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Compressible fluids and active potentials

Peter Constantin, Theodore D. Drivas, Huy Q. Nguyen, and Federico Pasqualotto

ABSTRACT. We consider a class of one dimensional compressible systems with degenerate diffusion coeffi-
cients. We establish the fact that the solutions remain smooth as long as the diffusion coefficients do not vanish,
and give local and global existence results. The models include the barotropic compressible Navier-Stokes
equations, shallow water systems and the lubrication approximation of slender jets. In all these models the mo-
mentum equation is forced by the gradient of a solution-dependent potential: the active potential. The method
of proof uses the Bresch-Desjardins entropy and the analysis of the evolution of the active potential.

February 11, 2020

1. Introduction

We consider a class of compressible fluid models in one space dimension with periodic boundary conditions:

up + Ou(up) = 0, (1.1)

Or(pu) + 9z (pu?) = —0up(p) + Ou(11(p)0au) + pf, (1.2)

(ps u)le=0 = (po, uo) (1.3)
with constitutive laws given by

p(p) =cpp?,  plp) = cup®, ¢ #0, ¢ >0. (1.4)

Among these models are the one-dimensional barotropic compressible Navier-Stokes equations. In this
description, p is the mass density, u is the fluid velocity, and p(p), u(p) are the fluid pressure and dynamic
viscosity respectively. These are given by physical equations of state (1.4). For such systems, the specific
heat at constant pressure is positive ¢, > 0 so that p(p) is non-negative. The viscosity is also assumed
non-negative ¢, > 0 but may be degenerate in the sense that it vanishes for p = 0.

Although the eqns. (1.1)—(1.3) describe cases of compressible Navier-Stokes equations, they serve also as
models for a number of other physical systems if the basic variables and constitutive laws are appropriately
defined. For example, a model for viscous incompressible motion of shallow water waves [1, 2] reads

dh + Oy (uh) = 0, (1.5)
Oy (hu) + 0y (hu?) + gaz;ﬂ = 48, (hdu) + hf (1.6)
where

e ) and u represent respectively the surface height and fluid velocity,
e g is gravity,
e v > () is the kinematic viscosity,

2010 Mathematics Subject Classification. T76N10, 35Q30, 35Q35.
Key words and phrases. compressible flow, shallow water, slender jet, global existence.
1

© 2019 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/


https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0294144919300411
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0294144919300411

e f is the external force.

These equations are a special case of equations (1.1)-(1.2) with

g
p(p) = 50" and  p(p) = 4vp.

Equations (1.1)—(1.3) also appear in the theory of drop formation as the slender jet equations [3, 4]:

Ok + udyh — —%agguh, (1.7

Oz (h20,u)

g (1.8)

1
O + u0zu + 78$(E) =3v
where

h and u represent respectively the neck radius and velocity of the jet,
~ > 0 is the surface tension coefficient,

v > 0 is the kinematic viscosity,

g > 0 is gravity.

These equations arise as a reduction of the axisymmetric incompressible Navier-Stokes equations in two
spatial dimensions governing a thin liquid thread with a moving boundary. Via the change of variables
p= h?, equations (1.7)-(1.8) become equations (1.1)-(1.2) with

p(p) = =7v/p and  p(p) = 3vp.
Note that here the “pressure” that appears is non-positive in contrast with the Navier-Stokes descriptions.

In all the settings above, the one-dimensional equations (1.1)—(1.3) are approximate models of the under-
lying physical processes, whose quality may vary depending on the situation. As models for dissipative
molecular fluids, they are not known to arise as an effective description by a controlled hydrodynamic limit
and do not conserve total energy. See Section A and Appendix B of [5] for an extended discussion. Of
course, they could be valid descriptions of fluid systems in other situations than these, as is the case of the
shallow water and slender jet. Moreover, J. Eggers has argued that the slender jet equations described above
become an exact description asymptotically close to drop pinch—off, justifying the use of the model (1.7),
(1.8) in that context.

Four theorems are proved. The first result, Theorem 1.1, provides a blowup criterion for equations (1.1)—
(1.3) with a wide range of constitutive pressure and viscosity laws (1.4). In what follows, we denote by T
the interval (0, 1] with periodic boundary conditions.

THEOREM 1.1. Assume any of the following three conditions

(1) cp>0anda>%,’y7é1,’yza—l,
(i1) cp<0and%<a§%,7<1,0<'y§a,
(iii) ¢p > 0and vy > 1, a > 0.

Let k > 3 and assume further that
feL?0,T; H*Y(T)) forall T >0.
If (p,w) is a solution of (1.1)-(1.3) on [0, T*) such that
p e C0,T; H¥(T)), we C(0,T;H*(T)) N L0, T; H**(T)), VT e (0,T") (1.9)
and
inf minp(z,t) > 0,

te[0,T*) z€T
2



then (p,u) satisfies

sup ||pll oo, rimey + sup ullpooorimny + suplull 2o 7wy < 00 (1.10)
T€[0,T*) €[0,T* €0, T+

)

and can be continued in the class (1.9) past T™.

Theorem 1.1 says that the only possible way for a singularity to form starting from smooth data is if the
density becomes zero somewhere in the domain. This applies in particular to the viscous shallow water
wave equations (1.5)-(1.6). In the slender jet equations (1.7)-(1.8) which model incompressible fluid drop
formation, this says that singularities can only form at the onset of drop break-off. This answers a conjecture
of P. Constantin recorded in [3].

REMARK 1.2. The conclusions of Theorem 1.1 hold whenever an upper bound on the density of the form
(2.22) exists, possibly dependent on the minimum density p. Under any of the conditions (i), (ii), (iii) of the
Theorem, we produce such a bound. However, it seems uﬁlikely that (i)—(ii1) are fundamental restrictions,
and the result should hold over larger range conditions.

REMARK 1.3. [6] proved that weak solutions of 1D compressible Navier-Stokes equations with constant
viscosity do not exhibit vacuum states in finite time provided no vacuum states are present initially.

REMARK 1.4. Local well-posedness of (1.1)—(1.3) in the class (1.9) is established in Proposition B.1 of the
Appendix B for arbitrary smooth p(p) and smooth non-negative 1(p). This covers the special case of power
law equations of state (1.4) in the entire parameters range in Theorem 1.1. Local existence of strong solution
for 2D shallow water equations can be found in [7, 8]. We also refer to [9, 10] for classical results regarding
equations of compressible viscous and heat-conductive fluids with constant viscosity.

Our next two theorems concern the long-time existence and persistence of regularity. Theorem 1.5 estab-
lishes global existence for arbitrarily large data, within a range of pressure and viscosity of the form (1.4).
THEOREM 1.5. Assume 1

>0, ac (5,1], and v > 2a.
Let k > 3 be an integer and let py and ug belong to H*(T) such that po(x) > 0 for all x € T. Assume

further that
feL?0,T; H*Y(T)) forall T >0.

Then there exists a unique global solution (p,u) to (1.1)-(1.3) such that
p € C0,T; HXT)), we C(0,T; H*(T)) N L*(0,T; H*'(T))
forall T > 0, and p(z,t) > 0 forall (x,t) € T x RY.

This result applies to the viscous shallow water equations (1.5)-(1.6), giving an alternative proof to that of
[11]. Let us note that [11] assumes only H 1 regularity of initial data. Moreover, Theorem 1.5 allows for
more singular density dependence of the viscosity than in [12], which considers the case of a < % and
v > 1. In two dimensions, global stability of constant solutions to shallow water equations was proved in

[13, 14, 15].
For more degenerate viscosity p® allowing o > 1, we prove global existence for a class of large initial data.

THEOREM 1.6. Assume that c, > 0 and either

1
a>5, vE[a,a+1], v#1 or (1.11)
a>0, ye€a,a+1], v>1. (1.12)

Assume further that
fla,t) = f(t) € L*((0,T)) VT > 0.
3



Let k > 4 be an integer and let ug and pg belong to H*(T) such that po(z) > 0 for all z € T and

Orup(z) < Z—p,oo(x)W_o‘ Vo € T. (1.13)
o

Then there exists a unique global solution (p,u) to (1.1)-(1.3) such that
p € C(0,T; HY(T)), we C(0,T; HX(T)) N L*(0,T; H*(T))
forall T > 0, and p(z,t) > 0 for all (x,t) € T x RT.

REMARK 1.7. We note that (1.13) does not impose any smallness conditions on the initial data. The unique
global solution in Theorem 1.5 satisfies

Oru(z,t) < @p(x,t)V_a
Cu
for all (x,t) € T x RT. Moreover, the proof provides a lower bound for the minimum of density p, see
(6.12) and (6.15),

—1

a—y t07p o )'yfa h
min p(, 1) > (Pm(0)"7 4422 = ) when y > a,
< pm(0) exp <_t%) when v = a.

Our last theorem establishes a bound on the time-averaged maximum density for a certain range of parame-
ters assuming mean zero forcing.

THEOREM 1.8. Assume that (p,u) is a sufficiently smooth solution to the system (1.1)—(1.3) on [0,T™).
Assume that

f=0zg (1.14)

for some periodic function g satisfying
g € L>0,T*,L>(T)), and 0yg,0:g € L*°(0,T*; L>°(T)).
Let us also assume that
a>1/2, yemax{2—a,at,a+1], and cp,c, > 0.

Then, we have the following bound

T

;AIWﬂwmmﬁ§Q+;@, (1.15)
where Cy and Cy are defined in equation (7.6). In particular, Cy depends only on c,, ¢p, o, 7, ||pol|L1,
1029 o< (0,7:150), and ||0:g| oo (0.7 15), Whereas Cs depends only on cp, cp 7, o |[pollze=, oG I|z=,
|uoll L2, 10zpoll 2, and ||gl| oo (0,7;100). Consequently, if T* = oc then

1 (T
msup 2. [ o) ooyt < Co (1.16)
T—o0 0

where C3 depends only on cy, ¢y, @, 7, [|poll 11, 1029l oo (0,00;20), and ||0tg || poo (0,00;)-

Theorem 1.8 applies for the viscous shallow water wave system (1.5),(1.6) for which global existence is
established by Theorem 1.5. The interpretation of the bound (1.16) with h = p is that long-time average of
the maximum surface height remains bounded, showing that, on average, no extreme events can develop.

