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Abstract
We study in the inviscid limit the global energy dissipation of Leray solutions 
of incompressible Navier–Stokes on the torus Td , assuming that the solutions 
have norms for Besov space Bσ,∞

3 (Td), σ ∈ (0, 1], that are bounded in the L3-
sense in time, uniformly in viscosity. We establish an upper bound on energy 
dissipation of the form O(ν(3σ−1)/(σ+1)), vanishing as ν → 0 if σ > 1/3. 
A consequence is that Onsager-type ‘quasi-singularities’ are required in the 
Leray solutions, even if the total energy dissipation vanishes in the limit 
ν → 0, as long as it does so suf!ciently slowly. We also give two suf!cient 
conditions which guarantee the existence of limiting weak Euler solutions u 
which satisfy a local energy balance with possible anomalous dissipation due 
to inertial-range energy cascade in the Leray solutions. For σ ∈ (1/3, 1) the 
anomalous dissipation vanishes and the weak Euler solutions may be spatially 
‘rough’ but conserve energy.

Keywords: Onsager’s conjecture, "uid turbulence, anomalous dissipation
Mathematics Subject Classi!cation numbers: 35Q30, 35Q31, 76F02, 35Q35

1. Introduction

In a 1949 paper on turbulence in incompressible "uids [1], Onsager announced a result that 
spatial Hölder exponents ! 1/3 are required of the velocity !eld for anomalous turbulent dis-
sipation (that is, energy dissipation non-vanishing in the limit of zero viscosity). Onsager’s 
original statement and most subsequent work [2–10] have involved the conjecture that the 
velocity !eld in the limit of in!nite Reynolds number is a weak (distributional) solution of the 
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incompressible Euler equations. In this short paper we show that the arguments employed to 
prove Onsager’s claim about weak Euler solutions apply as well to Leray’s solutions of the 
incompressible Navier–Stokes equation and can be used to prove a theorem that ‘quasi-singu-
larities’ are required in those solutions in order to account for anomalous energy dissipation. 
In fact, such consequences follow even if the energy dissipation is vanishing in the limit of 
zero viscosity, as long as it goes to zero as slowly as  ∼να for some α ∈ (0, 1). In that case, we 
show that the Navier–Stokes solutions cannot have Besov norms, above a critical smoothness 
1+α
3−α , which are bounded uniformly in viscosity. This observation is important because empiri-
cal studies (e.g. see remark 4 below) cannot distinguish in principle between a dissipation rate 
which is independent of viscosity and one which is vanishing suf!ciently slowly. Our results 
thus considerably strengthen the conclusion that quasi-singularities are necessary to account 
for the enhanced energy dissipation rates observed in turbulent "ow. No assumption need be 
made in our proof about existence of limiting Euler solutions, but weak Euler solutions do 
arise as ν → 0 limits of the Leray solutions if some further natural conditions are satis!ed.

Let uν ∈ L∞([0, T]; L2(Td)) ∩ L2([0, T]; H1(Td)) for ν > 0 be Leray solutions of the 
incompressible Navier–Stokes equations satisfying

∂tuν +∇ · (uν ⊗ uν) = −∇pν + ν∆uν + f ν , (1)

∇ · uν = 0, (2)

in the sense of distributions on Td × [0, T], with solenoidal initial conditions 
uν |t=0 = uν0 ∈ L2(Td) and solenoidal body forcing f ν ∈ L2([0, T]; L2(Td)). A fundamental 
property of these solutions, !rst obtained by Leray [11], is the global energy inequality, which 
states that viscous energy dissipation cannot exceed the loss of energy by the "ow plus the 
energy input by external force. This property may be reformulated as a global balance of 
kinetic energy:

