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Abstract

We study in the inviscid limit the global energy dissipation of Leray solutions
of incompressible Navier—Stokes on the torus T¢, assuming that the solutions
have norms for Besov space B> (T9), o € (0, 1], that are bounded in the L*-
sense in time, uniformly in viscosity. We establish an upper bound on energy
dissipation of the form O(v(*?~1/(e+1))  vanishing as v — 0 if o > 1/3.
A consequence is that Onsager-type ‘quasi-singularities’ are required in the
Leray solutions, even if the total energy dissipation vanishes in the limit
v — 0, as long as it does so sufficiently slowly. We also give two sufficient
conditions which guarantee the existence of limiting weak Euler solutions u
which satisfy a local energy balance with possible anomalous dissipation due
to inertial-range energy cascade in the Leray solutions. For o € (1/3,1) the
anomalous dissipation vanishes and the weak Euler solutions may be spatially
‘rough’ but conserve energy.

Keywords: Onsager’s conjecture, fluid turbulence, anomalous dissipation
Mathematics Subject Classification numbers: 35Q30, 35Q31, 76F02, 35Q35

1. Introduction

In a 1949 paper on turbulence in incompressible fluids [1], Onsager announced a result that
spatial Holder exponents < 1/3 are required of the velocity field for anomalous turbulent dis-
sipation (that is, energy dissipation non-vanishing in the limit of zero viscosity). Onsager’s
original statement and most subsequent work [2—10] have involved the conjecture that the
velocity field in the limit of infinite Reynolds number is a weak (distributional) solution of the
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incompressible Euler equations. In this short paper we show that the arguments employed to
prove Onsager’s claim about weak Euler solutions apply as well to Leray’s solutions of the
incompressible Navier—Stokes equation and can be used to prove a theorem that ‘quasi-singu-
larities’ are required in those solutions in order to account for anomalous energy dissipation.
In fact, such consequences follow even if the energy dissipation is vanishing in the limit of
zero viscosity, as long as it goes to zero as slowly as ~v® for some a € (0, 1). In that case, we
show that the Navier—Stokes solutions cannot have Besov norms, above a critical smoothness
;J_“—z, which are bounded uniformly in viscosity. This observation is important because empiri-
cal studies (e.g. see remark 4 below) cannot distinguish in principle between a dissipation rate
which is independent of viscosity and one which is vanishing sufficiently slowly. Our results
thus considerably strengthen the conclusion that quasi-singularities are necessary to account
for the enhanced energy dissipation rates observed in turbulent flow. No assumption need be
made in our proof about existence of limiting Euler solutions, but weak Euler solutions do
arise as ¥ — 0 limits of the Leray solutions if some further natural conditions are satisfied.

Let u” € L>([0,T]; L*(T%)) N L*([0, T]; H'(T%)) for v >0 be Leray solutions of the
incompressible Navier—Stokes equations satisfying

ou’ +V- W ou’)=-Vp’'+vAu’ +f", (1)

V.u’ =0, )

in the sense of distributions on T? x [0,7], with solenoidal initial conditions
u”|—o = uy € L*(T?) and solenoidal body forcing ¥ € L*([0,T]; L*(T¢)). A fundamental
property of these solutions, first obtained by Leray [11], is the global energy inequality, which
states that viscous energy dissipation cannot exceed the loss of energy by the flow plus the
energy input by external force. This property may be reformulated as a global balance of
kinetic energy:

/ /s[uV] dxdt:f/ \ug’\zdx—f/ |u”(-,T)|2dx+/ /u Y ddr,

for almost every T > 0, where the total energy dissipation rate is
e[u’] := v|Vu”|* + D[u”] 4)

with D[u”] a non-negative distribution (Radon measure) that represents dissipation due to
possible Leray singularities. See Duchon—Robert [4] and the proof of our lemma 1. Our main
result is then:

Theorem 1. Let u” € L>=([0,T]; L*(T%)) N L*([0,T]; H'(T?)) for v >0 be any Ler-
ay solutions of incompressible Navier-Stokes equations on T¢ x [0, T] with initial data
uy € B> (T9), and forcing f* € L*([0, T]; BS*(T9)) for some o € (0, 1]. Suppose that:

T
/ / elu”] dxdt > v*L(v), a€f0,1) ®)
0 Jre

where L:RY — R is a function slowly-varying at v = 0 in the sense of Kuramata [12],
i.e. so that lim,_,o L(Av)/L(v) = 1 for any A > 0. Then, for any € > 0, the family {u"},>0

of Leray solutions cannot have norms ||u”HL3([0 T]B7 o420 (7)) with g, 1= ;‘*‘73 € [1/3,1) that
T):B; -
are bounded uniformly in v > 0.

Theorem 1 follows easily from the following lemma:
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Lemma 1. Let {u”},~¢ be a family of Leray solutions with o, uf, and f" as in theorem 1.
Assume that u” € L*([0, T); B{"°°(T¢)) with all the above Besov norms bounded, uniformly
in viscosity. Then, for a.e. T > 0, the energy dissipation is bounded for some v-independent
constant C by:

T
/ / e[u”] dxdr < Cver. (6)
0 Jre

To see that theorem 1 follows from lemma 1, note that if for any € >0, ,~ ¢ 3
([0, T]; B~ *<°°(T%)) with norms bounded uniformly in viscosity, then the inequality equa-
tion (6) together with equation (5) implies:

(3—a)?
L(v) < Cvfeo—a, 0

Since « € [0, 1), the exponent in the power-law on the righthand side of equation (7) is posi-
tive. This obviously leads to a contradiction since lim,,_,o v PL(v) = +oc for L slowly vary-
ing at v = 0 and for any p > 0.