REMARK 1.9. Modulo technical conditions, Theorems 1.1, 1.5, 1.6 and 1.8 should hold for more general
constitutive laws /(p) and p(p) that behave asymptotically when p — 0 as ¢, p® and ¢, p” respectively. The
high regularity of initial data in the above Theorems is assumed to apply maximum principles straightfor-
wardly. By appealing to more refined maximum principles, the regularity of initial data can be reduced.
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The proofs are based on use of the Bresch-Desjardins entropy and analysis of the evolution of the active
potential w. This object is the potential in the momentum equation (1.2): its gradient is the force

pDyu = O, w. (1.17)

The potential
w = —p(p) + p(p)Ozu.

is unknown and combines the viscous stress with the pressure. As w depends on the unknowns and in turn
determines their evolution, we refer to it as an active potential. Remarkably, w satisfies a forced quadratic
heat equation with linear drift and less degenerate diffusion with the new dissipation term @(ﬁw. The
active potential w contains one derivative of u and no derivative of p. On one hand, energy estimates for
the coupled system of p and w allow us to control all the high Sobolev regularity of p and u as long as
p is positive, leading to the proof of Theorem 1.1. On the other hand, the heat equation for w satisfies a
maximum principle which enables us to obtain global regular solutions for a class of large data when the
viscosity is strongly degenerate as in Theorem 1.6.

The fact that the active potential solves a nondegenerate evolution with a maximum principle was observed
in [16] in the context of a 1D Hele Shaw model, where it served a similar role. The effective viscous
flux used in [17] and [18] is an active potential: there it was used by inverting the elliptic (nondegenerate)
equation it solves at each fixed time.

2. A priori estimates: mass, energy and Bresch-Desjardins’s entropy

Assume that (p, u) is a solution of (1.1)-(1.3) on the time interval [0, 7*) such that
peC0,T;H?), weC(0,T;H* NL*0,T; HY)
forany 7' < T™* and
pi= te[%?"?*) Ennel']ll‘l p(x,t) > 0. (2.1)
In what follows we denote by M (-, --- ,-) a positive function that is increasing in each argument.
First, from the continuity equation (1.1), total mass is conserved:
oG, Ol (ry = llpoll L1 ()- 2.2)

We have the following standard energy balance:

LEMMA 2.1 (Energy Balance). Let p > 0, and

1 P p(s
eim g ra(o). wlo)=p [ Pas 23)
ﬁ S
Then, the balance
d
— [ e(x,t)dx = —/u(p)]@mu\zdx—i—/fpudx (2.4)
dt Jr T T

holds for any t € [0,T%).

Using the equation of state for the density (1.4) and recalling that p > 0 is an arbitrary constant that we are
free to fix, we have an explicit formula for 7(p) from (2.3)

F(p):cp/ps’}’2d82 %P’Y v>1,p=0 or y€(0,1), p= o0, 03)
s cpplog(p)  ~v=1,p=1 :

Note that the function 7 satisfies /( )
77//(/)) _ p p .
0
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LEMMA 2.2. 1. Ify € (1,00) and ¢, > 0, then 7w(p) > 0 and

lellzqren + 18(0)0ep Pl riany < (leC, 0) o + 11320 o0l ny ) exp(2T).  2.6)

2.Ifv€(0,1) and ¢, # 0, then
[ < |2 [+ s @)
T y—1

and there exists a positive constant C = C (7, «, ¢p, ¢,,) such that
HPU2HL00(0,T;L1) + HM(P)WwPFHLl(o,T;Ll)

(2.8)
< <”POU3HL1(T) +C(1+ HfH%Q(QT;LOO)) (1+ HPOHLl(T))) exp(T).

PROOF. First, using the mass conservation (2.2) we bound

/fpudxé 1/f2p+/1pu2
T
<N Ber / bt / Lo 2.9

< emlmlom + [ 50
1. If v € (1,00) and ¢, > 0, then we have 7(p) > 0. It then follows from (2.9) that
[ foutz <1y Il + [ eto. i 2.10)
Ignoring the first term on the right hand side of (2.4), then using (2.10) and Gronwall’s lemma we obtain

lelleoren < (leC,0) o + 11220z, ool cm) ) exp(T). 2.11)

Next, we integrate (2.4) in time and use (2.10), (2.11) together with the fact that e(x,t) > 0 to get

N

11l 0120y < el Ol + 11 F122(0 700 o0l 2 ay + Tlell ooz
< (e 0) 1 + ||f||L2(O,T;Lm)||poum) (1+1T) exp(T)
< (leC-0llas + 120z, loolscr) ) exp(2T).

2.If v € (0,1) then

C
w(p)|dz < P
/T|<>| =~

where we used the fact that p? < max{1, p} together with the mass conservation (1.1). Ignoring the first
term on the right hand side of (2.4) and using (2.12), (2.9) we find

/T %pu%x,t)dxg /T %pou%dx—i— /T w(po())dz — /Tr (o, £))dz + /0 t /T Fpul, s)dads

1 b
< [ govidds+ Cllpollinen + 1 + SO vy Il + [ [ 5ot e s)dads

t) + 1)dz < ‘ffl /(po +1)dx (2.12)

for some positive constant C' = C'(, «, ¢p, ¢,,). Gronwall’s lemma then yields

Il ey < (lloowdllzam + €U+ 1120 0,0) (L ool xgmy) ) exp(T). @13)
6



Again, we integrate (2.4) in time and use (2.9), (2.13), (2.12) to arrive at

() 2Pl 0720y < (looBliagey + C (1 + 1 o rszoey) (1 + loollacy) ) exp(@T).

]
If either v € (1,00) and ¢, > 0 or vy € (0,1) and ¢, # 0, it follows from (2.5)-(2.8) that
[vpull Lo 0,502y < M (Eo, || fll 20,5200y, 1), (2.14)
1p2 Oxttll 20 722) < M(Eo, || fll 120,750, ), (2.15)
101l oo (0,75 maxt1 43y < M (Eo, || fllz20,752): T) (2.16)
where
Eo == |lpoud|lrrcry + 110311 iy + lpoll piem- (2.17)
LEMMA 2.3 (Bresch-Desjardins’s Entropy [19]). Let
8 2
si=Clu ' +Z21(p)| + (). (2.18)
Then, the balance
d
9 [ st tyae = _/ 10p[211(p) " / Folu+ 2P u(p))de (2.19)
T T

holds for any t € [0,T*).

A proof of Lemma 2.3 can be found in [19, 20, 21] and is given for completeness in the appendix. The first
term on the right hand side of (2.19) is negative whenever ¢, > 0 and positive whenever ¢, < 0.

LEMMA 2.4. Define

a_l
Ey:=Eo+ [0:(pg *)llr2(r)- (2.20)
1. Ifcy >0andy #1, v> o — ,04>§,then
ol oo 0,100y < M(E1, | |l 200,700, T)- (2.21)

2.Ifcp <0and0 <y <a,v<1, a€(2,2] then

1
1ol Lo 0.1 100) < M(EN, ([ fll 200,752 s 1. (2.22)
3. Under the conditions of 1. or 2., we have
1
10xpll oo 0,7:22) < M (B, | f |l 220,700, ' ,T). (2.23)

4. Ifc, > 0,v> 1land o > 0 then (2.22) and (2.23) hold.

REMARK 2.5. The bound for (2.21) is independent of p. This fact will be important in the proof of Theo-
rem 1.5.

PROOF. 1. Since ¢, > 0, the first term on the right hand side of (2.19) is negative, and thus

/ :Etd:r</fpu—|—2u( ))dz

<= /f2,0d:r—|—/ (u+8;p,u(p))2dx (2.24)

1 Oz p 2
- 2 - ZzF
2Hf(t>HL°°(’JF)HPO’L1(’H‘)+/E2p(u+ e 1(p)) dz.

7
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When v > 1 we have 7(p) > 0, hence s > 0 and

[ s tar < SO oy ol ) + /T s(z, t)dz.

dt

Gronwall’s lemma then ylelds

Isllzeorizy < (1500 zrmy + 113 20.1,00) looll ey ) exp(T). (225)
We combine (2.25) with (2.14) and the fact that
_1

[s(0, M z1(ry < HPOugHLl(T) + [10:(py 2)”%2@)- (2.26)

In view of (2.15), this implies

1

102 (0“2 Lo 0,12 (T)) < M (B, | fll 20,7520, 1) (2.27)

with )
By = Eo+ [10:(py *)llz2(m)-
On the other hand, when 7 € (0, 1) we write

d [1 a ) . b . a
o [ onlut Yo < 5 [ 7ot 0)a+ SO <ol + [ golut ZPu(p)de

where we recall from 2.7
/ |7 (p)|dx < 'Cp ‘ /(po +1)d. (2.28)
T v—1

It follows from Gronwall’s lemma that

1 Oy
sup [ Sout () (wt)ds
t€[0,7]J T p

1 Orp 2
< </1r 5p(u + ?M(p)) (z,0)dz + C(1 + ||f||%2(0,T;L°°)) (1+ |P0HL1(T))> exp(T)

< M(Ey, | fllz20,1;000): T)-

Combined with (2.14), this implies the bound (2.27) when v € (0, 1).

Next, we recall from (2.16) the bound for ||p”|| 1 (T). By the assumption that v > o — 5, we obtain

2’
o™ _§HL00(0,T;L1) <O+ HmHLOO(O,T;L1)+HPHLOO(O,T;Ll)) < M(Eo, (| fllz2(0,1;L50), T)-
This combined with (2.27) and Nash’s inequality
_1 ~1,2/3 —1y1/3 1
10 leoizizs) < CHO™ 312 o oy 10a (0™ D)2 gy + ClIO™ 2 (o)

leads to )
0“2 || oo 0,111y < M(EN, (| fll 20,7520 T)-
The stated bound (2.21) then follows by Sobolev embedding H' C L.

