. System symmetry
differs from device symmetry because on the system level, template
libraries are difficult to generate and graph isomorphic algorithms
are expensive. Since the same building block could be referenced
multiple times in system design, we propose to extract graphs that
include the neighboring circuit topology of the building blocks to
resolve the ambiguity. The extracted graphs are then compared
using an efficient graph similarity metric leveraging spectral graph
analysis [17]. The ambiguity between building blocks could be
resolved by comparing the similarity metrics of detected symmetry
pairs. Self symmetry constraints and symmetry net constraints could
also be extracted similar to the approach in device symmetry.

C. Analog Placement and Routing

The layout generation for building blocks and macro blocks rely
on placement and routing to generate the final layout implementation.
Placement would require the bounding box shape of each component
and connection information to optimize for the wirelength objective.
Routing only requires the placement results, net pin location, and net
connection information. The placement and routing solution should
also adhere to the symmetry constraints generated in Sec. III-B. We
use the same place and route engine for both building block and
macro block, since the physical design process is irrelevant to the
circuit design and labeled type.

The placement engine consists of global placement followed by
legalization. The analytical global placement is similar to [16], which
minimizes:

Objective =
∑
i

αi · fWLi + β · fAREA, (8)

where fWLi is the wirelength for net i and fAREA is the penalty term
for layout area. The legalization step enforces symmetry constraints,
non-overlapping of cells, and spacing design rules.

The routing engine utilizes a sequential symmetry-aware grid-
based A* search algorithm [19]. Unlike digital routers, analog routing
does not enforce the routed nets to align to routing tracks. The design
rules of metal wires are checked during the A* search. The symmetry
constraints are enforced by mirroring the routing solutions respect to
the symmetry axis. The final GDSII layout is generated after routing.

D. Parameters Summary

In this section, we summarize the parameters of the hierarchical
analog layout synthesis flow. We divide the parameters into design
parameters, which could change according to the design and hyper-
parameters that are design independent. These parameters could be
either automatically determined by MOBO for building blocks, or
fine-tuned by human for system designs.

1) Design Parameters: The most important design parameters are
the net weighting αi for the global placement objective in Equation 8.
Different net weighting combinations could significantly change the
floor plan and placement solution and result in different post layout
performance. A net with larger weight would pull the connected
devices closer in the layout and have smaller parasitics. The routed
wire widths of each net is also a design dependent parameter, which
allows trade-offs between the parasitic resistance and capacitance.
The sequence of net routing is also important since late routed nets
tend to have detours to avoid early routed nets.

2) Hyperparameters: Hyperparameters are independent of design
but affect the behavior of placement and routing. This could be β in
the Equation 8 measuring how aggressive the placement minimizes
the area. Net spacing is also important since a large spacing tends to
result in longer wirelength but less coupling interference.

E. Closed-loop Layout Synthesis Framework

We present a closed-loop analog layout synthesis framework by
leveraging multi-objective Bayesian optimization. We select the net
weighting design parameters αi in the global placement optimization
objective as the search domain. We only select symmetry and self
symmetry nets detected in the Sec. III-B as optimization candidates,
while setting the weights of other non-critical nets to 1. This design
specific exploration strategy could significantly change the layout
implementation, leading to varying post layout performance results.

Algorithm 2 Multi-objective Bayesian Optimization

Input: Sampled data xt, {fi(xt)}mi=1

Output: Next net weighting xt+1

Output: Stopping criteria meetCriteria
1: Initialize Pareto set P to ∅
2: meetCriteria← false
3: function MOBO(xt,{fi(xt)}mi=1)
4: if t < nrandom then
5: Random sample xt+1 from search domain
6: else
7: if {fi(xt)}mi=1 meet requirement or t > nlimit then
8: meetCriteria← true
9: Adjust Pareto set P and reference point r

10: Update GP models for each objective fi(x)
11: Optimize PIhv(x) based on GP, P , and r
12: Select next net weighting xt+1

13: return xt+1, meetCriteria
14: end function

The multi-objective Bayesian optimization algorithm is presented
in Algorithm 2. During each iteration, new performance results
{fi(xt)}mi=1 are obtained from post layout simulations. The Pareto
set P and reference point r is adjusted if needed. The GP model is
updated with the new data point with GPR in Sec. II-B. Finally, the
next net weighting xt+1 is determined by maximizing PIhv(x) with
a two-staged optimizer of Monte-Carlo optimization and L-BFGS.