In the context of lemma 1, we note that that if ¢ € [1/3, 1] then theorem 6.1 of [5] implies
that D[u”] = 0 and energy dissipation arises entirely from viscosity. The proof of this fact for
o > 1/3 and fixed v > 0 follows easily by the Constantin-E-Titi commutator argument [3]
for weak solutions, after taking into account the Leray—Hopf regularity L2(0, T; H'(T%)). We
conjecture that our theorem 1 is optimal for space dimensions d > 2 in the sense that, for some
a € [0, 1), there should exist sequences of Leray solutions of Navier—Stokes u” for v > 0 that
are uniformly bounded in L*([0, T]; B{>~“°°(T¢)) with any € > 0 and for which the lower
bound equation (5) on dissipation holds as an asymptotic equality for v — 0. The case d = 2
is different, because of the absence of vortex-stretching. This implies strong bounds on enstro-
phy for Leray solutions in d = 2, even with initial vorticity wyp € L? only for p < 2, and an
essential improvement of the energy dissipation bounds in our lemma 1 for d = 2 [13].

Remark 1. The main condition on uniform Besov regularity in lemma 1 is physically natu-

ral. The Besov space B> (T?) is made up of measurable functions f : T¢ — R? which are
finite in the norm

(- + rl)r|;f(')||w ®

Ifllsg-= (rey := fllo(rey + sup
re(0,1]4

for p>1and o € (0,1). See [37], section 3.5. These spaces can be equivalently explained
in a way more familiar to fluid dynamicists by using structure functions. The pth-order struc-
ture functions Sy (r) of spatial velocity-increments du” (r;x,t) := u” (x + r,t) — u”(x,t) may
be defined as usual by ¥ (r, 1) := (|6u”(r,1)|), where (-) denotes space average over x € T¢.
The velocity field belongs to the Besov space B> (T¢) for p > 1, o € (0,1) at time 7 if and
only if
¢

VI < o ©

r

(W’ (017) < Co(r),  87(r1) < Ci(1) 7

with ¢, = op and then the optimal constants Cy(), C1(#) > 0in these upper bounds define anorm
for the Besov space By >°(T¢) by the identification ||u” (-, 1)]|pg-> ey := [Co(r) + C DI
e.g. see [14]. Here any choice of length-scale £ > 0 defines the same function space B> (T%)
but for a physical identification of the constant C;(¢) as the ‘amplitude’ of an inertial-range
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scaling law, one must take ¢y to be the integral-length of the turbulent flow and independent of
v > 0. The uniform boundedness of the family {u”},~oin L?([0, T]; B;,"OO(T”’)) is equivalent
to the condition that coefficients Cy(¢), C1(¢) independent of v > 0 should exist so that the

bounds equation (9) are satisfied for a.e. ¢ € [0, T] and fOT dr [Co(r) + Ci(1)] < co. The theo-

rem 1 and lemma 1 apply a fortiori to solution spaces L”([0, T}, By>>° (T%)) with any p > 3
and not only to p = 3. As a consequence, energy dissipation vanishing with v — 0 as slowly

as equation (5) (or possibly not vanishing at all for o = 0), implies ¢, < (;'_"—‘;) pforp>3

as a constraint on possible structure-function scaling exponents in the inertial-range of any
turbulent flow with enhanced dissipation of the form equation (5). This inequality is a precise
statement on ‘quasi-singularities’ in the sequence of Leray solutions, in order to be consistent
with the observed slow decrease of energy dissipation as ¥ — 0. The Navier—Stokes solutions
(barring possible true, Leray-type singularities) are spatially C* for any v > 0, but they cannot
possess smoothness of the form equation (9) that is uniform in viscosity. The primary physical
motivation of our result is turbulence in space dimensions d > 2, where a forward energy cas-
cade is expected. However our theorem has some implications even for d = 2. For example,
[13] considers Navier—Stokes solutions with initial vorticity wog € L?(T?), p € (1,2] and ob-

tains an upper bound on energy dissipation of the form (const.)v for ¢, := z(pp;l) € (0, 1],

vanishing as v — 0. If this is the actual scaling of the dissipation for p < 3/2, the Onsager

critical value of p for d = 2, then our theorem 1 implies that the family {u”}, 0 cannot be
. . Oy F€,00 . —

uniformly bounded in L*([0, T]; By (T?)) with 04, := ?le € (1/2,1).

Remark 2. A small but useful technical improvement of theorem 1 can be easily provided

by sharpening the spaces considered. First, recall that energy conservation for weak solutions

of the Euler equations holds provided that u € B;/ 0 (T9), a subspace of B;/ »°(T4) that can

be defined as follow

B(T%) = {f e 17 : tim LD SOl 0} . (10)

1| =0 Il
See [5]. Note that Bg/"’o (T?) € B3 (T?) C By>°(T?) for any o’ > 0. Define also

L7(0,7: By (T%)) = {f e 190, 7;L7(14)) i LD =S Ollirorarey :0}- (11)

[r|—0 |r|e

Theorem 1 then holds in a form in which one replaces all instances of B> with B
and the conclusion reads that the family {u"},~o of Leray solutions cannot have norms
||MVHL3([O’T];B;’(LEO (Tayy With o, := %2 € [1/3,1). Note that the spaces BJ" allow us to re-
move the ‘€’ appearing in the theorem statement. The proof is almost identical and therefore
omitted. We are grateful to the anonymous referee for this remark.

