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ABSTRACT. We consider a class of one dimensional compressible systems with degenerate diffusion coeffi-
cients. We establish the fact that the solutions remain smooth as long as the diffusion coefficients do not vanish,
and give local and global existence results. The models include the barotropic compressible Navier-Stokes
equations, shallow water systems and the lubrication approximation of slender jets. In all these models the mo-
mentum equation is forced by the gradient of a solution-dependent potential: the active potential. The method
of proof uses the Bresch-Desjardins entropy and the analysis of the evolution of the active potential.
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1. Introduction

We consider a class of compressible fluid models in one space dimension with periodic boundary conditions:

@t⇢+ @x(u⇢) = 0, (1.1)

@t(⇢u) + @x(⇢u
2) = �@xp(⇢) + @x(µ(⇢)@xu) + ⇢f, (1.2)

(⇢, u)|t=0 = (⇢0, u0) (1.3)

with constitutive laws given by

p(⇢) = cp⇢
�
, µ(⇢) = cµ⇢

↵
, cp 6= 0, cµ > 0. (1.4)

Among these models are the one-dimensional barotropic compressible Navier-Stokes equations. In this
description, ⇢ is the mass density, u is the fluid velocity, and p(⇢), µ(⇢) are the fluid pressure and dynamic
viscosity respectively. These are given by physical equations of state (1.4). For such systems, the specific
heat at constant pressure is positive cp > 0 so that p(⇢) is non-negative. The viscosity is also assumed
non-negative cµ > 0 but may be degenerate in the sense that it vanishes for ⇢ = 0.

Although the eqns. (1.1)–(1.3) describe cases of compressible Navier-Stokes equations, they serve also as
models for a number of other physical systems if the basic variables and constitutive laws are appropriately
defined. For example, a model for viscous incompressible motion of shallow water waves [1, 2] reads

@th+ @x(uh) = 0, (1.5)

@t(hu) + @x(hu
2) +

g

2
@xh

2 = 4⌫@x(h@xu) + hf (1.6)

where

• h and u represent respectively the surface height and fluid velocity,
• g is gravity,
• ⌫ > 0 is the kinematic viscosity,
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• f is the external force.

These equations are a special case of equations (1.1)-(1.2) with

p(⇢) =
g

2
⇢
2 and µ(⇢) = 4⌫⇢.

Equations (1.1)–(1.3) also appear in the theory of drop formation as the slender jet equations [3, 4]:

@th+ u@xh = �1

2
@xuh, (1.7)

@tu+ u@xu+ �@x(
1

h
) = 3⌫

@x(h2@xu)

h2
� g, (1.8)

where

• h and u represent respectively the neck radius and velocity of the jet,
• � > 0 is the surface tension coefficient,
• ⌫ > 0 is the kinematic viscosity,
• g > 0 is gravity.

These equations arise as a reduction of the axisymmetric incompressible Navier-Stokes equations in two
spatial dimensions governing a thin liquid thread with a moving boundary. Via the change of variables
⇢ = h

2, equations (1.7)-(1.8) become equations (1.1)-(1.2) with

p(⇢) = ��
p
⇢ and µ(⇢) = 3⌫⇢.

Note that here the “pressure” that appears is non-positive in contrast with the Navier-Stokes descriptions.

In all the settings above, the one-dimensional equations (1.1)–(1.3) are approximate models of the under-
lying physical processes, whose quality may vary depending on the situation. As models for dissipative
molecular fluids, they are not known to arise as an effective description by a controlled hydrodynamic limit
and do not conserve total energy. See Section A and Appendix B of [5] for an extended discussion. Of
course, they could be valid descriptions of fluid systems in other situations than these, as is the case of the
shallow water and slender jet. Moreover, J. Eggers has argued that the slender jet equations described above
become an exact description asymptotically close to drop pinch–off, justifying the use of the model (1.7),
(1.8) in that context.

Four theorems are proved. The first result, Theorem 1.1, provides a blowup criterion for equations (1.1)–
(1.3) with a wide range of constitutive pressure and viscosity laws (1.4). In what follows, we denote by T
the interval (0, 1] with periodic boundary conditions.

THEOREM 1.1. Assume any of the following three conditions

(i) cp > 0 and ↵ >
1
2 , � 6= 1, � � ↵� 1

2 ,
(ii) cp < 0 and 1

2 < ↵  3
2 , � < 1, 0 < �  ↵,

(iii) cp > 0 and � > 1, ↵ � 0.

Let k � 3 and assume further that

f 2 L
2(0, T ;Hk�1(T)) for all T > 0.

If (⇢, u) is a solution of (1.1)-(1.3) on [0, T ⇤) such that

⇢ 2 C(0, T ;Hk(T)), u 2 C(0, T ;Hk(T)) \ L
2(0, T ;Hk+1(T)), 8T 2 (0, T ⇤) (1.9)

and
inf

t2[0,T ⇤)
min
x2T

⇢(x, t) > 0,
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then (⇢, u) satisfies

sup
T2[0,T ⇤)

k⇢kL1(0,T ;Hk) + sup
T2[0,T ⇤)

kukL1(0,T ;Hk) + sup
T2[0,T ⇤)

kukL2(0,T ;Hk+1) < 1 (1.10)

and can be continued in the class (1.9) past T ⇤.

Theorem 1.1 says that the only possible way for a singularity to form starting from smooth data is if the
density becomes zero somewhere in the domain. This applies in particular to the viscous shallow water
wave equations (1.5)-(1.6). In the slender jet equations (1.7)-(1.8) which model incompressible fluid drop
formation, this says that singularities can only form at the onset of drop break-off. This answers a conjecture
of P. Constantin recorded in [3].

REMARK 1.2. The conclusions of Theorem 1.1 hold whenever an upper bound on the density of the form
(2.22) exists, possibly dependent on the minimum density ⇢. Under any of the conditions (i), (ii), (iii) of the
Theorem, we produce such a bound. However, it seems unlikely that (i)–(iii) are fundamental restrictions,
and the result should hold over larger range conditions.

REMARK 1.3. [6] proved that weak solutions of 1D compressible Navier-Stokes equations with constant
viscosity do not exhibit vacuum states in finite time provided no vacuum states are present initially.

REMARK 1.4. Local well-posedness of (1.1)–(1.3) in the class (1.9) is established in Proposition B.1 of the
Appendix B for arbitrary smooth p(⇢) and smooth non-negative µ(⇢). This covers the special case of power
law equations of state (1.4) in the entire parameters range in Theorem 1.1. Local existence of strong solution
for 2D shallow water equations can be found in [7, 8]. We also refer to [9, 10] for classical results regarding
equations of compressible viscous and heat-conductive fluids with constant viscosity.

Our next two theorems concern the long-time existence and persistence of regularity. Theorem 1.5 estab-
lishes global existence for arbitrarily large data, within a range of pressure and viscosity of the form (1.4).

THEOREM 1.5. Assume
cp > 0, ↵ 2 (

1

2
, 1], and � � 2↵.

Let k � 3 be an integer and let ⇢0 and u0 belong to H
k(T) such that ⇢0(x) > 0 for all x 2 T. Assume

further that
f 2 L

2(0, T ;Hk�1(T)) for all T > 0.

Then there exists a unique global solution (⇢, u) to (1.1)-(1.3) such that

⇢ 2 C(0, T ;Hk(T)), u 2 C(0, T ;Hk(T)) \ L
2(0, T ;Hk+1(T))

for all T > 0, and ⇢(x, t) > 0 for all (x, t) 2 T⇥ R+.

This result applies to the viscous shallow water equations (1.5)-(1.6), giving an alternative proof to that of
[11]. Let us note that [11] assumes only H

1 regularity of initial data. Moreover, Theorem 1.5 allows for
more singular density dependence of the viscosity than in [12], which considers the case of ↵ <

1
2 and

� > 1. In two dimensions, global stability of constant solutions to shallow water equations was proved in
[13, 14, 15].

For more degenerate viscosity ⇢
↵ allowing ↵ > 1, we prove global existence for a class of large initial data.

THEOREM 1.6. Assume that cp > 0 and either

↵ >
1

2
, � 2 [↵,↵+ 1], � 6= 1 or (1.11)

↵ � 0, � 2 [↵,↵+ 1], � > 1. (1.12)

Assume further that
f(x, t) = f(t) 2 L

2((0, T )) 8T > 0.
3



Let k � 4 be an integer and let u0 and ⇢0 belong to H
k(T) such that ⇢0(x) > 0 for all x 2 T and

@xu0(x) 
cp

cµ
⇢0(x)

��↵ 8x 2 T. (1.13)

Then there exists a unique global solution (⇢, u) to (1.1)-(1.3) such that

⇢ 2 C(0, T ;Hk(T)), u 2 C(0, T ;Hk(T)) \ L
2(0, T ;Hk+1(T))

for all T > 0, and ⇢(x, t) > 0 for all (x, t) 2 T⇥ R+.

REMARK 1.7. We note that (1.13) does not impose any smallness conditions on the initial data. The unique
global solution in Theorem 1.5 satisfies

@xu(x, t) 
cp

cµ
⇢(x, t)��↵

for all (x, t) 2 T ⇥ R+. Moreover, the proof provides a lower bound for the minimum of density ⇢, see
(6.12) and (6.15),

min
x2T

⇢(x, t) �

8
<

:

⇣
⇢m(0)↵�� + t

cp

cµ
(� � ↵)

⌘ �1
��↵ when � > ↵,

⇢m(0) exp
⇣
�t

cp

cµ

⌘
when � = ↵.

Our last theorem establishes a bound on the time-averaged maximum density for a certain range of parame-
ters assuming mean zero forcing.

THEOREM 1.8. Assume that (⇢, u) is a sufficiently smooth solution to the system (1.1)–(1.3) on [0, T ⇤).
Assume that

f = @xg (1.14)
for some periodic function g satisfying

g 2 L
1(0, T ⇤;L1(T)), and @xg, @tg 2 L

1(0, T ⇤;L1(T)).
Let us also assume that

↵ � 1/2, � 2 [max{2� ↵,↵},↵+ 1], and cp, cµ > 0.

Then, we have the following bound

1

T

Z
T

0
k⇢(·, t)kL1(T)dt  C1 +

1

T
C2, (1.15)

where C1 and C2 are defined in equation (7.6). In particular, C1 depends only on cµ, cp, ↵, �, k⇢0kL1 ,
k@xgkL1(0,T ;L1), and k@tgkL1(0,T ;L1), whereas C2 depends only on cµ, cp, �, ↵, k⇢0kL1 , k⇢�1

0 kL1 ,
ku0kL2 , k@x⇢0kL2 , and kgkL1(0,T ;L1). Consequently, if T ⇤ = 1 then

lim sup
T!1

1

T

Z
T

0
k⇢(·, t)kL1(T)dt  C3 (1.16)

where C3 depends only on cµ, cp, ↵, �, k⇢0kL1 , k@xgkL1(0,1;L1), and k@tgkL1(0,1;L1).

Theorem 1.8 applies for the viscous shallow water wave system (1.5),(1.6) for which global existence is
established by Theorem 1.5. The interpretation of the bound (1.16) with h ⌘ ⇢ is that long-time average of
the maximum surface height remains bounded, showing that, on average, no extreme events can develop.

REMARK 1.9. Modulo technical conditions, Theorems 1.1, 1.5, 1.6 and 1.8 should hold for more general
constitutive laws µ(⇢) and p(⇢) that behave asymptotically when ⇢ ! 0 as cµ⇢↵ and cp⇢

� respectively. The
high regularity of initial data in the above Theorems is assumed to apply maximum principles straightfor-
wardly. By appealing to more refined maximum principles, the regularity of initial data can be reduced.
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The proofs are based on use of the Bresch-Desjardins entropy and analysis of the evolution of the active
potential w. This object is the potential in the momentum equation (1.2): its gradient is the force

⇢Dtu = @xw. (1.17)

The potential
w = �p(⇢) + µ(⇢)@xu.

is unknown and combines the viscous stress with the pressure. As w depends on the unknowns and in turn
determines their evolution, we refer to it as an active potential. Remarkably, w satisfies a forced quadratic
heat equation with linear drift and less degenerate diffusion with the new dissipation term µ(⇢)

⇢
@
2
xw. The

active potential w contains one derivative of u and no derivative of ⇢. On one hand, energy estimates for
the coupled system of ⇢ and w allow us to control all the high Sobolev regularity of ⇢ and u as long as
⇢ is positive, leading to the proof of Theorem 1.1. On the other hand, the heat equation for w satisfies a
maximum principle which enables us to obtain global regular solutions for a class of large data when the
viscosity is strongly degenerate as in Theorem 1.6.

