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Abstract: We prove that bounded weak solutions of the compressible Euler equations
will conserve thermodynamic entropy unless the solution fields have sufficiently low
space-time Besov regularity. A quantity measuring kinetic energy cascade will also
vanish for such Euler solutions, unless the same singularity conditions are satisfied.
It is shown furthermore that strong limits of solutions of compressible Navier–Stokes
equations that are bounded and exhibit anomalous dissipation are weak Euler solutions.
These inviscid limit solutions have non-negative anomalous entropy production and
kinetic energy dissipation, with both vanishing when solutions are above the critical
degree of Besov regularity. Stationary, planar shocks in Euclidean space with an ideal-
gas equation of state provide simple examples that satisfy the conditions of our theorems
and which demonstrate sharpness of our L3-based conditions. These conditions involve
space-time Besov regularity, but we show that they are satisfied by Euler solutions that
possess similar space regularity uniformly in time.

1. Introduction

In a 1949 paper on turbulence in incompressible fluids [1], L. Onsager announced a result
that spatial Hölder exponents≤ 1/3 are required of the velocity field for anomalous tur-
bulent dissipation (that is, energy dissipation non-vanishing in the limit of zero viscosity).
His sketched argument involved the idea that the velocity field in the limit of infinite
Reynolds number is a weak (distributional) solution of the incompressible Euler equa-
tions. Onsager never published a detailed proof of his singularity theorem, but works of
Eyink [2], Constantin et al. [3], and Duchon and Robert [4], among others later, proved
Onsager’s claimed result and even more precise results. Onsager’s own unpublished
argument was essentially the same as that given in [4], according to the historical evi-
dence [5]. More recent mathematical work has established existence of dissipative weak
Euler solutions of the type conjectured by Onsager, beginning with pioneering work of
DeLellis and Székelyhidi, Jr. [6,7] on the convex integration approach, that has since
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culminated in constructions of solutions with the critical 1/3 regularity [8,9]. None of
these theorems establish that dissipative Euler solutions exist as the zero-viscosity lim-
its of incompressible Navier–Stokes solutions, necessary to rigorously found Onsager’s
theory for fluid turbulence from first principles.

In this paper, we prove an Onsager singularity theorem for weak solutions of the
compressible Euler equations in arbitrary space-dimension d ≥ 1. The basic state vari-
ables are the mass density � := �(x, t), fluid velocity v := v(x, t) and internal energy
density u := u(x, t) (or specific internal energy um = u/�), with the latter defined
implicitly by the relation E := 1

2�|v|2 + u in terms of the total energy density E . The
Euler system then consists of the d + 2 dynamical equations expressing conservation of
mass, momentum and energy:

∂t� + ∇x ·(�v) = 0, (1)

∂t (�v) + ∇x ·(�vv + pI) = 0, (2)

∂t E + ∇x ·((p + E)v) = 0. (3)

We use the “dyadic product” notation vv of J. W. Gibbs for the tensor product v ⊗ v
of space-vectors, which is convenient in this paper. The pressure is given by a thermo-
dynamic equation of state p := p(u, �) as a function of u and �. A previous paper
[10] has studied a similar problem, but under the assumption of a barotropic equation of
state, with pressure p = p(�) a function only of mass density and with no independent
equation for the total energy density E . Our results are valid for a general equation of
state p(u, �), assuming only that the fluid undergoes no phase transitions during its
evolution (see Assumption 2 for a more precise statement). We also consider strong
limits of solutions of the compressible Navier–Stokes equations for Reynolds and Péclet
numbers tending to infinity. As we shall show, such strong limits are weak solutions
of the compressible Euler system (1)–(3). This is a subclass of all Euler solutions, but
arguably the one most relevant to compressible fluid turbulence.

In order to precisely state our results, recall that the Navier–Stokes-Fourier system
(or, simply, the compressible Navier–Stokes equations) for a viscous, heat-conducting
fluid takes the form:

∂t� + ∇x ·(�v) = 0, (4)

∂t (�v) + ∇x ·(�vv + pI + T) = 0, (5)

∂t E + ∇x ·((p + E)v + T · v + q) = 0. (6)

The viscous stress tensor T is given by Newton’s rheological law:

T := −2ηS− ζΘI with S := 1

2

(
∇xv + (∇xv)� − 2

d
ΘI

)
and Θ := divxv, (7)

where η := η(u, �) > 0 and ζ := ζ(u, �) > 0 represent the shear and bulk viscosity,
respectively. The heat flux q is given by Fourier’s law:

q := −κ∇x T, (8)

with thermal conductivity κ := κ(u, �) > 0, where T := T (u, �) is the temperature
of the fluid. For this system, see standard physics texts such as Landau and Lifshitz
[11, §49] or de Groot and Mazur [12, Ch. XII, §1], and, in the mathematics literature,
Gallavotti [13, §1.1], Feireisl [14,15] or Lions [16]. Balance equations of kinetic energy
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density and internal energy density follow straightforwardly for smooth solutions of the
system (4)–(6). The equations for kinetic and internal energy densities are:

∂t

(
1

2
�|v|2

)
+ ∇x ·

((
p +

1

2
�|v|2

)
v + T · v

)
= p Θ − Q, (9)

∂t u + ∇x ·(uv + q) = Q − p Θ, (10)

where the rate of viscous heating of the fluid is explicitly:

Q := −T : ∇xv = 2η|S|2 + ζΘ2. (11)

An essential role will be played in our analysis by the thermodynamic entropy. The
entropy density s := s(u, �) (or the specific entropy sm = s/�) is related to u and �

through the first law of thermodynamics in the form:

T ds = du − μd�, (12)

with the chemical potential μ := μ(u, �). The entropy s is a concave function of (u, �),

as a consequence of extensivity of the thermodynamic limit [17,18] or macroscopi-
cally as an expression of thermodynamic stability [19,20]. The fundamental equation
s := s(u, �) completely determines the thermodynamics of any system, yielding by
equilibrium thermodynamic relations all other functions, including temperature T (u, �),

chemical potential μ(u, �), pressure p(u, �), etc. These functions satisfy the thermo-
dynamic Gibbs relation:

T s = u + p − μ�, (13)

by an application of the Euler theorem on homogeneous functions [19,20].

Remark 1. For concreteness, we mention here a couple of examples of thermodynamic
fundamental equations of some standard fluids. First, an ideal gas has

s(u, �) = αkB�

[
log

(
u

�1+1/α

)
+ s0

]
(14)

for Boltzmann’s constant kB and parameter α = f/2 > 0, related to the number of
mechanical degrees of freedom f of individual gas molecules. For a simple monatomic
gas in d space dimensions, f = d. The constant s0 is determined from microscopic
statistical mechanics. This simple model with an appropriate choice of α describes the
thermodynamics of most gaseous systems at low density.

Another standard example is the van der Waals fluid with entropy:

s(u, �) = conc. env.
{
αkB�

[
log

(
(1/� − b)1/α(u/� + a�)

)
+ s0

]}
. (15)

Here the notation “conc. env.” denotes the upper concave envelope of the function inside
the curly brackets, which is smooth but not a globally concave function of (u, �).The van
derWaals model incorporates some density corrections through the new terms involving
constants a, b > 0, but reduces to the ideal gas law in the low-density limit ρ → 0.
This is the simplest example of a fluid model exhibiting a gas-liquid phase transition for
low energies and high densities, at the points in the (u, �)-plane of non-smoothness of
the concave envelope in (15).

For these models, see [19,20]. Needless to say, our results apply not just to these
specific examples but very widely, because the relations (12) and (13) are general results
of equilibrium thermodynamics and statistical mechanics [17,18].
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From the compressible Navier–Stokes system (4)–(6) and the thermodynamic relation
(12) follows the balance equation for the entropy density:

∂t s + ∇x ·
(

sv +
q
T

)
= Q

T
+ Σκ. (16)

The entropy production rate Σ := Q/T + Σκ involves a viscous heating contribution
with Q again given by (11), and a term due to thermal conduction:

Σκ := −q · ∇x T

T 2 = κ
|∇x T |2

T 2 . (17)

In accord with second law of thermodynamics, entropy is globally increased since:

Σ := Q

T
+ Σκ = 2

η

T
|S|2 + ζ

T
|Θ|2 + κ

|∇x T |2
T 2 ≥ 0. (18)

For these standard results see [11,12].
Smooth solutions of the compressibleEuler system satisfy the samebalance equations

as (9), (10), and (16), but with ζ, η, κ ≡ 0 so all of the non-ideal terms vanish, i.e.
T,q = 0 and Q,Σ ≡ 0. This need not be true, of course, for weak solutions. An
important class of weak solutions that we consider are those arising from limits of
solutions �ε, uε, vε of the Navier–Stokes system with transport coefficients scaled as
ηε = εη, ζ ε = εζ, κε = εκ, for ε → 0. Essentially, 1/ε represents the Reynolds and
Péclet numbers of the fluid. To avoid issues involving boundary conditions, we consider
only flows on space domains Ω either d-dimensional Euclidean space Ω = R

d or the
d-torus Ω = T

d . We shall often use the notation Γ = Ω × (0, T ) for the space-time
domain, T <∞ or T = ∞.

We then make the following specific assumptions:

Assumption 1. Given ε > 0, we assume that there exists a unique smooth solution
uε, �ε, vε of the compressible Navier–Stokes system (4)–(6) on Ω × (0, T ) for a given
equation of state. In fact, most of our analysis will apply to suitable weak Navier–Stokes
solutions. We assume uε, �ε, vε ∈ L∞(Ω × (0, T )) uniformly bounded for ε < ε0 and
that for some 1 ≤ p <∞ strong limits exist

uε → u, �ε → �, vε → v in L p
loc(Ω × (0, T )). (19)

Here L p
loc(Γ ), as usual (see e.g. [21,22]), denotes the linear space of measurable func-

tions which are locally p-integrable:

L p
loc(Γ ) = { f : Γ → R meas. | f ∈ L p(O), ∀ open O ⊂⊂ Γ } (20)

where A ⊂⊂ B denotes that the closure Ā is compact and Ā ⊂ B. Strong convergence
fn → f in L p

loc(Γ ) is the requirement that for any open O ⊂⊂ Γ the restrictions
converge fn

∣∣
O → f

∣∣
O strong in L p(O). With this topology, L p

loc(Γ ) is a complete
metrizable space for all p ≥ 1. Whenever Γ̄ is itself compact (e.g. Γ̄ = T

d × [0, T ]
with T < ∞), L p

loc(Γ ) = L p(Γ ). We remark also that, trivially, L∞(Γ ) ⊂ L p
loc(Γ )

for all p ≥ 1. Thus the convergence in (19) implies convergence pointwise almost
everywhere for a subsequence εk → 0 and u, �, v ∈ L∞(Ω × (0, T )). The mode
of convergence (19) permits limiting fields with jump discontinuities. We also assume
�ε ≥ �0 for some �0 > 0 and ε < ε0, so that the fluid nowhere approaches a vacuum
state with zero density.
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Assumption 2. We assume that the solutions involve thermodynamic states (u, �)

strictly away from phase transitions, so that all thermodynamic functions h = p, T,

μ, s, η, ζ, κ, etc. are smooth in u, �. The set of states attained by any solution is the
essential range over space-time,R = ess.ran(u, �) andRε = ess.ran(uε, �ε) for ε > 0,
which are compact sets in R

2 [23]. The uniform boundedness in L∞(Ω × (0, T )) of
uε, �ε for ε < ε0 implies that there exists a compact set K ⊂ R

2 such that the closed
convex hull

conv[Rε ∪R] ⊆ K , ∀ε < ε0. (21)

We then assume for h that there is an open set U ⊂ R
2, with K ⊂ U and h ∈ C M (U )

with smoothness exponent M ≥ 2.

