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Abstract We establish Lagrangian formulae for energy conservation anomalies
involving the discrepancy between short-time two-particle dispersion forward and
backward in time. These results are facilitated by a rigorous version of the Ott–
Mann–Gawȩdzki relation, sometimes described as a “Lagrangian analogue of the
4/5-law.” In particular, we prove that for weak solutions of the Euler equations, the
Lagrangian forward/backward dispersion measure matches onto the energy defect
(Onsager in Nuovo Cimento (Supplemento) 6:279–287, 1949; Duchon and Robert
in Nonlinearity 13(1):249–255, 2000) in the sense of distributions. For strong lim-
its of d ≥ 3-dimensional Navier–Stokes solutions, the defect distribution coincides
with the viscous dissipation anomaly. The Lagrangian formula shows that particles
released into a 3d turbulent flow will initially disperse faster backward in time than
forward, in agreement with recent theoretical predictions of Jucha et al. (Phys Rev
Lett 113(5):054501, 2014). In two dimensions, we consider strong limits of solutions
of the forced Euler equations with increasingly high-wave number forcing as a model
of an ideal inverse cascade regime. We show that the same Lagrangian dispersion
measure matches onto the anomalous input from the infinite-frequency force. As forc-
ing typically acts as an energy source, this leads to the prediction that particles in
2d typically disperse faster forward in time than backward, which is opposite to that
which occurs in 3d. Time asymmetry of the Lagrangian dispersion is thereby closely
tied to the direction of the turbulent cascade, downscale in d ≥ 3 and upscale in
d = 2. These conclusions lend support to the conjecture of Eyink and Drivas (J Stat
Phys 158(2):386–432, 2015) that a similar connection holds for time asymmetry of
Richardson two-particle dispersion and cascade direction.
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1 Introduction

Perhaps the most notable difference between 2d and 3d incompressible turbulence
is the direction of the energy cascade. In three dimensions, fluid energy is typically
transferred from large to small scales via a nonlinear process called the direct turbulent
cascade. Serving as a sink at the end of this cascade is molecular viscosity ν, which
acts to dissipate the kinetic energy deposited at small scales. Remarkably, observations
from experiments and simulations of forced or freely decaying turbulence show that,
in the limit of high Reynolds number (equivalently zero viscosity), the kinetic energy
dissipation is nonzero

lim
ν→0

ν〈|∇u|2〉 = ε > 0 (1)

where 〈·〉 is some relevant averaging procedure, space, time, or ensemble. This is the
so-called zeroth law of turbulence. It is often referred to as anomalous dissipation and
is the central postulate of the celebrated Kolmogorov 1941 (K41) theory. This property
reflects the fact that in three dimensions, the turbulent cascade is exceptionally effective
at transferring energy from large to small scales. Indeed, in the high-Re limit where the
viscous length scale vanishes, the cascade process continues to transport appreciable
amounts of energy to scales where it can be effectively dissipated by infinitesimal
viscosity (Onsager 1949; Kolmogorov 1941; Taylor 1917).

In two-dimensional incompressible turbulence on domains without boundary, vis-
cosity plays a negligible role for the energy budget. For smooth initial data, the viscous
energy dissipation at finite times always tends to zero as ν → 0 (Taylor 1917, 1915).
It has long been recognized that the source of major differences between d = 2 and
d ≥ 3 is the presence of an additional invariant—the enstrophy, see, for example, Lee
(1951), Fjørtoft (1953), Eyink (1996). Kraichnan (1967) (see also Leith 1968; Batche-
lor 1969) proposed that this extra constraint results in two simultaneous inertial ranges
in the flow, an inverse energy cascade range, and a forward enstrophy cascade. In the
inverse energy cascade range, the energy input by forcing is transported from small to
large scales—in contrast to 3d—where it accumulates until it is depleted, for example,
by linear damping or (ineffectually) by viscosity.

As amodel for the inverse energy cascade,we consider forced two-dimensional fluid
without viscosity with sufficiently smooth initial data. In this setting, the energy of the
fluid can change only due to the input from the forcing. It is well known that typically
the energy input undergoes a direct cascade in scales smaller than the characteristic
forcing scale � f , while it undergoes an inverse cascade for scales � � � f . Thus, an
extended inverse cascade range can be achieved by using a high-wave number forcing,
spectrally concentrated around wave number k f ∼ 2π/� f and considering the limit
k f → ∞. This produces an “infinite frequency” forcing, which vanishes in the sense
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of distributions but may continue to input (or remove) energy

lim
k f →∞〈u · f 〉 = I 	= 0. (2)

When (2) holds, it is analogous to dissipative anomaly (1) in higher dimensions.When-
ever the forcing acts as an energy source I is positive and we call (2) the anomalous
input or production anomaly.

Despite being an intrinsically Eulerian object, the dissipative anomaly (1) is known
to have some interesting connections with Lagrangian aspects of turbulence. Richard-
son (1926) predicted that particles pairs in the inertial range of a high-Re turbulent
flow have mean-squared separation that grows as t3, i.e.,

〈|δXt0,t (r; x)|2〉 ∼ gεt3 (3)

where δXt0,t (r; x) := Xt0,t (x + r) − Xt0,t (x) is the Lagrangian deviation, g is the
Richardson constant, and the tracers particles Xt0,t (x) satisfy

d

dt
Xt0,t (x) = u(Xt0,t (x), t), Xt0,t0(x) = x . (4)

Richardson’s prediction (3) notably involves the viscous dissipation rate ε, which
remains finite in zero-viscosity limit (1). Somewhat mysteriously, Richardson dis-
persion is observed numerically to be faster backward in time than forward for 3d
turbulence and faster forward in time than backward in 2d (Faber and Vassilicos
2009; Sawford et al. 2005). This observation, as well as insight from toy models, led
to the conjecture of Eyink and Drivas (2015) that the direction of the cascade—inverse
or direct—and time asymmetry of Lagrangian particle dispersion are closely related.

Recent work onmean-squared particle dispersion has shed new light on Lagrangian
manifestations of time asymmetry and its connection to the turbulent cascade. See
Jucha et al. (2014), Bitane et al. (2012), Falkovich and Frishman (2013), and also
the recent review (Xu et al. 2016). These studies employ the so-called Ott–Mann–
Gawȩdzki relation (Ott and Mann 2000; Falkovich et al. 2001), sometimes described
as the “Lagrangian analog of the 4/5-law,” in order to obtain an explicit short-time
expansion for the two-particle dispersion in terms of purely Eulerian quantities. For
inertial range separations r , this relation states:

1

2

d

dτ

〈
|δrv(τ ; x, t)|2

〉∣∣∣∣
τ=0


 −2ε (5)

with the Lagrangian velocity v(τ, x; t) := u(Xt,t+τ (x), t + τ) and δrv(τ ; x, t) :=
v(τ, x + r; t) − v(τ, x; t). Standard derivations of the relationship assume spatial
isotropy and the average must be either interpreted as over the spatial domain, or as a
time/ensemble average provided the fields are homogenous.

With the Ott–Mann–Gawȩdzki relation in hand, the relative mean-squared disper-
sion of Lagrangian tracers for short times can be calculated using only local (in time)
Eulerian quantities in closed form:
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〈
|δXt,t+τ (r; x)−r |2

〉
≈ Su

2 (r, t)τ 2 − 2ετ 3 + O(τ 4) (6)

where Su
2 (r, t) := 〈|δu(r, t)|2〉 is the second-order structure function. In simulations of

three-dimensional turbulence, the leading-order quadratic and cubic behavior for time
differences of order the local turnover time at scale |r | is verified (Bitane et al. 2012).
Note that although the energy dissipation rate ε appears as coefficients in both cubic
terms, the τ 3 term in (6) is for short times only and is not the same as the behavior
that Richardson predicted (3) which holds at later times.