∫ T

0

∫

Td
ε[uν ] dxdt =

1
2

∫

Td
|uν

0 |2dx − 1
2

∫

Td
|uν(·, T)|2dx +

∫ T

0

∫

Td
uν · f ν dxdt,

 (3)
for almost every T ! 0, where the total energy dissipation rate is

ε[uν ] := ν|∇uν |2 + D[uν ] (4)

with D[uν ] a non-negative distribution (Radon measure) that represents dissipation due to 
possible Leray singularities. See Duchon–Robert [4] and the proof of our lemma 1. Our main 
result is then:

Theorem 1. Let uν ∈ L∞([0, T]; L2(Td)) ∩ L2([0, T]; H1(Td)) for ν > 0 be any Ler-
ay solutions of incompressible Navier–Stokes equations  on Td × [0, T] with initial data 
uν

0 ∈ Bσ,∞
2 (Td), and forcing f ν ∈ L2([0, T]; Bσ,∞

2 (Td)) for some σ ∈ (0, 1]. Suppose that:
∫ T

0

∫

Td
ε[uν ] dxdt ! ναL(ν), α ∈ [0, 1) (5)

where L : R+ → R+ is a function slowly-varying at ν = 0 in the sense of Kuramata [12], 
i.e. so that limν→0 L(λν)/L(ν) = 1 for any λ > 0. Then, for any ε > 0, the family {uν}ν>0 
of Leray solutions cannot have norms ‖uν‖L3([0,T];Bσα+ε,∞

3 (Td)) with σα := 1+α
3−α ∈ [1/3, 1) that 

are bounded uniformly in ν > 0.

Theorem 1 follows easily from the following lemma:
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Lemma 1. Let {uν}ν>0 be a family of Leray solutions with σ, uν
0 , and f ν  as in theorem 1. 

Assume that uν ∈ L3([0, T]; Bσ,∞
3 (Td)) with all the above Besov norms bounded, uniformly 

in viscosity. Then, for a.e. T ! 0, the energy dissipation is bounded for some ν -independent 
constant C by:

∫ T

0

∫

Td
ε[uν ] dxdt ! Cν

3σ−1
σ+1 . (6)

To see that theorem 1 follows from lemma 1, note that if for any ε > 0, uν ∈ L3

([0, T]; Bσα+ε,∞
3 (Td)) with norms bounded uniformly in viscosity, then the inequality equa-

tion (6) together with equation (5) implies:

L(ν) ! Cνε
(3−α)2

4+ε(3−a) . (7)

Since α ∈ [0, 1), the exponent in the power-law on the righthand side of equation (7) is posi-
tive. This obviously leads to a contradiction since limν→0 ν−pL(ν) = +∞ for L slowly vary-
ing at ν = 0 and for any p   >  0.

In the context of lemma 1, we note that that if σ ∈ [1/3, 1] then theorem 6.1 of [5] implies 
that D[uν ] = 0 and energy dissipation arises entirely from viscosity. The proof of this fact for 
σ > 1/3 and !xed ν > 0 follows easily by the Constantin-E-Titi commutator argument [3] 
for weak solutions, after taking into account the Leray–Hopf regularity L2(0, T; H1(Td)). We 
conjecture that our theorem 1 is optimal for space dimensions d  >  2 in the sense that, for some 
α ∈ [0, 1), there should exist sequences of Leray solutions of Navier–Stokes uν  for ν > 0 that 
are uniformly bounded in L3([0, T]; Bσα−ε,∞

3 (Td)) with any ε > 0 and for which the lower 
bound equation (5) on dissipation holds as an asymptotic equality for ν → 0. The case d  =  2 
is different, because of the absence of vortex-stretching. This implies strong bounds on enstro-
phy for Leray solutions in d = 2, even with initial vorticity ω0 ∈ L p only for p < 2, and an 
essential improvement of the energy dissipation bounds in our lemma 1 for d  =  2 [13].