We emphasize again that we do not need to assume that any ‘singular’ or ‘rough’ Euler
solutions exist in order to draw these conclusions. However, under reasonable additional con-
ditions, weak Euler solutions will exist as inviscid limits of the Leray solutions. For example:

Theorem 2. Letu” € L>=([0, T); L*(T9)) N L*([0, T]; H'(T?)) be any Leray solutions of in-
compressible Navier-Stokes equations with v > 0 on T¢ x [0, T}, for initial data ufj € L*(T?)
and forcing f¥ € L*([0,T]; L*(T%)), and assume either:
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(i) For some o € (0,1] the family {u’},~o is uniformly bounded in
L3([0,T); B> (T%)), and that f* — f strongly in L*(0,T]; L*(T¢)) as v — 0.
Let u then be any strong limit of a subsequence u” € L*([0, T]; L*(T%)).

or
(i) u” € L*([0, T); L*(T?)) with norms bounded uniformly in viscosity and fur-
thermore, that weak convergence as v — 0 holds for a full-measure set of times:

(o) ua 0, @ @u)(nn) s w@u)(n), a0 2f(h1) aet€l0.T]. (12)

Then u is a weak Euler solution which also satisfies, in the sense of distributions, the balance

O (;|u|2) +V. K;|u|2 +p) u} = —Dlul+u-f (13)

on T¢ x [0, T}, with D[u] the distributional limit of nonlinear ‘energy flux’ for the Leray solu-
tions:
Dlu] := D’-lim D'-lim II,[u"].
] := Dy lim D lim Ifu’] (14)
See definition equation (20) below. In particular, D{u] = 0 and energy conservation holds if
o > 1/3. Furthermore, under the condition (i)
Dlu] = D'-1li Y1,
[u] = D'-limeu”] (15)
where total dissipation measure €[u”] for Leray solutions is defined in equation (4), and

u € L3([0,T); B ~°(T?)) for any € > 0. Thus, D[u] = 0 and local energy conservation holds
when o € (1/3,1].

Remark 3. We owe the first condition of theorem 2 to Isett [15], reproduced here with
permission. In particular, he pointed out that uniform boundedness of a family of weak Na-
vier-Stokes solutions {u”},~oin L?([0, T]; By*°(T?)) guarantees strong pre-compactness in
L2(T¢ x [0, T]) by the Aubin—Lions—Simon lemma (see also [16]). Isett pointed out to us [17]
that the uniform boundedness assumed in lemma 1 allows such an argument also for p = 3.
In the physical application this means that if energy dissipation is bounded below as in equa-
tion (5) but if also {u”}, is uniformly bounded in L*([0, T]; B{>~“>°(T%)) for any € > 0,
then a limit Euler solution u will exist. Moreover, the limit will possess some spatial Besov
regularity with exponent o, — € but not a priori with a higher exponent o, + ¢ for any € > 0.
See remark 6 below.

The second part of the theorem slightly generalizes recent results of Constantin and Vi-
col [18] for wall-bounded domains €2. There, it is proved that if u¥ — u weakly in L?(£2)
for a.e. r and if a second-order structure function S (r) defined as in our remark 1 (but also
time-averaged) satisfies an inertial-range scaling bound like equation (9), then u is a weak
solution to the Euler equations (see theorem 3.1 of [18]). Recently, the condition on weak-
convergence at a.e. time # was removed in [31] in favor of assuming a structure function bound
within a more precise ‘inertial range’. Also, as pointed out in [18], remark 3.4, this condi-
tion may be removed by assuming a bound on the space-time structure function defined by
Sy (r,s) = (|ou”(r,s)|?)), where 6u”(r,s;x,t) = u”(x +r,t +s) — u”(x,t) are space-time
increments and where ((-)) denotes the space-time average over (x,¢) € Q x [0, T]. Specifi-
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cally, it is assumed in [18] for p = 2 that

r

4y

N

fo

G
{Ju”|P) < Co SY(r,s) < C [ + } , V) <rf < by, T(v) < s <1 (16)

P

with some ¢, > 0, v-independent constants Co, C; > 0, and any scales 7(v), 7(v) converg-
ing to 0 as v — 0. If the bound equation (16) is assumed to hold for n(v) = 7(v) = 0, then
equation (16) is the uniform regularity statement sup, - ||[u” ||z @x[o.77) < oo for some
o € (0, 1) and compactness in L?(2 x [0, T]) with the strong topology is immediately implied
by the Kolmogorov—Riesz theorem [19]. Thus, subsequences v, — 0 always exist for which
u” — u strongly in L? and the limit function u is automatically a weak Euler solution. We
could likewise replace the condition (ii) at each time slice in theorem 2 by the assumption that
equation (16) holds for p = 3, i.e. uniform third-order space-time structure function bounds in
the inertial range, and take u to be any weak limit point of u” € L3(0, T; L*(T?)). Furthermore,
the limiting Euler solution inherits the space-time regularity u € B °°(Q x [0, T]) by an argu-
ment similar to that in remark 6.

An earlier theorem giving conditions for convergence of Navier—Stokes solutions to weak
Euler solutions satisfying a global energy inequality is proved in the work of Chen and Glimm
[20]. Their sufficient conditions involve the time-average energy spectrum, or p = 2, because
all terms of the energy balance that are cubic in the velocity vanish when integrated over
space.