The fact that the active potential solves a nondegenerate evolution with a maximum principle was observed
in [16] in the context of a 1D Hele Shaw model, where it served a similar role. The effective viscous
flux used in [17] and [18] is an active potential: there it was used by inverting the elliptic (nondegenerate)
equation it solves at each fixed time.

2. A priori estimates: mass, energy and Bresch-Desjardins’s entropy

Assume that (⇢, u) is a solution of (1.1)-(1.3) on the time interval [0, T ⇤) such that

⇢ 2 C(0, T ;H3), u 2 C(0, T ;H3) \ L
2(0, T ;H4)

for any T < T
⇤ and

⇢ := inf
t2[0,T ⇤)

min
x2T

⇢(x, t) > 0. (2.1)

In what follows we denote by M(·, · · · , ·) a positive function that is increasing in each argument.

First, from the continuity equation (1.1), total mass is conserved:

k⇢(·, t)kL1(T) = k⇢0kL1(T). (2.2)

We have the following standard energy balance:

LEMMA 2.1 (Energy Balance). Let ⇢̄ � 0, and

e :=
1

2
⇢|u|2 + ⇡(⇢), ⇡(⇢) = ⇢

Z
⇢

⇢̄

p(s)

s2
ds. (2.3)

Then, the balance
d
dt

Z

T
e(x, t)dx = �

Z

T
µ(⇢)|@xu|2dx+

Z

T
f⇢udx (2.4)

holds for any t 2 [0, T ⇤).

Using the equation of state for the density (1.4) and recalling that ⇢̄ � 0 is an arbitrary constant that we are
free to fix, we have an explicit formula for ⇡(⇢) from (2.3)

⇡(⇢) = cp⇢

Z
⇢

⇢̄

s��2
ds =

(
cp

��1⇢
�

� > 1, ⇢̄ = 0 or � 2 (0, 1), ⇢̄ = 1,

cp⇢ log(⇢) � = 1, ⇢̄ = 1.
(2.5)

Note that the function ⇡ satisfies

⇡
00(⇢) =

p
0(⇢)

⇢
.
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LEMMA 2.2. 1. If � 2 (1,1) and cp > 0, then ⇡(⇢) � 0 and

kekL1(0,T ;L1) + kµ(⇢)|@x⇢|2kL1(0,T ;L1) 
⇣
ke(·, 0)kL1 + kfk2

L2(0,T ;L1)k⇢0kL1(T)

⌘
exp(2T ). (2.6)

2. If � 2 (0, 1) and cp 6= 0, then
Z

T
|⇡(⇢)|dx 

����
cp

� � 1

����
Z

(⇢0 + 1)dx (2.7)

and there exists a positive constant C = C(�,↵, cp, cµ) such that

k⇢u2kL1(0,T ;L1) + kµ(⇢)|@x⇢|2kL1(0,T ;L1)


⇣
k⇢0u20kL1(T) + C

�
1 + kfk2

L2(0,T ;L1)

��
1 + k⇢0kL1(T)

�⌘
exp(T ).

(2.8)

PROOF. First, using the mass conservation (2.2) we bound
Z

T
f⇢udx  1

2

Z

T
f
2
⇢+

Z

T

1

2
⇢u

2

 kfk2
L1(T)

Z

T
⇢+

Z

T

1

2
⇢u

2

 kfk2
L1(T)k⇢0kL1(T) +

Z

T

1

2
⇢u

2
.

(2.9)

1. If � 2 (1,1) and cp > 0, then we have ⇡(⇢) � 0. It then follows from (2.9) that
Z

T
f⇢udx  kfk2

L1(T)k⇢0kL1(T) +

Z

T
e(x, t)dx. (2.10)

Ignoring the first term on the right hand side of (2.4), then using (2.10) and Grönwall’s lemma we obtain

kekL1(0,T ;L1) 
⇣
ke(·, 0)kL1 + kfk2

L2(0,T ;L1)k⇢0kL1(T)

⌘
exp(T ). (2.11)

Next, we integrate (2.4) in time and use (2.10), (2.11) together with the fact that e(x, t) � 0 to get

kµ(⇢)|@x⇢|2kL1(0,T ;L1)  ke(·, 0)kL1 + kfk2
L2(0,T ;L1)k⇢0kL1(T) + TkekL1(0,T ;L1)


⇣
ke(·, 0)kL1 + kfk2

L2(0,T ;L1)k⇢0kL1(T)

⌘
(1 + T ) exp(T )


⇣
ke(·, 0)kL1 + kfk2

L2(0,T ;L1)k⇢0kL1(T)

⌘
exp(2T ).

2. If � 2 (0, 1) then
Z

T
|⇡(⇢)|dx 

����
cp

� � 1

����
Z
(⇢(t) + 1)dx 

����
cp

� � 1

����
Z

(⇢0 + 1)dx (2.12)

where we used the fact that ⇢�  max{1, ⇢} together with the mass conservation (1.1). Ignoring the first
term on the right hand side of (2.4) and using (2.12), (2.9) we find
Z

T

1

2
⇢u

2(x, t)dx 
Z

T

1

2
⇢0u

2
0dx+

Z

T
⇡(⇢0(x))dx�

Z

T
⇡(⇢(x, t))dx+

Z
t

0

Z

T
f⇢u(x, s)dxds


Z

T

1

2
⇢0u

2
0dx+ C(k⇢0kL1(T) + 1) + kf(t)k2

L1(T)k⇢0kL1(T) +

Z
t

0

Z

T

1

2
⇢u

2(x, s)dxds

for some positive constant C = C(�,↵, cp, cµ). Grönwall’s lemma then yields

k⇢u2kL1(0,T ;L1) 
⇣
k⇢0u20kL1(T) + C

�
1 + kfk2

L2(0,T ;L1)

��
1 + k⇢0kL1(T)

�⌘
exp(T ). (2.13)
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Again, we integrate (2.4) in time and use (2.9), (2.13), (2.12) to arrive at

kµ(⇢)|@x⇢|2kL1(0,T ;L1) 
⇣
k⇢0u20kL1(T) + C

�
1 + kfk2

L2(0,T ;L1)

��
1 + k⇢0kL1(T)

�⌘
exp(2T ).

⇤

If either � 2 (1,1) and cp > 0 or � 2 (0, 1) and cp 6= 0, it follows from (2.5)-(2.8) that

kp⇢ukL1(0,T ;L2)  M(E0, kfkL2(0,T ;L1), T ), (2.14)

k⇢
↵
2 @xukL2(0,T ;L2)  M(E0, kfkL2(0,T ;L1), T ), (2.15)

k⇢k
L1(0,T ;Lmax{1,�})  M(E0, kfkL2(0,T ;L1), T ) (2.16)

where
E0 := k⇢0u20kL1(T) + k⇢�0kL1(T) + k⇢0kL1(T). (2.17)

LEMMA 2.3 (Bresch-Desjardins’s Entropy [19]). Let

s :=
⇢

2

����u+
@x⇢

⇢2
µ(⇢)

����
2

+ ⇡(⇢). (2.18)

Then, the balance
d
dt

Z

T
s(x, t)dx = �

Z

T
|@x⇢|2µ(⇢)

p
0(⇢)

⇢2
dx+

Z

T
f⇢
�
u+

@x⇢

⇢2
µ(⇢)

�
dx (2.19)

holds for any t 2 [0, T ⇤).

A proof of Lemma 2.3 can be found in [19, 20, 21] and is given for completeness in the appendix. The first
term on the right hand side of (2.19) is negative whenever cp > 0 and positive whenever cp < 0.

LEMMA 2.4. Define

E1 := E0 + k@x(⇢
↵� 1

2
0 )kL2(T). (2.20)

1. If cp > 0 and � 6= 1, � � ↵� 1
2 , ↵ >

1
2 , then

k⇢kL1(0,T ;L1)  M(E1, kfkL2(0,T ;L1), T ). (2.21)

2. If cp < 0 and 0 < �  ↵, � < 1, ↵ 2 (12 ,
3
2 ], then

k⇢kL1(0,T ;L1)  M(E1, kfkL2(0,T ;L1),
1

⇢
, T ). (2.22)

3. Under the conditions of 1. or 2., we have

k@x⇢kL1(0,T ;L2)  M(E1, kfkL2(0,T ;L1),
1

⇢
, T ). (2.23)

4. If cp > 0, � > 1 and ↵ � 0 then (2.22) and (2.23) hold.

REMARK 2.5. The bound for (2.21) is independent of ⇢. This fact will be important in the proof of Theo-
rem 1.5.

PROOF. 1. Since cp > 0, the first term on the right hand side of (2.19) is negative, and thus
d
dt

Z

T
s(x, t)dx 

Z

T
f⇢
�
u+

@x⇢

⇢2
µ(⇢)

�
dx

 1

2

Z

T
f
2
⇢dx+

Z

T

1

2
⇢
�
u+

@x⇢

⇢2
µ(⇢)

�2dx

 1

2
kf(t)k2

L1(T)k⇢0kL1(T) +

Z

T

1

2
⇢
�
u+

@x⇢

⇢2
µ(⇢)

�2dx.

(2.24)
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When � > 1 we have ⇡(⇢) � 0, hence s > 0 and
d
dt

Z

T
s(x, t)dx  1

2
kf(t)k2

L1(T)k⇢0kL1(T) +

Z

T
s(x, t)dx.

Grönwall’s lemma then yields

kskL1(0,T ;L1) 
⇣
ks(0, ·)kL1(T) + kfk2

L2(0,T ;L1)k⇢0kL1(T)

⌘
exp(T ). (2.25)

We combine (2.25) with (2.14) and the fact that

ks(0, ·)kL1(T)  k⇢0u20kL1(T) + k@x(⇢
↵� 1

2
0 )k2

L2(T). (2.26)

In view of (2.15), this implies

k@x(⇢↵�
1
2 )kL1(0,T ;L2(T))  M(E1, kfkL2(0,T ;L1), T ) (2.27)

with
E1 = E0 + k@x(⇢

↵� 1
2

0 )kL2(T).

On the other hand, when � 2 (0, 1) we write
d
dt

Z

T

1

2
⇢
�
u+

@x⇢

⇢2
µ(⇢)

�2dx  d
dt

Z

T
⇡(⇢(x, t))dx+

1

2
kf(t)k2

L1(T)k⇢0kL1(T) +

Z

T

1

2
⇢
�
u+

@x⇢

⇢2
µ(⇢)

�2dx

where we recall from (2.7) Z

T
|⇡(⇢)|dx 

����
cp

� � 1

����
Z
(⇢0 + 1)dx. (2.28)

It follows from Grönwall’s lemma that

sup
t2[0,T ]

Z

T

1

2
⇢
�
u+

@x⇢

⇢2
µ(⇢)

�2
(x, t)dx


✓Z

T

1

2
⇢
�
u+

@x⇢

⇢2
µ(⇢)

�2
(x, 0)dx+ C(1 + kfk2

L2(0,T ;L1)

��
1 + k⇢0kL1(T)

�◆
exp(T )

 M(E1, kfkL2(0,T ;L1), T ).

Combined with (2.14), this implies the bound (2.27) when � 2 (0, 1).
Next, we recall from (2.16) the bound for k⇢�kL1(T). By the assumption that � � ↵� 1

2 , we obtain

k⇢↵�
1
2 kL1(0,T ;L1)  C(1 + k⇢�kL1(0,T ;L1)+k⇢kL1(0,T ;L1))  M(E0, kfkL2(0,T ;L1), T ).