Recently, Jucha et al. (2014) realized that for 3d turbulent flows, Eq. (6) can be used
to predict that pairs of Lagrangian particles initially spread faster backward in time
than forward in time. This is deduced by inspecting the behavior of (6) under time
reversal τ → − τ and noting that the O(τ 2) term is invariant, whereas the O(τ 3) term
changes sign. Since ε > 0 for high Reynolds number 3d turbulence (1), this O(τ 3)

term tends to enhance the dispersion backwards in time and deplete the dispersion
forwards-in-time, thereby establishing a Lagrangian “arrow of time.” Unfortunately,
at high Reynolds numbers, the realm of validity of expansion (6) becomes vanishing
small. In particular, the Taylor series expansion of the particle trajectories used to
derive (6) is only guaranteed to converge in a neighborhood of times on the order
of the Kolmogorov timescale τη ∼ (ν/ε)1/2. Thus, it is desirable to have an alterna-
tive Lagrangian measure of time asymmetry that remains valid for arbitrarily large
Reynolds numbers.

We prove here that there is such a Lagrangian measure involving the short-time
dispersion of tracer particles in coarse-grained (or mollified) fields u� instead of their
fine-grained counterparts u. In particular, such trajectories satisfy

d

dt
X�

t0,t (x) = u�(X�
t0,t (x), t), X�

t0,t0(x) = x (7)

with g� = ∫
Td G�(r)g(x +r)dr for any g ∈ L1(Td)where G ∈ C∞

0 (Td) is a standard
mollifier, compactly supported in the unit ball, and G�(r) = �−d G(r/�). Then, the
following are novel formulae for the dissipation/input anomalies which are purely
Lagrangian in nature (albeit, for asymptotically short times).

Theorem 1 Fix an standard mollifier ψ ∈ C∞
0 (Td) with supp(ψ) ⊆ B1(0) and

ψR(r) = R−dψ(r/R) and denote 〈 f (r)〉R := ∫
Td f (r)ψR(r)dr for any f ∈ L1(Td).

(i) Let d ≥ 2 and let u ∈ L∞(0, T ; L2(Td)) ∩ L3(0, T ; L3(Td)) be any weak
solution to the Euler equations with initial data u0 ∈ L2(Td) and forcing f ∈
L∞(0, T ; L2(Td)). Then,

lim
R→0

lim
�→0

lim
τ→0

〈|δX�
t,t+τ (r; x) − r |2〉R − 〈|δX�

t,t−τ (r; x) − r |2〉R

4τ 3
= −
[u]

(8)

in the sense of distributions in T
d × [0, T ], where the conservation anomaly


[u] is defined by (21).
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(ii) Let d ≥ 3 and uν ∈ L∞(0, T ; L2(Td)) ∩ L2(0, T ; H1(Td)) be any Leray solu-
tions to the Navier–Stokes equations with initial data uν

0 ∈ L2(Td) and forcing
f ν ∈ L∞(0, T ; L2(Td)) (with norms uniformly bounded). Assume uν → u
strongly in L3(0, T ; L3(Td)). Then

lim
R→0

lim
�→0

lim
τ→0

lim
ν→0

〈|δX�,ν
t,t+τ (r; x) − r |2〉R − 〈|δX�,ν

t,t−τ (r; x) − r |2〉R

4τ 3
= −ε[u]

(9)

in the sense of distributions in T
d × [0, T ], where the dissipative anomaly ε[u]

is defined by (27).
(iii) Let d = 2 and uk f ∈ C([0,∞); W 1,r (T2)), r > 3/2 be any weak solutions to the

Euler equations with initial data u
k f
0 ∈ L2(T2) and ω

k f
0 := ∇⊥ · u

k f
0 ∈ Lr (T2)

and forcing f k f ∈ L∞([0,∞); L2(T2)) such that f k f → 0 as k f → ∞ in
sense of distributions. Assume uk f → u strongly in L3(0, T ; L3(T2)). Then,

lim
R→0

lim
�→0

lim
τ→0

lim
k f →∞

〈|δX
�,k f
t,t+τ (r; x) − r |2〉R − 〈|δX

�,k f
t,t−τ (r; x) − r |2〉R

4τ 3
= I [u]

(10)

in the sense of distributions in T
2 × [0, T ], where the production anomaly I [u]

is defined by (36).

Expressions (8), (9), and (10) represent Lagrangian formulae for conservation-law
anomalies, which are local in space and time. These expressions involve computing the
difference of short-time dispersion both forward and backward in time,1 and averaging
over particle pairs in a small region of size R with a kernel ψ . Note, however, that
the resulting distributions are independent of choice of this kernel. The main physical
interest of Theorem 1 is that the asymmetry in the short-time dispersion precisely
correlates with the turbulent cascade direction (at small scales), i.e., the sign of the
flux. Part (i) of the Theorem applies to general weak Euler solutions for which the
cascade is characterized by the distribution 
[u] and may occur with either sign. Part
(ii) is concernedwith the inviscid limit ofNavier–Stokes solutions; it provides rigorous
mathematical justification of the observations of Jucha et al. (2014) and shows that
without need for ensemble averaging or any assumption of isotropy or homogeneity.
Part (iii) of the Theorem extends these considerations to the setting of 2d Euler in
the limit of infinitely small-scale forcing, which serves as a model for the inverse
energy cascade. Unlike the situation in 3d turbulence, in this setting particles initially
disperse faster forward in time than backward since typically forcing inputs energy
(I > 0). Thus, the information on time asymmetry of short-timeLagrangian dispersion

1 We remark that Frishman and Falkovich (2014) argued on theoretical grounds that unlike Eq. (6), the
short-time expansion of the difference of forward/backward dispersion appearing in (9) for incompressible
Navier–Stokes should have a finite radius of convergence at a fine-grained level (� ≡ 0), even in the limit
of ν → 0. This remarkable property may be useful to bridge the gap between the asymptotically short time
results presented here and the observations of Richardson dispersion at later times.
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provided by Theorem 1(ii) and (iii) mirrors the observations of Richardson dispersion
(Faber and Vassilicos 2009; Sawford et al. 2005) and lends support to the conjecture
of Eyink and Drivas (2015).

Physically, we never really go to the limit of zero time τ , viscosity ν, forcing scale
� f , filter scale �, or radial resolution R, which are technically required for Theorem 1.
In practice, our results should hold approximately within a range of scales that we
now describe. Assume that the following plausible bound on the o(τ 3) corrections in
the equation for the difference of (52) and (53) holds

〈
|δX�

t,t+τ (r; x) − r |2
〉

R,ϕ
−

〈
|δX�

t,t−τ (r; x) − r |2
〉

R,ϕ
= 〈
�〉ϕτ 3

[
1 + O

(
τ

τ�

)]
,

(11)

where τ� = O(�/δu(�)) is the local eddy turnover time at scale �, δu(�) is some
measure of the typical velocity fluctuation at that scale, and 〈·〉ϕ is a ϕ-weighted
space–time average where ϕ ∈ C∞

0 ([0, T ] × T
d). The hypothetical bound (11) is the

assertion that the Taylor series in time for trajectories in coarse-grained fields (7) is
valid until the local turnover time. Then, results (9) and (10) hold for �, R and τ in the
ranges

d ≥ 3 : �ν � � � R � L and τ � τ�, (12)

d = 2 : �ν � � f � � � R � L and τ � τ�, (13)

where �ν is the dissipative cutoff scale (in K41 theory, �ν/L ∼ Re−3/4) and L is the
integral scale (e.g. a characteristic length scale of the large-scale production mecha-
nism). Scale ranges (12) and (13) show that our results require a long inertial range
with a large separation of scales to hold. However, the studies Jucha et al. (2014),
Bitane et al. (2012) suggest that in three-dimension, fine-grained analogues of (11)
hold to a reasonable degree of accuracy even at moderately large Reynolds number.