Assumption 3. Assume that the dissipation terms defined in Eqs. (11) and (18) converge
as ε→ 0 in the sense of distributions:

Qε
η := 2ηε|Sε|2, Qε

ζ := ζ ε(Θε)2, Qε := Qε
η + Qε

ζ

D′−→ Q,

and

Σε
η :=

Qε
η

T ε
, Σε

ζ :=
Qε

ζ

T ε
, Σε

κ := κε

∣∣∣∣∇x T ε

T ε

∣∣∣∣
2

, Σε := Σε
η + Σε

ζ + Σε
κ

D′−→ Σ.

The limit distributions are obviously non-negative, and thus Radon measures.

Remark 2. The set of compressibleNavier–Stokes solutions onEuclidean spaceRd satis-
fying these three assumptions is non-empty and includes, in particular, shock solutions.
See examples in [24,25]. Numerical simulations of compressible turbulence with the
system (4)–(6) on the torus Td show that small-scale shocks (or “shocklets”) naturally
develop. There is also some evidence, however, that at sufficiently high Mach numbers
the limiting mass density � as ε→ 0 may exist only as a measure and not as a bounded
function [26]. There is thus empirical motivation to weaken Assumption 1 in future
work.

We now state our main theorems. First, we establish the balance equations of energy
and entropy for general bounded weak Euler solutions :

Theorem 1. Let u, �, v ∈ L∞(Ω × (0, T )) be any weak solution of the compressible
Euler system (1)–(3) satisfying � ≥ �0 > 0 and Assumption 2. Let Qflux

� be the “energy
flux” defined by (70) below and Σ inert∗

� the “inertial entropy production” defined by
(95). Assuming that the distributional limit of Qflux

� exists,

Qflux = D′- lim
�→0

Qflux
� (22)

then local energy and entropy balance equations hold in the sense of distributions on
Ω × (0, T ):

∂t

(
1

2
�|v|2

)
+ ∇x ·

((
p +

1

2
�|v|2

)
v
)
= p ◦Θ − Qflux, (23)

∂t u + ∇x · (uv) = Qflux − p ◦Θ, (24)

∂t s + ∇x · (sv) = Σinert. (25)
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where Σinert and p ◦Θ necessarily exist and are defined by the distributional limits

Σinert = D′- lim
�→0

Σ inert∗
� , p ◦Θ = D′- lim

�→0
(p ∗ G�)(Θ ∗ G�), (26)

with G�, � > 0 a space-time mollifying sequence.

Remark 3. This result is analogous to Proposition 2 of [4] for weak solutions of incom-
pressible Euler with v ∈ L3(Td × (0, T )). In their theorem, the assumption on the
existence of Qflux was unnecessary. We need to add this as an additional hypothesis,
because of the new term p ◦Θ that appears in the energy balance equations. Of course,
p ◦Θ = 0 assuming incompressibility.

Remark 4. Note that the second equation in (26) for p ◦ Θ is a standard definition of
a generalized distributional product of p and Θ [27]. This standard definition requires
that the limit be independent of the chosen mollifier G. We note that for the purposes of
Theorem 1, one could alternatively assume existence of p ◦ Θ and then deduce it for
Qflux. The combination p ◦Θ − Qflux always exists.

Our next results concern the strong limits of Navier–Stokes solutions satisfying
Assumptions 1–3. First, we prove that these limits are necessarily weak solutions of
the Euler equations, even if the limit dissipation measures in Assumption 3 remain pos-
itive: Q > 0 and Σ > 0. Moreover, we show that such solutions satisfy weak energy
and entropy balance laws, which include possible anomalies:

Theorem 2. The strong limits u, �, v of compressible Navier–Stokes solutions under
Assumptions 1–3 are weak solutions of the compressible Euler system (1)–(3) on Ω ×
(0, T ). Furthermore, the following local energy and entropy equations hold in the sense
of distributions on Ω × (0, T ):

∂t

(
1

2
�|v|2

)
+ ∇x ·

((
p +

1

2
�|v|2

)
v
)
= p ∗Θ − Q, (27)

∂t u + ∇x · (uv) = Q − p ∗Θ, (28)

∂t s + ∇x · (sv) = Σ, (29)

with Q ≥ 0 and Σ ≥ 0 given by Assumption 3 and with

p ∗Θ := D′- lim
ε→0

pεΘε, (30)

where this distributional limit necessarily exists.

Remark 5. Theorem 2 is analogous to Proposition 4 of [4] for the strong limits of solu-
tions of the incompressibleNavier–Stokes equationwith viscosity tending to zero.Again,
in their theorem, the analogue of our Assumption 3was unnecessary, whereas we needed
to add this as an additional hypothesis because of the new term p ∗ Θ defined by (30)
that appears in the energy balance equations.

Remark 6. Euler solutions obtained from Theorem 2 for vanishing viscosity necessarily
satisfy Theorem 1 for general weak Euler solutions. It follows that:

Σinert = Σ ≥ 0 and Qinert := Qflux + τ(p,Θ) = Q ≥ 0, (31)

where τ(p,Θ) is the “pressure-dilatation defect” defined by

τ(p,Θ) = p ∗Θ − p ◦Θ. (32)
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The lefthand sides in (31) are “inertial-range” expressions for Q and Σ , analogous
to those established in Proposition 1 and Section 5 of [4] for incompressible fluids.
In particular, Σinert and Qflux describe “cascade” and can be expressed in terms of
increments of the variables u, �, v by analogues of the Kolmogorov “4/5th-law” for
compressible turbulence. Whereas Σinert, Qflux can have any signs for general weak
Euler solutions, they are constrained by (31) for zero-viscosity solutions. The pressure-
dilation defect in (32) is an additional source of anomalous energy dissipation, with no
analogue for incompressible fluids.

Remark 7. Shock solutions on Euclidean space R
d , as discussed in [24,25], provide

examples for which Q > 0 and Σ > 0 in (27)–(29). It is of some interest to note
that for stationary, planar shocks in an ideal gas, Q = τ(p,Θ) > 0, so that the entire
contribution to Q is from the pressure-dilatation defect. See [25] for this result. Although
shock solutions with discontinuous state variables u, �, v provide the simplest examples
of weak Euler solutions with Q, Σ positive, presumably positive anomalies can occur
even with continuous solutions.

We now state an analogue of the Onsager singularity theorem. We prove neces-
sary conditions for anomalous dissipation involving Besov space exponents, as in the
improvement by [3] of Onsager’s Hölder-space statement. Here we note that the Besov
space Bσ,∞

p (O) for a general open set O ⊂⊂ Γ is made up of measurable functions
f : Γ → R which are finite in the norm:

‖ f ‖Bσ,∞
p (O) := ‖ f ‖L p(O) + sup

h∈RD,|h|<hO

‖ f (· + h)− f ‖L p(O)

|h|σ , (33)

for p ≥ 1 and σ ∈ (0, 1) and where hO = dist(O, ∂Γ ). See [10] and, for a general
discussion, [28, §1.11.9]. In this paper, we define a local Besov space:

Bσ,∞
p,loc(Γ ) := { f : Γ → R meas. | f ∈ Bσ,∞

p (O), ∀ open O ⊂⊂ Γ }. (34)

Again, whenever Γ̄ is itself compact (e.g. Γ̄ = T
d × [0, T ]), Bσ,∞

p,loc(Γ ) = Bσ,∞
p (Γ ).

Theorem 3. Let u, �, v ∈ L∞(Ω × (0, T )) be any weak solution of the compressible
Euler system (1)–(3) satisfying � ≥ �0 > 0, Assumption 2, and additionally

u ∈ B
σ u

p ,∞
p,loc (Ω × (0, T )), � ∈ B

σ
�
p ,∞

p,loc (Ω × (0, T )), v ∈ B
σv

p ,∞
p,loc (Ω × (0, T )),

with all three of the following conditions satisfied

2min{σ u
p , σ

�
p } + σv

p > 1, (35)

min{σ u
p , σ

�
p } + 2σv

p > 1, (36)

3σv
p > 1, (37)

for some p ≥ 3. Then Qflux, Σflux necessarily exist and equal zero. Further, inviscid
limit solutions from Theorem 2 satisfying exponent conditions (35)–(37) have

Q = Σ = 0 and p ∗Θ = p ◦Θ.

Thus, it is only possible that Q > 0 or Σ > 0 if at least one of (35)–(37) fails to hold
for each p ≥ 3.
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Remark 8. Our proof of Theorem 3 generalizes the argument of [3], which employed
a simple mollification of the weak Euler solution. In fact, this idea can be exploited to
give a new notion of “coarse-grained Euler solution”, which we introduce in Sect. 2
and show there to be equivalent to the standard notion of “weak solution,” not only for
compressible Euler equations but for very general balance relations. As discussed in [25],
the concept of “coarse-grained solution” makes connection with renormalization-group
methods in physics. We employ this notion to prove both our Theorems 2 and 3. Our
analysis of compressible Navier–Stokes and Euler solutions was directly motivated by
the earlierwork ofAluie [29], and our theorems generalize previous results for barotropic
compressible flow [10]. It is worth noting that all of our results generalize to relativistic
Euler equations in Minkowski spacetime, following the discussion in [30].

Remark 9. Our Theorem 3 is formulated in terms of space-time regularity, whereas the
original statement ofOnsager andmost followingworks have given necessary conditions
for anomalous dissipation in terms of space-regularity only. Note that our proof of
Theorem 3 requires mollification/coarse-graining in time as well as space, and thus
space-time regularity is natural for the proof (and also in the relativistic setting).However,
we obtain conditions involving space-regularity only from the next theorem. Adapting
standard definitions, we set:

L∞((0, T ); Bs,∞
p,loc(Ω)) := { f : Γ → R meas. |

sup
t∈(0,T )

‖ f (·, t)‖Bs,∞
p (O) <∞, ∀ open O ⊂⊂ Ω}.