Remark 4. 1t is worthwhile to review briefly here the empirical evidence regarding the
global energy dissipation rate in boundary-free turbulent flow. Numerical simulations of fouri-
er-truncated Navier—Stokes dynamics by pseudo-spectral method in a periodic box correspond
mostly closely to the conditions of our theorem 1. Free-decay simulations with body-force
f¥ = 0 such as [21, 22] do show a non-vanishing energy flux in the inertial-range, consistent
with D[u] > 0 as defined in equation (14), but there seems to have been no systematic study of
the dependence of space-average (¥ (r)) upon v = 1/Re in such simulations. Forced simula-
tions with very smooth (large-scale) forces f” [23, 24] provide the best evidence for a space-
time average () which is nearly independent of v = 1/Re as Re — co. These simulations
are nominally ‘long-time steady-states’ with 7' — oo, but in practice the time-averages are
performed only over several large-eddy turnover times, so that our theorem 1 applies. Given
the data plotted in figure 1 of [23] or figure 3 of [24] a reasonable inference is that the dissipa-
tion rate does not vanish as Re — oc, or vanishes only weakly with viscosity. Accepting this
as an empirical fact, our theorem 1 for p = oo implies that Onsager’s prediction of Holder
exponents & < 1/3 [1] remains valid as a statement about ‘quasi-singularities’ of Leray solu-
tions. If any of the reasonable conditions in the theorem 2 hold as well, then Onsager’s con-
jecture on weak Euler solutions remains true, even if the dissipation rate is vanishing weakly
as v — 0. In the latter case the Euler solutions may be spatially ‘singular’ or ‘rough’, but
conserve energy. It should be emphasized that the Euler singularities inferred by this argument
need not develop in finite time from smooth initial data. A standard practice in such numer-
ical simulations is the initialization u”(-,0) = u¥ (-, T") of the simulation at high Re by the
final state at time 7" of a smaller Reynolds-number Re’ < Re simulation performed at lower
resolution, interpolated onto the finer grid of the Re-simulation (e.g. see p L21 of [24]). This
practice of ‘nested’ initialization means that initial conditions u” (-, 0) have Kolmogorov-type
spectra over increasing ranges of scales as v decreases and do not correspond to uniformly
smooth initial data.
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Similar remarks apply to studies of dissipation rates in boundary-free flows by laboratory
experiment. The most common experiments study turbulence produced downstream of wire-
mesh grids in wind-tunnels or turbulent wakes generated by flows past other solid obstacles,
such as plates, cylinders, etc [25-27]. These experiments measure the time-averaged kinetic
energy (1/2)(|u” (x,-)|?) at distances x down-stream of the obstacle. If the data are reinterpret-
ed by ‘Taylor’s hypothesis’ as space-averages (1/2)(|u”(-,7)|?) at times ¢ = x/U, with U the
mean flow velocity, then these studies yield the space-average dissipation rate (" (¢)) by time-
differentiation. The data plotted in [25-27] again provide corroboratory evidence that (¢ (¢))
is nearly independent of ¥ = 1/Re as Re increases. These experiments are obviously not in
the space-periodic framework of our theorem 1. Ignoring the effects of walls in the wind-
tunnel, at some distance from the turbulent wake, these flows might be regarded as contained
in some large box with zero velocities at the wall (and thus periodic). However, the creation
of the turbulence by flow past solid obstacles implies that these experiments are closer to the
setting of [18], with vorticity fed into the flow by viscous boundary layers that detach from
the walls. Since the boundary layers become thinner as ¥ = 1/Re decreases, the initial data of
these experiments also cannot be considered to be smooth uniformly in v > 0.

Remark 5. In light of the discussion in remark 4, theoretically incorporating the effects
of solid confining walls is of great practical importance. The experimental observations are
rather different for wall-bounded turbulence, such as seen as in pipes, channels, closed con-
tainers, etc than those reviewed above for boundary-free flows. Energy dissipation in confined
turbulent flows with rough walls tends to constant values for Re > 1, whereas energy dis-
sipation in flows with smooth walls is generally observed to vanish with increasing Re, yet
much more slowly than the laminar rate ~1/Re. For example, see the study [28] whose results
are typical. Recently, there have been a number of papers proving Onsager-type theorems on
necessary conditions for anomalous dissipation by weak solutions of the Euler equations on
domains with solid boundaries [29, 30, 32]. The statements of energy dissipation are slightly
more involved due to the fact that assumptions need to be made both in the interior and near
the walls. The results of Drivas and Nguyen [32], which focus on vanishing viscosity limits
of Leray solutions, may be modified to provide results in the same spirit of our theorem 1. In
particular, section 2.4 of [32] provides a connection between the physical energy dissipation
and coarse-grained fluxes as in lemma 2. If one supposes that the energy dissipation is lower
bounded as in equation (5) and introduces quantitative versions of the near-wall assumptions
(i.e. impose how rapidly the velocity itself of the near-wall dissipation vanishes within a vis-
cous boundary layer as viscosity tends to zero), then theorems 2 and 3 of [32] can translated
into constraints on uniform interior Besov regularity and boundary-layer behavior of Leray—
Hopf solutions. Detailed implications are left for future investigation.