2. In this case, ¢, < 0 and thus the first term on the right hand side of (2.19) is positive and is equal to

_ C _ _
—vcpcu/Tlp(””"‘ 020,pPdz < —QVf/Ep” “ (Ju + cup® 20p]? + Jul?) dz
m

& _
=2y [ p77 (s(z,t) — 7(p) + plul®) dz
Cu JT

Note that (2.24) provides the bound

1 1 o
[ totut 2L uo)ds < IOl + [ 5o+ “Lnio)

8
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), part 2 of Lemma 2.2 provides a bound for 7(p) and pu?. Moreover, note that
) we have 7(p), s > 0. Using these together with the assumption that 7 < o we

In addition, since v € (0,
when ¢, < 0 and v € (0,
have

1
1

d c o
5 [stetiae < =22 [ 52 (s(at) = 7o) + plul®) o+ 10wy l0ll s + [ s )
dt T CN T T

1

<2y [ (stat) = o)+ plu?) o £ ey Imlrcey + [ st
¢, 1 o cp 1 —a

< (-22er 1) / (o )dr =22 (0 (=0 + ptuf) ez

+ 1Ol my lloll )

cp, 1o
< ( - QFYCip(;)’Y “+ 1) /]I‘S(l',t)dl' + M(E07 HfHL2(O,T;L°°)a aT)
(L

™ | =

+ Hf(t)”%OO(’IF)HPOHLl(T)

for t <T'. By Gronwall’s lemma and (2.26), we deduce that

IS/l oo 0,751y < M (Eo + [Is(, )l 21 ¢ry, 1 20,1200y = T)

| =
o | =

< M(Ex, (| 220,100y = T)-

(i)

Combining this with (2.14) gives

_1 1
Hal‘(pa 2>HL°°(O,T;L2) < M(E17 HfHLQ(O,T;LOO)u ;:T) (2.29)

Since o — % € (0, 1], the mass conservation (2.16) implies

_1
0% 2| Lo 0,301y < C(1 A+ llpoll L1 (r))- (2.30)
Combined with (2.29), this yields

1
1p% "2 | o 0,111y < M(ER, || fll 220752000 = 1)

> [+~

from which (2.22) follows.

3. The bound (2.23) follows from (2.21) & (2.27) and (2.22) & (2.29) respectively.
4. This follows from Propositions 4.5 and 4.6 in [12]. O

3. The active potential

We introduce in this section the active potential w := —p(p) + p(p)0zu. This is a good unknown upon
which much of the analysis is based. We first show that w satisfies a forced quadratic heat equation with
linear drift.

PROPOSITION 3.1 (w—equation). Let

w = —p(p) + p(p)Oru. (3.1)



Then w satisfies

dyw = p~ p(p)dw — (u+ u(p)8 2w + (pp/(p) - 2(’)“/(/))( - ”(p))p(p)> w

_ (o (p) + ulp)) 2
1(p)? " <

Moreover, the following balance holds

1 !/
4 —|w|*(x, t)dr = — / o~ tp(p)|0yw|da — / <u + ,u’(op) 890/)) woywdx
T T

dt Jp 2 )
n /T <pz;’ ((Z)) B 2(pu’(z)( ;2“(’)));)(;))) w2 — /E (pu’(z)( ;gQM(p))wg i
- <p’; o (p“'(%f(p”mm) ployude+ [ n(p)osfuds.
(3.3)
PROOF. From the definition of w := —p(p) + p(p)d,u given by (3.1), we compute
Bpw = (0:p) (=0 (p) + 1 (p) D) + pa(p) Do, (34)

Thus, we have
Orw = (0p)(—p'(p) + 1 (p)Oau) + 11(p)0s Oy u

= —0x(up)(—=p'(p) + 1 (p)Ox) + 11(p) 04 0zu

= —pByu(=p'(p) + 1 (p)Drt) — w(Dpw — p(p)O7u) + p(p) Dy (3.5)
The momentum equation (1.2) gives

O = —udyu + p_lawarf,
D10pu = —0pudyu — udu — %f@ww + p 102w + 0, f.

Combining the above results, we find

drw = —pdyu(—p'(p) + 1 (p)Dyu) — udpw + up(p)dzu
Oy _
— 1(p)(|0aul? + udu) — u(p)p—faxw + 07 (p)02w + u(p)0n f

= p~ u(p)ow + p(Deu)p' (p) — (o' (p) + 1(p))|Duul* — (u + u(p)a;zp)@xw + u(p)0u f

'(p)  (p'(p) + u(p))(

= p L ul(p)PPw + plw + plp)) w+ p(p))? — (ut u(p)é’;f)amw T ()0 f

1(p) 1(p)?
which, after rearrangement, establishes Eq. (3.2). For the energy, multiplying the equation (3.2) by w yields
o (51ul) = 0. ("Pud,w) - o0 12 o.(4) ) ( 100, ) worn
2 p p?

/

N <pp (p) _,(or'(p) ) \W 2/~L( ) 3
u(p) n(p
P'(p) (i (p) +u(p)) >

+ - w + O fw.

<pﬂ(p> () p(p) ) p(p)w + p(p)0u f

Integrating in space yields the balance. U



Let us remark that in (3.2) the new viscosity coefficient is @ which is less degenerate than the original

viscosity ji(p) for the momentum equation. In particular, when p(p) = c,p® with o < 1, o) g not

degenerate when p goes to 0. Energy estimates for the coupled system of p and w will allow us to control all
the high Sobolev regularity of p and w as long as p is positive. This leads to the proof of our continuation
criterion in Theorem 1.1: no singularity occurs before vacuum formation.

Furthermore, (3.2) can be regarded as a nonlinear heat equation with variable coefficients. Note that the
zero-order term in (3.2) has the form \p?Y~% where A depends only on ¢y and cp. It can be readily seen
that when the zero-order term and the forcing term in (3.2) are nonpositive, w remains nonpositive if it is
nonpositive initially. This fact will be exploited as the key ingredient in proving the existence of global
solutions in Theorem 1.6 when the viscosity is strongly degenerate.

4. Proof of Theorem 1.1

Throughout this section, we suppose that
0<p<p(zt) tel0,T7), zeT. 4.1)
and assume any of the following three conditions
(i) cp >0and a > %,’yza—%,fy;él
(i) ¢p < Oand o € (%,%],0<’y§a,’y< 1
(i) cp >0and o > 0,y > 1.

Under these assumptions, by Lemma 2.4, we have

1
1ol oo (0,500 () < M(E1, || £l 22007150 ;,T), 4.2)
and )
1020l oo (0,7522(T)) < M(EA, | fll 200,115 o T). 4.3)
LEMMA 4.1.

1wl Lo 0,7;22) + 10zw]| L2(0,7522) + 1020l oo 0,1;22) + H8§U||L2(0,T;L2)
1 (4.4)

< M(EQv ”fHLQ(O,T;Hl)a ;7 T)a
where Ey = E1 + ||0yug|| 12-
PROOF. As a consequence of (4.1), (4.2), and (3.3), there exist ¢ := c(E, || f||20,7;1) %, T) >0
and C := C(Ex, || fll2(0,7:2)> %,T) > 0 such that

d

1 1
4L @ ds < —/ wa|2dfc+/(|u|+C|amp|)|w81w|dx
dt ']1*2 cJr T

+c</ w|2das+/w|3dx+/\8xf|2dx+1>. (4.5)
T T T

1
/Tlaxwwumx < Noswlzzlwlellulre < Crlldwwlzllwllze fullm < -102w]72 + Cllwlza [lullE:

‘We bound

where C; denotes absolute constants throughout this proof. Next, applying Gagliardo-Nirenberg’s inequality
and Young’s inequality implies

3 i 2 1 10
/T\WI dz < [lwll}s < CL(l|Oawl| 2z [[w]| 35 + [[w]|35) < @H@wa%Q + Cllwl| % + Cllwlf3.
1



and

/ |Orwwdypl dz < ||Opw]| 2 [[w]| Lo [|Orpll 2
T

1 1
< Cul|dpw|| 2|0z w]| pallwll 22 + llwl[2)]|0zpll 12
3 1
< Cul|Ozw| pollwl| 72 102pll L2 + CrllOzwll 2wl 2] Oz pll 2
1
< Ll0wwlz + Clwllz10:pl72 + Cllwllzz ]| 0zpl 72

Putting together the above bounds, and interpolating, yields the following inequality
1d
2dt

In view of (4.3), we have

1
lwliz + 10wz < CllwlZa(lwlgz + 10spl72 +1) + Cll0: fIIZ + C. (4.6)

1

T
/0 I9ep . Dla0 < MCEL ey, T)

Furthermore, using the definition of w together with bounds (4.2) & (2.15), we have

1
Hw||L2(O,T;L2) < M(E17 HfHLQ(O,T;LOO)a ;7T)

The last two displays, together with Gronwall’s lemma applied to (4.6), yields the bound

lwll zoe 0,7:22¢T)) + 102wl L2(0,7522(T))

1

< M(HwOHLZ7C7 C, B, HfHLl(O,T;Hl)7 ) ) < M(E17 HfHLl(OTHl) T)

\b\'—‘

Here, we used the fact that

lwoll72 < 2¢llpoll7% + 26l poll 3% |00 | 7--

The above bound can be used to obtain similar estimates for ||9,ul| (o 1;2) and |02ul| r2(0,1;1.2) directly

from the definition of w (3.1). ]
LEMMA 4.2.
1020l o 0,7:22) + 100wl poo (0,7522) + 05w 1207 12)
1 “4.7)
+ 103ull Lo 0,:22) + 1050l 20,7 02) < M (B, || fl| 1071, > 1)

where
B3 = Ey + [|02pollz2 + [|07uo| z2.

PROOF. To prove this lemma, we obtain energy estimates for the mass equation (1.1) and the w-
equation (3.2) simultaneously. The proof proceeds in 4 steps.