(38)

With this convention, we have the following result:

Theorem 4. Let u, �, v be any weak Euler solution satisfying � ≥ �0 > 0 and �, u, v ∈
L∞(Ω × (0, T )) together with:

u ∈ L∞((0, T ); B
σ u

p ,∞
p,loc (Ω)),

� ∈ L∞((0, T ); B
σ

�
p ,∞

p,loc (Ω)), v ∈ L∞((0, T ); B
σv

p ,∞
p,loc (Ω)),

for Besov exponents 0 ≤ σ u
p , σ

�
q , σ v

q ≤ 1. Then the solutions are also Besov regular
locally in space-time:

u ∈ B
min{σ�

p ,σ v
p ,σ u

p },∞
p,loc (Ω × (0, T )), (39)

� ∈ B
min{σ�

p ,σ v
p },∞

p,loc (Ω × (0, T )), (40)

v ∈ B
min{σ�

p ,σ v
p ,σ u

p },∞
p,loc (Ω × (0, T )). (41)

Remark 10. This result is very similar to that obtained in recent work of P. Isett for
Hölder-continuous weak solutions of incompressible Euler [31], and the proof is almost
the same. In fact, we shall derive Theorem 4 as a consequence of a more general result
which derives time-regularity from space-regularity for a wide class of weak balance
equations.

Remark 11. It is interesting to know how sharp are the necessary conditions for anoma-
lous dissipation following from Theorems 3 and 4. While answering this question for
the incompressible case has required more sophisticated tools [6,8,32,33], we have a
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very cheap argument showing that our conditions are sharp for p = 3 and Ω = R
d .

In fact, the stationary planar shock solutions for an ideal gas in [24,25] are obtained
as strong limits of compressible Navier–Stokes solutions for vanishing viscosity and
satisfy u, �, v ∈ (BVloc ∩ L∞)(Rd). These provide a simple example of dissipative
Euler solutions saturating our bounds, since (BVloc ∩ L∞)(Ω) ⊂ B1/p,∞

p,loc (Ω), p ≥ 1

by the argument of [10, Proposition 2.1]. That paper stated this result only for Ω = T
d ,

but the proof rests on a standard approximation theorem for BV functions that holds
for any open O ⊂ R

d (see e.g. [22, Thm. 2 of §5.2.2], or [34, Thm. 5.3.3]). For p = 3
this means that we may take σ u

3 = σ
�

3 = σv
3 = 1/3 and then (35)–(37) are satisfied

as equalities. For p > 3, the sharpness of our results for solutions on R
d remains an

open issue. Note that a standard Besov embedding gives Bσ,∞
p,loc(Ω) ⊂ Cσ−d/p

loc (Ω) and

Bσ,∞
p,loc(Ω × (0, T )) ⊂ Cσ−(d+1)/p

loc (Ω × (0, T )) (see [28, §1.11.1]). Thus, if our neces-
sary conditions are sharp, then dissipative solutions at the critical values for sufficiently
large p must be Hölder-continuous.

No stationary Euler solution can illustrate the sharpness of our results, if a finite
entropy S = ∫

dd x s and bounded velocities are required. If (1 ∧ |x|−1)s v ∈ L1(Rd),

then ∇x · (sv) = Σ ≥ 0 only for Σ ≡ 0. This follows by smearing the stationary
entropy balance with φ(|x|/R) for φ ∈ C∞c (R+,R+)with φ(r) = 1 for r < 1, φ(r) = 0

for r > 2, so
∫

dd x Σ = limR→∞−
∫

R<|x|<2R dd x 1
R φ′

( |x|
R

)
svr , with vr the radial

component of v. Thus,
∫

dd x Σ = 0 with the integrability assumption on s v, e.g. for
v ∈ L∞(Rd) and s ∈ L1(Rd). The sharpness of our conditions thus remains open for all
p ≥ 3with such solutions onRd .Likewise, the question remains open for Euler solutions
on T

d . No stationary shock examples of the type discussed in [24,25] can exist on the
torus, since the anomalous entropy production in a stationary solution must arise from
positivity of the space-divergence of the entropy current, which necessarily vanishes for
periodic solutions. (We owe both of the above observations to an anonymous referee). On
the other hand, turbulent solutions of the compressible Navier–Stokes equation observed
in numerical simulations on the torus appear to exhibit non-stationary shocks (e.g. [26]).
We therefore expect that such shock solutions again illustrate sharpness of our results
for p = 3 and Ω = R

d or Td , but the rigorous mathematical construction of such
non-stationary solutions will be more involved.

The detailed contents of the present paper are as follows: In Sect. 2, we introduce
the space-time coarse-graining operation and prove the equivalence of distributional and
coarse-grained solutions. In Sect. 3, we derive balance equations for the coarse-grained
compressible Navier–Stokes system. In Sect. 4, we establish auxiliary commutator esti-
mates necessary for our main theorems. In Sects. 5–8 we prove Theorems 1–4.

2. Coarse-Grained Solutions and Weak Solutions

We are concerned in this section with general balance equations of the form

∂tu + ∇x · F = 0 (42)

on a space-time domain Ω × R where again either Ω = T
d or Rd , for simplicity, and

u ∈ R
m and F ∈ R

d×m .As usual, one defines (u,F) to be a weak/distributional solution
of (42) iff

〈∂tϕ,u〉 + 〈∇xϕ;F〉 = 0, ∀ϕ ∈ D(Ω × R), (43)



742 T. D. Drivas, G. L. Eyink

where the space D(Ω×R) = C∞c (Ω×R) of test functions consists of C∞ functions ϕ

compactly supported in space-time, provided the topology defined by uniform conver-
gence of functions and all their derivatives on compact sets containing all the supports.
Components ua, Fia belong to the space D′(Ω × R) of continuous linear function-
als on D(Ω × R), with 〈∂tϕ,u〉a = 〈∂tϕ, ua〉 and 〈∇xϕ;F〉a = ∑d

i=1〈∇xi ϕ, Fia〉 for
a = 1, . . . , m. For these standard notions, e.g. see [35,36]. We offer here a slightly
different point of view on these topics.

Let G be a standard space-time mollifier, with G ∈ D(Ω × R), G ≥ 0, and also∫
Ω

ddr
∫
R
dτ G(r, τ ) = 1. To simplify certain estimates we also assume, without loss

of generality, that supp(G) is contained in the Euclidean unit ball in (d + 1) dimensions.
Define the dilatationG�(r, τ ) = �−(d+1)G(r/�, τ/�) and space-time reflection Ǧ(r, τ ) =
G(−r,−τ). For any u ∈ D′(Ω × R) we define its coarse-graining at scale � by

ū� = Ǧ� ∗ u ∈ C∞(Ω × R). (44)

Here ∗ denotes the convolution defined by

(Ǧ� ∗ u)(x, t) = 〈Sx,tG�,u〉 (45)

for shift operator (Sx,tG�)(r, τ ) = G�(r − x, τ − t) or, equivalently, by

〈ϕ, Ǧ� ∗ u〉 = 〈ϕ ∗ G�,u〉 (46)

for all test functions ϕ ∈ D(Ω × R). See [36]. We say that (u,F) are a (space-time)
coarse-grained solution of (42) iff

∂t ū� + ∇x · F̄� = 0 (47)

holds pointwise in space-time for all � > 0. We then have:

Proposition 1. (u,F) are a distributional solution of (42) on Ω × R iff (u,F) are a
coarse-grained solution of (42) on Ω × R

Proof. If (u,F) satisfy (42) weakly, then taking ϕ = Sx,tG� in (43) for any space-time
point (x, t) implies (47) by the definition (45) of the convolution.

On the other hand, suppose that (u,F) are a coarse-grained solution of (42). Smearing
(47) with an arbitrary test function ϕ ∈ D(Ω ×R), then gives by the second definition
(46) of convolution that

〈(∂tϕ) ∗ G�,u〉 + 〈(∇xϕ) ∗ G�;F〉 = 0. (48)

However, in the limit � → 0, then (∂tϕ) ∗ G� → ∂tϕ and (∇xϕ) ∗ G� → ∇xϕ in the
standard Fréchet topology on test functions. Since u, F ∈ D′(Ω × R) are, by defini-
tion, continuous functionals on D(Ω × R), Eq. (43) of the standard weak formulation
immediately follows. ��

This equivalence extends to solutions with prescribed initial-data. A standard
approach to define weak solutions (u,F) of (42) on space-time domain Ω × [0,∞)

with initial data u0 ∈ D′(Ω) is to require that

〈∂tϕ,u〉 + 〈∇xϕ;F〉 + 〈ϕ(·, 0),u0〉 = 0, ∀ϕ ∈ D(Ω × [0,∞)). (49)

Here the space D(Ω × [0,∞)) is taken to consist of piecewise-smooth functions of
the form ϕ(x, t) = θ(t)φ(x, t), products of the Heaviside step function θ(t) and some
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φ ∈ D(Ω ×R). Such test functions ϕ ∈ D(Ω × [0,+∞)) are causal, with ϕ(x, t) = 0
for t < 0. In order to make the lefthand side of (49) meaningful, a stronger assumption is
required than only (u,F) ∈ D′(Ω×R). A very general assumption is that distributional
products θ � u, θ � F exist defined by θ � f := D′- lim�→0 θ f � for f ∈ D′(Ω × R)

[27]. In that case, we can take

〈∂tϕ,u〉 := 〈∂tφ, θ � u〉, 〈∇xϕ;F〉 := 〈∇xφ; θ � F〉. (50)

Because limit distributions θ � f clearly have support in Ω × [0,∞), the definition
(50) does not depend upon the choice of φ such that ϕ = θφ. In the special case
when f = u,F ∈ L1

loc(Ω × [0,∞)), then strong convergence of f � → f in L1
loc

(e.g. see Lemma 7.2 of [21]) implies that the definitions (50) reduce to their standard
interpretation. In addition,to make the definition (49) meaningful, one must require
weak-∗ continuity of the distribution u in time, so that t �→ 〈ψ,u(·, t)〉 is continuous
for all ψ ∈ D(Ω). Initial data is then achieved in the sense that

lim
t→0+
〈ψ,u(·, t)〉 = 〈ψ,u0〉, ∀ψ ∈ D(Ω). (51)

The coarse-graining approach can be also carried over with only minor changes. The
mollifier G must now be chosen to be strictly causal, with G ∈ D(Ω × (0,∞)) and
thus G(r, τ ) ≡ 0 for τ ≤ 0. The definition (44) of coarse-graining still applies, noting
that the convolution in time is (χ1 ∗ χ2)(t) =

∫ t
0 ds χ1(s)χ2(t − s) for causal functions

χ1, χ2. We can again define (u,F) to be a coarse-grained solution of (42) if (47) holds
pointwise in space-time for all � > 0. Since u� ∈ C∞(Ω × [0,∞)), the functions
u�(·, 0) ∈ C∞(Ω) are well-defined and the coarse-grained solution is naturally said to
take on initial data u0 ∈ D′(Ω) when

D′- lim
�→0

u�(·, 0) = u0. (52)

It is straightforward to see for all ψ ∈ D(Ω) that

〈ψ, u�〉 =
∫

ddr
∫ ∞
0

dτ G�(r, τ )Ψ (r, t), Ψ (r, τ ) := 〈Srψ,u(·, τ )〉. (53)

Suppose that one requires not only weak-∗ continuity of u in time, but also the stronger
statement that Ψ (r, τ ) defined in (53) is jointly continuous in (r, τ ) for all ψ ∈ D(Ω).