The proof our lemma 1 will be based on the same method employed by Constantin-E-
Titi [3] to prove the original Onsager statement for weak Euler solutions, by means of a
spatial mollification. Specifically, let G be a standard mollifier, with G € D(T?), G > 0, and
also [, G(r)dr = 1. Without loss of generality, we can assume that supp(G) is contained in
the Euclidean unit ball in d dimensions. Define the dilatation G(r) = £=¢G(r /) and space-
reflection G(r) = G(—r). For any v € D'(T?), we define its coarse-graining at scale £ by

Ty = Gexv € C(TY). (17)

Then, we have the following:
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Lemma 2. Let initial data uf € L*(T?), forcing f* € L*([0,T]; L*(T?)) and u” be corre-
sponding Leray solutions of the incompressible Navier-Stokes equations on T x [0, T) for
v > 0. Then, the following local resolved energy balance holds for any ¢ > 0, for every
x € T¢anda.e.t € [0,T]

1 ——
00 (I R) + 90 = “TL] - VLR + W P 09
with

Jy = <;|(””)g|2 +(P”)e) (W) + W)y - me(u” u”) = vV (;KMV)AZ)
(19)

where the coarse-graining cumulant is defined by T,(g,h) = (§®h), —g, @ hy for
g h € L*(T?, RY), the trace is denoted by 1¢(g; h) := Tr (g, h) and where

y[u”] = =V (u"), : Te(u”,u”). (20)

Furthermore, for a.e. T > 0 and for any standard mollifier G and any £ > 0, we have:

/OT /Tds[u”] dxdr = /OT/WH@[MV] dxdr + /OT/WVW(””)AZ dxds

+ %/ Te(ug;ug)dx*%/ To(u” (- T)su” (-, T))
i T
T
+ / /Tz(u”;f”)dxdf- @
0 J1d

The key ingredient of the proof of lemma 1 is a simple exact formula derived in [3] which
expresses the ‘energy flux’ IT,;[u”] in terms of velocity increments. Our relation equation (14)
can thus be interpreted as an extension of the celebrated Kolmogorov 4/5-law to infinite
Reynolds-number limits of Leray solutions.

2. Proofs

Proof of lemma 2. Any Leray weak solution #” of Navier—Stokes satisfies point-wise in
x € T and distributionally in ¢ € [0, T] the coarse-grained equations

), + V- [ @u),] = =V(p"), +vAu), + (f*),. (22)

We use here the velocity-pressure formulation of Leray solutions, with pressure
p¥ € WI°(0, T; L*(T?)) (e.g. see theorem V.1.4 of [35]). The d equation (22) can then be
obtained by mollifying the Navier—Stokes equations with (non-solenoidal) test functions ¢;,
i=1,2,...,d,0f the form ;(r,t) := 1 (t)Ge(r — x)e; where ¢ € C5°((0,T)), G € C=(T9),
and e; is the unit vector in the ith coordinate direction.

We now show that the classical time derivative of W@ (x,1) exists for every x € T and
a.e. t € [0, T]. See also Prop. 2 of [36]. Since Leray solutions satisfy u” € L>([0, T]; L*(T%)),
then for every x € T¢
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IV [ @ u”) ] (x,) e (o, *||(VG)£||ooH’4||Loc([OT L2(T4)) 03
A @), (x, )|z (fo.17) < KJKAGMMWMP%NHUWAy

by Young’s convolution inequality. The pressure-gradient term V(p¥),(x, t) in equation (22)
is determined using V - f¥ = 0 from the Poisson equation

—AV(pY),() =(VeVeV): (u u),(,t1) (24)
and the righthand-side belongs to C°°(T?) for a.e. time ¢ and is bounded above by a constant

of the form (1/63)||(V ® V & V)G)¢||oo||u(- )||L2 (14)- The solution of the Poisson problem
thus satisfies a similar estimate as equation (23), i.e. for some constant C and every x € T¢:

IV(P")(x, )l (o)) < EH((V OV V)G)ZHoo||’4Hioo([o,r];L2(1rd))’ (25)

We thus see that, except for (f),(x, ), every term in equation (22) for the distributional de-
rivative 9, (u"),(x, -) belongs to L>°([0, T]). Since we assume that f* € L*([0, T]; L*(T%)), we
have for every x € T at least:

(£, Mezqory < NGell2lf” 2o,z rey) - (26)

It follows from equation (22) that 9, (u”) ,(x, -) € L*([0, T}), so that (u*) ,(x, -) for every x € T¢
is absolutely continuous in time and the classical time-derivative exists and is given by equa-
tion (22) for a.e. t € [0, 7].

Taking the Euclidean inner product of equation (22) with (u¥),(x, ) for each x € T¢ and
writing (v @ u¥), = (u”), ® (u”), + 7¢(u”,u”) yields by the Leibniz product rule the ‘re-
solved energy’ balance:

O <;|(“V)z|2) + VI = =0 = vV () >+ (), - (f7), 27

with

s = (ST + T, ) @+ W, ) o9 (SR, 28)

which, again, holds for every x € T? and a.e. t € [0, T](and thus distributionally in space-time
as well). Since |(u¥),|*(x, -) /2 is absolutely continuous in time, upon integrating we have:

S )P~ 5T, ()P

= /0 [‘ VT = Wefu) = vV () ]+ (), (f”)z} (x,1) dr

(29)
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for every T > 0 and x € T¢. Since Leray solutions satisfy u” € L3([0, T]; L*(T¢)) and, con-
sequently, p¥ € L3/2([0, T]; L3/*(T¢)) (see e.g. Proposition 1 of [4]), each term of the in-
tegrand inside the square brackets in equation (29) is easily checked by the definitions
equations (19) and (20) to belong to L'([0, T]; L' (T%)). The Fubini theorem then gives that
Jpa fOT V- J/drdx = fOT Jpa V- J{ dxdt = 0 by space-periodicity, so that integrating equa-
tion (29) over T¢, we obtain the global balance of resolved energy:

le( x,T)lzdx_l/ |(u0)e(x)|2dx+/T/WHduu] deds
//TdI/|Vu” |2dxdt—//TduV (), dxdr = 0. (30)