Step 1. Let m > 2 be an arbitrary integer. Differentiating equation (1.1) m times, then multiplying the
resulting equation by 07" p and integrating in space we get

2 m mo_ m m
sar L1omel == [arwopor— [ oo
- [uvazeero~ [ (0r.wom)ore— [ (o7 soa)ore— [ portiuors.
T T T T
Using the Kato-Ponce commutator estimate [23] and the inequality

1029l o (1) < C|O gHL2(T) < CullOZgllL2(ry Yn >3,
12



we have

1[0, udepll 2 < CllOpull Lo |07 Bupll 2 + COT ul| 2| 0upll oo < CllOF ull 121107 pll 2
and

1[0, PlOatt]| 12 < Cll0epll L |07 Oxull 2 + ClIOT pll 2|0zl Lo < CllOFul| 2103 p 12
In addition,

/uasz?p@;”p' -1 '/8mu\3;”p2
T 2 |Jr

‘We thus obtain

1
< S 0wl < 10 plIZ2 < ClIOF ull 2107 72

d
105l < ClOT w2107 plI T2 + ol oo 105 el 2 103" pll 2 (4.8)
Step 2. Recall equation (3.2) with power-law pressure and viscosity

c
dyw = c,p® 02w — (u + cp® 20pp)Opw + c—p (v=2(a+1)) p" “w

m
X 2 (4.9)
- C—(oz +1)p “w?® + C—p (v = (a+ 1)) o277 + ¢, p*0s f.
p 0

Differentiating in space, multiplying the resulting equation by 0,w and integrating by parts in x leads to

1d _ _ c -
/ ]8Iw|2:—cu/pa 1\8§w|2+/(u+cupa 28%/))8@;u)8‘,§w+p(’y—2(a+1))/ |0,w|*p7 ™
2dt T T T C,u T

+ 2 (y—a)(y—2a+1) / wp "L wdp
CN T

2

— C—(a + 1)/Tpaw\8xw|2 + Cg(a + 1)/Tw28xw8xppa1
o o
2

+ 2@ -0y -+ 1) [ 0wt~ [ ot
m

7
=: —cuApa_1|8§w|2 + ZH]-.

=1

after integrating by parts. By virtue of (4.1) and (4.2), there exists ¢ := c(E1, || f 220,715 %, T) >0

such that
1
on [ Mokl = [ okl
T cJr

Note, under our assumptions p and 1/p are bounded (see (4.1) and (4.2)). Therefore all coefficients involving
L norms of p to some power can be bounded by some constant C' = M (Ex, || f||z2(0,7;1), %, T,7v,a).

The constant may change line by line.

e Estimate for H;:

/T(u + Cupa_Qazp)azwaiw‘ < 02wl 2 100wl 2 ull oo + CllOZw] 210wl 2 1Dl oo

1
Toall0zwlzs + Closwllzz [ull + Cllosw]z2]102p]17:-

ot
T

13

e Estimate for Ho:

< CHaacw”%2~




Estimate for Hs:

Awaxwaxpp”"‘l < P Moo lwll oo | 0wl 2 | wpll 2

< Cllwll 2| 0swll £21|0zpll 12 + Cll 0wl 7210zl 2.

Estimate for Hy:
[oeuionup
T

e Estimate for Hs:

/ w20y wdypp @t
T

1

< @HWH%N + C|0pw][ 12

1
< pj\IWIILwllazwlliz

< Cllwll + Cllozwllz..

< 10zw]l L2 |w]|Fo0 10z ] 2

Bl+a
< Clldsw| g2 w3 102p]l L2
< Clldcw| 2 |wl|72 18201 L2 + CllOxw]321102pll 2.

Estimate for Hg:

< Cl|0pw|| 2|0z pl| 2-

/ P’ 0pwdep
T

Estimate for H7:

1
< ﬁ”&%w”%2 + C|0x f|7-

/ p2*wd, f
T

Putting together the above estimates gives

d 1
0wl + 5102w,

(4.10)
< C (0zwlZallullfy + 10:wll72 1020072 + 10swl 72 + 10:w] 72100 £2) + G
with
G = C (Ipllz=10zwl|72 + 1wl 20wl 1210z pll 2 + 0wl 7210zl 2
HlwllF + 10zw]| 2 [wl|7210:pll L2 + 10zw]| 2|0 pll 2 + 102 f1172) -
By virtue of the estimates (4.2), (4.3) and (4.4) we deduce that
1
IGll 1o,y < M (Ea, || fll 220,711 P T).
Step 3. Letting m = 2 in (4.8) and using the embedding H!(T) C L>°(T) we get
d
1920l < CloZullL10zpl T2 + Cllpll 19z ull 21071l -
Recalling the definition (3.1) w = —c,p”? + ¢, p“0,u we have
63 :62 w Cﬁ v—
U x(ic#po‘ + o )
0?2 O wO. 0?2 Oup|?
- B a2 0 B (o + )2
Cup Cup Cup Cup
c c
+E(y = a)dzpp’ " 4 E(y = a)(y —a = D)]0upl*p? 4.11)

w w
14



Consequently
103ull 2 < C (183wll 2 + |0swll 21| Oz pll oo + [l 1 |0Z0] 2
Hwlze [0zpll 2 10zl Lo + 107~ locllOZpll 2 + 116772 oo 10zpll 2 10upl L) -

Therefore, we obtain
d
o2l
< C(107ull 219201172 + ol 03wl 2103l 12 + [l 1 10zl 12103 0]l 12 |02p | Los
+ lwll g ol g 19201172 + llwllzes |l 71 10w pll Lo 107 0l 2
+lolla 1030072 + lloll7 102 01172) (4.12)

IN

1
Tocllozwlzs + C (105ull 102172 + Nollz 19201172 + lpll e l|0swll 21071 72
Hlwllz ol 10201172 + lwllallolzn 1020072 + lolla 102172 + oI 10201172)

1
o020l + Flo2pl3:.

IN

with ) )
F= C([103ull2 + lollzn + ol [10zwll g2

Hlwllgllollgr + lwlla ol + lola + lolF) -
Combining the estimates (4.2), (4.3) and (4.4) yields

1
I E N o,y < M(E2, || £l 20,7501 (1)) ;,T)-

Step 4. Adding (4.12) to (4.10) leads to
d 1
g(H@%pHr‘ﬁ +[|0pw]72) + @H@%wllé < ||0zw|| 72 H +[|0Zpl[72(F + C||8zwl|?2) + G
< (|10swl72 + 1020l 22) (H + F + Clld,w]72) + G

4.13)

with
H = C (ullfn + 19zw][72 + [[0cw] 2 [102pll2)
satisfying, in virtue of (4.2), (4.3) and (4.4),

IH| L1 0,0y) < M (Ea, | fll 20,111y, = T)-

S

Finally, we integrate (4.13) in time, then apply Gronwall’s lemma, the estimates for F', G and H, and the
estimate (4.4) on ||0zw/| 2o, 1;2) to obtain

1
||a§P”L°<>(0,T;L2) + [|0zwl| Loo (0,7;22) + ;Haiw\\p(o,:r;m)

< M(E2, || fllz20,1;m1), = T 102pol| 2, [|Ozwo | £2)

R I+

S M(E37 HfHLQ(O,T;Hl)v 7T)7

where
B3 = By + (0300l 12 + 1|05 uol| 2.
It then follows easily that

1
102ull oo 0,7:22) + 1102l 20 7:12) < M (Es, | f || r2(0,751) ;,T)-

15



LEMMA 4.3. For any k > 2 there exists M}, depending only on k such that
Ha];P”Loo(o,T;L?) + ||a§_1wHL°c 0,7;L2) + |05 w]| 2 (0,T;L2)
,T)
(4.14)

+ 105 ull oo (0,7,12) + 105wl 207 22) < M (Brgrs I f 1l p2 (0 1:m05-1)

\b\'—‘

where

Ejy1 = Ex + |05 poll e + (05 uo)| 12

PROOF. The proof proceeds by induction in k. According to Lemma 4.2, (4.14) holds for k =
Assuming that (4.14) holds for k — 1 with k > 3, to obtain it for k we perform H* energy estimate for p and
H*~1 energy estimate for w. This follows along the same lines as that of Lemma 4.2. We first apply (4.8)
with m = k to have

Sl0kolza < Clobul 21 El3s + ol 08 ull 210kl .
. - (4.15)
< M (B o ane-2y . 7) (105ul2108p 3+ 105l 21042 ).

By differentiating £ times the formula
1 — —
Opu = —wp ™~ “ 4 cpp”

and using the induction hypothesis together with the fact that £ > 3 we obtain

105 ull g2 < Cll[O%, p~ w2 + Cllp™*Ofwll 2 + 10507 2
< C|dep” “HLoonHHk 1+ Cllp™ | gellwllze + Cllp™ |z 05wl 2 + (10507 | 2
< Clo~lmzllwl gr— + Cllp™ e lwll s ++Cllp™ s 05wl 2 + 1127 |

1
< M (B | Pl 5. D) (105wl 2 + 052 +1).

It then follows from (4.15) that

H p|rL2<M(Ek,\|f||LzOTHH 1) 1080132 (108wl 2 + 1) + 05wl 2]|0%p ] 2 + 1]

(4.16)

\E\H

o bwl3a + M (B 17 ooz, ) 10513 (108wl 2 + 1) +1]

\’D\'—‘

_10

where ¢ = c(E1, || f[| 20,7, L)) 5 ,T) > () be a positive number such that

p* > V(z,t) € T x [0,T7).

ol

Next, we differentiate equation (4.9) k— 1 times in x, multiply the resulting equation by Oﬁ_lw and integrate
over T. We estimate successively each resulting term on the right hand side of (4.9).
16



1. The dissipation term:

[ e )kt = = [ 9k )
T T
k—2
_ﬁ/flmﬁﬁ—/aﬁij@%wlﬁew
T T =1

k—2
Lok k ¢ a— k—¢
——lloFwliz: + Cllogwlize Yy Celldp®Hoe 10 w2

<
(=1
1 _
< ——lzwlize + Cllogwlczllpll e (105 wll 2 + wll2)
1 _
< = llgzwlgs + Cllplz (10;~ wllZs + [lw]Z2)

2c

1 1 _
—%Ha’;w\|i2 + M (Ex, 1 £l 2207 1%2)5 ;,T) (Haf wl|7, + 1).