The initial data prescribed by (50) and (52) are then the same.
This leads to:

Proposition 2. If (u,F) is a coarse-grained solution of (42) on Ω × [0,∞) with initial
datau0, then it is a distributional solution with the same initial data. If also 〈Srψ,u(·, τ )〉
is jointly continuous in (r, τ ) for all ψ ∈ D(Ω), then a distributional solution (u,F)

of (42) on Ω × [0,∞) with initial data u0 is a coarse-grained solution with the same
initial data.

Proof. To prove the first statement, multiply the coarse-grained equation (47) with the
Heaviside function θ and then smear with an arbitrary φ ∈ D(Ω × R). An integration-
by-parts in time gives that

〈(∂tφ), θu�〉 + 〈(∇xφ); θF�〉 + 〈φ(·, 0), u�〉 = 0.

Taking the limit �→ 0 with definition (50) and assumption (52) recovers (49).
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For the second statement, takeϕ = Sx,tG� ∈ D(Ω×(0,∞)) for anyx ∈ Ω and t ≥ 0.
We see that ϕ is strictly causal, i.e. ϕ(·, 0) = 0. Equation (49) of the weak formulation
thus yields the coarse-grained equation (47) for that choice of (x, t) and �. Furthermore,

because of (53) and the joint continuity of 〈Srψ,u(·, τ )〉 in (r, τ ), u�(·, 0) D′−→u0 holds
for the same u0 given by (51). ��
Remark 12. If u ∈ C([0,∞); L p(Ω)) with continuity in the strong L p-norm topology
for some p ≥ 1, then the joint continuity follows from the obvious continuity ofΨ (r, τ )

in r for each τ and the Hölder inequality

|Ψ (r, τ )− Ψ (r, τ ′)| ≤ ‖ψ‖q‖u(·, τ )− u(·, τ ′)‖p, q = p/(p − 1),

which implies continuity of Ψ (r, τ ) in τ uniform in r ∈ Ω.

Remark 13. In Lemma 8 of [6] it was proved that, if (u,F) is a weak solution with
u ∈ L∞([0,∞), L2(Ω)) and F ∈ L1

loc(Ω × [0,∞)), then u can always be altered
on a zero measure set of times so that u ∈ Cw([0,∞), L2(Ω)), with continuity in the
weak topology of L2(Ω). In that case, Ψ (r, τ ) defined for any ψ ∈ D(Ω) by (53) is
continuous in τ for each r ∈ Ω. By Cauchy–Schwartz,

|∇rΨ (r, τ )| ≤ ‖∇ψ‖2‖u‖L∞([0,∞);L2(Ω)),

so that Ψ (r, τ ) is also (Lipschitz) continuous in r uniformly in τ, and thus is jointly
continuous in (r, τ ) under the same assumptions as in [6].

Remark 14. The above results hold with only minor modifications for solutions on Ω ×
[0, T ) with 0 < T < ∞. Coarse-grained solutions are required now to satisfy Eq.
(47) only for x, t and � such that Sx,tG� ∈ D(Ω × (0, T )). On the other hand, for
any ϕ ∈ D(Ω × [0, T )), then Tϕ = max{t : (x, t) ∈ supp(ϕ)} < T . Since supp(G)

is contained in the unit ball, then Sx,tG� ∈ D(Ω × (0, T )) for any � < T − Tϕ and
(x, t) ∈ supp(ϕ) and our previous arguments on equivalence of the two notions of
solution can be repeated without change.

Remark 15. In the paper [3], only spacemollification was employed. One can also define
a space coarse-graining with a standard mollifier G�(r) = �−d G(r/�), that is, û� =
Ǧ� ∗ u. This is a smooth function of space but only a distribution in time. In that case,
we say that (u,F) are a (space) coarse-grained solution of the balance relation (42) iff

∂t û� + ∇x · F̂� = 0 (54)

holds pointwise in space and distributionally in time for all � > 0. This is also equivalent
to the standard notion of weak solution, as can be seen by arguments very similar to
those given above. If furthermore u,F ∈ L1

loc(Ω×(0, T )), then standard approximation
arguments show that the time-derivative in (54) can be taken to be a classical derivative
at Lebesgue almost all times.

Inmany applications, including those considered in this paper,u is notmerely a distri-
bution but a measurable function of space-time, and F := F(u) is a pointwise nonlinear
function of u. A key aspect of the coarse-graining operation is that coarse-graining non-
linear functions of fields generally gives a result different from evaluating the function at
the coarse-grained fields, i.e. the operations of coarse-graining and function-evaluation
do not commute. For simple products of the form f1 f2 · · · fn, this non-commutation
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can be measured by coarse-graining cumulants, which are defined iteratively in n by
τ�( f ) = f̄� and

( f1 · · · fn)� =
∑
Π

|Π |∏
p=1

τ �( f
i (p)
1

, . . . , f
i (p)
n p

), (55)

where the sum is over all partitions Π of the set {1, 2, . . . , n} into |Π | disjoint subsets
{i (p)
1 , . . . , i (p)

n p }, p = 1, . . . , |Π |. See e.g. [37,38]. For example, for n = 2

( f g)� = f �g� + τ �( f, g) or τ �( f, g) = ( f g)� − f �g�. (56)

For general composed functions h = h( f1, . . . , fn) with h a smooth nonlinear function
on R

n , the non-commutation is measured by the quantity

Δ�h := h( f1, . . . , fn)� − h(( f1)�, . . . , ( fn)�). (57)

To simplify thewriting of various expressions, we shall often use an “under-bar” notation
to indicate the function evaluated at coarse-grained fields:

h� := h(( f1)�, . . . , ( fn)�), (58)

whereas h� = h( f1, . . . , fn)�.

Remark 16. If, as in Remark 14 above, we consider space-time domainswith a finite time
interval Γ = Ω × (0, T ), T <∞ (or a semi-infinite interval Ω × (0,∞) for mollifiers
which are not causal), coarse-graining cumulants τ�( f1, . . . , fn) and smooth functions
h� of coarse-grained fields are not defined everywhere on Γ for � > 0. Instead, they are
defined only for (x, t) ∈ Γ such that Sx,tG� ∈ D(Ω × (0, T )), e.g. when the distance
of (x, t) to ∂Γ is less than �. They are thus well-defined for every (x, t) ∈ Ω × (0, T )

at sufficiently small �.

3. Coarse-Grained Navier–Stokes and Balance Equations

We now discuss the results of coarse-graining the solutions of the compressible Navier–
Stokes system. None of the results in this section depend upon the particular type of
coarse-graining and are valid whether coarse-graining is in space, time, space-time or
using some other averaging procedure (such as weighted coarse-graining). We drop the
superscript ε in this section to simplify notations.

The coarse-grained Navier–Stokes equations for mass density �, momentum density
j = �v, and energy density E are

∂t�� + ∇x · J� = 0, (59)

∂t J � + ∇x ·
(
(jv)� + p�I + T�

)
= 0, (60)

∂t E� + ∇x ·
(
((E + p)v)� + (T · v)� + q�

)
= 0. (61)

It is useful to rewrite Eqs. (59) and (60) employing the Favre (density-weighted) aver-
aging:

f̃� = (� f )�/��. (62)
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One may likewise define cumulants τ̃�( fi , . . . , fn) with respect to this Favre filtering.
See [29,39]. With this new averaging, (59)–(60) may be rewritten:

∂t�� + ∇x · (��ṽ�) = 0, (63)

��(∂t + ṽ� · ∇x )ṽ� + ∇x ·
(
��τ̃�(v, v) + p�I + T�

) = 0. (64)

We emphasize that our use of Favre coarse-graining is mathematically only a matter of
convenience, in order to reduce the number of terms in our coarse-grained equations
(and to provide them with simple physical interpretations [25,29]). Favre cumulants of
f1, . . . , fn may always be rewritten in terms of unweighted cumulants of f1, . . . , fn
and �. For example [29,40]:

f̃� = f � +
1

��

τ �(�, f ), (65)

τ̃�( f, g) = τ �( f, g) +
1

��

τ �(�, f, g)− 1

�2
�

τ �(�, f )τ �(�, g), (66)

τ̃�( f, g, h) = τ �( f, g, h) +
1

��

τ �(�, f, g, h) (67)

− 1

�2
�

[τ �(�, f )τ �(�, g, h) + cyc. perm. f, g, h]

+
2

�3
�

τ �(�, f )τ �(�, g)τ �(�, h).

We next derive various balance equations for the coarse-grained fields.

Resolved Kinetic Energy: Following Aluie [29], we consider a resolved kinetic energy
1
2��|ṽ|2 = |J|2�/2��. Using (63) and (64) one can derive its balance equation:

∂t

(
1

2
��|ṽ�|2

)
+ ∇x · Jv

� = p�Θ� − Qflux
� − Dv

� , (68)

where the various terms are defined by:

Jv
� :=

(
1

2
��|ṽ�|2 + p�

)
ṽ� + ��ṽ� · τ̃�(v, v)− p�

��

τ �(�, v) + ṽ� · T�, (69)

Qflux
� := ∇x p�

��

· τ �(�, v)− ��∇x ṽ� : τ̃�(v, v), (70)

Dv
� := −∇x ṽ� : T�. (71)

Equation (68) may be rewritten as

∂t

(
1

2
��|ṽ�|2

)
+ ∇x · Jv

� = (pΘ)� − Qinert
� − Dv

� , (72)

where the “inertial dissipation” is defined by

Qinert
� := Qflux

� + τ �(p,Θ). (73)
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Unresolved Kinetic Energy. We define this quantity (with summation over repeated i
indices) as

k� := 1

2
��τ̃�(vi , vi ). (74)

Note that 1
2��|ṽ�|2 + k� = 1

2

(
�|v|2)�, whose integral over Ω is a time-mollification

of the total kinetic energy. Taking the difference of the coarse-grained kinetic-energy

equation (9) governing 1
2

(
�|v|2)� and Eq. (68) for 1

2��|ṽ�|2, one obtains:
∂t k� + ∇ · Jk

� = (τ �(p,Θ)− Q�) + Qflux
� + Dk

� , (75)

where

Jk
� :=

1

2
��τ̃�(vi , vi )ṽ� + τ �(p, v) +

1

2
��τ̃�(vi , vi , v)

+ (T · v)� − T� · ṽ�, (76)

Dk
� := −T� : ∇x ṽ�. (77)

Resolved Internal Energy: Directly coarse-graining equation (10), one finds the follow-
ing balance equation for the resolved internal energy:

∂t u� + ∇x · Ju
� = Q� − (pΘ)�, (78)

where

Ju
� = (uv)� + q� = u�v� + τ �(u, v) + q�. (79)

Amore important quantity for our analysis is u∗� := u�+k�,which we term the “intrinsic
resolved internal energy”. It is defined more fundamentally by the implicit relation

E� = 1

2
��|ṽ�|2 + u∗�, (80)

in terms of the resolved quantities ��, ṽ�, and E�. One thus derives a balance equation
for this intrinsic internal energy by subtracting the resolved kinetic energy balance (68)
from the coarse-grained total energy equation (61):

∂t u
∗
� + ∇x · Ju∗

� = Qflux
� − p�Θ� + Dk

� , (81)

where Dk
� is defined by Eq. (77) and

Ju∗
� = u�v� + τ �(h, v) +

1

2
��τ̃�(vi , vi )ṽ� +

1

2
��τ̃�(vi , vi , v)

+ q� + (T · v)� − T� · ṽ�, (82)

with h := u + p defining the standard thermodynamic enthalpy.