The main technical tool used in the proof of Theorem 1 is a generalization of the
Ott–Mann–Gawȩdzki relation for particles moving in a coarse-grained fluid velocity
field, which may be of independent interest.

Lemma 1 (Generalized Ott–Mann–Gawȩdzki Relation). Let ψR be as in Theorem 1.

(i) (d ≥ 2) Under conditions of Theorem 1, (i), in the sense of distributions in
T

d × [0, T ], we have

lim
R→0

lim
�→0

1

2

d

dτ
〈|δrv

�(τ ; x, t)|2〉R

∣∣∣
τ=0

= −2
[u] (14)

where v�(τ, x; t) := u�(X�
t,t+τ (x), t + τ) and δrv

�(τ ; x, t) = v�(τ, x + r; t) −
v�(τ, x; t).

(ii) (d ≥ 3) Under conditions of Theorem 1, (ii), in the sense of distributions in
T

d × [0, T ], we have

lim
R→0

lim
�→0

lim
ν→0

1

2

d

dτ
〈|δrv

�,ν(τ ; x, t)|2〉R

∣∣∣
τ=0

= −2ε[u] (15)
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where v�,ν(τ, x; t) := (uν)�(X�,ν
t,t+τ (x), t + τ).

(iii) (d = 2) Under conditions of Theorem 1, (iii), in the sense of distributions in
T
2 × [0, T ] we have

lim
R→0

lim
�→0

lim
k f →∞

1

2

d

dτ
〈|δrv

�,k f (τ ; x, t)|2〉R

∣∣∣
τ=0

= 2I [u] (16)

where v�,k f (τ, x; t) := (uk f )�(X
�,k f
t,t+τ (x), t + τ).

That the energy flux-through-scale should appear in Ott–Mann–Gawȩdzki relation
(14) for Euler solutions was already essentially understood in Falkovich and Frishman
(2013), Falkovich et al. (2001). Lemma 1 is a precise mathematical formulation of this
observation. The formulae (14), (15), and (16) are again independent of the r -averaging
kernel ψ ∈ C∞

0 (Td).
In Sect. 2, we describe an appropriate mathematical framework for describing

dissipation/input anomalies (1) and (2), as well as their connection to the turbulence
cascade. Specifically, in §2.1, we review previous work of Duchon and Robert (2000)
for weak solutions of the 3d Navier–Stokes equations and in §2.2, we extend the work
ofDuchon andRobert (2000) to a small-scale forced 2d Euler setup, which is proposed
as a mathematical model for the study of the inverse cascade. Proofs are deferred to
Sect. 3.

2 Energy Conservation Anomalies in d = 2 and d ≥ 3 and Turbulent
Cascade Direction

As discussed in Introduction, turbulent fluids are remarkably effective at transferring
energy across scales. In dimensions three and higher, this is reflected by the dissipative
anomaly, or persistent dissipation of kinetic energy in the limit of zero viscosity; in
dimension two, the inverse energy cascade can transfer energy which is input by a
scale localized force up to large scales even in the limit where the typical forcing
wave number is taken to infinity. This is all the more surprising because, in both these
cases, the direct effect of viscosity/forcing, respectively, vanish (at least in the sense
of distributions).

Deep insight into the mechanism of such dissipative/input anomaly came from Lars
Onsager in his famous 1949 paper. There, he discussed the idea that weak solutions of
the Euler equation may not conserve energy due to a nonlinear energy cascade despite
the fact that no non-ideal effects are present. Following these ideas, Duchon andRobert
(2000) considered any weak solution u for the Euler equations with velocity satisfying
u ∈ L3(0, T ; L3(Td)) and with forcing f ∈ L2(0, T ; L2(Td))

∂t u + ∇ · (u ⊗ u) = −∇ p + f, (17)

∇ · u = 0, (18)
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where we have assumedmass density ρ0 is homogeneous and set to unity. The transfer
of energy through scale can then be described as follows. Let G ∈ C∞

0 (Td) be a
standard mollifier, G�(r) = �−d G(r/�) and define2 the function


�[u] := −∇ū� : τ�(u, u) (19)

where u�(x) = ∫
Td G�(r)u(x + r)dr and τ�(u, u) = (u ⊗ u)� − u� ⊗ u�. This term

represents energy flux-through-scale and appears as a transfer term in the balance of
“resolved” kinetic energy

∂t

(
1

2
|u�|2

)
+ ∇ ·

[(
1

2
|u�|2 + p�

)
u� + u� · τ�(u, u)

]
= −
�[u] + u� · f �.

(20)

By Proposition 2 of Duchon and Robert (2000), as � → 0, the functions 
�[u] ∈
L1((0, T )×T

d) converge in the sense of distributions on (0, T )×T
d to a distribution


[u] independent of the mollifying sequence, i.e. 
[u] = D′- lim�→0 
�[u] where
D′- lim�→0 represents the limit is taken in the sense of distributions. Further, taking
the � → 0 limit of Eq. (20), one finds that u ∈ L3(0, T ; L3(Td)) satisfies a local
energy balance (in the sense of space–time distributions) which includes a possible
anomaly due to singularities in the solution

∂t

(
1

2
|u|2

)
+ ∇ ·

[(
1

2
|u|2 + p

)
u

]
= −
[u] + u · f, 
[u] = D′- lim

�→0

�[u].

(21)

The limit 
[u] need not vanish due to nonlinear energy cascade facilitated by
rough velocity fields. In fact, Onsager (1949) famously conjectured that, in order
to dissipate energy, an Euler solution cannot possess Hölder regularity u ∈ Cα

with α > 1/3. Otherwise, 
[u] = 0. Eyink (1994) proved this assertion under a
slightly stronger assumption, and Constantin et al. (1994) then proved the sharper
result for u ∈ L p(0, T ; Bα,∞

p (Td)) for any p ≥ 3. Moreover, weak Euler solu-
tions with 
[u] 	= 0 are known to exist (see, e.g., De Lellis and Székelyhidi
2012; Shnirelman 1997) and recent constructions have demonstrated that the reg-
ularity threshold proposed by Onsager is sharp (Isett 2016; Buckmaster et al.
2017).

The work of Duchon and Robert (2000), reviewed in §2.1, connects the Euler
anomaly 
[u] to its physical origin in 3d: energy dissipation anomaly (1) for limits
of Navier–Stokes solutions. In §2.2, we extend these considerations to a framework
designed to describe an “ideal” inverse cascade in 2d. In this setting,we show that
[u]
is connected to the anomalous energy input by a force acting only at infinitesimally
small scales.

2 Duchon and Robert (2000) stated this result with a different definition of 
�[u]. At finite �, these two
expressions differ. However, in the limit � → 0, both expressions converge to the same limit distribution

[u]; see Eyink (2015) §IIIb.
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2.1 Dissipation Anomaly in Dimensions d ≥ 3 and Direct Cascade

The forced Navier–Stokes equations governing the evolution of a viscous incompress-
ible fluid are

∂t u
ν + ∇ · (uν ⊗ uν) = −∇ pν + ν�uν + f ν, (22)

∇ · uν = 0, (23)

with solenoidal initial conditions uν |t=0 = uν
0 ∈ L2(Td) and forcing f ∈

L2(0, T ; L2(Td)). If (22) and (23) are understood in the sense of distributions onT
d ×

[0, T ], then weak solutions in the space uν ∈ L∞(0, T ; L2(Td))∩ L2(0, T ; H1(Td))

for ν > 0, known as Leray solutions, exist globally but are not known to be unique.
Such solutions satisfy a local (generalized) energy equality (Duchon andRobert 2000),
which states

∂t

(
1

2
|uν |2

)
+ ∇ ·

[(
1

2
|uν |2 + pν

)
uν − ν∇ 1

2
|uν |2

]
= −ε[uν] (24)

where the energy dissipation rate is

ε[uν] := ν|∇uν |2 + D[uν] (25)

with D[uν] a Radon measure that represents dissipation due to possible Leray singu-
larities.