2. The drift term. We have

a—l
/3’;1(uazw+cupa28xpaxw)8§1w = /Bk 2(u8 w)a w—cu/f)k 2(3 718:510)8!;10
T T -

where we adopted the convention "’ = p when o = 1. Noting that H*~2(T) is an algebra for k& > 3,
we then bound

/ 8!5_1 (u@zw + c“pa_anpwa) aﬁ_lw
T

pa—l
< Cl0kw] g ull peslfol s + Cl0Ewl g2l 2 o oo pics
0 wlZe + s s + O s e
20c" L H H o —1H H

1 _
L) (j0% s+ 1)

1
S 2700”8!;11}”%2 + M(Ek;7 Hf”L2(0,T;Hk*2),

3. The nonlinearity term:

L/”ak 1 —a 2 ‘ L/mak 2 —a 2 ak

k
< Clo™ w2 llwl| 2 105wl 2

1 _
7”akaL2 + O™z s

| A

Hﬁwm+Mwmmmomﬂ% 7).

\b\r—‘

4. The zero order term:

/35_1@27““)3';_1%0 < Cllp™ g 105wl 2
T

1 _
< M(Ey, £l 20,75 2) ;,T)Hai Lw| 2.

17



5. The forcing term:
/ (0, f)@’;_lw‘ = ’ / 2 (p* 0 f) 0w
T T
< CHPQHH’“ 2|0 f |l 2 0520l 2

||akaL2+M(Eka||f”L2 0,1;H*~ 2)7 SO N =

- 20

Putting the estimates 1. through 5. together, we obtain
1d, . -2

5 dtHa fw||7, < o —lO5wll7> + M (B, || £l 12(0.1:15-2)

1
+ M (Ey, £l 220,755 2) ;ff) (Hf”%{k—l +1).

T)lloy wl7

> |+~

Combining this with (4.16) and Gronwall’s lemma leads to
19 PHLOO or;02) + ”8k leLoo o,1;L2) T H@ U’HL? (0,T;L2)
< M (119 poll3e + 105~ wollF + £ 1320 gy + T) exp (M (1050l 3 o7:02) + 1))

where we denoted .
M = M (B, || fll 20,1152y = T)

and used the fact that the L2(0, T; H") norm of u is controlled by M .

‘Q

It follows easily from this that || 0¥ u|| Lo (0,7;12) and [|OF+ | 12(0,7;1,2) can be controlled by the same bound.
This finishes the proof of (4.14). (|
In view of Lemmas 4.1, 4.2 and 4.3 we have proved that
sup |l o rmry + sup ullpeoormsy + sup ull 27 me1)
Te[0,1%) Te[0,7%) Tel0,T*)
1 4.17)
< Mk(”(meO)HH’CXH’fa HfHL2(0,T*;Hmax{k*1»l})7 ;,T*) <00

for k£ > 1. Appealing to local existence, established by Prop. B.1, the solution can be extended past 7.

5. Proof of Theorem 1.5

We assume here that ¢, > 0 and that o € (%, 1], v > 2a. By Prop. B.1, there exists a positive time T such
that problem (1.1)-(1.3) has a unique solution (p, u) on [0, Tp] such that

p e C0,To; HY), we C(0,To; H*) N L*(0, To; H*), k>3, (5.1)
and p > 0 on [0, Tp]. Let T* be the maximal lifetime of the classical solution (p, u), so that, by Thm. 1.1,
inf minp(z,t) = 0. (5.2)

te(0,7*) z€T

We claim that T* = oo. We will argue by contradiction. Let us note that the H* regularity, k& > 3, of (p, )
suffices to justify all the calculations below. Recall from the proof of Lemma 2.3 in Appendix A, that

X =u+cup® 20up, (5.3)
defined also in Eq. (A.4), satisfies

8X + ud X = ’ycp PN — )+ f = —yzlp%ax + ’yi—p/ﬂ*o‘u +f. (5.4)
Cu " "



By Lemma 2.4 1., we have
1ol oo (0,500 (1)) < M(E1 || fll 220,705, T)- (5.5)
Since v > 2a > a + % for a € (%, 1], combining the above estimate with (2.14), we have
107 ul| oo (0,722 (my) < M(E1, (| fll 22075200y, T)- (5.6)
Note also

Du(p7™u) = (pOru)p ™72 + (7 — a)p" 2 (™2 ) (v/pu1)

Now, estimate (2.27) implies

1(0°~20ap) | 20,7 220m)) < M (B, | fll 20,7000y, T)-
Putting together this, (2.14), (2.15), (5.5), and the assumption that v > 2« we deduce that
102 (0" “w)|| 20,11 (1)) < M(EL, || fllL2(0,7:100), T)-
which combined with (5.6) yields
107 “ullp20,r w1y < M(E ([ fll 220,100, T)- (.7

Since (5.4) is a transport equation we then have

c _ c _
||X”L°°(O,T;L°°) < (||X0||L°° +’Y*Cp 1p” au”Ll(O,T;L“) + ||f||L1(0,T;L°°)) exXp (WC*IDHPV aHLl(O,T;LOO))
iz iz

< M(Ex, || XollLee, [[fll 20,7525, T)-
(5.8)
Recall that X = u + %u(p) = u + c,p* 20,p, hence X p7~% = up’~* + ¢,p7 20, p. It then follows
from (5.5), (5.7) and (5.8) that

HP’Y_Q&EPHLQ(O,T;LW) < M(Ex, [ XollLoe,s 1 £l 20,7509, T)- (5.9)
Using (1.1) and (1.2) we obtain

!/ /
H2P)0sp (pp)awp)&pu = M(pﬂ) agu — p(pgaxp +f= cﬂp“_laiu — cpwﬂ_Q@xp + f. (5.10)

Using the maximum principle (see the argument leading to (6.7) below and a similar argument for the
minimum) and the bound (5.9) gives

o+ (u —

lull oo 0,72y < Mlutollzoe + eyl o7 2 0upllpro,ri) + I llL 0,720

(5.11)
< M(E, [[(Xo, uo)llzee, [1f 122 (0,5 200), T)-
From the definition of X and (5.8), this yields
Hampa_lHLoo(o,T;Loo) < M(E1, [[(Xo, wo)l Lo, | fll L2 0,7;200), ) (5.12)
when o < 1, and
102 I pll e 0.7 100) < MBS [|(Xo, w0) | zow, 11l 220,700 T) (5.13)

when oo = 1.

When o < 1, the continuity equation implies

O(p* 1) = —(a = 1)0r(up)p® 2. (5.14)
19



Integrating this in space and time and using the definition of X leads to
t
/pa_l(x,T)d:p = / pd N + (a0 — 1) (e — 2)/ /(uppa_?)&rp)(x, z)dzdz
T
= / “ldz + (a —2)(a—1) / / uc,p® 20up)(z, z)dzdz (5.15)

/ 1d:U+C//X2xzd3:dz

Similarly, when o = 1 we have

/lnp($,t)d$ < /lnpodm
T T

Then by virtue of (5.8), (5.11), (5.12), (5.15), Poincaré-Wirtinger’s inequality and Sobolev embedding we
deduce that

valid for0 <t <T.

t
+0/ /XQ(:r,z)dxdz, 0<t<T. (5.16)
0

1p* ™ poe 05200y < M(E, [[(Xo, wo)llzoe, 106~ et 1l 2075000 T)
ifa<l1.

On the other hand, if o = 1, (5.5) combined with with (5.16), Poincaré-Wirtinger’s inequality and Sobolev
embedding, yields

[ In o[ oo (0,7 100) < M (B, [|(Xo, w0l oo, | 10 pol 1, | fll 20,12.00), T)-

Consequently
) -1
BT ol ) > F (M (Bo, |(Xo, o), I~ o+ 1 pollss, 11l 2orace) )
where )
za-1 ifa<l1
F(z) = ’ 5.17
(2) {ez ifa=1. ©-17

Therefore,

: a—1 *
(w,t)e}]Trg[O,T*) p(l‘,t) > F (M(E()? H(X(),U())HLOO, HPO HL17 H lnpOHle ”fHL2(O,T*;L°°)7T )) >0

which contradicts (5.2).

6. Proof of Theorem 1.6

Recall the assumptions (1.11) and (1.12) Assume that ¢, > 0 and either

1
a> g, vE[a,a+1], v#1 or (6.1)
a>0, v€lo,a+1l], v>1. (6.2)

By Prop. B.1, there exists a positive time 7} such that problem (1.1)-(1.3) has a unique solution (p,«) on
[0, Tp] such that

p € C(0,To; H*), we C(0,To; H*) N L*(0,Tp; H¥), k>4, (6.3)

and p > 0 on [0,7p]. Let 7™ be the maximal existence time. We claim that 7% = oco. Assume by
contradiction that 7™ is finite. By Theorem 1.1 we have
inf minp(x,t 0. 6.4
te[0,T*) z€T p( ) ©.4)
20



From Lemma 3.1, the w equation (3.2) is

Drw = cup® 0w — (U + cup® 20pp)0pw + L2 (7 — 2(a + 1)) pTw
Cu
1 —a, 2 0127 27—«
——(a+1)p *w + = (y— (a+1)) p777 (6.5)
Cu Cu

Note that the assumption f(x,t) = f(¢) was used to have 9, f = 0. It follows from (6.3) and the equation
(6.5) that

we C0,T; H) NL*0,T; HY),  dw e C(0,T; HY) c C(T x [0,T])
Thus, w € CY(T x [0,7T]) and thus the function

wpr(t) := max w(x, t) (6.6)
zeT

is Lipschitz continuous on [0, T]. According to the Rademacher theorem, w), is differentiable almost ev-
erywhere on [0, T'|. There exists for each t € [0,7*) a point x; such that

wr(t) = w(zy, t).
Let ¢t € (0,T) be a point at which w)y is differentiable. We have
wpr(t+ h) —war(t)

why(t) = lim

h—0+ h
— lim W(Tyin,t+ h) — w(zy, 1)
h—0+ h
. w(mg,t+h) —w(x,t)
> hlg(r)1+ W = Oyw(w¢, ).
On the other hand,
. t) —war(t —h)
') = Tim 2
whilt) = lim, 7
— lim w(ze, t) — w(xi—p,t — h)
h—0+ h
é lim ’lU(.’IJt,t) — ’lU(.’L't,t — h) = 6tw($t,t).
h—0+ h

Thus, w),(t) = Oyw(x,t) if wyy is differentiable at t. We deduce from this and equation (6.5) that for
almost every ¢t € (0,7,

dwnr < A(tywyr + B(t)wi, + C(t) (6.7)
with
Alt) = (7 — 2(c+ 1)) pla)
B(t) = —jﬂ(a 1) pla)
62
C(t) == (y = (@ + 1)) pla) .
"

where we used the facts that 2w (z,t) < 0 and d,w(xs,t) = 0. Note that B(t) < 0. In addition, the
function C' is nonpositive under the conditions (1.11). The condition on the initial data (1.13) is equivalent
to wys(0) < 0. We deduce that
w(t) <0, YVt <T*. (6.8)
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At the point y; where the density attains its minimum value p,,, := p(ys, t), pm satisfies

Oypm = —0pu(ye) pm = —L(yt)pi?a — D pratl > D et (6.9)
Cu Cu Cu
where we used (6.8). Provided that v # «, this implies the differential inequality
1 c
Q(p%) > —-2. (6.10)
(—vy) " Cu
Since a < 7, we find
_ c
Opi ) < L(v—a) (6.11)
m
which implies
1
pm(t) > (pmm)a—” P2 a>) Towi<r 6.12)
i
Since ¢, /c;, > 0, this implies that
1
c a=y
inf mi ) > 0)* 7 + T L (y— >0 6.13
iuf  min p(z,t) > <pm( )4+ . (v a)) (6.13)

which contradicts the assumption (6.4). We conclude that the solution (p, u) is global in time.