We now show that any Leray solution satisfies the global energy balance equation (3) for
almost every T > 0. Duchon and Robert [4] prove a local version of equation (3), i.e. they
show that Leray solutions satisfy

1 v|2 1 v|2 v v 1 v|2 _ v v,
8,<2|u|>+v-{<2|u| —l—p)u —VV(2|M|>:| =—cu]+u"-f

€2y

in the sense of distributions on space-time. We smear equation (31) with a test function of
the form € (x, ) = () xe(x), where 1¢(¢) approximates the characteristic function of the
time-interval [0, 7] and . (x) is the characteristic function of the whole torus (the constant
function 1). This yields:

e ([ e ar= = [T [ cwiaars [Tur [ o (32)

Recall that Leray solutions u” are right-continuous in time, strongly in L?(T¢), for a.e.
¢t > 0 and, in particular, at t = 0, as a consequence of the energy inequality (see remark 2 of
[33]). To make use of this one-sided continuity, let 0 < 1¢(¢) < 1be supported on the interval
[0, T + €] and equal to 1 on [e, T]. The derivative ¢ (¢) gives the difference of two bump func-
tions, one supported on [T, T + €] and the other supported on [0, €. Taking € — 0 we obtain by
the right-continuity that:

[T ([ glera)as [ Jwenbac- [ Jgwbe s 7200 @)
0 T4 2 T 2 ™ 2

The assumption f* € L*([0,T); L*(T¢)), a priori estimate u” € L>=([0,T]; L*(T%))N
L?([0,T); H'(T)) and the fact that D[u”] is a Radon measure permit the dominated conv-
ergence theorem to be applied to guarantee that as € — 0

/we/w dxdt+/ we/wu f dxdt — — //w dxdt+// f dxdr.
(34)

Thus, the global energy balance equation (3) is proved.
Adding to equation (3) the resolved energy balance equation (30) gives, for almost every
T2>0,
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[ s [ [ oo [ oo,
- [ T act ] [ (- )

//T — ), (F),) dxdt.

Since, for integrable g € L' (Td) one has fT[, g,(x)dx = le, g(x)dx, we arrive at identity equa-
tion (21). ]

Proof of lemma 1. we first prove the upper bound on the total dissipation of Leray solu-
tions. By lemma 2, the global energy dissipation is given by the formula equation (21). Note

that |(u”),|* < (Ju”|?), by convexity and thus the contribution from 7¢(u” (-, T);u”(-,T)) > 0
in equation (21) is non-positive and we may drop it at the expense of an inequality:

// dxdt<//Hg dxdt+//V|VuV 1 dxdt
Td T4

+ */Tg ug ;s ug) dx + / /Tg oY) dxde. (35)
2 Td
The inequality (35) then implies:

T
/ / Y] dxdt < /||ne IR dr+/u||V(u”) I3 dr
']l'd

) |\1+/\m ).

(36)

The energy flux-through-scale is bounded using the Constantin-E-Titi commutator estimate

[3]:

/||n,z llhde < Col~ 1/ 10 1) [ eyt = O ). (37)

Above, Cg is a constant depending on G but not on ¢, v and the ‘big-O’ notation denotes an
upper bound with a constant prefactor depending only upon G and u. Next, using the nesting
property L?(T¢) C L4(T%), p > g, we bound the resolved energy dissipation term

T T T
| oINE < [ ovE I o < Cont D [l = 00 ). G8)

The remaining terms in equation (36) are bounded using estimates for coarse-graining cumu-
lants (see, e.g. [3, 34]):

e ug s ug) [l < CGE27 sup et 350 (zay = O(£*7), (39)

T
/ ||Tg(u”;f”)||1dt < C/cl;éza Sll%) |VVHL2([0,T];BZ"'°°(T")) su[(; HMVHU([O,T];B;"OO (T4)) = O(EZU). (40)
0 v> v>

4475



Nonlinearity 32 (2019) 4465 T D Drivas and G L Eyink

Thus, combining the estimates equations (37)—(40) in the inequality equation (36), we find
that:

// Y] dxdt = O(£27~") + O(wPeD), (41)
Td

Here a term O(/*°) has been absorbed into O(¢*~!), since for o < 1 it is always smaller
as £ — 0. Because ¢ > 0 in equation (41) is arbitrary, we specify a relation between ¢ and v
which optimizes the upper bound by balancing the contribution of the nonlinear flux with the
resolved dissipation. This fixes a relationship £ ~ v'/(°*+1) and yields the final upper bound:

/ / Y] dxdt = O(v 551 )
Td

as claimed in equation (6). It is worth remarking that £ ~ '/(“+1) is the expected scaling in
phenomenological theory for the ‘dissipation length’ where nonlinear energy flux and vis-
cous energy dissipation become comparable, when the velocity increments exhibit scaling
ou(l) ~ £°. See [38, 39]. O

Proof of theorem 2. we now show under either condition (i) or (ii) that u is a weak solu-
tion of the Euler equations which satisfies distributionally the local energy balance:

1 1 -
o () + 9 [ (G +p)u] = ol s ol = o
(42)

We prove these conclusions separately for condition (i) and for condition (ii):

Proof of theorem 2(i). We apply the Aubin-Lions—Simon lemma, stated as in theorem
115.16 of [35], with p = 3, r = 3/2, By = B{**(T*), B; = L*(T*), and B, = BF;>**(T*).
The imbedding of B *°(T9) in L3(T9) is compact by the Kolmogorov—Riesz theorem and
L¥(T?) = Fy*(T?), a Triebel-Lizorkin space (see [37], section 3.5), is continuously embed-
ded in B ;**°(T?) (e.g. remark 3.5.1.4, [37]).