The entire framework is shown in Fig. 2. The layout synthesis
flow is fully automated and capable of handling different input design
netlists, with minor cost in setting up the simulation test benches. The
automated closed-loop layout synthesis is shown in Algorithm 3. The
parasitic extractions and simulations are automated and conducted
with industrial-level design tools. The MOBO algorithm treats the
layout generation and performance simulation as black-box functions,
iteratively updates the GP model, and generates new net weighting
for the layout synthesizer.

IV. EXPERIMENTAL RESULTS

We implement the proposed hierarchical flow with symmetry
constraint generation in Python. The analog routing and placement
algorithms are implemented in C++. The MOBO algorithm is based
on GPflow [20]. All designs are in TSMC 40nm technology, extracted
for parasitics with Calibre PEX, and simulated with Cadence Spectre.
All experiments were performed on a Linux workstation with Intel
3.4GHz i7-3770 CPU and 32GB memory.

Algorithm 3 Closed-Loop Analog Layout Synthesis

Input: Netlist N
Input: Symmetric Constraints C
Output: Layout L

1: meetCriteria← false
2: Initialize net weighting x0 and t = 0
3: while meetCriteria is false do
4: Lp ← Place(N , C, xt)
5: Lr ← Route(Lp, N , C)
6: Next ← ParasiticExtraction(Lr , N)
7: {fi(xt)}mi=1 = Simulation(Next)
8: xt+1, meetCriteria = MOBO(xt,{fi(xt)}mi=1)
9: t← t+ 1

10: Obtain optimized layout L from Pareto set P
11: return Layout L

Circuit Netlist

PDK

INPUTS

Symmetry Constraint
Detection

Layout
Synthesizer Bayesian

Optimization

Performance

Net Weighting

Default
Parameters

Closed-loop Layout Synthesis Framework

OUTPUT

GDSII Layout

Optimize Acquisition
Function

Circuit Netlist

PDK

INPUTS

Symmetry Constraint
Detection

Layout
Synthesizer Bayesian

Optimization

Performance

Net Weighting

Default
Parameters

Closed-loop Layout Synthesis Framework

OUTPUT

GDSII Layout

Optimize Acquisition
Function

Placement

Routing

Parasitic Extraction

Simulation

Determine Next
Net Weighting

Update GP Model

Update Pareto Set

Fig. 2: Closed-loop layout synthesis.

We demonstrate the effectiveness of our framework with two
examples. Section IV-A is a two-stage operational amplifier design,
and the performance are optimized fully automated with the proposed
MOBO algorithm. Section IV-B is a complex system design of a
continuous-time ∆Σ modulator. We demonstrate that without closing
the design loop for its building blocks, the performance of the system
would severely degrade. We also identify the key issue of long
simulation time in system designs. By embedding human design
experience with little manual overhead, we were able to further
decrease the distortion and improve the performance of the CTDSM.

A. Two-Stage Operational Amplifier

In this section, we demonstrate the fully automated layout synthesis
flow with a two-stage operational amplifier. The circuit is miller
compensated and includes a common-mode feedback loop, as shown
in Fig. 3. The design contains 36 devices in total, with 14 design
parameters of critical net weighting selected according to Sec. III-E.
For our MOBO, the number of initial random samples is set to 20,
and the maximum number of simulations is limited to 200.