Resolved Entropy: We derive an equation for s� := s(u�, ��) using (78), also (59)
rewritten as

∂t�� + ∇x · (��v� + τ �(�, v)) = 0, (83)
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the homogeneous Gibbs relation T �s� = (u� + p�)−μ���, and the first law of thermo-
dynamics:

T �Dt s� = Dt u� − μ�Dt��, (84)

with Dt = ∂t + v� · ∇ being the material derivative along the smoothed flow. One then
finds that the resolved entropy satisfies:

∂t s� + ∇x · Js
� =

Q� − τ �(p,Θ)

T �

− I flux� + Σflux
� + Ds

�, (85)

where

Js
� := s�v� + β� (τ �(u, v) + q�)− λ�τ �(�, v), (86)

I flux� := β�(p� − p�)Θ�, (87)

Σflux
� := ∇xβ� · τ �(u, v)− ∇xλ� · τ �(�, v), (88)

Ds
� := −

q� · ∇x T �

T 2
�

, (89)

with β := 1/T and λ := μ/T . Considering the source terms on the righthand side of
(85), we shall see that all of the termsmarked “flux” satisfy simple bounds, and the direct
dissipation term Ds

� will be seen to vanish as ε → 0, but the quantity Q� − τ �(p,Θ),
which originates from the Dt u� term in (84), is more difficult to estimate. Fortunately,
the same term appears in the balance equation for “unresolved kinetic energy.”

Intrinsic Resolved Entropy: In order to cancel the difficult term Q� − τ �(p,Θ), we
introduce an “intrinsic resolved entropy density” by s∗� := s(u�, ��)+β�k�.This quantity
is defined more fundamentally by

s∗� = β�(u
∗
� + p�)− λ���, (90)

where u∗� is the intrinsic resolved internal energy defined in (80). The two definitions are
seen to be the same using the homogenous Gibbs relation (13), or s� = β�(u� + p�)−
λ���. By means of (90) and (81), together with the standard thermodynamic relation
Dt (β� p�) = ��Dtλ� − u�Dtβ�, one obtains

Dt s
∗
� = (Dtβ�)k� + β�Dt u

∗
� − λ�Dt��. (91)

rather than (84). Note that Dt u∗� appears here rather than Dt u�. It is straightforward
using (91) to derive the balance equation for s∗� :

∂t s
∗
� + ∇x · Js∗

� = −I flux� + Σflux∗
� + Ds

� + β� Dk
� (92)

with

Js∗
� := Js

� + β�Jk
�, (93)

Σflux∗
� := Σflux

� + β�Qflux
� + ∂tβ� k� + ∇xβ� · Jk

�. (94)
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We also then write

Σ inert∗
� = −I flux� + Σflux∗

� (95)

for the net “inertial” production of the intrinsic entropy. The balance equation (92) of
the intrinsic entropy turns out to be the key identity for the proof of Theorem 3. On the
righthand side, the direct dissipation terms will be shown to vanish as ε → 0 and the
remaining terms are “flux-like” and depend only upon increments of the basic variables
u, �, v. This latter result follows from commutator estimates of Sect. 4.

Remark 17. Note that the balance equations (68) for resolved kinetic energy, (81) for
intrinsic resolved internal energy and (92) for intrinsic resolved entropy are valid for
general weak Euler solutions after setting T = q = 0, without the need for considering
the viscous regularization with ε > 0 and taking ε→ 0. On the other hand, the balance
equations (75) for unresolved kinetic energy, (78) for resolved internal energy, and (85)
for resolved entropy are valid with T = q = 0 only for weak Euler solutions obtained
from the inviscid limit. In fact, the latter equations contain the quantities Q� and τ �(p,Θ)

which are a priori undefined for general weak Euler solutions.

4. Commutator Estimates

The estimates that we derive in this section are valid for coarse-graining in space, time,
or space-time. We state them here for the space-time coarse-graining that we use in
our proofs of Theorems 1–3. The need for coarse-graining in time as well as in space
is due to the time-derivative term in expression (94) for Σflux∗

� . In order to present
the estimates, it is useful to employ a “space-time vector” notation, with X = (x, ct),
R = (r, cτ)where c is a constant with dimensions of velocity which is fixed independent
of ε and �. For example, we may take c to be the speed of sound (or, in the relativistic
case, the speed of light). We correspondingly take the (d + 1)-dimensional domain
Γ = Ω×(0, T ) and consider coarse-graining of functions fi ∈ L∞(Γ ), i = 1, 2, 3, . . .
with a non-negative, standard mollifier G ∈ C∞(Γ ) which can, but need not, be causal.
We assume, for convenience, that supp(G) is contained in the Euclidean unit ball. Recall
that since L∞(Γ ) ⊂ L p

loc(Γ ) for p ≥ 1, the functions fi are locally p–integrable,
fi ∈ L p

loc(Γ ). For any open O ⊂⊂ Γ, let ‖ · ‖p,O represent the standard L p(O)-norm
on the restriction fi

∣∣
O . All estimates assume � sufficiently small for fixed O ⊂⊂ Γ , in

particular � < �O = dist(O, ∂Γ ).
A basic result is the following:

Lemma 1. For n > 1, the coarse-graining cumulants are related to cumulants of the
difference fields δ f (R; X) := f (X + R)− f (X) as follows:

τ�( f1, . . . , fn) = 〈δ f1, . . . , δ fn〉c�, (96)

where 〈·〉� denotes average over the displacement vector R with density G�(R) and the
superscript c indicates the cumulant with respect to this average.

This result is proved in [3] for n = 2 and, in the more general form quoted here, in [41]
or [40, Appendix B]. The proof is an easy application of the invariance of cumulants
of “random variables” to shifts of those variables by “non-random” constants. A direct
consequence of Lemma 1 is:
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Proposition 3 (Cumulant estimates). For open O ⊂⊂ Γ, p ∈ [1,∞] and n > 1

‖τ�( f1, . . . , fn)‖p,O = O
(

n∏
i=1
‖δ fi (�)‖pi ,O

)
with

1

p
=

n∑
i=1

1

pi
, (97)

where‖δ f (�)‖p,O := sup|R|<� ‖δ f (R)‖p,O . Assuming fi ∈ Bσi ,∞
pi ,loc(Γ )with0 < σi ≤ 1

for i = 1, . . . , n:

‖τ�( f1, . . . , fn)‖p,O = O
(
�
∑n

i=1 σi
)

, (98)

If only fi ∈ L∞(Γ ), then at least

lim
�→0
‖τ�( f1, . . . , fn)‖p,O = 0, 1 ≤ p <∞, (99)

but without an estimate of the rate.

Here “big-O” notation, as usual, means inequality up to a constant independent of
�, which in this case depends on the details of the mollifier G. The final statement
is a consequence of the bound (97) and the strong continuity of the shift operators
(S−r f )(x) = f (x + r) in the L p(O)-norm, a standard fact which follows from a simple
density argument.

We also need bounds on space-time derivatives of the cumulants. This can be accom-
plished using the fact that all derivatives of cumulantswith respect to X can be transferred
to space-derivatives of the filter kernels G�(R) with respect to R. This is another conse-
quence of the invariance of cumulants to constant shifts; see [41] or [40]. For example,
with

∂

∂ Xk
τ �( fi ) = ∂( fi )�

∂ Xk
= −1

�

∫
dd+1R

(
∂G
∂ Rk

)
�

(R)δ fi (R), (100)

∂

∂ Xk
τ �( fi , f j ) = −1

�

{∫
dd+1R

(
∂G
∂ Rk

)
�

(R)δ fi (R)δ f j (R)

−
∫

dd+1R

(
∂G
∂ Rk

)
�

(R)δ fi (R)

∫
dR′G�(r

′)δ f j (R′)

−
∫

dd+1R G�(R)δ fi (R)

∫
dR′

(
∂G
∂ R′k

)
�

(R′)δ f j (R′)
}

,

(101)

and so forth. Using expressions of this type, one obtains bounds of the form:

Proposition 4 (Cumulant-derivative estimates). For open O ⊂⊂ Γ, n ≥ 1 and ∂k =
∂/∂ Xk

‖∂k1 · · · ∂km τ�( f1, . . . , fn)‖p,O = O
(

�−m
n∏

i=1
‖δ fi (�)‖pi ,O

)
with

1

p
=

n∑
i=1

1

pi
.

(102)

Assuming fi ∈ Bσi ,∞
pi ,loc(Γ ) with 0 < σi ≤ 1 for i = 1, . . . , n:

‖∂k1 · · · ∂km τ�( f1, . . . , fn)‖p,O = O
(
�−m+

∑n
i=1 σi

)
. (103)



Onsager Singularity Theorem 751

For the “unresolved” or “fluctuation” part of a field f ′� := f − f �,we have the simple
formula

f ′�(X) = −
∫

dd+1R G�(R)δ f (R; X), (104)

which gives

Proposition 5 (Fluctuation estimates). For open O ⊂⊂ Γ and p ∈ [1,∞], ‖ f ′�‖p,O =
O (‖δ f (�)‖p,O

)
and ‖ f ′�‖p,O = O (�σ ) when also f ∈ Bσ,∞

p,loc(Γ ) for 0 < σ ≤ 1.

Finally, we will also require estimates on Δ�h = h�− h� for composite functions of
the form h( f, g), where f, g ∈ L∞(Γ ) and h is a smooth function of two variables. We
have the following Lemma:

Lemma 2. For p ≥ 1, let f ∈ (B
σ

f
p ,∞

p,loc ∩ L∞)(Γ ) and g ∈ (B
σ

g
p ,∞

p,loc ∩ L∞)(Γ ).

Let U ⊂ R
2 be open and containing the closed convex hull of R = ess.ran( f, g), the

essential range of the measurable function ( f, g) ∈ L∞(Γ,R2). Consider H := h( f, g)

with h ∈ C1(U,R). Then H ∈ (B
min{σ f

p ,σ
g
p },∞

p,loc ∩ L∞)(Γ ).