On the other hand, when v = v we have

B lnpy > —2 (6.14)
Cu
and thus
pn(®) > prn(0) exp (—tj”) >0 (6.15)
m

which again leads to a contradiction with (6.4).

REMARK 6.1. With a more refined maximum principle argument, one can relax the regularity requirement
of k > 4 which we used to conclude that (6.6) is Lipschitz continuous on [0, 7.

7. Proof of Theorem 1.8

In this section, we give an upper bound for the long-time average maximum density, assuming that the
forcing has zero mean in space. This follows by an application of the Bresch-Desjardins’s entropy and the
following elementary lemma.

LEMMA 7.1. Letm > 3. If k™ € WVL(T) then we have
1
1Pl ooy < 20182 (A" )| 7y + Al1BN L1 () - (7.1)

PROOF OF LEMMA 7.1. Since h € WHL(T) c C%(T), we have h € C°(T). In particular, there exists
a point 29 € T such that |h(x¢)| < ﬂ||h||L1(T). For all z € T we have

w(a) = [0, ))dy+ H (o)
o
hence
[A(@)[™ < N0h™ (| rery + [A(@o)[™ < 10(R™) | Ly + V2IRIIT o) -
In view of the elementary inequality

(a—l—b)% < 2am +2bn%, a, b, m >0,
2



we thus obtain (7.1). ]

PROOF OF THEOREM 1.8. Recall our assumptions
v € max{2 —a,a},a+1], a>1/2, and cp,c, > 0. (7.2)

Next, by Lemma 2.3, the entropy

2
s=Llu+t p—fu(p) +7(p). (7.3)
satisfies
d
G [ == [ 10Pup) ™ Pas+ [ sotu+ o) (7.4)
T T

Integrating this in time yields

T
/s(m,T)dx—/s(m,O)dm—l—cpcﬂy/ /pa+7_3|8xp|2dmdt
T T 0 T

T T
= / / fpudzdt + c#/ / fp* 10y pdadt.
o Jr o Jr
Using the assumption (1.14) we calculate

/OT/Tfpuda:dt: —/OT/Tg@x(pu)dxdt:/OT/Tgatpdxdt
:/T(gp)(m,T)dx—/T(gp)(:n,O)dm—/OT/Tpatgdxdt_

T
/ fpudxdt] < gl o2z llooll + 18eg 21 07520 10l

This implies

< 29l o 0,200 [P0l + T Dl Lo 0,752) [l ol 1-
On the other hand, using Cauchy—Schwarz, we have

T T T
1
Cu/ /fpo‘lax,oda:dt‘ cpc,[y/ /pa+73]8mp|2dxdt+0/ /pa'Y“fzdxdt
o Jr 2 o Jr o Jr

1 T _
2Cp0;ﬂ/0 /Tpaﬂ 3|0ppPdzdt + CT(1 + ”pﬂ”l)Hf”%OO(O,T;LOO)'

Here, C'is a constant which depends only on ¢, ¢, and y. We have used the assumption (7.2) that -y belongs
to the range v € [max{2 — o, a},a+ 1] witha > 1/2tohave 0 < v —y + 1 < 1.

IN

IN

Note that the allowed range of v and « requires that v > 3/2 always. Since, in particular v > 1 we have
m(p) > 0 and s > 0. Thus, putting all together, we obtain the bound

1 T
2cpcl/y/ / p2t17310, p2dadt
o Jr

< 2lg]| e 0 75100 190l + TN o 075 19011 + T+ 9ol 1102 07200 + /T s(x,0)da.
‘We thus obtain

1 T
chcﬂ’y/ /p“+7_3\8mp\2dxdt < MiT + My,
o Jr

where M is a constant which depepds only on c,, ¢, 7> a, |lpoll=, lpg Lo, lluollz2s 1|0zpollz2s
||g||Loo(07T;Loo), and M, a constant which depends only on ¢, ¢p, v, ||pol| 1, ”8tg”Loo(O7T;Loo), 10291l Lo (0,7;1.0)-
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In particular,

T
/ / 10, (p2 @t DY 2dzdt < M3T + Mo,
0 T

o (a1 F_ _
where M, 9 = M;, fori = 0, 1. Here, we used the fact that o +~v — 1 > 0.

2cpepy

By assumption (7.2) we have that o« + v > 2max{1l,a} > 2 which implies % < 2. We now apply

Lemma 7.1 with m := 3 (o + v — 1). Using the embedding L*(T) C L'(T), we obtain

T T 1
/0 [o(, )| poedt < 2/0 102(p™) || 724t + 4T'[| po | L1

Consequently,

T T
/0 (- 0)]|pedt < 2 /0 (192 (p™ 122 + 1)dt + 4Tl poll 11 < 2MsT + My) + 2T + 4T ol 1.

Hence,
1 [T 2
= ol )llzedt < (M + 2+ 4llpollz) + 2 M, 75)
0
and the claim follows, with the definition
C1=2Ms,  Cy:=2M3+2+4|pol - (7.6)
O

Appendix A. Bresch-Desjardins’s entropy

For the sake of completeness we present the proof of Lemma 2.3 which essentially follows from [19, 20, 21].
From the continuity equation (1.1), any smooth £(p) satisfies

0 (p) = 0ip€'(p) = —0u(up)€'(p) = —uds&(p) — p(dzu)€ (p) (A.1)
Using equation (A.1) applied to the function 9,£(p), we find the evolution of pd,£(p)):
9 (p0:&(p)) = —02(pu)9z&(p) + pOrz€(p)
= —0u(pu)02€(p) — POz (uds(p) + p(Iu)€' (p))
= —02(pu)0:€(p) — pOsudat (p) — pudz€(p) — pdu(p(suw)€' (p)) (A2)
= —0u(pudz€(p)) — pdzudi€(p) — pdu(p(Dxu) (p))
= — 03 (puds(p)) — 02 (p* (D)€' (p))-
Then, letting X := u + 9,&(p), combining Eq. (A.2) with the momentum equation (1.2) yields
Ou(pX) = —0u(puX) — 0up(p) + O ((p)Dtt) — Du(pH (D)€ () + pF. (A3)
We now choose p2¢’(p) = u(p), so that the final two terms in (A.3) cancel. Thus with this choice,

Oy
X=u+ 72%@) (A4)
and, by (A.3), pX satisfies
A(pX) = ~u(puX) — up(p) + /. (AS5)

Whence, we obtain

0 (pX?) = =0, (puX?) = 2X0,p(p) + 2pf X. (A.6)
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Integrating in space

Oy /
3 [exona = [P g [ |axp|2u<p>pp<0 s+ [ fo(u+ % uip))as
- / pudur(p)ds — [ oot as + [ folu+ “Eu(p)aa

— p)dz — [ 10,
dt fv/lplu

The global balance (2.19) for entropy s := 3 Lo X2 1 7(p) follows.

dx—}—/fp +T“( ))dz.

Appendix B. Local well-posedness
PROPOSITION B.1. Assume that p : RT™ — Rand p : R™ — R* are O functions away from zero. Let pg
and ug belong to H*(T) for an integer k > 1, such that ro := mingct po > 0. Suppose that for all T > 0
f e L*(0, T H*(T)).
Then, there exists a Ty > 0 depending only on ||(po, o) g (myx v ¢ty 7o and f, and a unique strong
solution (p, ) to (1.1)-(1.3) on [0, Ty with data (po, ug) such that
p € C(0,To; HX(T)), w € C(0,Ty; H*(T)) N L*(0, Tp; H*T(T))

and p(x,t) > 22 for all (x,t) € T x [0, Tp].

PROOF. Step 0. (Iteration Scheme) We are going to set up an iteration argument and prove that the

iterates converge to the desired solution. Let us first suppose that the initial data pg, ug are smooth, and let
us define rg := mingcT po.

Let us initialize our scheme as follows:
(po(z,t), uo(z,t)) := (po(x), uo(x)),
p1($, t) = po(aj),

and we define u;(x,t) so that

1 0,
Oruy — (p1)82u = —updyug — —0zp(po) + Maxuo + f,
p1 Po Po (B.1)
U,1|t:0 = uo(ac, 0)
Let now n > 2. Given p,,_1, u,—1, we iteratively define p,, first, and subsequently u,, as follows
atpn + Unflaa:pn = *pnfla:cunfl’ (Bz)
1 15) _
atun - (pn)&% Up = _un—lamun—l - aa:p(pn—l) + Mﬁmun—l + f; (B.3)
Pn Pn—1 Pn—1
(Pn> un)|t=0 = (po, o). (B.4)

Let £ > 1 be an integer. We let, for ease of notation,
A= [lpollgx + lluoll e
We are going to prove, by induction on n, that there exists 7y > 0 such that the following assertions hold.

Step 1: There exists u; € C°°(T x [0, Tp]) satisfying (B.1) and

w1l oo (0,70 1% < 24, / / 6’“*1 1)2dzdt < 8A. (B.5)



Step 2: For n > 2, there exists p, € C°°(T x [0, Tp]) satisfying (B.2), (B.4), and
pnlz,t) > %0 on T x [0, Tp).