We now show that a distributional Navier—Stokes solution u € L*([0, T]; B{">°(T“)) has a
weak time-derivative in the sense of definition I1.5.7 of [35], which is given by

d v
% =PV - (' @u’) +vAu’ +f* € I2([0,T];B3,>2(TY),  (43)

with P the Leray projector. To see this, choose smooth test functions of the form
o(t,x) = P(t)p(x) with p € C5°((0,T)) and ¢ € C=(T?, RY), giving

< /0 L o, ¢> _ < /0 ") [ BV (e w)(0) + vAu() +£ ()] ar ¢> , (44)

where (-, -) denotes the usual pairing between elements of D'(T¢) and D(T¢) = C>°(T?). We
next observe that each term inside the square bracket on the righthand side of the previous

equation belongs to L3/2([0, T]; B3"/22 °(T9)) with norms uniformly bounded in v. First, by

the Calderon—Zygmund inequality we have for some constant ¢y depending only on space
dimension d the estimate
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PV (@ ) | sz g0.mymg 2 ey < Collt” @ gsao g0 oy < €oll” s go.mmg < oy

3/2
(45)
On the other hand,

1AW 3o rymg 2o crayy < Cullw”llisraqromiagsze ey < elle”llus o.rymg = cnoy)-

3/2
(46)

Finally, because the sequence f* is strongly convergent, it is uniformly bounded in
L2([0, T); L*(T?)) and

Hfl/ |‘L3/2([0,T];B§/;2'°° (T4)) < Hf" ||L2([O,T];L2(1Id)). (47)
These bounds imply that the element of D’(T¢) which is paired with ¢ on the right side of equa-
tion (44) in fact belongs to B3‘7/—22’°°(’]I‘d). Moreover, fOT Oy (t)u(t) dt € B7*°(T?) on the left

/!
side of equation (44). Since there is the Banach space duality <B§*"’l (']I‘d)) =B] /;z’oo (T9)
and D(T9) is dense in B3~ 7' (T?) ([37], section 3.5.6), we can extend the relation equa-

tion (44) to ¢ € B3~ 7' (T?) by continuity and this implies the equality

T T
/ B (t)u(t)dt = — / b(r) [ PV (u®u)(r) + vAult) + f”(t)} dr,
0 0 (48)

as elements of B /EZ’OO (T9). It follows that equation (43) holds in the sense of definition I.5.7
of [35].
By the estimates equations (45)—(47), one has furthermore

‘ du”

dr
In view of our assumptions (i) in theorem 2, the family of weak time-derivatives {du” /dt},~0

is uniformly bounded in L*/2([0, TY; Bg’/zz’oo (T%)). The conditions of the Aubin-Lions—Simon
lemma are therefore satisfied, so that {u”},~ is relatively compact in L3([0, T], L*(T¢)).
Subsequences v, — 07 thus always exist so that u** — u strongly in L3(T¢ x [0, T]). For any
such subsequence, we can apply the arguments of [4] to obtain the statements equations (13)—

(15). O

Proof of theorem 2(ii). First we show any limit « is a weak Euler solution. Recall our assump-
tions equation (12): for v — 0

u”(-,1) E\u(~,t), W @u”)(-,t) =~ (wu)(-,1), (1) L—z\f(~,I) ae.re[0,7]. (50)

13/2

< COHMV||%3([0,T];B3“'°°(’]I‘4)) + ver|[u”l| s o.ryzr (1)

L/2((0.TEB] 5 (1))

+ W M2 o722 (1) -
(49)

These conditions imply that (f*), = (f), (u”), = (u), and (u¥ @ u”), — (u ® u), point-
wise in space, a.e. t. Integrating the coarse-grained Navier—Stokes equations equation (22)
against an arbitrary solenoidal test function ¢ € D([0, T] x T¢) yields:

—(Op, (")) = (Vop, (" @u”),) + v{Ap, (u”),) + (¢, (f))- (51)
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To show convergence as v — 0, we obtain uniform bounds for all the integrands in equa-
tion (51) and apply Lebesgue dominated convergence. Such bounds are easily obtained by
applying Young’s inequality for convolutions:

@), (6 1) < IGellspallu” (5 )l S Ml (5 D)5, (52)

|’ @ u), (e, 0)] < [|Gellsllu” @ u” (. 0)ll32 < llu” (L o)I3, (53)

[(F)e (e D) < N Gell2 [l GOl S 17 G D)2, (54)

where the notation < indicates an upper bound with constant prefactor depending on G and
¢, but not on v. By our assumption u#” € L*([0, T]; L*(T%)) and f* € L*([0, T]; L*(T?)) with
norms uniformly bounded, all of the upper bounds equations (52)—(54) are in L'(T? x [0,7])
uniformly in v > 0. Note that the term in equation (51) with viscosity as a pre-factor vanishes
asv —0

v(Ap, (u”),) < vl[Agll2llu”|| Lo o172 (Te)) V—_J)Oo (55)

We may therefore apply dominated convergence to obtain from equation (51) for fixed ¢ > 0
that in the limit v — 0

—(Orp. o) = (Voo u@ u),) + (0.f)-

The argument is completed by taking the limit £ — 0, using the fact that mollification can be
removed strongly in L”. Taking the limit of equation (56) thus shows that u is a weak Euler
solution.