Proof. Clearly, H ∈ L∞(Γ ). Since h ∈ C1(U,R), the mean value theorem gives:

δH(R; X) := h( f (X + R), g(X + R))− h( f (X), g(X))

= (δ f (R; X), δg(R; X)) · ∂h( f∗, g∗) (105)

for ( f∗, g∗) on the line segment joining ( f (X), g(X)), ( f (X + R), g(X + R)). We have
used the notation ∂ = (∂/∂ f, ∂/∂g). SinceR ⊂ U is compact, then so also is its closed
convex hull conv(R) ⊂ U and ∂h is bounded on conv(R). It follows for any open

O ⊂⊂ Γ, |R| < �O , p ≥ 1, ‖δH(R)‖p,O = O
(
|R|min{σ f

p ,σ
g
p }

)
. ��

Corollary 1. Let f, g be as in Lemma 2. Then f g ∈ (B
min{σ f

p ,σ
g
p },∞

p,loc ∩ L∞)(Γ ).

The estimate on Δ�h = h� − h� is as follows:

Proposition 6. Let h ∈ C2(U ) with f, g, U as in Lemma 2. For open O ⊂⊂ Γ

‖Δ�h‖p/2,O = O
(
�2min{σ f

p ,σ
g
p }

)
, p ≥ 2 (106)

Assuming only f, g ∈ L∞(Γ ), then at least

lim
�→0
‖Δ�h‖p/2,O = 0, 2 ≤ p <∞, (107)

but without an estimate of the rate.

Proof. Using the notation ∂ = (∂/∂ f, ∂/∂g), we have:

Δ�h := h( f, g)� − h( f �, g�)

=
(

h( f, g)� − h( f, g) + ( f ′�, g′�) · ∂h( f, g)
)

+
(

h( f, g)− h( f �, g�)− ( f ′�, g′�) · ∂h( f, g)
)
.
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The first term can be rewritten as

h( f, g)� − h( f, g) + ( f ′�, g′�) · ∂h( f, g)

=
∫

dd+1R G�(R)
(

h( f (X + R), g(X + R))− h( f (X), g(X))

− (δ f (R; X), δg(R; X)) · ∂h( f (X), g(X))
)

=
∫

dd+1R G�(R) (∂∂)h|( f∗,g∗) : (δ f (R; X), δg(R; X))(δ f (R; X), δg(R; X)),

where in the second equality the Taylor theorem with remainder was employed and
( f∗, g∗) is defined similarly as in Lemma 2. Likewise, using f = f � + f ′�, the second
term can be rewritten as

h( f, g)− h( f �, g�)− ( f ′�, g′�) · ∂h( f, g)

= (∂∂)h|( f�,g�) : ( f ′�, g′�)( f ′�, g′�),

and ( f�, g�) is a point on the line segment connecting ( f �(X), g�(X)),( f (X), g(X)).

Note that ( f �(X), g�(X)) ∈ conv(R) because the coarse-grained field with a non-
negative mollifier G� is a limit of averages of values in ess.ran.( f, g). Thus, (∂∂)h|( f�,g�)

is uniformly bounded, since (∂∂)h is bounded on conv(R). It follows from the above
formulas, the Hölder inequality, and Proposition 5 that

‖Δ�h‖p/2,O = O
(
max{‖δ f (�)‖p,O , ‖δg(�)‖p,O}2

)
. (108)

The above estimate immediately yields ‖Δ�h‖p/2,O = O
(
�2min{σ f

p ,σ
g
p }

)
assuming the

appropriate Besov regularity.
The final statement of the proposition is obtained from the estimate (108) and the

strong continuity of the shift operators in the L p(O)-norm. ��
One last estimate will be needed:

Proposition 7. Let h ∈ C1(U ) with f, g, U as in Lemma ms. For open O ⊂⊂ Γ

‖∇x h�‖p,O = O
(
�min{σ f

p ,σ
g
p }−1

)
, p ≥ 1. (109)

Proof. By the chain rule, ∇x h = ∂h( f �, g�) · (∇x f �,∇x g�). Since ( f �, g�) is in the
closed convex hull of R, one immediately obtains from Proposition 4 that

‖∇x h�‖p,O = O
(
1

�
max{‖δ f (�)‖p,O , ‖δg(�)‖p,O}

)
, (110)

which gives the claimed estimate for the assumed Besov regularity. ��
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5. Proof of Theorem 1

By assumption u, �, v ∈ L∞(Ω × (0, T )) ⊂ L p
loc(Ω × (0, T )). We shall obtain esti-

mates in L p(O) for any open set O ⊂⊂ Γ . To simplify expressions in the proof, we
let O be implicit in this section and everywhere use ‖ · ‖p to denote the L p(O)-norm
‖ · ‖p,O . Also, all estimates assume � < �O = dist(O, ∂Γ ). We consider in order the
three balance equations (23)–(25) in Theorem 1.

Kinetic Energy: Setting ε = 0, the coarse-grained kinetic energy balance (68) for com-
pressible Navier–Stokes simplifies, because terms involving Tε vanish:

∂t

(
1

2
��|ṽ�|2

)
+ ∇x · Jv

� = p�Θ� − Qflux
� , (111)

where the various terms are defined by:

Jv
� :=

(
1

2
��|ṽ�|2 + p�

)
ṽ� + ��ṽ� · τ̃�(v, v)− p�

��

τ �(�, v), (112)

Qflux
� := ∇x p�

��

· τ �(�, v)− ��∇x ṽ� : τ̃�(v, v). (113)

We now consider the limit as � → 0 of Eq. (111). Of course, by standard results, u�,

��, v�, p� → u, �, v, p strong in L p
loc for any 1 ≤ p < ∞ (see e.g. [21, Lemma 7.2]

or [22, §4.2.1, Theorem 1]). As a special case of (65)

ṽ� = v� + τ �(�, v)/��, (114)

which implies for any p ≥ 1 that

‖ṽ� − v‖p ≤ ‖v� − v‖p + ‖1/�‖∞‖τ �(�, v)‖p,

so that ṽ� → v strongly as well. Here (99) of Proposition 3 was used. We infer that
1
2��|ṽ�|2 converges to 1

2�|v|2 strong in L p
loc for any p ≥ 1, and thus

∂t

(
1

2
��|ṽ�|2

)
D′−→ ∂t

(
1

2
�|v|2

)
(115)

as �→ 0. Using the special case of (66)

τ̃�(v, v) = τ �(v, v) +
1

��

τ �(�, v, v)− 1

�2
�

τ �(�, v)τ �(�, v), (116)

one obtains by exactly similar arguments with Proposition 3 that

∇x · Jv
�

D′−→ ∇x

(
(
1

2
�|v|2 + p)v

)
. (117)

Also, under our assumptions, Qflux
� has a distributional limit:

Qflux
�

D′−→ Qflux. (118)
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Thus, all of the terms in (111) except p�Θ� have been proved to have distributional limits
as �→ 0. It follows that the limit of p�Θ� also exists and equals−Qflux−∂t

( 1
2�|v|2

)−
∇x

(
( 12�|v|2 + p)v

)
, independent of choice of G. Thus,

p�Θ�
D′−→ p ◦Θ (119)

which completes the derivation of the kinetic energy balance (23).

Internal Energy: From (23), the internal energy constructed as u = E− 1
2�|v|2, satisfies

(24) distributionally. This could be alternatively deduced by considering the �→ 0 limit
of the intrinsic resolved internal energy balance (81) with ε = 0.

Entropy: Setting ε = 0 in the intrinsic resolve entropy equation (92), we obtain

∂t s
∗
� + ∇x · Js∗

� = Σ inert∗
� , (120)

for

Js∗
� := Js

� + β�Jk
�, (121)

Js
� := s�v� + β�τ�(u, v)− λ�τ �(�, v), (122)

Jk
� :=

1

2
��τ̃�(vi , vi )ṽ� + τ �(p, v) +

1

2
��τ̃�(vi , vi , v), (123)

and, with Σ inert∗
� = −I flux� + Σflux∗

� , for

I flux� := β�(p� − p�)Θ�, (124)

Σflux∗
� := Σflux

� + β�Qflux
� + ∂tβ� k� + ∇xβ� · Jk

�, (125)

Σflux
� := ∇xβ� · τ �(u, v)−∇xλ� · τ �(�, v). (126)

We next show that ∂t s∗� + ∇x · Js∗
�

D′−→ ∂t s + ∇x · (sv) as �→ 0. Note that

‖s(u�, ��)− s(u, �)‖p ≤ ‖s(u, �)� − s(u, �)‖p + ‖s(u, �)� − s(u�, ��)‖p.

Obviously s� → s strong in L p
loc for p ≥ 1, but also ‖Δ�s‖p → 0 by (107) of

Proposition 6. Thus, s� → s strong in L p
loc. Also, ‖β�k�‖p → 0 by (99) of Proposition

3. It follows that s∗� → s strong in L p
loc for p ≥ 1 and thus

∂t s
∗
�

D′−→ ∂t s(u, �).

Using the formula (116) for τ̃�(u,u) and the similar formula for τ̃�(u,u,u) that follows

from (67), then similar arguments with Propositions 3 and 6 show that Js∗
�

D′−→sv strong
in L p

loc for p ≥ 1 and thus

∇x · Js∗
�

D′−→ ∇x · (s(u, �)v) .

We infer from (120) that the distributional limit of Σ inert∗
� as �→ 0 exists and is equal

to Σflux := ∂t s + ∇x · (sv). Thus, entropy balance (25) holds, with

Σ inert∗
�

D′−→ Σflux. (127)

This completes the proof of Theorem 1. ��
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6. Proof of Theorem 2

To prove that the strong limits of uε, �ε, vε in L p
loc(Γ ) for some 1 ≤ p <∞ as ε→ 0

satisfy the Euler equations weakly, we use the concept of “coarse-grained solution” dis-
cussed in Sect. 2. The coarse-grained Navier–Stokes system with transport coefficients
scaled by ε appears the same as (59)–(61) except that there is now a factor ε implicitly
contained in the terms Tε and qε wherever they appear. Our strategy shall be to show
that, pointwise in space-time, these terms indeed vanish as ε→ 0, while all of the other
terms in the coarse-grained Navier–Stokes equation converge pointwise as ε→ 0 to the
corresponding terms in the coarse-grained Euler equations for the limiting fields u, �,

v.
Here again, we let the open set O ⊂⊂ Γ be implicit in the estimates below and use

‖ · ‖p to represent the L p(O)-norm. We also assume that � < �O = dist(O, ∂Γ ). We
first note that the properties that (i) ‖ f ε‖∞ is bounded uniformly in ε and (ii) f ε → f
in L p

loc(Γ ) for 1 ≤ p <∞ as ε→ 0 for the basic fields f ε = uε, �ε, vε immediately
implies that the same is true for simple product functions such as jε = �εvε, �ε|vε|2,
�ε|vε|2vε, etc. For compositions hε := h(uε, �ε) with thermodynamic functions such
as h = T, p, μ, η, ζ, κ we need the precise Assumption 2 on smoothness of h with
M = 1. Of course, Rε,R ⊂ K for ε < ε0, so that ‖hε‖∞ is bounded uniformly for
ε < ε0 and ‖h‖∞ satisfies the same bound. Furthermore, we can write

h(uε(X), �ε(X))− h(u(X), �(X))