Remark 1. The main condition on uniform Besov regularity in lemma 1 is physically natu-
ral. The Besov space Bσ,∞

p (Td) is made up of measurable functions f : Td → Rd which are 
!nite in the norm

‖f‖Bσ,∞
p (Td) := ‖f‖L p(Td) + sup

r∈(0,1]d

‖f (·+ r)− f (·)‖Td

|r|σ (8)

for p ! 1 and σ ∈ (0, 1). See [37], section 3.5. These spaces can be equivalently explained 
in a way more familiar to "uid dynamicists by using structure functions. The p th-order struc-
ture functions Sν

p (r) of spatial velocity-increments δuν(r; x, t) := uν(x + r, t)− uν(x, t) may 
be de!ned as usual by Sν

p (r, t) := 〈|δuν(r, t)| p〉, where 〈·〉 denotes space average over x ∈ Td. 
The velocity !eld belongs to the Besov space Bσ,∞

p (Td) for p ! 1, σ ∈ (0, 1) at time t if and 
only if

〈|uν(·, t)| p〉 < C0(t), Sν
p (r, t) ! C1(t)

∣∣∣∣
r
!0

∣∣∣∣
ζp

, ∀|r| ! !0 (9)

with ζp = σp and then the optimal constants C0(t), C1(t)  >  0 in these upper bounds de!ne a norm 
for the Besov space Bσ,∞

p (Td) by the identi!cation ‖uν(·, t)‖Bσ,∞
p (Td) := [C0(t) + C1(t)]1/p. 

e.g. see [14]. Here any choice of length-scale !0 > 0 de!nes the same function space Bσ,∞
p (Td) 

but for a physical identi!cation of the constant C1(t) as the ‘amplitude’ of an inertial-range 
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scaling law, one must take !0 to be the integral-length of the turbulent "ow and independent of 
ν > 0. The uniform boundedness of the family {uν}ν>0 in L p([0, T]; Bσ,∞

p (Td)) is equivalent 
to the condition that coef!cients C0(t), C1(t) independent of ν > 0 should exist so that the 
bounds equation (9) are satis!ed for a.e. t ∈ [0, T] and 

∫ T
0 dt [C0(t) + C1(t)] < ∞. The theo-

rem 1 and lemma 1 apply a fortiori to solution spaces L p([0, T], Bσ,∞
p (Td)) with any p ! 3 

and not only to p   =  3. As a consequence, energy dissipation vanishing with ν → 0 as slowly 

as equation (5) (or possibly not vanishing at all for α = 0), implies ζp !
(

1+α
3−α

)
p for p ! 3 

as a constraint on possible structure-function scaling exponents in the inertial-range of any 
turbulent "ow with enhanced dissipation of the form equation (5). This inequality is a precise 
statement on ‘quasi-singularities’ in the sequence of Leray solutions, in order to be consistent 
with the observed slow decrease of energy dissipation as ν → 0. The Navier–Stokes solutions 
(barring possible true, Leray-type singularities) are spatially C∞ for any ν > 0, but they cannot 
possess smoothness of the form equation (9) that is uniform in viscosity. The primary physical 
motivation of our result is turbulence in space dimensions d  >  2, where a forward energy cas-
cade is expected. However our theorem has some implications even for d  =  2. For example, 
[13] considers Navier–Stokes solutions with initial vorticity ω0 ∈ L p(T2), p ∈ (1, 2] and ob-

tains an upper bound on energy dissipation of the form (const.)ναp for αp := 2( p−1)
p ∈ (0, 1], 

vanishing as ν → 0. If this is the actual scaling of the dissipation for p   <  3/2, the Onsager 
critical value of p  for d = 2, then our theorem 1 implies that the family {uν}ν>0 cannot be 
uniformly bounded in L3([0, T]; B

σαp+ε,∞
3 (T2)) with σαp := 3p−2

p+1 ∈ (1/2, 1).