Freely decaying and externally forced incompressible turbulence appears substan-
tially similar for dimensions d ≥ 3; there is a direct (or forward) cascade of energy
from large to small scales. Moreover, for d = 3, as discussed in Introduction, it is a
well-known experimental observation that at large Reynolds numbers, the dissipation
rate becomes independent of ν and is non-vanishing. Anomalous dissipation, or the
zeroth “law” of turbulence (1), would be reflected mathematically by the property that

lim
ν→0

ε[uν] > 0 (26)

as a distribution, i.e. for somepositive test functionϕ, 〈ε[u], ϕ〉 > 0.Althoughproperty
(26) remains amathematical conjecture for solutions ofNavier–Stokes equations, there
is a wealth of experimental (Sreenivasan 1984; Pearson et al. 2002) and numerical
(Sreenivasan 1998; Kaneda et al. 2003) evidence that supports it. See also Remark 3
of Drivas and Eyink (2017).

Duchon andRobert connect (§3 ofDuchon andRobert 2000) anomalous dissipation
(26) to properties of weak Euler solutions under the assumption that uν → u strongly
in L3(0, T ; L3(Td)). In particular, they showed that the limit u ∈ L3(0, T ; L3(Td))

is a weak solution to incompressible Euler equations (17)–(18) which additionally
satisfies a distribution local energy balance arising as the limit of Eq. (24)
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∂t

(
1

2
|u|2

)
+ ∇ ·

[(
1

2
|u|2 + p

)
u

]
= −ε[u] + u · f, ε[u] = D′- lim

ν→0
ε[uν].

(27)

Moreover, comparing (27) to balance equation (21) valid for general weak Euler
solutions u ∈ L3 space–time, the limiting dissipationmatches on to the to the nonlinear
flux 
[u], namely


[u] = ε[u] (28)

in the sense of distributions, i.e. it holds when averaged over the same (arbitrary)
bounded space–time region. Thus, identification (28) is space–time local but may not
hold pointwise in (x, t) ∈ T

d × [0, T ]. Moreover, even if there is a global dissipation
anomaly (1), it may well be that the dissipation is not taking place everywhere and
for some observation regions (test functions ϕ), both the distributions 
[u] and ε[u]
appearing in (28) vanish.

The physical picture suggested by (28) is one of cascade; the energy in the system,
possibly input at large scales L by an external force, cascades downscale � � L
through nonlinear transfer 
�[u] until the smallest scales where it is dissipated by the
action of viscosity. At that smallest scale, the nonlinear flux and viscous dissipation
balance. This is often termed a direct cascade, which is reflected by the fact the
flux is asymptotically downscale 
[u] ≥ 0 by identification (28).3 This corroborates
Onsager’s picture of infinite-Re number turbulence as being governed by dissipative
weak Euler solutions, as it directly relates anomalous dissipation as ν → 0 to the
inviscid limit of viscous energy dissipation of Navier–Stokes solutions.

It is worthwhile mentioning that there is a strong connection between formula (28)
and the celebratedKolmogorov 4/5 law. To be precise, for anyweak Euler solution u ∈
L3(0, T ; L3(Td)), consider the longitudinal third-order structure function SL

r [u] ∈
L1([0, T ] × T

d) defined by

SL
r [u] := 1

|r |
∫

Sd−1
δuL(r)3 dω(r̂) (29)

where dω(r̂) is the unit Haar measure on Sd−1 and δuL(r; x, t) := r̂ · δu(r; x, t) is
the longitudinal velocity increment. In Corollary 1 of Eyink (2002), it is proved that
if the distributional limit SL [u] := D′- limr→0 SL

r [u] exists, then it matches onto the
limit of the nonlinear flux, 
[u]. Specifically, he established the equality

SL [u] = − 12

d(d + 2)

[u], (30)

interpreted in the sense of distributions on [0, T ] × T
d . It follows from Eq. (30) and

identification (28) that for any strong limit uν → u in L3(0, T ; L3(Td)), one has

3 We remark that this is an asymptotic statement related to the cascade at arbitrarily small scales. It does not
imply that the cascade rate is constant (or even positive) throughout all scales in the inertial range, although
in practice this is very often observed.
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SL [u] = − 12
d(d+2) ε[u], recovering the usual 4/5 law in a space–time local sense (no

ensemble averaging necessary) in three dimensions. With this identification in hand,
together with (28) and (37), (30) can be used to replace 
[u], ε[u] and −I [u] with
SL [u] in formulae (8), (9) and (10) respectively, so that these expressions may indeed
be regarded as “Lagrangian analogues” of the 4/5-law.

2.2 Anomalous Input in Dimension d = 2 and Inverse Cascade

Kraichnan (1967), in a seminar paper, argued that, in the limit of small viscosity,
most of the energy input by forcing would cascade to larger scales because of the
“spectral blocking” effect (Fjørtoft 1953; Eyink 1996) of the enstrophy flux, with only
very little energy “leaking” to small scales. Using dimensional reasoning and physical
arguments, Kraichnan proposed that a dual cascade should occur; i.e., there should
be a inverse energy cascade range at scales greater than the typical forcing scale � f ,
and also a direct enstrophy cascade range at scales smaller than � f . Moreover, he
predicted that the energy spectrum E(k) scales in these ranges as

E(k) ∼
{

I 2/3k−5/3, k � k f

η2/3k−3, k � k f
, (31)

where I is the energy injection rate by forcing, η is the enstrophy injection rate.4 These
conclusions were proposed independently by Batchelor (1969) for freely decaying 2d
turbulence. They were derived also by Eyink (1996) who provided a more rigorous
basis for the theory using somewhat different arguments.

As discussed in Introduction, we are interested in an ideal inverse cascade setup.
As a simplified model, we consider the ideal Euler equations with forcing in the limit
where the force acts only at infinitesimally small scales. This limit should result in an
inverse energy cascade range permeating to all scales. To make our setup precise, we
consider weak solutions to the forced Euler equations uk f ∈ C([0,∞); W 1,r (T2))

with a forcing which is spectrally concentrated at wave number k f ,

∂t u
k f + ∇ · (uk f ⊗ uk f ) = −∇ pk f + f k f , (32)

∇ · uk f = 0, (33)

with initial data u
k f
0 ∈ L2(T2) and ω

k f
0 ∈ Lr (T2) for r ∈ (3/2,∞) and forcing f k f ∈

L2(0, T ; L2(T2)). The existence of at least one such weak solution is guaranteed
provided only r ∈ (1,∞); see Lions (1996). Our restriction that r > 3/2 ensures, by

4 More correctly, the dual cascade picture was predicted by Kraichnan to occur in a statistically steady
state for a fluid with large-scale damping (such as linear friction of hyperviscosity) and viscosity. These
two effects impost cutoff wave numbers; damping imposes kir is an infrared cutoff and viscosity kuv

is the corresponding ultraviolet. Then, the inverse energy cascade range is predicted to be confined to
kir � k � k f , whereas the direct enstrophy range to k f � k � kuv . For simplicity, in our analysis, we
consider forced Euler equations, neglecting the effects of large-scale damping and viscosity. However, our
conclusions can easily be modified to accommodate the presence of a damping term and for Navier–Stokes
solutions in the limit where viscosity ν is taken to zero before all others discussed in this section.
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Proposition 6 of Duchon and Robert (2000), that uk f satisfies the distributional energy
balance

∂t

(
1

2
|uk f |2

)
+ ∇ ·

[(
1

2
|uk f |2 + pk f

)
uk f

]
= I [uk f ], I [uk f ] := uk f · f k f

(34)

where the energy input is due to solely the forcing. In particular, there is no anomalous
term in energy balance (34) arising frompossible singularities in the solutions (e.g., the
D[uν] distribution which appeared in (25)). We are interested in the limit in which the
typical forcing wave number is taken off to infinity k f → ∞, or equivalently � f → 0.
Such a force will have “infinite frequency” and be zero from the distributional point
of view (a concrete example is presented in Proposition 1). However, analogous to
the dissipative anomaly (26), there may be remnant input of energy from forcing (2),
expressed mathematically by

lim
k f →∞ I [uk f ] 	= 0 (35)

in the sense of distributions.We call property (35) “anomalous input” or a “production
anomaly” since we expect that typically the role of the forcing is to act as a source
for energy rather than a sink.5 It is called anomalous because it is fed into the flow at
infinitely small scales, where irregular turbulent motion is required to facilitate energy
transfer up through the inertial range and into the largest scales of the flow. There
are examples of flows with input anomalies of form (35). In fact, the construction of
non-conservative weak Euler solutions by Shnirelman (1997) has an input anomaly
I [u] 	= 0 and is motivated by the physical idea of the inverse energy cascade.