= ∂h(u∗, �∗) · (uε(X)− u(X), �ε(X)− �(X)), (128)

where (u∗, �∗) is on the line segment between (uε(X), �ε(X)) and (u(X), �(X)). Since
(u∗, �∗) ∈ K , then, by Assumption 2, the 2-vector �q -norm |∂h(u∗, �∗)|q with q =
p/(p− 1) is bounded by the maximum value Ch,q of |∂h|q on K . It thus follows easily
that

‖h(uε, �ε)− h(u, �)‖p ≤ Ch,q [‖uε − u‖p
p + ‖�ε − �‖p

p]1/p, (129)

so that hε = h(uε, �ε) also satisfies ‖hε − h‖p → 0 for the same p as ε → 0. Thus
hε → h in L p

loc(Γ ). Next note from the identity (100) that

∂

∂ Xk
( f ε − f )�(X) = −1

�

∫
dd+1R

(
∂G
∂ Rk

)
�

(R − X)( f ε(R)− f (R)), (130)

Hence, for each X,

|∂k( f ε − f )�(X)| ≤ (c�,p/�)‖ f ε − f ‖p (131)

with c�,p = ‖(∂G)�‖q for q = p/(p − 1) and thus ∂k( f ε)�(X) → ∂k f � as ε → 0
whenever f ε → f in L p

loc(Γ ). Applying this result with f = �, j, jv, p, E, (E + p)v,
we get that pointwise in space-time

∂t�ε
� + ∇x · Jε

� −→ ∂t�� + ∇x · J �, (132)

∂t J ε
� + ∇x ·

(
(jεvε)� + pε

�I
)
−→ ∂t J � + ∇x ·

(
(jv)� + p�I

)
, (133)

∂t Eε
� + ∇x ·

(
((Eε + pε)vε)�

)
−→ ∂t E� + ∇x ·

(
((E + p)v)�

)
, (134)
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as ε→ 0. The coarse-grained Euler equations

∂t�� + ∇x · J � = 0, (135)

∂t J � + ∇x ·
(
(jv)� + p�I

)
= 0, (136)

∂t E� + ∇x ·
(
((E + p)v)�

)
= 0, (137)

follow for u, �, v if ∇x · (Tε)�, ∇x · (Tε · vε)�, and ∇x · (qε)� all vanish as ε→ 0.
Wefirst consider the shear-viscosity contribution to∇·(Tε)�.With the shorthandnota-

tion ηε(X) := εη(uε(X), �ε(X)),we can bound this using Cauchy–Schwartz inequality
as

∣∣∣∇x · (2ηεSε)�(X)

∣∣∣ = 2

�

∣∣∣∣
∫

dd+1R (∇xG)�(R) · ηε(X + R)Sε(X + R)

∣∣∣∣
≤ 2

�

√∫
supp(G�)

dd+1R ηε(X + R)×
∫
|(∂G)�(R − X)|2 Qε

η(d R), (138)

with Qε
η(dR) = 2ηε(R)|S(R)|2dd+1R denoting the kinetic-energy dissipation measure

for ε > 0. Finally, because Qε
ζ ≥ 0,

∣∣∣∇x · (2ηεSε)�(X)

∣∣∣ ≤ 2

�

√∫
supp(G�)

dd+1R ηε(X + R)×
∫
|(∂G)�(R − X)|2 Qε(d R)

(139)

with Qε = Qε
η + Qε

ζ . Since G� ∈ D(Γ ) implies that SX |∂G�|2 ∈ D(Γ ) also whenever
dist(X, ∂Γ ) < �, then

lim
ε→0

∫
|(∂G)�(R − X)|2 Qε(d R) =

∫
|(∂G)�(R − X)|2 Q(d R) (140)

by Assumption 3. On the other hand, because η(uε, �ε) ∈ L∞(Γ ) when η satisfies the
smoothness Assumption 2 with M = 0, then the upper bound in (138) is proportional
to ε1/2. Thus, ∇x · (2ηεSε)�(X) → 0 as ε → 0 for � > dist(X, ∂Γ ). An identical
argument using Qε

η ≥ 0 shows that likewise ∇x (ζ εΘε)�(X)→ 0 as ε → 0, and both

results together imply that ∇ · (Tε)� → 0 pointwise.
In a similar manner, the shear-viscosity contribution to∇x ·(Tε · vε)� can be bounded

as ∣∣∣∇x · (2ηεSε · vε)�(X)

∣∣∣
= 2

�

∣∣∣∣
∫

dd+1R (∇xG)�(R) · ηε(X + R)Sε(X + R) · vε(X + R)

∣∣∣∣
≤ 2

�

√∫
supp(G�)

dd+1R ηε(X + R)|vε(X + R)|2

×
√∫
|(∂G)�(R − X)|2 Qε(d R),

(141)
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and an analogous bound holds for ∇x · (2ζ εΘεvε)�. Thus, by Assumption 3 ∇x ·
(Tε · vε)� → 0 pointwise as ε→ 0.

Finally, ∇x · (qε)� = −∇ · (κε∇x T ε)� and the entropy-production measure due

to thermal conductivity is defined by Σε
κ (dR) = κε(R)

∣∣∣∇x T ε(R)
T ε(R)

∣∣∣2 dd+1R for ε > 0.

Because Qε/T ε ≥ 0, thus Σε
κ ≤ Σε. Writing κε∇x T ε = √κεT ε ·√κε ∇x T ε

T ε and using

a Cauchy–Schwartz estimate similar to (141), it follows from the convergenceΣε D′−→Σ

in Assumption 3 that ∇x · (qε)� → 0 pointwise as ε→ 0 for � > dist(X, ∂Γ ).
In conclusion, the coarse-grained Euler equations (135)–(137) hold for all X with

dist(X, ∂Γ ) < � and for all � > 0. By Proposition 1 in Sect. 2, we have thus proved that
(u, �, v) form a weak Euler solution. As an aside, we note that it would clearly suffice
for this statement to have in Assumption 3 only the condition on entropy-production

Σε D′−→Σ and not the additional assumption Qε D′−→ Q. If in Theorem 2 only the
statement (29) on entropy balance were made, then this would be more economical in
terms of hypotheses. However, to derive the balance equations (27) and (28) we need
the additional convergence statement in Assumption 3 for Qε as we now show.

To derive the balance equations of kinetic energy, internal energy and entropy for the
weak Euler solutions, we start with the corresponding Eqs. (9), (10), (16) for compress-
ible Navier–Stokes. Then, because the basic fields uε, �ε, vε and their compositions with
functions hε := h(uε, �ε) satisfying the smoothness assumptions converge strongly in
L p

loc for some 1 ≤ p < ∞ to the corresponding fields u, �, v and h(u, �), it follows
directly that

∂t

(
1

2
�ε|vε|2

)
+ ∇x ·

((
pε +

1

2
�ε|vε|2

)
vε

)

D′−→∂t

(
1

2
�|v|2

)
+ ∇x ·

((
p +

1

2
�|v|2

)
v
)

,

∂t u
ε + ∇x ·

(
uεvε

) D′−→∂t u + ∇x · (uv),
∂t s

ε + ∇x ·
(
sεvε

) D′−→∂t s + ∇x · (sv). (142)

To see that

∇x ·
(
Tε · vε

)
, ∇x · qε, ∇x ·

(
qε

T ε

)
D′−→0,

note that this is equivalent to ∇x (Tε · vε)�, ∇xqε
�, (qε/T ε)� → 0 pointwise. This

has already been proved for the first two, and is shown for the third by a very similar
Cauchy–Schwartz argument by writing qε/T ε = −√κε · √κε∇x T ε/T ε.

Because of the condition Σε D′−→Σ in Assumption 3, all of the terms in the Navier–
Stokes entropy balance (16) converge distributionally and thus one obtains in the limit
ε → 0 the entropy balance (29) for the weak Euler solution. Similarly, because of the

condition Qε D′−→ Q in Assumption 3, all of the terms in the Navier–Stokes kinetic
energy and internal energy balances (9), (10) are proved to converge distributionally,
except pεΘε. Thus, this term also converges
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D′- lim
ε→0

pεΘε = ∂t

(
1

2
�|v|2

)
+ ∇x ·

((
p +

1

2
�|v|2

)
v
)
+ Q

= Q − [∂t u + ∇x · (uv)].
With the notation p ∗Θ := D′- limε→0 pεΘε we thus obtain the balances (27), (28) of
kinetic and internal energy for the limiting weak Euler solution. ��

7. Proof of Theorem 3

The strategy to prove Theorem 2 is to use the commutator estimates developed in Sect. 4
to show that Qflux andΣflux vanish when the Euler solutions possess suitable Besov reg-
ularity. Then, we use the “inertial-range” expressions (31) to show the dissipation mea-
sures Q andΣ also vanish, and that p∗Θ = p◦Θ . We again make implicit the open set
O ⊂⊂ Γ , let ‖ ·‖p represent the L p(O)-norm, and assume that � < �O = dist(O, ∂Γ ).

Energy Flux: We first show that Qflux defined by (22), (70) necessarily exists and van-
ishes for weak Euler solutions satisfying the exponent inequalities (35)–(37). To show
this, simple bounds can be derived for Qflux

� using the expressions (114), (116) and
Propositions 3 and 4. One obtains

‖(1/��)∇x p� · τ �(�, v)‖p/3 = O
(
‖1/�‖∞ 1

�
‖δp(�)‖p‖δ�(�)‖p‖δv(�)‖p

)
, p ≥ 3,

‖∇x ṽ�‖p = 1

�
‖δv(�)‖p

[
O(1) +O(‖1/�‖∞‖�‖∞) +O(‖1/�‖2∞‖�‖2∞)

]
, p ≥ 1,

‖τ̃�(v, v)‖p/2 = ‖δv(�)‖2p
[
O(1) +O(‖1/�‖∞‖�‖∞) +O(‖1/�‖2∞‖�‖2∞)

]
, p ≥ 2,

and thus

‖Qflux
� ‖p/3 = O

(
1

�
‖δp(�)‖p‖δ�(�)‖p‖δv(�)‖p

)
+O

(‖δv(�)‖3p
�

)
, p ≥ 3.

(143)

In this latter estimate we absorb the dependence upon the maximum-to-minimum mass
ratio ‖1/�‖∞‖�‖∞ into the constant factor, since this ratio is �-independent. Assuming
the Besov regularity of u, �, v in Theorem 3 and using Lemma 2 to get the Besov
regularity of p, one thus obtains

‖Qflux
� ‖p/3 = O

(
�min{σ u

p ,σ
�
p }+σ

�
p+σv

p−1
)
+O

(
�3σ

v
p−1

)
, p ≥ 3.