Furthermore,
[onll oo (0,10 1%y < 24.
Step 3: There exists u,, € C*°(T x [0, Tp]) satisfying (B.3), (B.4), and

To
[unll oo 0,10: %) < 24, / / 8’““ »)2dzdt < 8A.

Step 4: The sequence (py,, up) is Cauchy in the space L>(0, Ty; L?) x (L*°(0,To; L?) N L*(0, To; HY)).
Step 5: There exist
u e C(0,Ty; H*) N L2(0, Ty; H*Y)
and
p € C(0,Ty; H")

such that (p, u) is a strong solution to the system (1.1)—(1.2) with initial data (pg, up). In particular,
if £ = 3, said solution is a classical solution.
Step 6: The constructed strong solution is unique.

Let us now turn to the details.

Step 1. This is the base case of the induction. The existence of u; in the conditions follows from the
general theory of linear parabolic equations, using the fact that pg is bounded from below by rg, and that all
functions involved are smooth. The bound (B.5) is obtained exactly as in Step 3, and we omit the details
here.

Step 2. Let n > 2. Let us adopt the following nomenclature:
p:=Pn, N:=pPn-1, UI=1Un, V:="Up-1.

We recall the induction hypotheses:

[Vl oo (o, TO Hk) < 24, 17 oo (0,105 1%) < 24,
To (B.6)
/ / (0¥ o) 2dxdt < 8A, inf inf n(z,t) > o,
t€[0,Tp] €T 2
Existence up to time 7 and smoothness for p,, follow from the method of characteristics.
In what follows, M(-,...,-) will always denote a positive, continuous function increasing in all its argu-

ments. We first notice that, due to the mass equation (B.2) and the maximum principle, for all £ > 1 and
0 <t < T,

inf p(-,t) > inf po — / In(:, 8)llzoeds > inf po — M(AWVHIO |22y (BT)
Hence, restricting Tg to be small only as a function of A and ry, we have

£ inf p(z,t) > 2
tel[gTO]a{«relTp(x )2 2

We have therefore recovered the last induction hypothesis in (B.6).

Let us now differentiate the mass equation (B.2) k-times, multiply it by 9% > p and integrate by parts

;Bt/((?kp )2dx + / ok p o ( va;,,,p / 5 p & (nd,v) (B.8)
T



If £ = 1, we obtain
18 2, <C|6? 2 0, B.9
50llplze < CllOzoll2llplze + llpllc2llnll e |Ozv]l 2, (B.9)

1
50l102pl T2 < ClOVIIL210nplITz + 20pll 2|0l 21000l e + (02l z2linllzoe 070] 2. (B.10)

Combining (B.9) and (B.10), integrating and using the induction hypotheses, we obtain, for suitable 7
(depending only on A and )
ol Loo 0,105y < 24, (B.11)

If £ > 2, in addition to previous estimate (B.9), we also have, for the terms appearing in (B.8),

1
[ otootonaa| = |5 [oniokorass [ ok ok o
T 2 Jr T
| (B.12)
< Sl0wvllzellolzn + Nl 195, v]ospllze < Cllvllgzllollz + Cllolze vl
Furthermore,
V 0yp 05 (n0:0)| < llpll g 05 ol L2 + |l pll g 1105 m D] 2
L () 1 (B.13)
"’ BN
< Clolle (| (“2) 00l il ol + ol il )
p) [l ||\ 1 L2
Now, due to our assumptions on y and the induction hypothesis, we have
7’ 2 1
H < M(A17")
1(n) || oo
where M depends on y and is an increasing function of its arguments.
Upon summation of (B.9) and (B.8), using (B.9) and (B.13),
! ()2
- pin) \ 2
iathquk < Clloll gl + Clipl ellll e lloll e + M (A 75 [Ipll e (77) oyt
L2
We now use the induction hypothesis (B.6) to obtain, for 0 <t < Tp,
) 1
2
O (Il exp (-2C.41) < aCA* + (.7 | (M) g
n
L2

Upon integration, we obtain the following inequality:
ol < exp (2CAL) (llpoll e +AC A% + 8AVEM(A,15") )
It is now straightforward to choose Tg, depending only on A and rg, such that the induction hypothesis

1ol Lo (0,10 1%) < 2A
is recovered for p, in case k > 2.

Step 3. We now turn to the estimates on the momentum equation (B.3). Multiplying such equation by « and

integrating by parts yields
1
8t/ u?dx — / Muﬁiudm = / u - Godz, (B.14)
2 Jr T P T
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where G := —v0,v — %Gmp(n) + %”T(’”amv + f. If k£ > 1, this implies

1 w(p) 2 -1
ZO|ull? +/ Ozu)dr < M(A,r Ozl || f,00
ol + [ 220 < MA 7)ol | Orl 2l s,

-1
+ Cllullgzllolizp + M A, g Yl lull 2 + lnll ol llull g + Ll z2llullz2)-
Here, we used integration by parts and the following Lemma

LEMMA B.2. Let f be a smooth function away from 0, and k be a positive integer. Let u € H*(T)NL>(T),
and suppose that there exists rog > 0 such that w > rq on T. Then, there exists a positive and continuous
Sfunction M which depends only on f, k and is increasing in both its arguments such that the following
inequality holds:

I1f © ull greery < M (|Jull ooy g ) el e ry- (B.16)

PROOF OF LEMMA B.2. The proof of the lemma follows from Theorem 2.87 in [22], §2.8.2, and a
straightforward cutoff argument. O

REMARK B.3. In what follows, we will always suppress the dependence of M on k and f, since they are
fixed at the beginning of the argument.

Differentiating k-times (k > 1) equation (B.3), multiplying by 0%u, and integrating by parts yields

18t/(6’;u)2dx - /(8§u)6§ <'u(p)8§u> dx = —/(6§+1u) -G dx. (B.17)
2 Jr T P T

Here, we defined

Gj =t (—v@zv - 71]8xp(77) + 811:7(17)

8xv+f>, fork > 1.

When k = 1, the previous display (B.17) implies, upon integration by parts, an application of the Cauchy—
Schwarz inequality, the induction hypotheses, Lemma B.2 and the bounds obtained in Step 2, that

1 1 w(p) 2 \2 p 2
~ 0|05 u|? +/ diu dxﬁ/G dx
2 1wl 3 T P (Oru) T i(p) (B.18)

-1 4
< M(A 1 (ol + Inllzp + Inlzp 100 21030 ] 22 + [ 11Z2)-

Integrating (B.18) and, subsequently, (B.15), upon restricting Ty to be sufficiently small only as a function
of A and rq, we have, in case k = 1,

To
lull ooyt < 24, / ui)p)(&%u)zdxdt <84,
0

Let’s focus now on the case k£ > 2. We have

— /1I (&%u)oF ("(p’))agu> dz

__ /T (O u) o+ (“(pf’)azu> do + /T (0Fu) ok <am (“;’”) aru> dz

:/Tu(pp)(af“u)de—i—/Ta’;Hu [af,(pp)] (8zu)d$—A(8§+lu)8§1 (395 (lﬁp)) axu) .

(a) (0)
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We estimate the last two terms in the previous display:

1 pp) o p 11(p)] 2
a)| < — (O lu)2dz + C <[a§;, dyu) | dz
(@) 10/T p T 1(p) p _( )

1 (p) R, [ K u(p)]

< — [ B @E ) 2de + M (A, Y || |08, B2 (0,u
10/T ) (A,rg ") ) (Oru) .

<L /“(p Okt Lu)2dz + M(A, ry )( ax“(p)‘ 108w 2 + [|Opte]| Lo 1) )
10 /7 p Pl L2
L [ p(p)

< 10/Tp (0 u)2de + M (A,rg ) ||ull -

(B.19)
Here, M is a continuous and increasing function of its arguments. We used the bounds obtained in Step 2,

the Kato—Ponce commutator estimate, the fact that £ > 2 and Lemma B.2 quoted below, applied to the

function £

Similarly, the following estimate holds true, for &k > 2:

1 -

()] < / HO) (32 4 0 (A, [l . (B.20)
10 Jr p

Again, M is a positive, continuous and increasing function of its arguments.

We now proceed to estimate the terms contained in the RHS of equation (B.17) (the terms named “G”), in

case k > 2:
1/#(9) k+1, 12 / p 2
< — | —=(0;"u)de +5 | ——Gidx
0 p | ) T ulp) "

/ (05 1) - Gy da
T

Due to the bounds on p, we have

14 2 -1 2
——Gide < M (A,r G .
/TM(P) ede < M (A7) Gl

Let us now define two auxiliary functions A (the thermodynamic enthalpy) and ¢ in such a way that

, forxz > 0.

/ /
1y = D) PR C))
We now estimate:

105 (wdev)l[72 < CllollFellvl7 < CA*.

Furthermore,
1 { Oxp _
n%l(j)ﬂp<w>@SMm%m

where we used Lemma B.2, applied to the function A.

Finally, we have, since k > 2,

2
(0

L2
Hence, for the term (7, we have

/(8I;+1u) -G dx
T

= 10:C(muv 1T < C (IS 100l oo + [[v]] 192 (1) | o)

< M(A,rgh).

= /;)@M )2dz + M (A, ) (L4 | fII7)- (B.21)

29
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Putting together estimates (B.14), (B.17), (B.19), (B.20), (B.21), and ignoring the positive integral term in
the LHS, we obtain the inequality

1 _ _
Olullzpe < M (A rg ) llullge + M (A,767) (U4 (1 [pa-).
Using Gronwall’s inequality, upon restricting 7 to be small depending only on A, 7y and f, we deduce that

]| oo 0,159 < 24, (B.22)

We now revisit the same estimates without discarding the positive integral term in the LHS. We obtain, upon
restricting Ty to be smaller, depending only on A and rg and f, that

To
/ / Mi)p)(@]afﬂu)zd:cdt < 8A. (B.23)
0 T

We have therefore recovered the induction hypotheses B.6, and in particular the sequence (p;,, ty,) is uni-
formly bounded in L>(0, Tp; H*(T)) x (L°°(0, To; H*(T)) N L2(0, Ty; H*1(T)).