The energy balance equation (42) is proved by a very similar argument. Smearing the
resolved energy balance equation (18) established in lemma 2 with an arbitrary test function
¢ € D([0, T] x T¢) yields:

(00, 3@, ) = (Vo ) — (B, 5 [, P)
+ (o L[] = vV () P+ @) - (7)) (56)

where J9[u"] is the inviscid part of the energy current J,[u”] defined in equation (19), or

0= (SR + T, ) W, + @l

First note that the terms involving viscosity as a pre-factor vanish pointwise in space-time:

V v
v V) 0) P < 1 (VE)al3 N I oy =0 57)
21w, )P < 2163l |2 i)y — 0. (58)
) o D) 2 Lo ([0, (T4)) T8

The above bounds follow from Young’s inequality for convolutions. Thus, the contribution
from these terms will vanish in equation (56) for v — 0 and we must now argue that the re-
maining terms converge.
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In addition to the pointwise-in-x convergence of the mollified quantities discussed above,
we have similarly that 74 (4", u”) — 7¢(u, u) pointwise in space for a.e. t. Moreover, by gen-
eral theory of Calderén-Zygmund operators, the map u” ® u” — p" is strongly continuous
in L?(T%) for p € (1,00) (see e.g. [4]). In particular, for p = 3/2, the assumption on weak
convergence of u” ® u” in equation (50) implies that p¥ — p weakly in L3/?(T9) a.e. . Thus,
all of the following terms converge pointwise in space, for a.e. t:

Lo R = Tl M) = Telul, (), (), = e f, (59)

1 1,
§|(””)e|2 - EW

since they are made up of products of objects which converge pointwise.

Once again, convergence in the sense of distributions follows if integrable bounds can be
obtained that allow us to infer limits of the smeared terms in equation (56) by dominated conv-
ergence. Recall by our assumptions thatu” € L3([0, T]; L*(T%))and p* € L*/?([0, T]; L*/?(T¢))
not only for each v > 0 (as holds for every Leray solution) but also with norms bounded uni-
formly in v > 0. Using Young’s inequality for convolutions and Holder’s inequality, we have
pointwise in space-time:

) 1 v v
V@) (. 0)] < ZIVG)ellsallu” G 0)lls S llu” o)l (60)
[me(u”,u”) (x.0)] < N|Gells | (" @ u”) (o)l 2 + [Gell3 ol ()15 S Ml ()15
(61)
Likewise we have for the terms appearing in equation (56) that
1
S P Sl ol V1]l S e ol + " G0l (0l 62)
T[] (x| S Nl G5 @)y () - () e )] S Nl Cot) 21 G )

Since all of the latter upper bounds are in L'(T“ x [0, T]) uniformly in v > 0 under our as-
sumptions, we can apply dominated convergence theorem to obtain from equation (56) for
fixed ¢ > 0O that in the limit v — 0

1 _
0 (3mP) + 58 =~ + 70 Fo (63)

in the sense of space-time distributions. We note in particular that

D;ji()m o [u”] = Mgfu] := —V(u), : Te(uu). (64)

The argument is completed by taking the limit £ — O of equation (63) and showing that
equation (42) holds distributionally. This fact is proved in [4] using a somewhat different
regularization. For all terms except IT,[u], distributional convergence follows directly from the
strong continuity of shifts in I” since u € L3([0, T]; L*(T%)) and p € L*/?([0, T]; L3/*(T¢)). In
particular, the term @ - 7¢(u, u) in J9[u] vanishes by the commutator identity for 7¢(u, ) in [3].
Convergence of the flux IIy[u] is then inferred from the distributional equality:

1 1
fD;;l%mHg[u] =0, (2|u|2) +V- {<2|u|2 +p) u} —u-f:=Dlu]. (65)
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Under condition (i), the limiting Euler solutions u € L3(T¢ x [0, T]) have additional space-
regularity. The uniform boundedness condition in (i) of theorem 2, SUP,so
||“VHL3([0,T];B;’~°°(W)) < 00, implies that

[l 3 (rexc oy < €' (- +7r.-) = || 3eraxony) < Clrl” (66)

with constants C, C’ independent of viscosity. The inequalities equation (66) are preserved
under strong limits in L3(T¢ x [0, T]) and thus the limiting Euler solutions u under condi-

tion (i) satisfy them as well. This yields immediately u € L3([0, T], B] “*(T¢) for any ¢’ < o,
with definitions as in remark 2. Finally, D[u] = 0 for o € (1/3, 1] follows from the additional
space-regularity by the results of [5]. O

Remark 6. Although not stated in the theorem, the inequalities equation (66) are again pre-

served in the limit if we add to condition (ii) the assumption that equation (66) holds with con-

stants C, C’ independent of viscosity. Weak lower-semicontinuity of the L*(T¢)-norm and of
(- r.0) = ()l = sup (= r) = w0 “

lIwlls/2=1

and Fatou’s lemma in time, together with the assumption equation (66), guarantees that limit-

ing Euler solutions u under this strengthened condition (ii) satisfy the same bound. This is

analogous to remark 3.5 in [18].
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