It follows that

2min{σ u
p , σ

�
p } + σv

p > 1, 3σv
p > 1, for some p ≥ 3 �⇒ D′- lim

�→0
Qflux

� = 0.

This is enough to infer the first statement of Theorem 3 that Qflux exists and vanishes
for weak Euler solutions, but not enough to conclude that the viscous anomaly vanishes,
Q = 0. Recall by (31) that

Q = Qflux + τ(p,Θ). (144)
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Therefore, with the exponent inequalities assumed above, we can only conclude

Q = τ(p,Θ) := p ∗Θ − p ◦Θ. (145)

In order to show that Q = 0, we must make use of the entropy balance, which we
consider next.

Entropy Anomaly: We show that Σflux defined by (26) necessarily exists and vanishes
for weak Euler solutions satisfying the exponent inequalities (35)–(37). To accomplish
this, we next derive bounds on Σ inert∗

� using (124)–(126) and Propositions 3, 4, 6, and
7. Expression (124) and Propositions 4, 6 give:

‖I flux� ‖p/3 = O
(
1

�
max{‖δu(�)‖p, ‖δ�(�)‖p}2‖δv(�)‖p

)
.

Expression (126) and Propositions 3, 7 give:

‖Σflux
� ‖p/3 = O

(
‖∇xβ�‖p‖δu(�)‖p‖δv(�)‖p

)
+O (‖∇xλ�‖p‖δ�(�)‖p‖δv(�)‖p

)

= O
(
1

�
max{‖δu(�)‖p, ‖δ�(�)‖p}2‖δv(�)‖p

)
, (146)

while Propositions 3, 7 give for the added terms to Σflux∗
� in (125) the estimates

‖∂tβ�k�‖p/3 = O
(
‖∂tβ�‖p‖δv(�)‖2p

)
= O

(
1

�
max{‖δu(�)‖p, ‖δ�(�)‖p}‖δv(�)‖2p

)
,

‖∇xβ� · Jk
�‖p/3 = O

(
‖∇xβ�‖p‖δv(�)‖2p

)
= O

(
1

�
max{‖δu(�)‖p, ‖δ�(�)‖p}‖δv(�)‖2p

)
.

To estimate k� and Jk
� we here used the expressions (114) for ṽ�, (116) for τ̃�(v, v)

and the similar expression for τ̃�(v, v, v) that follows from (67). Assuming the Besov
regularity of u, �, v in Theorem 3, one thus obtains from these estimates and the estimate
of β�Q f lux

� using (143) that for any p ≥ 3

‖Σ inert∗
� ‖p/3 = O

(
�2min{σ u

p ,σ
�
p }+σv

p−1
)
+O

(
�min{σ u

p ,σ
�
p }+2σv

p−1
)
+O

(
�3σ

v
p−1

)
.

The inequalities (35)–(37) thus imply that Σ inert∗
� → 0 strong in L p/3

loc as �→ 0 for the
same choice of p ≥ 3. Because of (31), it follows that the non-ideal entropy production
also vanishes Σ ≡ 0.

Viscous Energy Dissipation Anomaly: We now show that Σ = 0 implies that Q = 0.
First note

Σε ≥ βε Qε ≥ Qε/‖T ε‖∞.

Because ‖T ε‖∞ by Assumption 1 is bounded by some constant T0 uniformly in ε < ε0,

we thus find that

Σε ≥ Qε/T0 ≥ 0, ε < ε0,

and one obtains in the limit ε→ 0 that

0 = Σ ≥ Q/T0 ≥ 0.
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Thus, the inequalities (35)–(37) in Theorem 3 for some p ≥ 3 imply also Q ≡ 0.

Pressure-Dilatation Defect: Lastly, the result Q = τ(p,Θ) in (145) togetherwith Q ≡ 0
implies that p ∗Θ = p ◦Θ, as was claimed. ��

8. Proof of Theorem 4

We derive Theorem 4 from a result for more general balance equations (42).We consider
cases where u ∈ L∞(Ω × (0, T );Rm), so that R = ess.ran.(u) is a compact subset of
R

m with K = conv(R) also compact, and F = F(u) is a C1 function on an open set U,

K ⊂ U ⊂ R
m . Furthermore, the individual components of Fia ofF for i = 1, . . . , d and

a = 1, . . . , m maynot depend upon all of the components ua, a = 1, . . . , m ofu but only
upon a subset. We assume that for each a = 1, . . . , m the d-vector Fa = (F1a, . . . , Fda)

is a function of the form

Fa(u) = F̃a(u
b(a)
1

, . . . , u
b(a)

ma
), a = 1, . . . , m (147)

where the subsetMa = {b(a)
1 , . . . , b(a)

ma } ⊂ {1, . . . , m} has cardinality ma ≤ m, and thus
Fa is constant in the variables ub for b /∈Ma

We then have the following general result:

Theorem 4*. Suppose that u ∈ L∞(Ω × (0, T );Rm) is a weak solution of (42) where
F ∈ C1(U ) with U open and conv(ess.ran.(u)) ⊂ U ⊂ R

m, and that also Fa satisfies
the condition (147) for each a = 1, . . . , m. If for some p ≥ 1

ua ∈ L∞((0, T ); B
σ a

p ,∞
p,loc (Ω)), 0 < σ a

p ≤ 1; a = 1, . . . , m, (148)

where the above spaces are defined by (38), then

ua ∈ B
σ̄ a

p ,∞
p,loc (Ω × (0, T )), σ̄ a

p = min{σ a
p , min

b∈Ma
σ b

p}; a = 1, . . . , m. (149)

Proof. We use the notation Γ = Ω × (0, T ) and R = (r, τ ) ∈ Γ. Since L∞(Γ ) ⊂
L p

loc(Γ ) and p ≥ 1, we must only bound the requisite L p(O)-norm in the definition
(33) of the local space-time Besov norm for any open O ⊂⊂ Γ . For R = (r, τ ) with
|R| < RO = dist(O, ∂Γ ), Minkowski’s inequality gives:

‖ua(· + R)− ua‖L p(O) ≤ ‖ua(·, · + τ)− ua‖L p(O ′) + ‖ua(· + r, ·)− ua‖L p(O)

(150)

where O ′ = SrO := {(x + r, t) : (x, t) ∈ O} ⊂⊂ Γ . The assumed uniform regularity
(148) guarantees that‖ua(·+r, ·)−ua‖L p(O) = O(|r|σ a

p ). To estimate the time-increment
term, fix an 0 < � ≤ |τ | and decompose u = û� + u′� with û� = u ∗ Ǧ� for a spatial
mollifier G�. Applying Minkowski’s inequality again,

‖ua(·, · + τ)− ua‖L p(O ′) ≤ ‖ûa,�(·, · + τ)− ûa,�‖L p(O ′)
+ ‖u′a,�(·, · + τ)− u′a,�‖L p(O ′). (151)

In order to estimate these terms, it is convenient to assume that O = Or × Ot , a
space-time product of open sets, and thus O ′ = O ′r × O ′t as well. It clearly suffices to
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consider product sets, because any other pre-compact open set can be strictly included
in such a product set. Since ∂t ua + ∇x · Fa = 0 is satisfied in the sense of distributions
or, equivalently, pointwise after space-time mollification (see Proposition 1), standard
approximation arguments show:

‖ûa,�(·, · + τ)− ûa,�‖L p(O ′r×O ′t ) ≤ |τ |‖∇x · F̂a,�‖L∞(O ′t ;L p(O ′r ))

= O(�μa
p−1|τ |), μa

p = min
b∈Ma

σ b
p .

Here we have used the inherited spatial Besov regularity of Fa with exponent μa
p, which

follows from a straightforward generalization of Lemma 2, and the spatial version of
Proposition 4. On the other hand, the term involving the fluctuation fields can be bounded
using the spatial analogue of Proposition 5 as:

‖u′a,�(·, · + τ)− u′a,�‖L p(O ′r×O ′t )) ≤ 2‖u′a,�‖L∞(O ′t ),L p(O ′r )) = O(�σ a
p ). (152)

From Eqs. (151)–(152) we obtain

‖ua(·, · + τ)− ua‖L p(O ′) = O(�μa
p−1|τ |) +O(�σ a

p ). (153)

Since � ≤ |τ | < 1 by assumption, we increase the upper bound in (153) by replacing
bothμa

p and σ a
p with their minimum, σ̄ a

p , in (149). The resulting bound is then optimized
by choosing the arbitrary scale � ≤ |τ | to be � ∝ |τ |. Altogether,

‖ua(·, · + τ)− ua‖L p(O ′) = O(|τ |σ̄ a
p ), (154)

‖ua(· + r, ·)− ua‖L p(O) = O(|r|σ̄ a
p ). (155)

It follows from (150) and (154), (155) that ua ∈ B
σ̄ a

p ,∞
p,loc (Ω × (0, T )). ��

Proof (Theorem 4). The result is proved as a corollary of Theorem 4*, specialized to
the compressible Euler system with (u0, u1, . . . , ud , ud+1) := (�, j1, . . . , jd , E) and

Fi,0 := ui ,

Fi, j := u−10 ui u j + p(u, u0)δi j ,

Fi,d+1 := (ud+1 + p(u, u0)) u−10 ui .

for i, j = 1, . . . , d and u := ud+1 − u21+···+u2d
2u0

. The assumed strict positivity of � ≥
�0 > 0, space-time boundedness of u, and smoothness of p implies that F possesses
the requisite regularity. It follows that:

� ∈ B
min{σ�

p ,σ
j
p },∞

p,loc (Ω × (0, T )), j, E ∈ B
min{σ�

p ,σ
j
p ,σ E

p },∞
p,loc (Ω × (0, T )),

Recalling that the fields j and E are algebraically related to u, �, v by j := �v and
E := 1

2�|v|2+u, an application ofCorollary 1 shows thatwemay takeσ
j
p = min{σ�

p , σ v
p }

and σ E
p = min{σ u

p , σ
�
p , σ v

p }. The inverse relations v = �−1j and u = E − �−1|j|2 and
another application of Corollary 1 yields the space-time regularity (40)–(41) claimed in
Theorem 3. ��
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Remark 18. Theorem 4* applies also to solutions of the incompressible Euler equations
with velocity v and (kinematic) pressure P satisfying v, P ∈ L∞(Γ ), for Γ = T

d ×
(0, T ). Assuming for q ≥ 1 that v ∈ L∞((0, T ), B

σq ,∞
q (Td)), elliptic regularization of

the solutions of the Poisson equation

−"P = ∂2(viv j )/∂xi∂x j

implies that P ∈ L∞((0, T ), B
σq ,∞
q (Td)). Alternatively, this regularity of P follows

from boundedness of Calderón–Zygmund operators in Besov-space norms. Theorem 4*
yields v ∈ B

σq ,∞
q (Td × (0, T )), so that v is as regular in time as it is in space.
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