This combined with (2.27) and Nash’s inequality

k⇢↵�
1
2 kL1(0,T ;L2)  Ck⇢↵�

1
2 k2/3

L1(0,T ;L1)k@x(⇢
↵� 1

2 )k1/3
L1(0,T ;L2) + Ck⇢↵�

1
2 kL1(0,T ;L1)

leads to
k⇢↵�

1
2 kL1(0,T ;H1)  M(E1, kfkL2(0,T ;L1), T ).

The stated bound (2.21) then follows by Sobolev embedding H
1 ✓ L

1.

2. In this case, cp < 0 and thus the first term on the right hand side of (2.19) is positive and is equal to

��cpcµ

Z

T
|⇢(�+↵�3)/2

@x⇢|2dx  �2�
cp

cµ

Z

T
⇢
��↵+1

�
|u+ cµ⇢

↵�2
@x⇢|2 + |u|2

�
dx

= �2�
cp

cµ

Z

T
⇢
��↵

�
s(x, t)� ⇡(⇢) + ⇢|u|2

�
dx.

Note that (2.24) provides the bound
Z

T
f⇢
�
u+

@x⇢

⇢2
µ(⇢)

�
dx  1

2
kf(t)k2

L1(T)k⇢0kL1(T) +

Z

T

1

2
⇢
�
u+

@x⇢

⇢2
µ(⇢)

�2dx.

8



In addition, since � 2 (0, 1), part 2 of Lemma 2.2 provides a bound for ⇡(⇢) and ⇢u
2. Moreover, note that

when cp < 0 and � 2 (0, 1) we have ⇡(⇢), s � 0. Using these together with the assumption that �  ↵ we
have

d
dt

Z

T
s(x, t)dx  �2�

cp

cµ

Z

T
⇢
��↵

�
s(x, t)� ⇡(⇢) + ⇢|u|2

�
dx+ kf(t)k2

L1(T)k⇢0kL1(T) +

Z

T
s(x, t)dx.

 �2�
cp

cµ
(
1

⇢
)��↵

Z

T

�
s(x, t)� ⇡(⇢) + ⇢|u|2

�
dx+ kf(t)k2

L1(T)k⇢0kL1(T) +

Z

T
s(x, t)dx.


⇣
� 2�

cp

cµ
(
1

⇢
)��↵ + 1

⌘Z

T
s(x, t)dx� 2�

cp

cµ
(
1

⇢
)��↵

Z

T

�
�⇡(⇢) + ⇢|u|2

�
dx

+ kf(t)k2
L1(T)k⇢0kL1(T)


⇣
� 2�

cp

cµ
(
1

⇢
)��↵ + 1

⌘Z

T
s(x, t)dx+M(E0, kfkL2(0,T ;L1),

1

⇢
, T )

+ kf(t)k2
L1(T)k⇢0kL1(T)

for t  T . By Grönwall’s lemma and (2.26), we deduce that

kskL1(0,T ;L1)  M(E0 + ks(·, 0)kL1(T), kfkL2(0,T ;L1),
1

⇢
, T )

 M(E1, kfkL2(0,T ;L1),
1

⇢
, T ).

Combining this with (2.14) gives

k@x(⇢↵�
1
2 )kL1(0,T ;L2)  M(E1, kfkL2(0,T ;L1),

1

⇢
, T ). (2.29)

Since ↵� 1
2 2 (0, 1], the mass conservation (2.16) implies

k⇢↵�
1
2 kL1(0,T ;L1)  C(1 + k⇢0kL1(T)). (2.30)

Combined with (2.29), this yields

k⇢↵�
1
2 kL1(0,T ;H1)  M(E1, kfkL2(0,T ;L1),

1

⇢
, T )

from which (2.22) follows.

3. The bound (2.23) follows from (2.21) & (2.27) and (2.22) & (2.29) respectively.

4. This follows from Propositions 4.5 and 4.6 in [12]. ⇤

3. The active potential

We introduce in this section the active potential w := �p(⇢) + µ(⇢)@xu. This is a good unknown upon
which much of the analysis is based. We first show that w satisfies a forced quadratic heat equation with
linear drift.

PROPOSITION 3.1 (w–equation). Let

w := �p(⇢) + µ(⇢)@xu. (3.1)
9



Then w satisfies

@tw = ⇢
�1

µ(⇢)@2
xw � (u+ µ(⇢)

@x⇢

⇢2
)@xw +

✓
⇢
p
0(⇢)

µ(⇢)
� 2

(⇢µ0(⇢) + µ(⇢))

µ(⇢)2
p(⇢)

◆
w

� (⇢µ0(⇢) + µ(⇢))

µ(⇢)2
w

2 +

✓
⇢
p
0(⇢)

µ(⇢)
� (⇢µ0(⇢) + µ(⇢))

µ(⇢)2
p(⇢)

◆
p(⇢) + µ(⇢)@xf. (3.2)

Moreover, the following balance holds

d
dt

Z

T

1

2
|w|2(x, t)dx = �

Z

T
⇢
�1

µ(⇢)|@xw|2dx�
Z

T

✓
u+

µ
0(⇢)

⇢
@x⇢

◆
w@xwdx

+

Z

T

✓
⇢
p
0(⇢)

µ(⇢)
� 2

(⇢µ0(⇢) + µ(⇢))

µ(⇢)2
p(⇢)

◆
|w|2dx�

Z

T

(⇢µ0(⇢) + µ(⇢))

µ(⇢)2
w

3
dx

+

Z

T

✓
⇢
p
0(⇢)

µ(⇢)
� (⇢µ0(⇢) + µ(⇢))

µ(⇢)2
p(⇢)

◆
p(⇢)wdx+

Z

T
µ(⇢)@xfwdx.

(3.3)

PROOF. From the definition of w := �p(⇢) + µ(⇢)@xu given by (3.1), we compute

@xw = (@x⇢)(�p
0(⇢) + µ

0(⇢)@xu) + µ(⇢)@2
xu. (3.4)

Thus, we have

@tw = (@t⇢)(�p
0(⇢) + µ

0(⇢)@xu) + µ(⇢)@t@xu

= �@x(u⇢)(�p
0(⇢) + µ

0(⇢)@xu) + µ(⇢)@t@xu

= �⇢@xu(�p
0(⇢) + µ

0(⇢)@xu)� u(@xw � µ(⇢)@2
xu) + µ(⇢)@t@xu. (3.5)

The momentum equation (1.2) gives

@tu = �u@xu+ ⇢
�1

@xw+f,

@t@xu = �@xu@xu� u@
2
xu� @x⇢

⇢2
@xw + ⇢

�1
@
2
xw + @xf.

Combining the above results, we find

@tw = �⇢@xu(�p
0(⇢) + µ

0(⇢)@xu)� u@xw + uµ(⇢)@2
xu

� µ(⇢)(|@xu|2 + u@
2
xu)� µ(⇢)

@x⇢

⇢2
@xw + ⇢

�1
µ(⇢)@2

xw + µ(⇢)@xf

= ⇢
�1

µ(⇢)@2
xw + ⇢(@xu)p

0(⇢)� (⇢µ0(⇢) + µ(⇢))|@xu|2 � (u+ µ(⇢)
@x⇢

⇢2
)@xw + µ(⇢)@xf

= ⇢
�1

µ(⇢)@2
xw + ⇢(w + p(⇢))

p
0(⇢)

µ(⇢)
� (⇢µ0(⇢) + µ(⇢))

µ(⇢)2
(w + p(⇢))2 � (u+ µ(⇢)

@x⇢

⇢2
)@xw + µ(⇢)@xf

which, after rearrangement, establishes Eq. (3.2). For the energy, multiplying the equation (3.2) by w yields

@t

✓
1

2
|w|2

◆
= @x

�µ(⇢)
⇢

w@xw
�
� µ(⇢)

⇢
|@xw|2 � @x

�µ(⇢)
⇢

�
w@xw �

✓
u+

µ(⇢)

⇢2
@x⇢

◆
w@xw

+

✓
⇢
p
0(⇢)

µ(⇢)
� 2

(⇢µ0(⇢) + µ(⇢))

µ(⇢)2
p(⇢)

◆
|w|2 � (⇢µ0(⇢) + µ(⇢))

µ(⇢)2
w

3

+

✓
⇢
p
0(⇢)

µ(⇢)
� (⇢µ0(⇢) + µ(⇢))

µ(⇢)2
p(⇢)

◆
p(⇢)w + µ(⇢)@xfw.

Integrating in space yields the balance. ⇤
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Let us remark that in (3.2) the new viscosity coefficient is µ(⇢)
⇢

which is less degenerate than the original

viscosity µ(⇢) for the momentum equation. In particular, when µ(⇢) = cµ⇢
↵ with ↵  1, µ(⇢)

⇢
is not

degenerate when ⇢ goes to 0. Energy estimates for the coupled system of ⇢ and w will allow us to control all
the high Sobolev regularity of ⇢ and w as long as ⇢ is positive. This leads to the proof of our continuation
criterion in Theorem 1.1: no singularity occurs before vacuum formation.

Furthermore, (3.2) can be regarded as a nonlinear heat equation with variable coefficients. Note that the
zero-order term in (3.2) has the form �⇢

2��↵ where � depends only on cµ and cp. It can be readily seen
that when the zero-order term and the forcing term in (3.2) are nonpositive, w remains nonpositive if it is
nonpositive initially. This fact will be exploited as the key ingredient in proving the existence of global
solutions in Theorem 1.6 when the viscosity is strongly degenerate.

4. Proof of Theorem 1.1

Throughout this section, we suppose that

0 < ⇢  ⇢(x, t) t 2 [0, T ⇤), x 2 T. (4.1)

and assume any of the following three conditions
(i) cp > 0 and ↵ >

1
2 , � � ↵� 1

2 , � 6= 1
(ii) cp < 0 and ↵ 2 (12 ,

3
2 ], 0 < �  ↵, � < 1

(iii) cp > 0 and ↵ � 0, � > 1.

Under these assumptions, by Lemma 2.4, we have

k⇢kL1(0,T ;L1(T))  M(E1, kfkL2(0,T ;L1),
1

⇢
, T ), (4.2)

and
k@x⇢kL1(0,T ;L2(T))  M(E1, kfkL2(0,T ;L1),

1

⇢
, T ). (4.3)

LEMMA 4.1.
kwkL1(0,T ;L2) + k@xwkL2(0,T ;L2) + k@xukL1(0,T ;L2) + k@2

xukL2(0,T ;L2)

 M(E2, kfkL2(0,T ;H1),
1

⇢
, T ),

(4.4)

where E2 = E1 + k@xu0kL2 .

PROOF. As a consequence of (4.1), (4.2), and (3.3), there exist c := c(E1, kfkL2(0,T ;L1),
1
⇢
, T ) > 0

and C := C(E1, kfkL2(0,T ;L1),
1
⇢
, T ) > 0 such that

d
dt

Z

T

1

2
|w|2(x, t)dx  �1

c

Z

T
|@xw|2dx+

Z

T
(|u|+ C|@x⇢|) |w@xw|dx

+ C

✓Z

T
|w|2dx+

Z

T
|w|3dx+

Z

T
|@xf |2dx+ 1

◆
. (4.5)

We boundZ

T
|@xwwu| dx  k@xwkL2kwkL2kukL1  C1k@xwkL2kwkL2kukH1  1

4c
k@xwk2L2 + Ckwk2

L2kuk2H1

where C1 denotes absolute constants throughout this proof. Next, applying Gagliardo-Nirenberg’s inequality
and Young’s inequality implies

Z

T
|w|3 dx  kwk3

L3  C1(k@xwk
1
2
L2kwk

5
2
L2 + kwk3

L2) 
1

4c
k@xwk2L2 + Ckwk

10
3
L2 + Ckwk3

L2

11



and Z

T
|@xww@x⇢| dx  k@xwkL2kwkL1k@x⇢kL2

 C1k@xwkL2(k@xwk
1
2
L2kwk

1
2
L2 + kwkL2)k@x⇢kL2

 C1k@xwk
3
2
L2kwk

1
2
L2k@x⇢kL2 + C1k@xwkL2kwkL2k@x⇢kL2

 1

4c
k@xwk2L2 + Ckwk2

L2k@x⇢k4L2 + Ckwk2
L2k@x⇢k2L2 .