We now specify details on the forcing schemes we consider. We require that f k f ∈
L∞(0, T ; L2(T2)) for all k f < ∞ and that f k f → 0 in the sense of distribution as
k f → ∞. This can easily be accomplished, for example, by considering a force with
compact spectral support and taking the forcing wave number k f off to infinity (or
equivalently the typical forcing length scale � f = 2π/k f is taken to zero). Indeed,

Proposition 1 Let f k f have spectral support inside a band [k f /2, 2k f ] around some
wave number k f ∈ (0,∞). Further, assume that f k f ∈ L2(0, T ; L2(T2)) for all
k f < ∞ and with L1 norms satisfying ‖ f k f ‖L1(0,T ;L1(T2)) ≤ Ck N

f for any N > 0.

Then, f k f → 0 in the sense of distributions as k f → ∞.

The proof of the proposition is elementary and is differed to §3. Note that we do
not explicitly specify how the amplitudes of the forcing depend on k f ; only that the

5 This depends, of course, on the choice of forcing scheme. For example, energy input is ensured if
the forcing is chosen to be solution dependent, for example, small-scale Lundgren forcing of the form
f = αPk f [u] with α := α(k f ) > 0 and Pk f is the projection onto a shell around k f in wave number
space. Another attractive choice of force is to take f to be a homogenous Gaussian random field which is
white noise correlated in time, i.e. 〈 fi (x, t) f j (x ′, t ′)〉 = 2Fi j (x − x ′)δ(t − t ′). This has the theoretical
advantage that, after averaging over the forcing statistics, the mean injection rate of energy is solution
independent; i.e. after averaging balance (21), the injection term is 〈u · f 〉 = Fii (0) > 0, ensuring input of
energy on average.

123



J Nonlinear Sci

family of forces have space–time L1 norms bounded by an arbitrary power of k f .
Indeed, it is important that the norms ‖ f k f ‖L2(0,T ;L2(T2)) not be uniformly bounded
in k f . Otherwise, limk f →∞ I [uk f ] = 0 as we demonstrate in Remark 1 of §3. Thus,
the forcing we consider is simultaneously required to act within bands of increasingly
high wave numbers and has diverging amplitude. Such forcing schemes have very
little restriction,6 leaving plenty of room to create an input anomaly of type (35).

It is now straightforward, following the approach of Duchon and Robert (2000), to
connect anomaly (35) to dissipative properties of weak unforced Euler solutions under
the assumption that uk f → u strongly in L3(0, T ; L3(T2)) provided that f k

f → 0 in
the sense of distributions as k f → ∞ (e.g., forcing given by Proposition 1). Then,
it is easy to see that the limit u ∈ L3(0, T ; L3(T2)) is a weak solution to unforced
incompressible Euler equations (17)–(18) with f ≡ 0 which satisfies the local energy
balance arising as the limit of Eq. (34)

∂t

(
1

2
|u|2

)
+ ∇ ·

[(
1

2
|u|2 + p

)
u

]
= I [u], I [u] = D′- lim

k f →∞ I [uk f ]. (36)

The details of this argument are very similar to those given in Duchon and Robert
(2000) and are provided in Chapter 3 of Drivas (2017). Comparing (27) to balance
equation (21), which is valid for general weak Euler solutions u ∈ L3 space–time, the
limiting energy input matches to the negative flux −
[u], namely


[u] = −I [u] (37)

in the sense of distributions. Again, as we expect the forcing to input energy into
the flow, equality (37) implies that 
[u] < 0 for “typical” forcing schemes. The
physical picture is that despite the fact that there is no direct forcing in momentum
equation (17), energy is fed into the system by the “infinite” frequency forcing acting
at “infinitesimally” small scales, where it is transferred upscale via a nonlinear inverse
cascade until it accumulates at large scales.

3 Proofs

Proof of Theorem 1 Parts (i), (ii), and (iii) have the same proof up to the application
of Lemma 1. Throughout the proof, all superscripts indicating parametric dependence
on ν or k f are omitted.

The mollified velocity u�(t, ·) is C∞(Td) as a function of space for every time
t ∈ [0, T ], and for all x ∈ T

d , and the function t �→ u�(x, t) is Lipschitz continuous
uniformly in x . This time regularity of themollified field is inherited from the equations
of motion, as we now show in the following proposition.

6 We are grateful to P. Isett for pointing out an improvement of Prop 1 from an early preprint which we
present here.
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Proposition 2 Let u ∈ L∞(0, T ; L2(Td)) be any weak solution of the incompressible
Navier–Stokes or Euler equations with forcing f ∈ L∞(0, T ; L2(Td)). Then, the
mollified velocity u�(·, x) is Lipschitz in time, uniformly in space.

Proof of Proposition 2 WeworkwithNavier–Stokes solutions; Euler solutions follow
by the sameargument.Choosing test functions of the formϕ(t, ·) := ψ(t)G�(x−·),we
see that any weak solutions of Navier–Stokes satisfy the mollified equations pointwise
for x ∈ T

d and distributionally for t ∈ [0, T ]:

∂t u� + ∇ · (u ⊗ u)� = −∇ p� + ν�u� + f �. (38)

We aim to establish a uniform-in-x bound for ∂t u�(x, ·) in L∞([0, T ]). Since u ∈
L∞([0, T ]; L2(Td)), then for every x ∈ T

d wehavebyYoung’s convolution inequality

‖∇ · (u ⊗ u)�(x, ·)‖L∞([0,T ]) ≤ 1

�
‖(∇G)�‖∞‖u‖2L∞([0,T ];L2(Td ))

, (39)

‖ν�u�(x, ·)‖L∞([0,T ]) ≤ ν

�2
‖(�G)�‖2‖u‖L∞([0,T ];L2(Td )), (40)

‖ f �(x, ·)‖L∞([0,T ]) ≤ ‖G�‖2‖ f ‖L∞([0,T ];L2(Td )). (41)

The pressure-gradient term ∇ p�(x, t) in (38) is determined using ∇ · f = 0 from the
Poisson equation

− �∇ p�(·, t) = (∇ ⊗ ∇ ⊗ ∇) : (u ⊗ u)�(·, t). (42)

Note that the right-hand side belongs to C∞(Td) for a.e. time t . The solution of the
Poisson problem therefore satisfies the following Sobolev estimate for any integer
m > 2

‖∇ p�(·, t)‖Hm (Td ) ≤ C‖(∇ ⊗ ∇ ⊗ ∇) : (u ⊗ u)�(·, t)‖Hm−2(Td ) (43)

for some constant C . The right-hand side above can be bounded as follows:

‖(∇ ⊗ ∇ ⊗ ∇) : (u ⊗ u)�(·, t)‖Hm−2(Td ) ≤ C‖∇(m+1)(u ⊗ u)�(·, t)‖L∞(Td )