We first demonstrate the result jointly optimizing the common-
mode rejection ratio (CMRR) and absolute input-referred offset
voltage. These two objectives are selected since they are affected
much more by the layout implementation than the design sizing.
We compare the MOBO algorithm with random sampling. The
comparison of the obtained Pareto set is shown in Fig. 4(a). Although
random sampling obtains a better Pareto set in 50 iterations compared
with MOBO, little improvement is achieved by increasing the number
of iterations to 200. It could be observed that better Pareto sets
could be obtained with more exploration of the MOBO algorithm
that outperforms random sampling.

Fig. 3: Schematic of two-stage operational amplifier.

We also observe that the implemented layouts suffer degradation
of bandwidth and shift in phase margin from the schematic. This is
mainly due to the layout parasitics. In Fig. 4(b), we plot the Pareto
set for joint optimizing the gain and bandwidth. We observe that
the Pareto set has a constant gain bandwidth product (GBW) and
that almost no improvement is made by design exploration. This
suggests that for performance highly correlated with circuit design
and parasitics, the improvement gained from optimization is severely
limited. These performance are largely bounded by the circuit design
and layout parasitics from suboptimal placement and routing.

After the Pareto set is obtained, the designer could conduct more
detailed simulations on the implemented layout and select a layout
design that meets the requirement. A random implementation would
be selected from the Pareto set otherwise. The final selected layout
performance is shown in Table I. We also show a particularly bad
layout result one-shot generated with default parameters.

(a) (b)

Fig. 4: Pareto sets from MOBO. (a) CMRR and Offset. (b) Gain and
Bandwidth.

TABLE I: Two-Stage Operational Amplifier

Schematic Optimized Layout One-shot Layout
Gain (dB) 54.0 54.1 32.8

GBW (MHz) 487 344 335
Phase Margin 50.6° 67.7° 14.5°
CMRR (dB) − 119.7 56.4
Offset (mV) − 0.007 4.8

B. Continuous-time ∆Σ Modulator

In this section, we demonstrate our hierarchical layout synthesis on
a 2nd order continuous-time ∆Σ modulator. The system architecture
is shown in Fig. 5. The first stage operational amplifier used is the
design in Sec. IV-A. The second stage amplifier has the same circuit
topology but slightly modified sizing. In total, this design consists of
177 devices with 6 digital standard cells.

We demonstrate the severe limitations of simulation-based op-
timization approach on system-level designs. Table II shows the

DFF

Q

QB

Vip

Vin

CLK CLKB
DO

DFF

Q

QB

Vip

Vin

CLK CLKB
DO

Forward Signal

Feedback Signal

Forward Signal

Feedback Signal

Fig. 5: Schematic of 2nd Order CTDSM.

runtime for different design complexity. It could be observed that
the simulation time becomes unmanageable for system designs. As
an example of this CTDSM design, an 8192 point Fast Fourier Trans-
form (FFT) needs to be conducted to characterize its performance.
This results in a long and expensive transient simulation. For post
layout performance, costly transient simulations have to be done at
the transistor level to capture the layout dependent effects, such as
well proximity effects, signal integrity, and clock coupling.

TABLE II: Runtime Comparison

Layout Extraction Simulation
Amplifier 18s 34s 26s
CTDSM 1m14s 41s 1h59m25s

In our experiment, we optimize the building block level circuits,
mainly the two operational amplifiers, with the proposed closed-
loop layout synthesis framework. Since repetitive simulations for
the CTDSM system is unaffordable, we attempt to optimize the
system performance by embedding human experience into the layout
generation process. We consider signal integrity and clock coupling
at the system level and make minor adjustments to the placement
and routing algorithms by only changing the parameters of the
layout generation process introduced in Sec. III-D. The details of
our heuristic implementations are as follows:
• Net Weighting: We increase the weight of the critical nets on

the forward signal chain shown in Fig. 5. This will cause the
layout synthesizer to place the building blocks according to the
signal flow.

• Routing Sequence: We prioritize routing clock nets first and
power/ground the last. This will create shorter clock routing
and less coupling to signal nets.

• Routing Spacing: We increase the routing metal spacing for the
top-level system routing. The increased spacing would decrease
the coupling between nets.