Putting together the above bounds, and interpolating, yields the following inequality
1

2

d
dt
kwk2

L2 +
1

4c
k@xwk2L2  Ckwk2

L2(kwk2L2 + k@x⇢k4L2 + 1) + Ck@xfk2L2 + C. (4.6)

In view of (4.3), we have
Z

T

0
k@x⇢(·, t)k4L2dt  M(E1, kfkL2(0,T ;L1),

1

⇢
, T ).

Furthermore, using the definition of w together with bounds (4.2) & (2.15), we have

kwkL2(0,T ;L2)  M(E1, kfkL2(0,T ;L1),
1

⇢
, T ).

The last two displays, together with Grönwall’s lemma applied to (4.6), yields the bound
kwkL1(0,T ;L2(T)) + k@xwkL2(0,T ;L2(T))

 M(kw0kL2 , c, C,E1, kfkL1(0,T ;H1),
1

⇢
, T )  M(E1, kfkL1(0,T ;H1),

1

⇢
, T ).

Here, we used the fact that

kw0k2L2  2c2pk⇢0k
2�
L1 + 2c2µk⇢0k2↵L1k@xu0k2L2 .

The above bound can be used to obtain similar estimates for k@xukL1(0,T ;L2) and k@2
xukL2(0,T ;L2) directly

from the definition of w (3.1). ⇤
LEMMA 4.2.

k@2
x⇢kL1(0,T ;L2) + k@xwkL1(0,T ;L2) + k@2

xwkL2(0,T ;L2)

+ k@2
xukL1(0,T ;L2) + k@3

xukL2(0,T ;L2)  M(E3, kfkL1(0,T ;H1),
1

⇢
, T )

(4.7)

where
E3 = E2 + k@2

x⇢0kL2 + k@2
xu0kL2 .

PROOF. To prove this lemma, we obtain energy estimates for the mass equation (1.1) and the w–
equation (3.2) simultaneously. The proof proceeds in 4 steps.

Step 1. Let m � 2 be an arbitrary integer. Differentiating equation (1.1) m times, then multiplying the
resulting equation by @

m
x ⇢ and integrating in space we get

1

2

d
dt

Z

T
|@m

x ⇢|2 = �
Z

T
@
m

x (u@x⇢)@
m

x ⇢�
Z

T
@
m

x (⇢@xu)@
m

x ⇢

= �
Z

T
u@x@

m

x ⇢@
m

x ⇢�
Z

T

�
[@m

x , u]@x⇢
�
@
m

x ⇢�
Z

T

�
[@m

x , ⇢]@xu
�
@
m

x ⇢�
Z

T
⇢@

m+1
x u@

m

x ⇢.

Using the Kato-Ponce commutator estimate [23] and the inequality

k@xgkL1(T)  Ck@2
xgkL2(T)  Cnk@n

xgkL2(T) 8n � 3,
12



we have

k[@m

x , u]@x⇢kL2  Ck@xukL1k@m�1
x @x⇢kL2 + Ck@m

x ukL2k@x⇢kL1  Ck@m

x ukL2k@m

x ⇢kL2

and

k[@m

x , ⇢]@xukL2  Ck@x⇢kL1k@m�1
x @xukL2 + Ck@m

x ⇢kL2k@xukL1  Ck@m

x ukL2k@m

x ⇢kL2 .

In addition,
����
Z

T
u@x@

m

x ⇢@
m

x ⇢

���� =
1

2

����
Z

T
@xu|@m

x ⇢|2
���� 

1

2
k@xukL1k@m

x ⇢k2
L2  Ck@m

x ukL2k@m

x ⇢k2
L2 .

We thus obtain
d
dt
k@m

x ⇢k2
L2  Ck@m

x ukL2k@m

x ⇢k2
L2 + k⇢kL1k@m+1

x ukL2k@m

x ⇢kL2 . (4.8)

Step 2. Recall equation (3.2) with power-law pressure and viscosity

@tw = cµ⇢
↵�1

@
2
xw � (u+ cµ⇢

↵�2
@x⇢)@xw +

cp

cµ
(� � 2(↵+ 1)) ⇢��↵

w

� 1

cµ
(↵+ 1)⇢�↵

w
2 +

c
2
p

cµ
(� � (↵+ 1)) ⇢2��↵ + cµ⇢

↵
@xf.

(4.9)

Differentiating in space, multiplying the resulting equation by @xw and integrating by parts in x leads to
1

2

d
dt

Z

T
|@xw|2 = �cµ

Z

T
⇢
↵�1|@2

xw|2 +
Z

T
(u+ cµ⇢

↵�2
@x⇢)@xw@

2
xw +

cp

cµ
(� � 2(↵+ 1))

Z

T
|@xw|2⇢��↵

+
cp

cµ
(� � ↵) (� � 2(↵+ 1))

Z

T
w⇢

��↵�1
@xw@x⇢

� 2

cµ
(↵+ 1)

Z

T
⇢
�↵

w|@xw|2 +
↵

cµ
(↵+ 1)

Z

T
w

2
@xw@x⇢⇢

�↵�1

+
c
2
p

cµ
(2� � ↵) (� � (↵+ 1))

Z

T
⇢
2��↵�1

@xw@x⇢� cµ

Z

T
⇢
↵
@
2
xw@xf

=: �cµ

Z

T
⇢
↵�1|@2

xw|2 +
7X

j=1

Hj .

after integrating by parts. By virtue of (4.1) and (4.2), there exists c := c(E1, kfkL2(0,T ;L1),
1
⇢
, T ) > 0

such that

cµ

Z

T
⇢
↵�1|@2

xw|2 �
1

c

Z

T
|@2

xw|2.

Note, under our assumptions ⇢ and 1/⇢ are bounded (see (4.1) and (4.2)). Therefore all coefficients involving
L
1 norms of ⇢ to some power can be bounded by some constant C = M(E1, kfkL2(0,T ;L1),

1
⇢
, T, �,↵).

The constant may change line by line.

• Estimate for H1:
����
Z

T
(u+ cµ⇢

↵�2
@x⇢)@xw@

2
xw

����  k@2
xwkL2k@xwkL2kukL1 + Ck@2

xwkL2k@xwkL2k@x⇢kL1

 1

10c
k@2

xwk2L2 + Ck@xwk2L2kuk2H1 + Ck@xwk2L2k@2
x⇢k2L2 .

• Estimate for H2: ����
Z

T
|@xw|2⇢��↵

����  Ck@xwk2L2 .
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• Estimate for H3:
����
Z

T
w@xw@x⇢⇢

��↵�1

����  k⇢��↵�1k1kwkL1k@xwkL2k@x⇢kL2

 CkwkL2k@xwkL2k@x⇢kL2 + Ck@xwk2L2k@x⇢kL2 .

• Estimate for H4:
����
Z

T
⇢
�↵

w|@xw|2
���� 

1

⇢↵
kwkL1k@xwk2L2  1

4⇢2↵
kwk2L1 + Ck@xwk4L2

 Ckwk2
H1 + Ck@xwk4L2 .

• Estimate for H5:
����
Z

T
w

2
@xw@x⇢⇢

�↵�1

���� 
1

⇢1+↵
k@xwkL2kwk2L1k@x⇢kL2

 Ck@xwkL2kwk2
H1k@x⇢kL2

 Ck@xwkL2kwk2
L2k@x⇢kL2 + Ck@xwk3L2k@x⇢kL2 .

• Estimate for H6: ����
Z

T
⇢
��↵�1

@xw@x⇢

����  Ck@xwkL2k@x⇢kL2 .

• Estimate for H7:
����
Z

T
⇢
↵
@
2
xw@xf

���� 
1

10c
k@2

xwk2L2 + Ck@xfk2L2 .

Putting together the above estimates gives

d
dt
k@xwk2L2 +

1

2c
k@2

xwk2L2

 C
�
k@xwk2L2kuk2H1 + k@xwk2L2k@2

x⇢k2L2 + k@xwk4L2 + k@xwk3L2k@x⇢kL2

�
+G

(4.10)

with

G = C
�
k⇢kL1k@xwk2L2 + kwkL2k@xwkL2k@x⇢kL2 + k@xwk2L2k@x⇢kL2

+kwk2
H1 + k@xwkL2kwk2

L2k@x⇢kL2 + k@xwkL2k@x⇢kL2 + k@xfk2L2

�
.

By virtue of the estimates (4.2), (4.3) and (4.4) we deduce that

kGkL1((0,T ))  M(E2, kfkL2(0,T ;H1),
1

⇢
, T ).

Step 3. Letting m = 2 in (4.8) and using the embedding H
1(T) ⇢ L

1(T) we get

d
dt
k@2

x⇢k2L2  Ck@2
xukL2k@2

x⇢k2L2 + Ck⇢kH1k@3
xukL2k@2

x⇢kL2 .

Recalling the definition (3.1) w = �cp⇢
� + cµ⇢

↵
@xu we have

@
3
xu = @

2
x(

w

cµ⇢
↵
+

cp

cµ
⇢
��↵)

=
@
2
xw

cµ⇢
↵
� 2↵

@xw@x⇢

cµ⇢
↵+1

� ↵
w@

2
x⇢

cµ⇢
↵+1

+ ↵(↵+ 1)
w|@x⇢|2

cµ⇢
↵+2

+
cp

cµ
(� � ↵)@2

x⇢⇢
��↵�1 +

cp

cµ
(� � ↵)(� � ↵� 1)|@x⇢|2⇢��↵�2

. (4.11)
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Consequently

k@3
xukL2  C

�
k@2

xwkL2 + k@xwkL2k@x⇢kL1 + kwkH1k@2
x⇢kL2

+kwkL1k@x⇢kL2k@x⇢kL1 + k⇢��↵�1k1k@2
x⇢kL2 + k⇢��↵�2k1k@x⇢kL2k@x⇢kL1

�
.

Therefore, we obtain
d
dt
k@2

x⇢k2L2

 C
�
k@2

xukL2k@2
x⇢k2L2 + k⇢kH1k@2

xwkL2k@2
x⇢kL2 + k⇢kH1k@xwkL2k@2

x⇢kL2k@x⇢kL1

+ kwkH1k⇢kH1k@2
x⇢k2L2 + kwkL1k⇢k2

H1k@x⇢kL1k@2
x⇢kL2

+k⇢kH1k@2
x⇢k2L2 + k⇢k2

H1k@2
x⇢k2L2

�

 1

10c
k@2

xwk2L2 + C
�
k@2

xukL2k@2
x⇢k2L2 + k⇢k2

H1k@2
x⇢k2L2 + k⇢kH1k@xwkL2k@2

x⇢k2L2

+kwkH1k⇢kH1k@2
x⇢k2L2 + kwkH1k⇢k2

H1k@2
x⇢k2L2 + k⇢kH1k@2

x⇢k2L2 + k⇢k2
H1k@2

x⇢k2L2

�

 1

10c
k@2

xwk2L2 + Fk@2
x⇢k2L2 ,

(4.12)

with
F = C

�
k@2

xukL2 + k⇢k2
H1 + k⇢kH1k@xwkL2

+kwkH1k⇢kH1 + kwkH1k⇢k2
H1 + k⇢kH1 + k⇢k2

H1

�
.

Combining the estimates (4.2), (4.3) and (4.4) yields

kFkL1((0,T ))  M(E2, kfkL2(0,T ;H1(T)),
1

⇢
, T ).

Step 4. Adding (4.12) to (4.10) leads to
d
dt
(k@2

x⇢k2L2 + k@xwk2L2) +
1

4c
k@2

xwk2L2  k@xwk2L2H + k@2
x⇢k2L2(F + Ck@xwk2L2) +G

 (k@xwk2L2 + k@2
x⇢kL2)(H + F + Ck@xwk2L2) +G

(4.13)

with
H = C

�
kuk2

H1 + k@xwk2L2 + k@xwkL2k@x⇢kL2

�

satisfying, in virtue of (4.2), (4.3) and (4.4),

kHkL1((0,T ))  M(E2, kfkL2(0,T ;H1),
1

⇢
, T ).