Step 4. We now show that, for some 7)), depending only on A, ry, the sequence (py,, u,,) is Cauchy in the
space L>(0, Tp; L?) x (L*°(0, To; L?) N L2(0, Ty; L?)).
Let’s first consider the equation satisfied by duy, := Upt+1 — Up:

Oy(Suy) — 1P g2y

) Prn+1 Pn (B.24)
= iaﬂs(ui - ui—l) + 0z (h(pn) — M(pn—1)) + 0:C(pn) Ozt — 02C(Pr—1) Oxtin_1-

Recall that we defined h and ( so that the following equalities hold true:

Ouh(p) = aif”) (o) = 8‘;)(”)

We now multiply equation (B.24) by du,, and integrate by parts. We have:

/((5un) (—“(p”+1)a§un+1 + ”(p")agun) dz
T

Pn+1 Pn
_ / () P41 52 50 v / (“(”") - “(p”“)> 02y (1 )dz
T Pn+1 T Pn Pn+1

(a) (0)

Note that, due to Step 3, there exists ¢ = ¢(A, 1) such that, up to time 7p, there holds %’z") > ¢ for all
integers ¢ > 0.

Hence, for the term in (a), upon integration by parts,

Lo wlpn
(@) 2 clon ) = 10222 o 01 G

n
1 3
> |0 (un)lI32 = M(A,15) ([16unl 22 105 (G 22 + 60| 22192 (G1un) 2
C _
> 21100 (5un) 172 = M(A, 76 |0un[72.
Here, we used Lemma B.2, the Gagliardo—Nirenberg—Sobolev inequality and the Young inequality.

‘We now estimate

1 1
(b) > =M (A, 15 ) 10pnll 2 10Zunll 22 1|6un | 22 1|0l | 7
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Let us now turn to the terms appearing in the RHS of (B.24). We define

/1r L0 (0 — ) ()i / (5un)0u (h(pn) — h(pn_))da

(©) (d)
+ / (8ttn) (O (pn) Outin — Do (pn—1) Outin_1) dit.
T

(e)

Then, for (c¢), we have, after integration by parts,
1
[(0)] < M(A)||0x(dun) | L2]|0un—1][L2 < fmllax(mn)ﬂiz + M(A)||6un—1]75-

Concerning the term (d), instead,

(d)] =

1 _
[ 05un) (hp) = 1)) | < 10050 s+ D (A1) Gp

Again, we used the fact that, due to the uniform bounds on p,,, h is Lipschitz of constant depending only on
A and .

Finally, concerning (e),

(0)] < ' [ G106 01 )

+ ‘/(5Un)aa:(<:(pn) - ((Pnfl))axunfldl‘
T

< [10unll Lo 192 (on) || 22|02 (Fun—1) [ 2 +

/T (C(on) = C(Pn-1))0u((Fun) Optin_1)d

1 1
< M(An‘al)(HéunszH&;(éun)lliQHax(éunfl)llm + ”89:(6unfl)HL2H‘SunHH)

1
+ M (A, ) (16pn-11l 2102 0unl| L2107 unl 72 + 10pn—1]| L2 |6tn| oo | 0F 1 | 2)

where dp,_1 := pn — pn—1. Putting together the estimates on the momentum equation, we have

1 1
SOtlunl32 + 151195 (6un) 32
< M(A 15 ) (1un 3 + [Gun-1 32 + 19pa-1132)
1 1
o+ MA 15 0pall 211020 1210 21102 (50
1 1
M, 75 (100100 (510 | 72102 Gt 1) 2 + 102 (Gun-1) 216 1.2)

1
+ M (A, 15 (1800 21| 0s0un 12 |0 22 + 10pnll 2 6w | o< 102 un | 12)-
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Upon integration between time s = 0 and s = ¢, using Holder’s inequality and the bounds obtained in
Step 1,

1 1
5”(5%)('7@”%2 + m”ax(fsun)niz(o,t;m)
< M(A, 75 ) (10unl|F2(0 412) + 10un—1172(0,412) + 1000-11720,1,12))
14,1t 1 3
+ M(A,r, bt [6pnll Lo (0,6:2.2) ||5un||zoo(07t;[,2) |0z (6un) ”22(0115;13)

_1.,1 1 1
A,rg byt Héunuzoo(w;p)Ha:v(éun)nz%o,t;p)”aw((sun—l)HH(O,t;L?)

-1
To

M ( )t
O L PR L [ 525)
M (A, 75 )8 181 | oo 0452 10 (Fun) | 20 4512

M (A, 1510 pn1 | 10w 04502 1000t 12(0,11.2)

1 1 1
M(A, g 1) 4||5Pn—1||L°°(0,t;L2)||5Un||zoo(07t;L2)||ax(5un)”22(o,t;/;2)
_ 1

< ﬁlla (Oun) 720,42 + M (A, g VT (10unl[F e (0 4:12) + 15Un—1]l7 0 (0 4,12y
1012 0522 + 190 Ottn— )l 2a012)):

Let us now calculate the equation satisfied by differences of p,:

at((spn) = _Unaxanrl + unflaxpn - pnazun + Pnflamunfl' (B26)

Multiplying equation (B.26) by ép,,, we obtain

1
50U180ul2: = = [ (3p2) adeprs = wnrBapu)de — [ Gpa) (pudetin = prratin-r)i.
T T

~~

(a) (b)

Considering (a), we have, integrating by parts, using Gagliardo—Nirenberg—Sobolev and Holder’s inequality,

1< | [60) 60 -1)0,pni00
T

+ ‘/ax((spn)(épn)unldx
T

1 1 1
< M(A)([10pnll r2lltn—1l 7 1 8un—111 22 + 1800172107 unl | 72)-

On the other hand, (b) yields

b < ‘ [ Gon)Gor-)0s10a] +

/(5pn)8x(5unl)f’nldm
T

1
< M(A)([10pnll72 + 10pn-11172) 102 unl| 72 + M (A) 02 (8un—1)ll2[16pnl| 2-
Putting together the estimates on the mass equation yields
1
50160132
1 1 1
< M(A)<||5anL2”Bx(éunfl)H[QpH‘Sunfl”ﬁ + Hépnllizllaﬁunllig) + M(A)[0pnll 2| dun—1llz2

1
+ M(A)(18n]172 + 10pn-1172) 1032l 22 + M (A) [0z (Sun—1) 2 16pnl| -
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Upon integration, the previous display yields

1 3 1 1
5”5Pn<t7 )”%2 < M(A)ta H(SPHHLOO(O,t;LQ)Haﬂcwun—l)sz(o,t;Lz) H(Sun_l”zoo(O,t;LQ)

3

+ M(A)t H(san%OO(O,t;L?) + M(A)t(H(SPnH%oo(o,t;L?) + H(sun—lH%OO(O,t;L?))
3

+ M(A) (1000|700 0,1:02) + 10P0-11T 00 (0,4,12))
1

+ M (A)t2 |0z (6un—1)l 22 0,62) 9Pl oo 0,452

1
< M(A)t2 (H(San%oo(OJ;Lz) + ”aac(éun—l)H%Q(Oﬂf;L?) + ”(SUR—IH%OO(OJ;LQ)

+ H5Pn—1||%oo(o,t;L2)>-

Combining now (B.25) and (B.27), we obtain, for suitably small ¢ depending only on A and rq,

1 1 1
ZH(spn”%OO(O,t;LQ) + ZH(SURH%OO(OJ;LQ) + T%\fax(‘sun)”%%o,t;ﬂ)

18,1
< M(A, To 1)“ (Haa:(fsun—l)”%?(o,t;m) + Hfsun—lH%OO(o,t;L?) + ||5Pn—1”%0<>(0,t;L2))-

Upon suitable choice of Tp, this implies that the sequence (p,, u,) is Cauchy in the space L>(0, Tp; L?) x
(L2(0,To; L2) N L2(0, To; HY)).
Step 5. Denote

X™ = L>(0,To; H™) x (L°°(0,Tp; H™) N L*(0, To; H™ 1))

a Banach space with its canonical norm. We have proved in the previous steps that (p,,, u,,) is bounded in X*
and Cauchy in X*~!. The latter implies that (p,,, u,,) converges to some (p, ) in X*~1. The former implies
that some subsequence (p,, , un;) converges weak-* to some (px, us) in X k. Since both weak-* convergence
in X* and strong convergence in X*~! imply convergence in the sense of distributions we deduce that
(pyu) = (ps,usx) € X*. It can be easily verified that (p, u) is a strong solution to the system (1.1)=(1.2).
Moreover, since p, — p strongly in L%(0, Tp; L?) and (p;,) is bounded in L>°(0, Tp; H') it follows by
interpolation that p, — p strongly in L>(0, Ty; H3/*), and hence in L>(0, Ty; L>). This combined with
the fact that p,, (x,t) > 2 forall (x,t) € T x [0, To] (see Step 2) yields

plz,t) > %0 Y(z,t) € T x [0, Ty).

Step 6. We now establish uniqueness of strong solutions. Consider solutions (p1, u1) and (p2, u2), such that
pi € C(0,Tp; HX(T)), u; € C(0, To; H*(T)) N L*(0, To; H*(T)), fori =1,2.
and let (6p, 0u) = (p1 — p2,u1 — uz). We have
DiSu + Sudyur + ua0z6u = —0((p1) — (p2)) + p1 " 0x(pt(p1)Daun) — p3 ' 0n(p(p2)Opuz),  (B.27)
010p + Op(ur1dp + p2du) = 0, (B.28)
(6p, 0u)|i=o = (0,0) (B.29)
We now notice that equation (B.27) is the same as equation (B.24), upon formally substituting n = 1 in the
LHS, and n = 2 in the RHS. Similarly, recalling (B.26), we have
at(épn) = —Un 8xpn+1 + Up—1 axpn _pnaﬂcun + pnflazunfl .
N e’ S N N N~
(a) ®)  (a) ) (o) (b)

Formally substituting n = 1 in terms (a), and n = 2 in terms (b), we obtain (B.28). It is then straightforward
to see that the same estimates as in Step 4 yield uniqueness of strong solutions. U
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