OpAmp1

OpAmp2

DFF

Comparator

(a)

OpAmp2

OpAmp1

Comparator

DFF

(b)

Fig. 6: CTDSM layout implementations. (a) Optimized signal flow.
(b) Irregular signal flow.

Figure 6 shows the comparison of two different layout imple-
mentations. The forward signal path is highlighted in red, and the

feedback path is in purple. By changing the weights of the parameters
of the layout generation process, we can embed the designers’
understanding of the system and affect the layout implementation.
The simulation result comparison is shown in Fig. 7(a). We can
observe that the layout with optimized signal flow has lower harmonic
distortion and 7.5dB of improvement in the spurious-free dynamic
range (SFDR) compared with the layout with irregular signal flow.
We believe this is largely due to mitigated clock coupling to critical
signal nets in the forward and feedback paths.

To further demonstrate the importance of having a closed-loop
layout synthesizer, we implement a one-shot generated layout without
optimizing for the building block circuits performance. The first stage
operational amplifier is the one-shot layout shown in Table I in
Sec. IV-A. Without the guarantee of building block circuit perfor-
mance, the system design performance would significantly degrade.
The simulation result is shown in Fig. 7(b).

5

7.5dB

(a)

5

~30dB

(b)

Fig. 7: Simulation results. (a) Optimized vs irregular signal flow. (b)
Open-loop layout.

Table III shows the CTDSM performance comparisons between
different implementations based on simulations. One-shot and Ir-
regular are layouts generated fully automatically with no human-in-
the-loop. Schematic refers to the schematic design. One-shot is the
layout design without closed-loop optimization of the building blocks.
Irregular is the layout with performance optimization and default
parameter settings in the synthesis flow, resulting in irregular signal
paths. Optimized is the layout with human embedded experience and
optimized signal flow paths. We can observe that having a close-loop
layout synthesis flow to guarantee building block circuits performance
is critical in ensuring the successful implementation of system-level
layout. By embedding human experience in finetuning the parameters,
we can further boost the performance with 7.5dB improvement in the
SFDR. Our synthesized layout achieves SNDR of 65.9dB compared
to the schematic design of 67.8dB.

TABLE III: CTDSM Performance

Schematic One-shot Irregular Optimized
Supply (V) 1.2
Fs (MHz) 320
BW (MHz) 5
SNDR (dB) 67.8 39.6 65.2 65.9
SFDR (dB) 84.7 48.5 73.0 80.5

Power (mW) 0.84 0.91 0.86 0.86
Area (um2) − 8094 8188 9450

V. CONCLUSION

In this work, we present a closed-loop hierarchical analog layout
synthesis framework. The framework is open-source, fully automated,
and capable of handling different designs as input. The performance
for building block circuits are guaranteed by leveraging post layout

simulations and multi-objective Bayesian optimization. We demon-
strate the high cost of simulation in system designs and further
optimize the system performance by embedding human experience.
Our obtained CTDSM achieves a post layout performance of 65.9dB
in SNDR, compared with 67.8dB in the schematic design.

ACKNOWLEDGEMENT

This work is supported in part by the NSF under Grant
No. 1704758, and the DARPA ERI IDEA program.

REFERENCES

[1] J. Crossley, A. Puggelli, H. . Le, B. Yang, R. Nancollas, K. Jung,
L. Kong, N. Narevsky, Y. Lu, N. Sutardja, E. J. An, A. L. Sangiovanni-
Vincentelli, and E. Alon, “Bag: A designer-oriented integrated frame-
work for the development of ams circuit generators,” in ICCAD, Nov
2013, pp. 74–81.

[2] V. Meyer zu Bexten, C. Moraga, R. Klinke, W. Brockherde, and K. .
Hess, “Alsyn: flexible rule-based layout synthesis for analog ic’s,” JSSC,
vol. 28, no. 3, pp. 261–268, March 1993.

[3] J. M. Cohn, D. J. Garrod, R. A. Rutenbar, and L. R. Carley,
“Koan/anagram ii: New tools for device-level analog placement and
routing,” JSSC, vol. 26, no. 3, pp. 330–342, 1991.