Finally, we integrate (4.13) in time, then apply Grönwall’s lemma, the estimates for F , G and H , and the
estimate (4.4) on k@xwkL2(0,T ;L2) to obtain

k@2
x⇢kL1(0,T ;L2) + k@xwkL1(0,T ;L2) +

1

c
k@2

xwkL2(0,T ;L2)

 M(E2, kfkL2(0,T ;H1),
1

⇢
, T, k@2

x⇢0kL2 , k@xw0kL2)

 M(E3, kfkL2(0,T ;H1),
1

⇢
, T ),

where
E3 = E2 + k@2

x⇢0kL2 + k@2
xu0kL2 .

It then follows easily that

k@2
xukL1(0,T ;L2) + k@3

xukL2(0,T ;L2)  M(E3, kfkL2(0,T ;H1),
1

⇢
, T ).
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⇤

LEMMA 4.3. For any k � 2 there exists Mk depending only on k such that

k@k

x⇢kL1(0,T ;L2) + k@k�1
x wkL1(0,T ;L2) + k@k

xwkL2(0,T ;L2)

+ k@k

xukL1(0,T ;L2) + k@k+1
x ukL2(0,T ;L2)  Mk

�
Ek+1, kfkL2(0,T ;Hk�1),

1

⇢
, T
�

(4.14)
where

Ek+1 = Ek + k@k

x⇢0kL2 + k@k

xu0kL2 .

PROOF. The proof proceeds by induction in k. According to Lemma 4.2, (4.14) holds for k = 2.
Assuming that (4.14) holds for k�1 with k � 3, to obtain it for k we perform H

k energy estimate for ⇢ and
H

k�1 energy estimate for w. This follows along the same lines as that of Lemma 4.2. We first apply (4.8)
with m = k to have

d
dt
k@k

x⇢k2L2  Ck@k

xukL2k@k

x⇢k2L2 + k⇢kL1k@k+1
x ukL2k@k

x⇢kL2

 M
�
Ek, kfkL2(0,T ;Hk�2),

1

⇢
, T
�⇣

k@k

xukL2k@k

x⇢k2L2 + k@k+1
x ukL2k@k

x⇢kL2

⌘
.

(4.15)

By differentiating k times the formula

@xu =
1

cµ
w⇢

�↵ + cp⇢
��↵

and using the induction hypothesis together with the fact that k � 3 we obtain

k@k+1
x ukL2  Ck[@k

x , ⇢
�↵]wkL2 + Ck⇢�↵

@
k

xwkL2 + k@k

x⇢
��↵kL2

 Ck@x⇢�↵kL1kwkHk�1 + Ck⇢�↵kHkkwkL1 + Ck⇢�↵kL1k@k

xwkL2 + k@k

x⇢
��↵kL2

 Ck⇢�↵kH2kwkHk�1 + Ck⇢�↵kHkkwkH1 ++Ck⇢�↵kH1k@k

xwkL2 + k⇢��↵kHk

 M
�
Ek, kfkL2(0,T ;Hk�2),

1

⇢
, T
��
k@k

xwkL2 + k@k

x⇢kL2 + 1
�
.

It then follows from (4.15) that

d
dt
k@k

x⇢k2L2  M
�
Ek, kfkL2(0,T ;Hk�2),

1

⇢
, T
�h
k@k

x⇢k2L2

�
k@k

xukL2 + 1
�
+ k@k

xwkL2k@k

x⇢kL2 + 1
i

 1

10c
k@k

xwk2L2 +M
�
Ek, kfkL2(0,T ;Hk�2),

1

⇢
, T
�h
k@k

x⇢k2L2

�
k@k

xukL2 + 1
�
+ 1
i (4.16)

where c = c(E1, kfkL2(0,T ;L1),
1
⇢
, T ) > 0 be a positive number such that

⇢
↵�1 � 1

c
8(x, t) 2 T⇥ [0, T ⇤).

Next, we differentiate equation (4.9) k�1 times in x, multiply the resulting equation by @
k�1
x w and integrate

over T. We estimate successively each resulting term on the right hand side of (4.9).
16



1. The dissipation term:
Z

T
@
k�1
x

�
⇢
↵�1

@
2
xw
�
@
k�1
x w = �

Z

T
@
k�2
x

�
⇢
↵�1

@
2
xw
�
@
k

xw

= �
Z

T
⇢
↵�1|@k

xw|2 �
Z

T
@
k

xw

k�2X

`=1

C`@
`

x⇢
↵�1

@
k�`

x w

 �1

c
k@k

xwk2L2 + Ck@k

xwkL2

k�2X

`=1

C`k@`

x⇢
↵�1kL1k@k�`

x wkL2

 �1

c
k@k

xwk2L2 + Ck@k

xwkL2k⇢kHk�1

�
k@k�1

x wkL2 + kwkL2

�

 � 1

2c
k@k

xwk2L2 + C
0k⇢k2

Hk�1

�
k@k�1

x wk2
L2 + kwk2

L2

�

 � 1

2c
k@k

xwk2L2 +M
�
Ek, kfkL2(0,T ;Hk�2),

1

⇢
, T
��
k@k�1

x wk2
L2 + 1

�
.

2. The drift term. We have
Z

T
@
k�1
x

�
u@xw + cµ⇢

↵�2
@x⇢@xw

�
@
k�1
x w = �

Z

T
@
k�2
x

�
u@xw

�
@
k

xw � cµ

Z

T
@
k�2
x

�
@x

⇢
↵�1

↵� 1
@xw

�
@
k

xw

where we adopted the convention ⇢
↵�1

↵�1 = ln ⇢ when ↵ = 1. Noting that Hk�2(T) is an algebra for k � 3,
we then bound

����
Z

T
@
k�1
x

�
u@xw + cµ⇢

↵�2
@x⇢@xw

�
@
k�1
x w

����

 Ck@k

xwkL2kukHk�2kwkHk�1 + Ck@k

xwkL2k ⇢
↵�1

↵� 1
kHk�1kwkHk�1

 1

20c
k@k

xwk2L2 + C
0kuk2

Hk�2kwk2Hk�1 + C
0k ⇢

↵�1

↵� 1
k2
Hk�1kwk2Hk�1

 1

20c
k@k

xwk2L2 +M
�
Ek, kfkL2(0,T ;Hk�2),

1

⇢
, T
��
k@k�1

x wk2
L2 + 1

�

3. The nonlinearity term:
����
Z

T
@
k�1
x

�
⇢
�↵

w
2
�
@
k�1
x w

���� =
����
Z

T
@
k�2
x

�
⇢
�↵

w
2
�
@
k

xw

����

 Ck⇢�↵kHk�2kwk2
Hk�2k@k

xwkL2

 1

20c
k@k

xwkL2 + C
0k⇢�↵k2

Hk�2kwk4Hk�2

 1

20c
k@k

xwkL2 +M
�
Ek, kfkL2(0,T ;Hk�2),

1

⇢
, T
�
.

4. The zero order term:
����
Z

T
@
k�1
x (⇢2��↵)@k�1

x w

����  Ck⇢2��↵kHk�1k@k�1
x wkL2

 M
�
Ek, kfkL2(0,T ;Hk�2),

1

⇢
, T
�
k@k�1

x wkL2 .
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5. The forcing term:
����
Z

T
@
k�1
x

�
⇢
↵
@xf

�
@
k�1
x w

���� =
����
Z

T
@
k�2
x

�
⇢
↵
@xf

�
@
k

xw

����

 Ck⇢↵kHk�2k@xfkHk�2k@k

xwkL2

 1

20c
k@k

xwk2L2 +M
�
Ek, kfkL2(0,T ;Hk�2),

1

⇢
, T
�
kfk2

Hk�1 .

Putting the estimates 1. through 5. together, we obtain
1

2

d
dt
k@k�1

x wk2
L2  �2

5c
k@k

xwk2L2 +M
�
Ek, kfkL2(0,T ;Hk�2),

1

⇢
, T
�
k@k�1

x wk2
L2

+M
�
Ek, kfkL2(0,T ;Hk�2),

1

⇢
, T
��
kfk2

Hk�1 + 1).

Combining this with (4.16) and Grönwall’s lemma leads to

k@k

x⇢k2L1(0,T ;L2) + k@k�1
x wk2

L1(0,T ;L2) + k@k

xwk2L2(0,T ;L2)

 M

⇣
k@k

x⇢0k2L2 + k@k�1
x w0k2L2 + kfk2

L2(0,T ;Hk�1) + T

⌘
exp

⇣
M
�
k@k

xukL1(0,T ;L2) + T
�⌘

where we denoted
M ⌘ M

�
Ek, kfkL2(0,T ;Hk�2),

1

⇢
, T
�

and used the fact that the L
2(0, T ;Hk) norm of u is controlled by M .

It follows easily from this that k@k
xukL1(0,T ;L2) and k@k+1

x ukL2(0,T ;L2) can be controlled by the same bound.
This finishes the proof of (4.14). ⇤

In view of Lemmas 4.1, 4.2 and 4.3 we have proved that
sup

T2[0,T ⇤)
k⇢kL1(0,T ;Hk) + sup

T2[0,T ⇤)
kukL1(0,T ;Hk) + sup

T2[0,T ⇤)
kukL2(0,T ;Hk+1)

 Mk

⇣
k(⇢0, u0)kHk⇥Hk , kfkL2(0,T ⇤;Hmax{k�1,1}),

1

⇢
, T

⇤
⌘
< 1

(4.17)

for k � 1. Appealing to local existence, established by Prop. B.1, the solution can be extended past T ⇤.

5. Proof of Theorem 1.5

We assume here that cp > 0 and that ↵ 2 (12 , 1], � � 2↵. By Prop. B.1, there exists a positive time T0 such
that problem (1.1)-(1.3) has a unique solution (⇢, u) on [0, T0] such that

⇢ 2 C(0, T0;H
k), u 2 C(0, T0;H

k) \ L
2(0, T0;H

k+1), k � 3, (5.1)

and ⇢ > 0 on [0, T0]. Let T ⇤ be the maximal lifetime of the classical solution (⇢, u), so that, by Thm. 1.1,

inf
t2(0,T ⇤)

min
x2T

⇢(x, t) = 0. (5.2)

We claim that T ⇤ = 1. We will argue by contradiction. Let us note that the H
k regularity, k � 3, of (⇢, u)

suffices to justify all the calculations below. Recall from the proof of Lemma 2.3 in Appendix A, that

X = u+ cµ⇢
↵�2

@x⇢, (5.3)

defined also in Eq. (A.4), satisfies

@tX + u@xX = ��
cp

cµ
⇢
��↵(X � u) + f = ��

cp

cµ
⇢
��↵

X + �
cp

cµ
⇢
��↵

u+ f. (5.4)
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By Lemma 2.4 1., we have

k⇢kL1(0,T ;L1(T))  M(E1, kfkL2(0,T ;L1), T ). (5.5)

Since � � 2↵ � ↵+ 1
2 for ↵ 2 (12 , 1], combining the above estimate with (2.14), we have

k⇢��↵
ukL1(0,T ;L2(T))  M(E1, kfkL2(0,T ;L1), T ). (5.6)

Note also

@x(⇢
��↵

u) = (
p
⇢@xu)⇢

��↵� 1
2 + (� � ↵)⇢��2↵(⇢↵�

3
2@x⇢)(

p
⇢u)

Now, estimate (2.27) implies

k(⇢↵�
3
2@x⇢)kL2(0,T ;L2(T))  M(E1, kfkL2(0,T ;L1), T ).