≤ C‖∇(m+1)G‖∞‖u(·, t)‖2L2(Td )
/�m+1+d

(44)
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for some constant C . Choosing m > d/2, by virtue Sobolev embedding Hm(Td) ↪→
L∞(Td), we have from (43) and (44) that

‖∇ p�(x, ·)‖L∞([0,T ]) ≤ C‖∇(m+1)G‖∞‖u‖2L∞([0,T ];L2(Td ))
/�m+1+d , (45)

for some constant C and every x ∈ T
d . We thus see that every term in (38) for the

distributional derivative ∂t u�(x, ·) belongs to L∞([0, T ]) so that u�(x, ·) for every
x ∈ T

d is Lipschitz continuous. ��
Note moreover that, since u ∈ L∞(0, T ; L2(Td)) (for parts (ii) and (iii), with

norms uniformly bounded in ν and k f ), the mollified field and all its derivatives are
uniformly bounded in x at fixed � > 0

‖∇(n)u�‖L∞([0,T ]×�) ≤ ‖∇(n)G‖∞‖u‖L∞(0,T ;L1(Td ))/�
n+d . (46)

Therefore, u� ∈ Lip([0, T ] × T
d) (it is actually much more regular in space; C∞

x for
a.e. t ∈ [0, T ]), the Lagrangian particle trajectories defined by Eq. (7) exist and are
unique. It follows from the equation Ẋ�

t0,t = u�(X�
t0,t , t) that X�

t0,t (x) ∈ C2([0, T ])
uniformly in x for fixed � > 0 since

Ẍ�
t0,t (x) = a�(X�

t0,t (x), t) ∈ L∞([0, T ]) (47)

where we have introduced a�(x, t), the material derivative of the mollified velocity or
the large-scale Eulerian acceleration

a�(x, t) = (∂t u� + u� · ∇u�) (x, t). (48)

Claimed regularity (47) follows from the fact that ∂t u�(·, x) ∈ L∞([0, T ]) and the
bound

‖a�(x, ·)‖L∞([0,T ]) ≤ ‖∂t u�(·, x)‖L∞([0,T ])

+1

�
‖G�‖∞‖(∇G)�‖∞‖u‖2L∞([0,T ];L2(Td ))

. (49)

Thus, since X�
t0,t (x) ∈ C2([0, T ]) for each x ∈ T

d , it follows by Taylor’s theorem that
for any x ∈ T

d , there exist functions h f := h f (τ ; t, x, r, �) and hb := hb(τ ; t, x, r, �)
with the properties that limτ→0 h f (τ ) = limτ→0 hb(τ ) = 0 and are such that the
following short-time expansion for trajectories both forwards and backwards in time
hold

δX�
t,t+τ (r; x) − r = δu�(r; x, t)τ + 1

2
δa�(r; x, t)τ 2 + h f (τ )τ 2, (50)

δX�
t,t−τ (r; x) − r = −δu�(r; x, t)τ + 1

2
δa�(r; x, t)τ 2 + hb(τ )τ 2, (51)
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Note that for fixed � > 0, the fields δu�(r; x, t), δa�(r; x, t), δX�
t,t+τ (r; x) ∈

L∞([0, T ]) uniformly in x, r ∈ T
d by the fact that u ∈ L∞(0, T ; L2(Td)) and

bound (49). Moreover, for fixed � > 0, all these fields are C∞ in the variables x and
r for a.e. t ∈ [0, T ]. Since Eqs. (50) and (51) in fact define h f and hb, it follows that
these are smooth functions in the variables x and r for a.e. t and bounded in time for
all x, r ∈ T

d . Using these facts, squaring (50), (51) and integrating in r against ψR ,
we obtain the expansions for the relative dispersion up to o(τ 3) errors7

〈
|δX�

t,t+τ (r; x)−r |2
〉

R
= 〈Su�

2 (r, t)〉R τ 2 + 1

2

d

dτ
〈|δrv

�(τ ; x, t)|2〉R

∣∣∣
τ=0

τ 3 + o(τ 3),

(52)
〈
|δX�

t,t−τ (r; x)−r |2
〉

R
= 〈Su�

2 (r, t)〉R τ 2 − 1

2

d

dτ
〈|δrv

�(τ ; x, t)|2〉R

∣∣∣
τ=0

τ 3 + o(τ 3),

(53)

where we defined v�(τ, x; t) := u�(X�
t,t+τ (x), t + τ) and δrv

�(τ ; x, t) := v�(τ, x +
r; t)−v�(τ, x; t). Inwriting (52), (53),weused the notation Su�

2 (r, t) := |δu�(r; x, t)|2
and the fact that

1

2

d

dτ
〈|δrv

�(τ ; x, t)|2〉R

∣∣∣
τ=0

= 〈δu�(r; x, t) · δa�(r; x, t)〉R . (54)

Subtracting the forward dispersion from the backward, dividing by τ 3, and taking the
limit τ → 0, we have

〈
|δX�

t,t+τ (r; x) − r |2
〉
R

−
〈
|δX�

t,t−τ (r; x) − r |2
〉
R

2τ3
τ→0−−−→ 1

2

d

dτ
〈|δr v�(τ ; x, t)|2〉R

∣∣∣
τ=0

.

(55)

Next, taking the limit ν → 0 in d ≥ 3 and k f → ∞ in d = 2, and finally, taking
R, � → 0 (in the sense of distributions in x, t) and applying Lemma 1, we obtain
formulae (8), (9), and (10). ��
Proof of Lemma 1 Fix anyφ ∈ C∞

0 ([0, T ]×T
d), considerϕ(x, r, t) = φ(x, t)ψR(r),

and denote

〈 f (x, r, t)〉ϕ :=
∫ T

0

∫

Td×Td
f (x, r, t)ϕ(x, r, t) dtdxdr. (56)

Proof of Lemma 1 (i) Eulerian acceleration increment (48) from the mollified Euler
equations is

δa�(r; x) ≡ −∇xδ p�(r; x) + δ f �(r; x) − ∇x · δτ�(r; x) (57)

7 Where the notation f (τ ) = o(τ3) denotes limτ→0 f (τ )/τ3 → 0.
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where δτ�(r; x) = τ�(u, u)(x + r) − τ�(u, u)(x) with τ�( f, g) := ( f g)� − f �g� for
any f, g ∈ L2(Td). Thus, we have from (54) that

1

2

d

dτ
〈|δrv

�(τ ; x, t)|2〉ϕ
∣∣∣
τ=0

= − 〈δu�(r; x) · ∇xδ p�(r; x)〉ϕ
+ 〈δu�(r; x) · δ f �(r; x)〉ϕ
− 〈δu�(r; x) · ∇x · δτ�(r; x)〉ϕ. (58)

We estimate each of these contributions separately. First, we treat the pressure-
work term. Since we are assuming u ∈ L3(0, T ; L3(Td)), we have that u ⊗ u ∈
L3/2(0, T ; L3/2(Td)) and therefore by strong continuity of Calderon-Zygmund oper-
ators in L p for 1 < p < ∞, it follows that p ∈ L3/2(0, T ; L3/2(Td)). Then, by
incompressibility,

〈δu�(r; x) · ∇xδ p�(r; x)〉ϕ = 〈∇x · [δu�(r; x)δ p�(r; x)]〉ϕ
= −

∫ T

0

∫

Td×supp(ψR)

ψR(r)∇φ(x, t) · δu�(r; x, t)δ p�(r; x, t)dtdxdr. (59)