[4] K. Kunal, M. Madhusudan, A. K. Sharma, W. Xu, S. M. Burns,
R. Harjani, J. Hu, D. A. Kirkpatrick, and S. S. Sapatnekar, “Invited:
Align – open-source analog layout automation from the ground up,” in
DAC, June 2019.

[5] H.-C. Ou, K.-H. Tseng, J.-Y. Liu, I. Wu, and Y.-W. Chang, “Layout-
dependent-effects-aware analytical analog placement,” in DAC, 2015.

[6] K. Lampaert, G. Gielen, and W. M. Sansen, “A performance-driven
placement tool for analog integrated circuits,” JSSC, vol. 30, no. 7, pp.
773–780, 1995.

[7] B. Liu, F. V. Fernández, Q. Zhang, M. Pak, S. Sipahi, and G. Gielen,
“An enhanced moea/d-de and its application to multiobjective analog cell
sizing,” in IEEE Congress on Evolutionary Computation, July 2010.

[8] M. del Mar Hershenson, “Design of pipeline analog-to-digital converters
via geometric programming,” in ICCAD, Nov 2002, pp. 317–324.

[9] W. Lyu, F. Yang, C. Yan, D. Zhou, and X. Zeng, “Multi-objective
bayesian optimization for analog/rf circuit synthesis,” in DAC, 2018.

[10] S. Zhang, W. Lyu, F. Yang, C. Yan, D. Zhou, X. Zeng, and X. Hu, “An
efficient multi-fidelity bayesian optimization approach for analog circuit
synthesis,” in DAC, 2019.

[11] K. Hakhamaneshi, N. Werblun, P. Abbeel, and V. Stojanović, “Late
breaking results: Analog circuit generator based on deep neural network
enhanced combinatorial optimization,” in DAC, 2019.

[12] G. G. E. Gielen and R. A. Rutenbar, “Computer-aided design of analog
and mixed-signal integrated circuits,” Proceedings of the IEEE, vol. 88,
no. 12, pp. 1825–1854, Dec 2000.

[13] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. The MIT Press, 2005.

[14] I. Couckuyt, D. Deschrijver, and T. Dhaene, “Fast calculation of multi-
objective probability of improvement and expected improvement criteria
for pareto optimization,” Journal of Global Optimization, vol. 60, no. 3,
pp. 575–594, 2014.

[15] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca,
“Performance assessment of multiobjective optimizers: an analysis and
review,” IEEE Transactions on Evolutionary Computation, vol. 7, no. 2,
pp. 117–132, April 2003.

[16] B. Xu, K. Zhu, M. Liu, Y. Lin, S. Li, X. Tang, N. Sun, and D. Z. Pan,
“Magical: Toward fully automated analog ic layout leveraging human
and machine intelligence,” in ICCAD, 2019.

[17] M. Liu, W. Li, K. Zhu, B. Xu, Y. Lin, L. Shen, X. Tang, N. Sun, and
D. Z. Pan, “S3det: Detecting system symmetry constraints for analog
circuits with graph similarity,” in ASPDAC, Jan 2020.

[18] M. Eick, M. Strasser, K. Lu, U. Schlichtmann, and H. E. Graeb,
“Comprehensive generation of hierarchical placement rules for analog
integrated circuits,” IEEE TCAD, vol. 30, no. 2, pp. 180–193, Feb 2011.

[19] K. Zhu, M. Liu, Y. Lin, B. Xu, S. Li, X. Tang, N. Sun, and D. Z. Pan,
“Geniusroute: A new analog routing paradigm using generative neural
network guidance,” in ICCAD, Nov 2019.

[20] A. G. d. G. Matthews, M. van der Wilk, T. Nickson, K. Fujii, A. Bouk-
ouvalas, P. León-Villagrá, Z. Ghahramani, and J. Hensman, “GPflow:
A Gaussian process library using TensorFlow,” Journal of Machine
Learning Research, vol. 18, no. 40, pp. 1–6, Apr 2017.