Putting together this, (2.14), (2.15), (5.5), and the assumption that � � 2↵ we deduce that

k@x(⇢��↵
u)kL2(0,T ;L1(T))  M(E1, kfkL2(0,T ;L1), T ).

which combined with (5.6) yields

k⇢��↵
ukL2(0,T ;W 1,1)  M(E1, kfkL2(0,T ;L1), T ). (5.7)

Since (5.4) is a transport equation we then have

kXkL1(0,T ;L1) 
�
kX0kL1 + �

cp

cµ
k⇢��↵

ukL1(0,T ;L1) + kfkL1(0,T ;L1)

�
exp

�
�
cp

cµ
k⇢��↵kL1(0,T ;L1)

�

 M(E1, kX0kL1 , kfkL2(0,T ;L1), T ).
(5.8)

Recall that X = u + @x⇢

⇢2
µ(⇢) = u + cµ⇢

↵�2
@x⇢, hence X⇢

��↵ = u⇢
��↵ + cµ⇢

��2
@x⇢. It then follows

from (5.5), (5.7) and (5.8) that

k⇢��2
@x⇢kL2(0,T ;L1)  M(E1, kX0kL1 , kfkL2(0,T ;L1), T ). (5.9)

Using (1.1) and (1.2) we obtain

@tu+ (u� µ
0(⇢)@x⇢

⇢
)@xu =

µ(⇢)

⇢
@
2
xu� p

0(⇢)@x⇢

⇢
+ f = cµ⇢

↵�1
@
2
xu� cp�⇢

��2
@x⇢+ f. (5.10)

Using the maximum principle (see the argument leading to (6.7) below and a similar argument for the
minimum) and the bound (5.9) gives

kukL1(0,T ;L1)  ku0kL1 + cp�k⇢��2
@x⇢kL1(0,T ;L1) + kfkL1(0,T ;L1)

 M(E1, k(X0, u0)kL1 , kfkL2(0,T ;L1), T ).
(5.11)

From the definition of X and (5.8), this yields

k@x⇢↵�1kL1(0,T ;L1)  M(E1, k(X0, u0)kL1 , kfkL2(0,T ;L1), T ) (5.12)

when ↵ < 1, and

k@x ln ⇢kL1(0,T ;L1)  M(E1, k(X0, u0)kL1 , kfkL2(0,T ;L1), T ) (5.13)

when ↵ = 1.

When ↵ < 1, the continuity equation implies

@t(⇢
↵�1) = �(↵� 1)@x(u⇢)⇢

↵�2
. (5.14)
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Integrating this in space and time and using the definition of X leads to
Z

T
⇢
↵�1(x, T )dx =

Z

T
⇢
↵�1
0 dx+ (↵� 1)(↵� 2)

Z
t

0

Z

T
(u⇢⇢↵�3

@x⇢)(x, z)dxdz

=

Z

T
⇢
↵�1
0 dx+

1

cµ
(↵� 2)(↵� 1)

Z
t

0

Z

T
(ucµ⇢

↵�2
@x⇢)(x, z)dxdz


Z

T
⇢
↵�1
0 dx+ C

Z
t

0

Z

T
X

2(x, z)dxdz,

(5.15)

valid for 0  t  T .

Similarly, when ↵ = 1 we have
����
Z

T
ln ⇢(x, t)dx

���� 
����
Z

T
ln ⇢0dx

����+ C

Z
t

0

Z

T
X

2(x, z)dxdz, 0  t  T. (5.16)

Then by virtue of (5.8), (5.11), (5.12), (5.15), Poincaré-Wirtinger’s inequality and Sobolev embedding we
deduce that

k⇢↵�1kL1(0,T ;L1)  M(E1, k(X0, u0)kL1 , k⇢↵�1
0 kL1 , kfkL2(0,T ;L1), T )

if ↵ < 1.

On the other hand, if ↵ = 1, (5.5) combined with with (5.16), Poincaré-Wirtinger’s inequality and Sobolev
embedding, yields

k ln ⇢kL1(0,T ;L1)  M(E1, k(X0, u0)kL1 , k ln ⇢0kL1 , kfkL2(0,T ;L1), T ).

Consequently

inf
(x,t)2T⇥[0,T ]

⇢(x, t) � F
�
M(E0, k(X0, u0)kL1 , k⇢↵�1

0 kL1 + k ln ⇢0kL1 , kfkL2(0,T ;L1), T )
�

where

F(z) =

(
z

1
↵�1 if ↵ < 1,

e
�z if ↵ = 1.

(5.17)

Therefore,

inf
(x,t)2T⇥[0,T ⇤)

⇢(x, t) � F
�
M(E0, k(X0, u0)kL1 , k⇢↵�1

0 kL1 , k ln ⇢0kL1 , kfkL2(0,T ⇤;L1), T
⇤)
�
> 0

which contradicts (5.2).

6. Proof of Theorem 1.6

Recall the assumptions (1.11) and (1.12) Assume that cp > 0 and either

↵ >
1

2
, � 2 [↵,↵+ 1], � 6= 1 or (6.1)

↵ � 0, � 2 [↵,↵+ 1], � > 1. (6.2)

By Prop. B.1, there exists a positive time T0 such that problem (1.1)-(1.3) has a unique solution (⇢, u) on
[0, T0] such that

⇢ 2 C(0, T0;H
k), u 2 C(0, T0;H

k) \ L
2(0, T0;H

k+1), k � 4, (6.3)

and ⇢ > 0 on [0, T0]. Let T ⇤ be the maximal existence time. We claim that T ⇤ = 1. Assume by
contradiction that T ⇤ is finite. By Theorem 1.1 we have

inf
t2[0,T ⇤)

min
x2T

⇢(x, t) = 0. (6.4)
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From Lemma 3.1, the w equation (3.2) is

@tw = cµ⇢
↵�1

@
2
xw � (u+ cµ⇢

↵�2
@x⇢)@xw +

cp

cµ
(� � 2(↵+ 1)) ⇢��↵

w

� 1

cµ
(↵+ 1)⇢�↵

w
2 +

c
2
p

cµ
(� � (↵+ 1)) ⇢2��↵

. (6.5)

Note that the assumption f(x, t) = f(t) was used to have @xf = 0. It follows from (6.3) and the equation
(6.5) that

w 2 C(0, T ;H3) \ L
2(0, T ;H4), @tw 2 C(0, T ;H1) ⇢ C(T⇥ [0, T ])

Thus, w 2 C
1(T⇥ [0, T ]) and thus the function

wM (t) := max
x2T

w(x, t) (6.6)

is Lipschitz continuous on [0, T ]. According to the Rademacher theorem, wM is differentiable almost ev-
erywhere on [0, T ]. There exists for each t 2 [0, T ⇤) a point xt such that

wM (t) = w(xt, t).

Let t 2 (0, T ) be a point at which wM is differentiable. We have

w
0
M (t) = lim

h!0+

wM (t+ h)� wM (t)

h

= lim
h!0+

w(xt+h, t+ h)� w(xt, t)

h

� lim
h!0+

w(xt, t+ h)� w(xt, t)

h
= @tw(xt, t).

On the other hand,

w
0
M (t) = lim

h!0+

wM (t)� wM (t� h)

h

= lim
h!0+

w(xt, t)� w(xt�h, t� h)

h

 lim
h!0+

w(xt, t)� w(xt, t� h)

h
= @tw(xt, t).

Thus, w0
M
(t) = @tw(xt, t) if wM is differentiable at t. We deduce from this and equation (6.5) that for

almost every t 2 (0, T ),

@twM  A(t)wM +B(t)w2
M + C(t) (6.7)

with

A(t) :=
cp

cµ
(� � 2(↵+ 1)) ⇢(xt)

��↵

B(t) := � 1

cµ
(↵+ 1)⇢(xt)

�↵

C(t) :=
c
2
p

cµ
(� � (↵+ 1)) ⇢(xt)

2��↵
.

where we used the facts that @2
xw(xt, t)  0 and @xw(xt, t) = 0. Note that B(t)  0. In addition, the

function C is nonpositive under the conditions (1.11). The condition on the initial data (1.13) is equivalent
to wM (0)  0. We deduce that

w(t)  0, 8t < T
⇤
. (6.8)
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At the point yt where the density attains its minimum value ⇢m := ⇢(yt, t), ⇢m satisfies

@t⇢m = �@xu(yt)⇢m = �w(yt)

cµ
⇢
1�↵

m � cp

cµ
⇢
��↵+1
m � � cp

cµ
⇢
��↵+1
m (6.9)

where we used (6.8). Provided that � 6= ↵, this implies the differential inequality
1

(↵� �)
@t(⇢

↵��

m ) � � cp

cµ
. (6.10)

Since ↵ < �, we find

@t(⇢
↵��

m )  cp

cµ
(� � ↵) (6.11)

which implies

⇢m(t) �
✓
⇢m(0)↵�� + t

cp

cµ
(� � ↵)

◆ 1
↵��

, 8t < T
⇤ (6.12)

Since cp/cµ > 0, this implies that

inf
t2[0,T ⇤)

min
x2T

⇢(x, t) �
✓
⇢m(0)↵�� + T

⇤ cp
cµ

(� � ↵)

◆ 1
↵��

> 0 (6.13)

which contradicts the assumption (6.4). We conclude that the solution (⇢, u) is global in time.

On the other hand, when ↵ = � we have

@t ln ⇢m � � cp

cµ
(6.14)

and thus

⇢m(t) � ⇢m(0) exp

✓
�t

cp

cµ

◆
> 0 (6.15)

which again leads to a contradiction with (6.4).

REMARK 6.1. With a more refined maximum principle argument, one can relax the regularity requirement
of k � 4 which we used to conclude that (6.6) is Lipschitz continuous on [0, T ].

7. Proof of Theorem 1.8

In this section, we give an upper bound for the long-time average maximum density, assuming that the
forcing has zero mean in space. This follows by an application of the Bresch-Desjardins’s entropy and the
following elementary lemma.

LEMMA 7.1. Let m � 1
2 . If hm 2 W

1,1(T) then we have

khkL1(T)  2k@x(hm)k
1
m
L1(T) + 4khkL1(T). (7.1)

PROOF OF LEMMA 7.1. Since h 2 W
1,1(T) ⇢ C

0(T), we have h 2 C
0(T). In particular, there exists

a point x0 2 T such that |h(x0)| 
p
2khkL1(T). For all x 2 T we have

h
m(x) =

Z
x

x0

@y(h
m(y))dy + h

m(x0),

hence
|h(x)|m  k@xhmkL1(T) + |h(x0)|m  k@x(hm)kL1(T) +

p
2khkm

L1(T).

In view of the elementary inequality

(a+ b)
1
m  2a

1
m + 2b

1
m , a, b, m > 0,
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we thus obtain (7.1). ⇤

PROOF OF THEOREM 1.8. Recall our assumptions

� 2 [max{2� ↵,↵},↵+ 1], ↵ � 1/2, and cp, cµ > 0. (7.2)

Next, by Lemma 2.3, the entropy

s =
⇢

2

����u+
@x⇢

⇢2
µ(⇢)

����
2

+ ⇡(⇢). (7.3)

satisfies
d
dt

Z

T
s(x, t)dx = �

Z

T
|@x⇢|2µ(⇢)

p
0(⇢)

⇢2
dx+

Z

T
f⇢
�
u+

@x⇢

⇢2
µ(⇢)

�
dx. (7.4)

Integrating this in time yields
Z

T
s(x, T )dx�

Z

T
s(x, 0)dx+cpcµ�

Z
T

0

Z

T
⇢
↵+��3|@x⇢|2dxdt

=

Z
T

0

Z

T
f⇢udxdt+ cµ

Z
T

0

Z

T
f⇢

↵�1
@x⇢ dxdt.

Using the assumption (1.14) we calculate
Z

T

0

Z

T
f⇢u dxdt = �

Z
T

0

Z

T
g@x(⇢u)dxdt =

Z
T

0

Z

T
g@t⇢ dxdt

=

Z

T
(g⇢)(x, T ) dx�

Z

T
(g⇢)(x, 0) dx�

Z
T

0

Z

T
⇢@tg dxdt.

This implies ����
Z

T

0

Z

T
f⇢u dxdt

����  2kgkL1(0,T ;L1)k⇢0k1 + k@tgkL1(0,T ;L1)k⇢0k1

 2kgkL1(0,T ;L1)k⇢0k1 + Tk@tgkL1(0,T ;L1)k⇢0k1.
On the other hand, using Cauchy–Schwarz, we have
����cµ
Z

T

0

Z

T
f⇢

↵�1
@x⇢ dxdt

���� 
1

2
cpcµ�

Z
T

0

Z

T
⇢
↵+��3|@x⇢|2dxdt+ C

Z
T

0

Z

T
⇢
↵��+1

f
2dxdt

 1

2
cpcµ�

Z
T

0

Z

T
⇢
↵+��3|@x⇢|2dxdt+ CT (1 + k⇢0k1)kfk2L1(0,T ;L1).