By Hölder’s inequality and the fact that supp(ψR) ⊆ BR(0), we have that

|〈δu�(r; x) · ∇xδ p�(r; x)〉ϕ |
≤ ‖ψ‖1‖∇φ‖∞ sup

|r |<R
‖δu�(r; ·)‖3 sup

|r |<R
‖δ p�(r; ·)‖3/2

≤ ‖G‖21‖ψ‖1‖∇φ‖∞ sup
|r |<R

‖δu(r; ·)‖3 sup
|r |<R

‖δp(r; ·)‖3/2 (60)

where we used Young’s inequality for convolutions to remove the mollification. Thus,
we obtain an upper bound independent of � which vanishes as R → 0 by strong
continuity of shifts in L p for 1 < p < ∞

|〈δu�(r; x) · ∇xδ p�(r; x)〉ϕ | R,�→0−−−−→ 0. (61)

Similar arguments show that

|〈δu�(r; x) · δ f �(r; x)〉ϕ |
≤ ‖G‖21‖ψ‖1‖φ‖∞ sup

|r |≤R
‖δu(r; ·)‖2 sup

|r |≤R
‖δ f (r; ·)‖2 R,�→0−−−−→ 0. (62)

Finally, we estimate the contribution of the turbulent flux:

〈δu�(r; x) · ∇x · δτ�(r; x)〉ϕ = −〈∇xδu�(r; x) : δτ�(r; x)〉ϕ
−

∫ T

0

∫

Td×supp(ψ)

ψR(r)∇φ(x, t) ⊗ δu�(r; x, t) : δτ�(r; x, t)dtdxdr. (63)
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The second term is easily seen to vanish as � → 0 at fixed R since

∣∣∣∣
∫ T

0

∫

Td×supp(ψ)

ψR(r)∇φ(x, t) ⊗ δu�(r; x, t) : δτ�(r; x, t)dtdxdr

∣∣∣∣
≤ ‖∇xφ‖∞ sup

|r |<R
‖δu�(r; ·)‖3 sup

|r |<R
‖δτ�(r; ·)‖3/2

≤ 2‖G‖1‖∇xφ‖∞ sup
|r |<R

‖δu(r; ·)‖3 sup
|r |<R

‖τ�(u, u)‖3/2. (64)

We now use the L p commutator estimate for the coarse-graining cumulant,

‖τ�( f, g)‖p � sup
|r |<�

‖δ f (r; ·)‖2p sup
|r |<�

‖δg(r; ·)‖2p. (65)

See, for example, Constantin et al. (1994) or, more generally, Proposition 3 of Drivas
and Eyink (2018). Returning to our estimate, we have

∣∣∣∣
∫ T

0

∫

Td×supp(ψ)

ψR(r)∇φ(x, t) ⊗ δu�(r; x, t) : δτ�(r; x, t)dtdxdr

∣∣∣∣

≤ 4‖G‖1 ‖∇xφ‖∞‖u‖3 sup
|r |<�

‖δu(r; ·)‖23 �→0−−→ 0, (66)

which follows from strong continuity of shifts in L3.
The remaining terms on the left-hand side of Eq. (63) may be expressed as

〈∇xδu�(r; x) : δτ�(r; x)〉ϕ = 〈∇x u�(x + r) : τ�(x + r)〉ϕ + 〈∇x u�(x) : τ�(x)〉ϕ
− 〈∇x u�(x + r) : τ�(x)〉ϕ − 〈∇x u�(x) : τ�(x + r)〉ϕ.

(67)

Note that ∇x u�(x + r) = ∇r u�(x + r) = ∇r u�(r; x) since the role of x and r is
symmetric and ∇r u�(x). The final term can also be written in a similar form. After
changing variables, it becomes

∫ T

0

∫

Td×Td
ϕ(x, r, t)∇x u�(x) : τ�(x + r)dtdxdr

= −
∫ T

0

∫

Td×Td
ϕ(x − r, r, t)∇r u�(x − r, t) : τ�(x)dtdxdr

= −
∫ T

0

∫

Td×Td
ϕ(x − r, r, t)∇rδu�(−r; x, t) : τ�(x)dtdxdr.

Finally, note that the first two terms can bewritten as 〈
�[u](x+r)〉ϕ and 〈
�[u](x)〉ϕ ,
respectively, using the definition resolved energy flux term given by (19). Therefore,
after changing variables in the final term,
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〈∇xδu�(r; x) : δτ�(r; x)〉ϕ
= 〈
�[u](x + r)〉ϕ + 〈
�[u](x)〉ϕ

+
∫ T

0

∫

Td×Td
∇rϕ(x, r, t) · δu�(r; x, t) · τ�(x, t)dtdxdr (68)

−
∫ T

0

∫

Td×Td
∇r [ϕ(x − r, r, t)] · δu�(−r; x, t) · τ�(x, t)dtdxdr (69)

−
∫ T

0

∫

Td×Td
∇r ·

(
δu�(r; x, t) · τ�(x, t)ϕ(x, r, t) − δu�(−r; x, t)

· τ�(x, t)ϕ(x − r, r, t)
)
dtdxdr. (70)

The two terms in (70) vanish by the divergence theorem since the test functionψR has
compact support. The terms in (68), (69) easily are seen to vanish as � → 0 for any
R > 0 since, using estimate (65) for the cumulant τ�, we have

∣∣∣∣
∫ T

0

∫

Td×Td
∇rϕ(x, r, t) · δu�(r; x, t) · τ�(x, t)dtdxdr

∣∣∣∣ ≤ ‖G‖1‖∇rϕ‖∞

· sup
|r |≤R

‖δu(r; ·)‖3 sup
|r |≤�

‖δu(r; ·)‖23,
∣∣∣∣
∫ T

0

∫

Td×Td
∇r [ϕ(x − r, r, t)] · δu�(−r; x, t) · τ�(x, t)dtdxdr

∣∣∣∣
≤ ‖G‖1 max{‖∇xϕ‖∞, ‖∇rψR‖∞} sup

|r |≤R
‖δu(r; ·)‖3 sup

|r |≤�

‖δu(r; ·)‖23,

which vanish again as � → 0 due to the strong continuity of shifts in L3. The consid-
eration of §2.1 applies and 
�[u] converges in the sense of distributions to 
[u] as
� → 0. Thus,

〈∇xδu�(r; x, t) : δτ�(r; x, t)〉ϕ �→0−−→ 〈
[u](x + r, t)〉ϕ + 〈
[u](x, t)〉φ. (71)

Finally, we analyze the first term above in the limit of R → 0. SinceψR approximates
the identity, we have

〈
[u](x + r, t)〉ϕ =
∫ T

0

∫

Td×Td

[u](x, t) φ(x − r)ψR(r)dtdxdr

=
∫ T

0

∫

Td

[u](x, t) ψR ∗ φ(x)dtdx . (72)

SinceψR, φ ∈ D(Td) = C∞
0 (Td), then in the limit of R → 0, we have thatψR ∗φ →

φ in the standard Fréchet topology on test functions. Since the distribution
 ∈ D′(Td)

is, by definition, a continuous linear functional on D(Td), we have from Eqns. (71)
and (72) that
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−〈∇xδu�(r; x, t) : δτ�(r; x, t)〉ϕ R,�→0−−−−→ −2〈
[u]〉φ (73)

as claimed.
Proof of Lemma 1 (ii). The proof is nearly identical to that of part (i), now using
also the strong convergence assumption that uν → u in L3(0, T ; L3(Td)) and that
f ν ∈ L2(0, T ; L2(Td)) with norms uniformly bounded in ν. We highlight here only
the most different parts of the proof. The Eulerian acceleration increment (48) from
the mollified Navier–Stokes Equations is

δa�,ν(r; x) ≡ −∇xδ(pν)�(r; x) + ν�xδ(uν)�(r; x)

+ δ( f ν)�(r; x) − ∇x · δτ ν
� (r; x) (74)

where τ ν
� := τ�(uν, uν). From (54), we have that

1

2

d

dτ
〈|δrv

�(τ ; x, t)|2〉ϕ
∣∣∣
τ=0

= − 〈δ(uν)�(r; x) · ∇xδ(pν)�(r; x)〉ϕ
+ ν〈δ(uν)�(r; x) · �xδ(uν)�(r; x)〉ϕ
+ 〈δ(uν)�(r; x) · δ( f ν)�(r; x)〉ϕ
− 〈δ(uν)�(r; x) · ∇x · δτ ν

� (r; x)〉ϕ.