Here, C is a constant which depends only on c� , cp and �. We have used the assumption (7.2) that � belongs
to the range � 2 [max{2� ↵,↵},↵+ 1] with ↵ � 1/2 to have 0  ↵� � + 1  1.

Note that the allowed range of � and ↵ requires that � � 3/2 always. Since, in particular � > 1 we have
⇡(⇢) � 0 and s � 0. Thus, putting all together, we obtain the bound

1

2
cpcµ�

Z
T

0

Z

T
⇢
↵+��3|@x⇢|2dxdt

 2kgkL1(0,T ;L1)k⇢0k1 + Tk@tgkL1(0,T ;L1)k⇢0k1 + CT (1 + k⇢0k1)k@xgk2L1(0,T ;L1) +

Z

T
s(x, 0)dx.

We thus obtain
1

2
cpcµ�

Z
T

0

Z

T
⇢
↵+��3|@x⇢|2dxdt  M1T +M0,

where M0 is a constant which depends only on cµ, cp, �, ↵, k⇢0kL1 , k⇢�1
0 kL1 , ku0kL2 , k@x⇢0kL2 ,

kgkL1(0,T ;L1), and M1 a constant which depends only on cµ, cp, �, k⇢0kL1 , k@tgkL1(0,T ;L1), k@xgkL1(0,T ;L1).
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In particular, Z
T

0

Z

T
|@x(⇢

1
2 (↵+��1))|2dxdt  M3T +M2,

where Mi+2 =
(↵+��1)2

2cpcµ�
Mi, for i = 0, 1. Here, we used the fact that ↵+ � � 1 > 0.

By assumption (7.2) we have that ↵ + � � 2max{1,↵} � 2 which implies 1
m

 2. We now apply
Lemma 7.1 with m := 1

2(↵+ � � 1). Using the embedding L
2(T) ⇢ L

1(T), we obtain
Z

T

0
k⇢(·, t)kL1dt  2

Z
T

0
k@x(⇢m)k

1
m
L2dt+ 4Tk⇢0kL1 .

Consequently,
Z

T

0
k⇢(·, t)kL1dt  2

Z
T

0
(k@x(⇢m)k2

L2 + 1)dt+ 4Tk⇢0kL1  2(M3T +M2) + 2T + 4Tk⇢0kL1 .

Hence,
1

T

Z
T

0
k⇢(·, t)kL1dt  (2M3 + 2 + 4k⇢0kL1) +

2

T
M2, (7.5)

and the claim follows, with the definition

C1 = 2M2, C2 := 2M3 + 2 + 4k⇢0kL1 . (7.6)

⇤

Appendix A. Bresch-Desjardins’s entropy

For the sake of completeness we present the proof of Lemma 2.3 which essentially follows from [19, 20, 21].
From the continuity equation (1.1), any smooth ⇠(⇢) satisfies

@t⇠(⇢) = @t⇢⇠
0(⇢) = �@x(u⇢)⇠

0(⇢) = �u@x⇠(⇢)� ⇢(@xu)⇠
0(⇢) (A.1)

Using equation (A.1) applied to the function @x⇠(⇢), we find the evolution of ⇢@x⇠(⇢)):

@t(⇢@x⇠(⇢)) = �@x(⇢u)@x⇠(⇢) + ⇢@t@x⇠(⇢)

= �@x(⇢u)@x⇠(⇢)� ⇢@x(u@x⇠(⇢) + ⇢(@xu)⇠
0(⇢))

= �@x(⇢u)@x⇠(⇢)� ⇢@xu@x⇠(⇢)� ⇢u@
2
x⇠(⇢)� ⇢@x(⇢(@xu)⇠

0(⇢))

= �@x(⇢u@x⇠(⇢))� ⇢@xu@x⇠(⇢)� ⇢@x(⇢(@xu)⇠
0(⇢))

= �@x(⇢u@x⇠(⇢))� @x(⇢
2(@xu)⇠

0(⇢)).

(A.2)

Then, letting X := u+ @x⇠(⇢), combining Eq. (A.2) with the momentum equation (1.2) yields

@t(⇢X) = �@x(⇢uX)� @xp(⇢) + @x(µ(⇢)@xu)� @x(⇢
2(@xu)⇠

0(⇢)) + ⇢f. (A.3)

We now choose ⇢
2
⇠
0(⇢) = µ(⇢), so that the final two terms in (A.3) cancel. Thus with this choice,

X = u+
@x⇢

⇢2
µ(⇢) (A.4)

and, by (A.3), ⇢X satisfies

@t(⇢X) = �@x(⇢uX)� @xp(⇢) + ⇢f. (A.5)

Whence, we obtain

@t(⇢X
2) = �@x(⇢uX

2)� 2X@xp(⇢) + 2⇢fX. (A.6)
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Integrating in space

1

2

d
dt

Z

T
(⇢X2)(x, t)dx = �

Z

T
⇢u

@xp(⇢)

⇢
dx�

Z

T
|@x⇢|2µ(⇢)

p
0(⇢)

⇢2
dx+

Z

T
f⇢
�
u+

@x⇢

⇢2
µ(⇢)

�
dx

= �
Z

T
⇢u @x⇡

0(⇢)dx�
Z

T
|@x⇢|2µ(⇢)

p
0(⇢)

⇢2
dx+

Z

T
f⇢
�
u+

@x⇢

⇢2
µ(⇢)

�
dx

= � d
dt

Z

T
⇡(⇢)dx�

Z

T
|@x⇢|2µ(⇢)

p
0(⇢)

⇢2
dx+

Z

T
f⇢
�
u+

@x⇢

⇢2
µ(⇢)

�
dx.

The global balance (2.19) for entropy s := 1
2⇢X

2 + ⇡(⇢) follows.

Appendix B. Local well-posedness

PROPOSITION B.1. Assume that p : R+ ! R and µ : R+ ! R+ are C
1 functions away from zero. Let ⇢0

and u0 belong to H
k(T) for an integer k � 1, such that r0 := minx2T ⇢0 > 0. Suppose that for all T > 0

f 2 L
2(0, T ;Hk�1(T)).

Then, there exists a T0 > 0 depending only on k(⇢0, u0)kHk(T)⇥Hk(T), r0 and f , and a unique strong
solution (⇢, u) to (1.1)-(1.3) on [0, T0] with data (⇢0, u0) such that

⇢ 2 C(0, T0;H
k(T)), u 2 C(0, T0;H

k(T)) \ L
2(0, T0;H

k+1(T))
and ⇢(x, t) > r0

2 for all (x, t) 2 T⇥ [0, T0].

PROOF. Step 0. (Iteration Scheme) We are going to set up an iteration argument and prove that the
iterates converge to the desired solution. Let us first suppose that the initial data ⇢0, u0 are smooth, and let
us define r0 := minx2T ⇢0.

Let us initialize our scheme as follows:
(⇢0(x, t), u0(x, t)) := (⇢0(x), u0(x)),

⇢1(x, t) = ⇢0(x),

and we define u1(x, t) so that

@tu1 �
µ(⇢1)

⇢1
@
2
xu1 = �u0@xu0 �

1

⇢0
@xp(⇢0) +

@xµ(⇢0)

⇢0
@xu0 + f,

u1|t=0 = u0(x, 0).
(B.1)

Let now n � 2. Given ⇢n�1, un�1, we iteratively define ⇢n first, and subsequently un as follows

@t⇢n + un�1@x⇢n = �⇢n�1@xun�1, (B.2)

@tun � µ(⇢n)

⇢n
@
2
xun = �un�1@xun�1 �

1

⇢n�1
@xp(⇢n�1) +

@xµ(⇢n�1)

⇢n�1
@xun�1 + f, (B.3)

(⇢n, un)|t=0 = (⇢0, u0). (B.4)

Let k � 1 be an integer. We let, for ease of notation,

A := k⇢0kHk + ku0kHk .

We are going to prove, by induction on n, that there exists T0 > 0 such that the following assertions hold.

Step 1: There exists u1 2 C
1(T⇥ [0, T0]) satisfying (B.1) and

ku1kL1(0,T0;Hk)  2A,

Z
T0

0

Z

T

µ(⇢1)

⇢1
(@k+1

x u1)
2dxdt  8A. (B.5)
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Step 2: For n � 2, there exists ⇢n 2 C
1(T⇥ [0, T0]) satisfying (B.2), (B.4), and

⇢n(x, t) �
r0

2
on T⇥ [0, T0].

Furthermore,
k⇢nkL1(0,T0;Hk)  2A.

Step 3: There exists un 2 C
1(T⇥ [0, T0]) satisfying (B.3), (B.4), and

kunkL1(0,T0;Hk)  2A,

Z
T0

0

Z

T

µ(⇢n)

⇢n
(@k+1

x un)
2dxdt  8A.

Step 4: The sequence (⇢n, un) is Cauchy in the space L
1(0, T0;L2)⇥

�
L
1(0, T0;L2) \L

2(0, T0;H1)
�
.

Step 5: There exist
u 2 C(0, T0;H

k) \ L
2(0, T0;H

k+1)

and
⇢ 2 C(0, T0;H

k)

such that (⇢, u) is a strong solution to the system (1.1)–(1.2) with initial data (⇢0, u0). In particular,
if k = 3, said solution is a classical solution.

Step 6: The constructed strong solution is unique.

Let us now turn to the details.

Step 1. This is the base case of the induction. The existence of u1 in the conditions follows from the
general theory of linear parabolic equations, using the fact that ⇢0 is bounded from below by r0, and that all
functions involved are smooth. The bound (B.5) is obtained exactly as in Step 3, and we omit the details
here.

Step 2. Let n � 2. Let us adopt the following nomenclature:

⇢ := ⇢n, ⌘ := ⇢n�1, u := un, v := un�1.

We recall the induction hypotheses:

kvkL1(0,T0;Hk)  2A, k⌘kL1(0,T0;Hk)  2A,
Z

T0

0

Z

T

µ(⌘)

⌘
(@k+1

x v)2dxdt  8A, inf
t2[0,T0]

inf
x2T

⌘(x, t) � r0

2
.

(B.6)

Existence up to time T0 and smoothness for ⇢n follow from the method of characteristics.

In what follows, M(·, . . . , ·) will always denote a positive, continuous function increasing in all its argu-
ments. We first notice that, due to the mass equation (B.2) and the maximum principle, for all k � 1 and
0  t  T0,

inf
T

⇢(·, t) � inf
T

⇢0 �
Z

t

0
k⌘(·, s)@xv(·, s)kL1ds � inf

T
⇢0 �M(A)

p
tk@2

xvkL2(0,t;L2). (B.7)

Hence, restricting T0 to be small only as a function of A and r0, we have

inf
t2[0,T0]

inf
x2T

⇢(x, t) � r0

2
.

We have therefore recovered the last induction hypothesis in (B.6).

Let us now differentiate the mass equation (B.2) k-times, multiply it by @
k
x⇢ and integrate by parts

1

2
@t

Z

T
(@k

x⇢)
2dx+

Z

T
@
k

x⇢ @
k

x(v@x⇢)dx = �
Z

T
@
k

x⇢ @
k

x(⌘@xv). (B.8)
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If k = 1, we obtain
1

2
@tk⇢k2L2  Ck@2

xvkL2k⇢k2
L2 + k⇢kL2k⌘kL1k@xvkL2 , (B.9)

1

2
@tk@x⇢k2L2  Ck@2

xvkL2k@x⇢k2L2 + 2k@x⇢kL2k@x⌘kL2k@xvkL1 + k@x⇢kL2k⌘kL1k@2
xvkL2 . (B.10)

Combining (B.9) and (B.10), integrating and using the induction hypotheses, we obtain, for suitable T0

(depending only on A and r0)
k⇢kL1(0,T0;H1)  2A. (B.11)

If k � 2, in addition to previous estimate (B.9), we also have, for the terms appearing in (B.8),
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T
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x(v@x⇢)dx
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T
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x⇢ ([@
k
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2
k@xvkL1k⇢k2

Hk + k⇢kHkk[@k

x , v]@x⇢kL2  CkvkH2k⇢k2
Hk + Ck⇢k2

HkkvkHk .

(B.12)

Furthermore,
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Z

T
@
k
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k

x(⌘@xv)

����  k⇢kHkk⌘@k+1
x vkL2 + k⇢kHkk[@k

x , ⌘]@xvkL2

 Ck⇢kHk

 ����
⌘
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µ(⌘)
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1
2

L1

�����

✓
µ(⌘)

⌘

◆ 1
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@
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x v
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+ k⌘kH2kvkHk + kvkH2k⌘kHk

!
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(B.13)

Now, due to our assumptions on µ and the induction hypothesis, we have
����

⌘
3

µ(⌘)

����

1
2

L1
 M(A, r�1

0 ),

where M depends on µ and is an increasing function of its arguments.

Upon summation of (B.9) and (B.8), using (B.9) and (B.13),
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2
@tk⇢k2Hk  CkvkHkk⇢k2
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◆ 1
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x v
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.

We now use the induction hypothesis (B.6) to obtain, for 0  t  T0,

@t (k⇢kHk exp (�2CAt))  4CA
2 +M(A, r�1

0 )

�����

✓
µ(⌘)

⌘

◆ 1
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@
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x v

�����
L2

.

Upon integration, we obtain the following inequality:

k⇢kHk  exp (2CAt)
⇣
k⇢0kHk + 4CA

2
t+ 8A

p
tM(A, r�1

0 )
⌘
.

It is now straightforward to choose T0, depending only on A and r0, such that the induction hypothesis

k⇢kL1(0,T0;Hk)  2A

is recovered for ⇢, in case k � 2.

Step 3. We now turn to the estimates on the momentum equation (B.3). Multiplying such equation by u and
integrating by parts yields

1

2
@t

Z

T
u
2dx�

Z

T

µ(⇢)

⇢
u@

2
xudx =

Z

T
u ·G0 dx, (B.14)
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where G0 := �v@xv � 1
⌘
@xp(⌘) +

@xµ(⌘)
⌘

@xv + f . If k � 1, this implies
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2
@tkuk2L2 +

Z

T

µ(⇢)

⇢
(@xu)

2dx  M(A, r�1
0 )k⇢kH1k@xukL2kukL1

+ CkukL2kvk2
H1 +M(A, r�1

0 )(k⌘kH1kukL2 + k⌘kH1kvkH1kukH1 + kfkL2kukL2).

(B.15)

Here, we used integration by parts and the following Lemma

LEMMA B.2. Let f be a smooth function away from 0, and k be a positive integer. Let u 2 H
k(T)\L

1(T),
and suppose that there exists r0 > 0 such that u � r0 on T. Then, there exists a positive and continuous
function M which depends only on f , k and is increasing in both its arguments such that the following
inequality holds:

kf � ukHk(T)  M
�
kukL1(T), r

�1
0

�
kukHk(T). (B.16)

PROOF OF LEMMA B.2. The proof of the lemma follows from Theorem 2.87 in [22], §2.8.2, and a
straightforward cutoff argument. ⇤

REMARK B.3. In what follows, we will always suppress the dependence of M on k and f , since they are
fixed at the beginning of the argument.

Differentiating k-times (k � 1) equation (B.3), multiplying by @
k
xu, and integrating by parts yields
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2
@t

Z

T
(@k

xu)
2dx�

Z

T
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µ(⇢)
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T
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x u) ·Gk dx. (B.17)

Here, we defined

Gk := @
k�1
x

✓
�v@xv �

1

⌘
@xp(⌘) +

@xµ(⌘)

⌘
@xv + f

◆
, for k � 1.

When k = 1, the previous display (B.17) implies, upon integration by parts, an application of the Cauchy–
Schwarz inequality, the induction hypotheses, Lemma B.2 and the bounds obtained in Step 2, that
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2
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xvkL2 + kfk2

L2).

(B.18)

Integrating (B.18) and, subsequently, (B.15), upon restricting T0 to be sufficiently small only as a function
of A and r0, we have, in case k = 1,

kukL1(0,T0;H1)  2A,

Z
T0

0
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⇢
(@2

xu)
2dxdt  8A.

Let’s focus now on the case k � 2. We have
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.
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We estimate the last two terms in the previous display:

|(a)|  1
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✓����@x
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�1
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�
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(B.19)
Here, M is a continuous and increasing function of its arguments. We used the bounds obtained in Step 2,
the Kato–Ponce commutator estimate, the fact that k � 2 and Lemma B.2 quoted below, applied to the
function µ(⇢)

⇢
.

Similarly, the following estimate holds true, for k � 2:

|(b)|  1
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Z

T

µ(⇢)

⇢
(@k+1

x u)2dx+M
�
A, r

�1
0

�
kukHk . (B.20)

Again, M is a positive, continuous and increasing function of its arguments.

We now proceed to estimate the terms contained in the RHS of equation (B.17) (the terms named “G”), in
case k � 2: ����
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T
(@k+1

x u) ·Gk dx
���� 
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Due to the bounds on ⇢, we have
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Let us now define two auxiliary functions h (the thermodynamic enthalpy) and ⇣ in such a way that

h
0(x) =

p
0(x)

x
, ⇣

0(x) =
µ
0(x)

x
, for x > 0.

We now estimate:
k@k�1

x (v@xv)k2L2  Ckvk2
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4
.

Furthermore,
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✓
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⌘

◆
k2
L2  kh(⌘)k2

Hk  M(A, r�1
0 ),

where we used Lemma B.2, applied to the function h.

Finally, we have, since k � 2,
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Hence, for the term Gk, we have
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Putting together estimates (B.14), (B.17), (B.19), (B.20), (B.21), and ignoring the positive integral term in
the LHS, we obtain the inequality

1

2
@tkuk2Hk  M

�
A, r

�1
0

�
kukHk +M

�
A, r

�1
0

�
(1 + kfk2

Hk�1).

Using Grönwall’s inequality, upon restricting T0 to be small depending only on A, r0 and f , we deduce that

kukL1(0,T0;Hk)  2A. (B.22)

We now revisit the same estimates without discarding the positive integral term in the LHS. We obtain, upon
restricting T0 to be smaller, depending only on A and r0 and f , that

Z
T0

0

Z

T

µ(⇢)

⇢
(@k+1

x u)2dxdt  8A. (B.23)

We have therefore recovered the induction hypotheses B.6, and in particular the sequence (⇢n, un) is uni-
formly bounded in L

1(0, T0;Hk(T))⇥ (L1(0, T0;Hk(T)) \ L
2(0, T0;Hk+1(T)).

Step 4. We now show that, for some T0, depending only on A, r0, the sequence (⇢n, un) is Cauchy in the
space L

1(0, T0;L2)⇥ (L1(0, T0;L2) \ L
2(0, T0;L2)).

Let’s first consider the equation satisfied by �un := un+1 � un:

@t(�un)�
µ(⇢n+1)

⇢n+1
@
2
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=
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2
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2
n�1) + @x(h(⇢n)� h(⇢n�1)) + @x⇣(⇢n) @xun � @x⇣(⇢n�1) @xun�1.

(B.24)

Recall that we defined h and ⇣ so that the following equalities hold true:

@xh(⇢) =
@xp(⇢)

⇢
, ⇣(⇢) =

@xµ(⇢)

⇢
.

We now multiply equation (B.24) by �un and integrate by parts. We have:
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.

Note that, due to Step 3, there exists c = c(A, r0) such that, up to time T0, there holds µ(⇢i)
⇢i

� c for all
integers i � 0.

Hence, for the term in (a), upon integration by parts,
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c
k@x

µ(⇢n)

⇢n
kL2k�unkL1k@x(�un)kL2

� ck@x(�un)k2L2 �M(A, r�1
0 )
⇣
k�unk

1
2
L2k@x(�un)k

3
2
L2 + k�unkL2k@x(�un)kL2

⌘

� c

2
k@x(�un)k2L2 �M(A, r�1

0 )k�unk2L2 .

Here, we used Lemma B.2, the Gagliardo–Nirenberg–Sobolev inequality and the Young inequality.

We now estimate
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Let us now turn to the terms appearing in the RHS of (B.24). We define

Z

T
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2
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2
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2
n�1)(�un)dx
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(c)

+

Z

T
(�un)@x(h(⇢n)� h(⇢n�1))dx

| {z }
(d)

+

Z

T
(�un) (@x⇣(⇢n) @xun � @x⇣(⇢n�1) @xun�1) dx
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Then, for (c), we have, after integration by parts,
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Concerning the term (d), instead,
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Again, we used the fact that, due to the uniform bounds on ⇢n, h is Lipschitz of constant depending only on
A and r0.

Finally, concerning (e),
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where �⇢n�1 := ⇢n � ⇢n�1. Putting together the estimates on the momentum equation, we have
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Upon integration between time s = 0 and s = t, using Hölder’s inequality and the bounds obtained in
Step 1,
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(B.25)

Let us now calculate the equation satisfied by differences of ⇢n:

@t(�⇢n) = �un@x⇢n+1 + un�1@x⇢n � ⇢n@xun + ⇢n�1@xun�1. (B.26)

Multiplying equation (B.26) by �⇢n, we obtain
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Considering (a), we have, integrating by parts, using Gagliardo–Nirenberg–Sobolev and Hölder’s inequality,
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On the other hand, (b) yields
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Putting together the estimates on the mass equation yields
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Upon integration, the previous display yields
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Combining now (B.25) and (B.27), we obtain, for suitably small t depending only on A and r0,
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Upon suitable choice of T0, this implies that the sequence (⇢n, un) is Cauchy in the space L
1(0, T0;L2)⇥

(L1(0, T0;L2) \ L
2(0, T0;H1)).

Step 5. Denote
X

m = L
1(0, T0;H

m)⇥
�
L
1(0, T0;H

m) \ L
2(0, T0;H

m+1)
�

a Banach space with its canonical norm. We have proved in the previous steps that (⇢n, un) is bounded in X
k

and Cauchy in X
k�1. The latter implies that (⇢n, un) converges to some (⇢, u) in X

k�1. The former implies
that some subsequence (⇢nj , unj ) converges weak-* to some (⇢⇤, u⇤) in X

k. Since both weak-* convergence
in X

k and strong convergence in X
k�1 imply convergence in the sense of distributions we deduce that

(⇢, u) = (⇢⇤, u⇤) 2 X
k. It can be easily verified that (⇢, u) is a strong solution to the system (1.1)–(1.2).

Moreover, since ⇢n ! ⇢ strongly in L
2(0, T0;L2) and (⇢n) is bounded in L

1(0, T0;H1) it follows by
interpolation that ⇢n ! ⇢ strongly in L

1(0, T0;H3/4), and hence in L
1(0, T0;L1). This combined with

the fact that ⇢n(x, t) � r0
2 for all (x, t) 2 T⇥ [0, T0] (see Step 2) yields

⇢(x, t) � r0

2
8(x, t) 2 T⇥ [0, T0].

Step 6. We now establish uniqueness of strong solutions. Consider solutions (⇢1, u1) and (⇢2, u2), such that

⇢i 2 C(0, T0;H
k(T)), ui 2 C(0, T0;H

k(T)) \ L
2(0, T0;H

k+1(T)), for i = 1, 2.

and let (�⇢, �u) = (⇢1 � ⇢2, u1 � u2). We have

@t�u+ �u@xu1 + u2@x�u = �@x((⇢1)� (⇢2)) + ⇢
�1
1 @x(µ(⇢1)@xu1)� ⇢

�1
2 @x(µ(⇢2)@xu2), (B.27)

@t�⇢+ @x(u1�⇢+ ⇢2�u) = 0, (B.28)
(�⇢, �u)|t=0 = (0, 0) (B.29)

We now notice that equation (B.27) is the same as equation (B.24), upon formally substituting n = 1 in the
LHS, and n = 2 in the RHS. Similarly, recalling (B.26), we have

@t(�⇢n)| {z }
(a)

= �un|{z}
(b)

@x⇢n+1| {z }
(a)

+un�1| {z }
(b)

@x⇢n|{z}
(a)

�⇢n@xun + ⇢n�1@xun�1| {z }
(b)

.

Formally substituting n = 1 in terms (a), and n = 2 in terms (b), we obtain (B.28). It is then straightforward
to see that the same estimates as in Step 4 yield uniqueness of strong solutions. ⇤
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