The only new term involves the viscous friction. By Young’s inequality for convolu-
tions, this term is bounded pointwise in x, t and r by

ν|δ(uν)�(r; x, t) · �xδ(uν)�(r; x, t)| � ν

�2
‖G‖1‖�G‖1‖φ‖∞‖uν(t)‖22 ν→0−−→ 0

(75)

since uν is uniformly bounded L∞(0, T ; L2(Td)). For the pressure-work term, we
need only that uν → u strongly in L3(0, T ; L3(Td)) implies pν → p strongly in
L3/2(0, T ; L3/2(Td)), which follows from strong continuity of Calderon-Zygmund
operators in L p for 1 < p < ∞. With these strong convergence statements, the
estimates for the remaining terms follow by identical arguments to those appearing in
the proof of part (i). Finally, under our assumptions, the considerations of §2.1 apply
and the flux distribution 
 is identified with the viscous dissipation anomaly via (28).
Therefore, the only non-vanishing term in the end is

− lim
R→0

lim
�→0

lim
ν→0

〈∇xδ(uν)�(r; x) : δτ ν
� (r; x)〉ϕ = −2〈ε[u]〉φ. (76)

Proof of Lemma 1 (iii) Once again, the proof is nearly identical to that of part (i),(ii),
now with strong convergence assumption that uk f → u in L3(0, T ; L3(T2)). The
Eulerian acceleration increment (48) from the mollified forced Euler equations is
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δa�,k f (r; x) ≡ −∇xδ(pk f )�(r; x) + δ( f k f )�(r; x) − ∇x · δτ
k f
� (r; x). (77)

Estimating all the terms above accept the forcing which follows easily from our previ-
ous arguments. The forcing term is treated differently than in part (i) and (ii) where it
was assumed that ‖ f ν‖L2(0,T ;L2(T2)) where uniformly bounded in ν. For d = 2, in the
setting under consideration, by assumption f k f does not have L2(0, T ; L2(T2) norms
bounded uniformly in k f , since if they were, there could be no energy conservation
anomaly arising from the forcing (see Remark 1). Nevertheless, its contribution to

(54), 〈δ(uk f )�(r; x) · δ( f k f )�(r; x)〉ϕ , vanishes in the limit k f → ∞ at fixed � since

|〈δ(uk f )�(r; x) · δ( f k f )�(r; x)〉ϕ | ≤ C‖ϕ‖∞‖uk f ‖2‖( f k f )�‖2 k f →∞−−−−→ 0 (78)

since ‖uk f ‖2 is uniformly bounded and ( f k f )�
k f →∞−−−−→ 0 uniformly in x ∈ T

2 since
f k f vanishes in the sense of distributions as k f → ∞.
This convergence can be seenmore directly if we assume that the force has compact

spectral support with L1 norms bounded by a power of k f , as in Proposition 1. In that
case, we have

( f k f )� =
∫

Td
G�(r) f k f (x + r)dr =

∫

Td
Pk f [G�](r) f k f (x + r)dr, (79)

where Pk f is the projection onto the spectral support of f k f . Thus,

|( f k f )�| ≤ ‖Pk f [G�]‖∞‖ f k f ‖1 ≤ Ck N
f

∑

k ∈ supp(
̂
f k f )

|Ĝ�(k)| k f →∞−−−−→ 0 (80)

since ‖ f k f ‖1 ≤ Ck N
f , N > 0 by assumption and |Ĝ�(k)| decays faster than any

polynomial (see proof of Proposition 1). Thus, we obtain convergence—uniformly
in x—of the mollified force to zero as k f → ∞. If the force does not have compact
spectral support, but has Fourier transform ‘concentrated’ about k f , the same argument
can be modified and applied so long as there is sufficiently rapid decay whenever
||k| − k f | � 1.

One final modification of the previous proof: The considerations of §2.2 apply and
the distributional flux anomaly
 is identified with anomalous forcing input−I in the
limit k f → ∞, see Eq. 37. Therefore,

− lim
R→0

lim
�→0

lim
k f →∞〈∇xδ(uk f )�(r; x, t) : δτ

k f
� (r; x, t)〉ϕ = 2〈I [u]〉φ. (81)

��
Proof of Proposition 1 For k f < ∞, we assume that supp(̂f k f ) ⊆ S(k f ) where the
set S(k f ) = {k | k f /2 ≤ |k| ≤ 2k f } is a shell inwave number space.Note that, for each
fixed k f the forcing is necessarily smooth by this frequency localization assumption.
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Thus, since f k f ∈ L2(0, T ; L2(T2)), for any test function ϕ ∈ C∞
0 ([0, T ] × T

2), we
have

∫ T

0

∫

T2
ϕ(x, t) f k f (x, t)dtdx =

∫ T

0

∫

T2
Pk f [ϕ(x, t)] f k f (x, t)dtdx, (82)

where Pk f is the projection onto the shell S(k f ) of wave number support of the force
f k f . Since theFourier transformof theC∞ function decays faster than anypolynomial,
i.e. |ϕ̂(k, t)| = O(|k|−n) as |k| → ∞ for any n ∈ N and t ∈ (0, T ), we see that

∣∣∣∣
∫ T

0

∫

T2
Pk f [ϕ(x, t)] f k f (x, t)dtdx

∣∣∣∣ ≤ ‖Pk f ϕ‖∞‖ f k f ‖1 ≤ Ck N
f

∑
k∈S(k f )

|ϕ̂(k)|

≤ C
∑

k∈S(k f )

(k f /k)N k N−n k f →∞−−−−→ 0 (83)

since n > N and k f /k ∈ [1/2, 2] on k ∈ S(k f ). By equality (82), we have that
f k f → 0 in the sense of distributions as k f → ∞. ��
Remark 1 In Proposition 1, we do not assume that L2(0, T ; L2(T2)) norms of f k f

uniformly bounded k f . In fact, if this were the case, the forcing would be unable to
sustain an inverse cascade asymptotically! To see this, we additionally assume that
uk f → u strongly in L2(0, T ; L2(T2)) as k f → ∞. Then

∫

T2
ϕ(x)uk f (x) f k f (x)dx =

∫

T2
ϕ(x)u(x) f k f (x)dx

+
∫

T2
ϕ(x)

(
uk f (x) − u(x)

)
f k f (x)dx

=
∫

T2
Pk f [ϕ(x)u(x)] f k f (x)dx

+
∫

T2
ϕ(x)

(
uk f (x) − u(x)

)
f k f (x)dx

for any test function ϕ ∈ C∞
0 ([0, T ] × T

2). The second integral vanishes due to the
strong convergence uk f as k f → ∞ as can be seen from

∣∣∣∣
∫

T2
ϕ(x)

(
uk f (x) − u(x)

)
f k f (x)dx

∣∣∣∣ ≤ ‖ϕ‖∞‖uk f − u‖2‖ f k f ‖2 k f →∞−−−−→ 0.

(84)

On the other hand, the first term also vanishes because

∣∣∣∣
∫

T2
Pk f [ϕ(x)u(x)] f k f (x)dx

∣∣∣∣ ≤ ‖Pk f [ϕu] ‖2‖ f k f ‖2. (85)
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A simple application of Hölder’s inequality shows ϕu ∈ L2, so that ‖Pk f [ϕu] ‖2
k f →∞−−−−→ 0. Thus, the power input from the force will vanish distributionally if ‖ f k f ‖2
is bounded uniformly in k f . I am grateful to G. Eyink for this observation.
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