Remark 2. A small but useful technical improvement of theorem 1 can be easily provided 
by sharpening the spaces considered. First, recall that energy conservation for weak solutions 
of the Euler equations holds provided that u ∈ B1/3,c0

3 (Td), a subspace of B1/3,∞
3 (Td) that can 

be de!ned as follow

Bσ,c0
p (Td) =

{
f ∈ L p(Td) : lim

|r|→0

‖f (·+ r)− f (·)‖L p(Td)

|r|σ = 0
}

. (10)

See [5]. Note that Bσ′,∞
p (Td) ⊂ Bσ,c0

p (Td) ⊂ Bσ,∞
p (Td) for any σ′ > σ. De!ne also

Lq(0, T; Bσ,c0
p (Td)) =

{
f ∈ Lq(0, T; L p(Td)) : lim

|r|→0

‖f (·+ r)− f (·)‖Lq(0,T;L p(Td)

|r|σ = 0
}

. (11)

Theorem 1 then holds in a form in which one replaces all instances of Bσ,∞
p  with Bσ,c0

p  
and the conclusion reads that the family {uν}ν>0 of Leray solutions cannot have norms 
‖uν‖L3([0,T];Bσα ,c0

3 (Td)) with σα := 1+α
3−α ∈ [1/3, 1). Note that the spaces Bσ,c0

p  allow us to re-
move the ‘ε’ appearing in the theorem statement. The proof is almost identical and therefore 
omitted. We are grateful to the anonymous referee for this remark.

We emphasize again that we do not need to assume that any ‘singular’ or ‘rough’ Euler 
solutions exist in order to draw these conclusions. However, under reasonable additional con-
ditions, weak Euler solutions will exist as inviscid limits of the Leray solutions. For example:

Theorem 2. Let uν ∈ L∞([0, T]; L2(Td)) ∩ L2([0, T]; H1(Td)) be any Leray solutions of in-
compressible Navier–Stokes equations with ν > 0 on Td × [0, T], for initial data uν

0 ∈ L2(Td) 
and forcing f ν ∈ L2([0, T]; L2(Td)), and assume either:

T D Drivas and G L Eyink Nonlinearity 32 (2019) 4465
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  (i) For some σ ∈ (0, 1] the family {uν}ν>0 is uniformly bounded in 
L3([0, T]; Bσ,∞

3 (Td)), and that f ν → f  strongly in L2([0, T]; L2(Td)) as ν → 0+. 
Let u then be any strong limit of a subsequence uνk ∈ L3([0, T]; L3(Td)).

or
  (ii) uν ∈ L3([0, T]; L3(Td)) with norms bounded uniformly in viscosity and fur-

thermore, that weak convergence as ν → 0 holds for a full-measure set of times:

uν(·, t)⇀
L3

u(·, t), (uν ⊗ uν)(·, t) ⇀
L3/2

(u ⊗ u)(·, t), f ν(·, t)⇀
L2

f (·, t) a.e. t ∈ [0, T]. (12)

Then u is a weak Euler solution which also satis!es, in the sense of distributions, the balance

∂t

(
1
2
|u|2

)
+∇ ·

[(
1
2
|u|2 + p

)
u
]
= −D[u] + u · f (13)

on Td × [0, T], with D[u] the distributional limit of nonlinear ‘energy "ux’ for the Leray solu-
tions:

D[u] := D′- lim
!→0

D′- lim
ν→0

Π![uν ]. (14)

See de#nition equation (20) below. In particular, D[u]  =  0 and energy conservation holds if 
σ > 1/3. Furthermore, under the condition (i)

D[u] = D′- lim
ν→0

ε[uν ], (15)

where total dissipation measure ε[uν ] for Leray solutions is de#ned in equation  (4), and 
u ∈ L3([0, T]; Bσ−ε,c0

3 (Td)) for any ε > 0. Thus, D[u]  =  0 and local energy conservation holds 
when σ ∈ (1/3, 1].

Remark 3. We owe the !rst condition of theorem 2 to Isett [15], reproduced here with 
permission. In particular, he pointed out that uniform boundedness of a family of weak Na-
vier–Stokes solutions {uν}ν>0 in L2([0, T]; Bσ,∞

2 (Td)) guarantees strong pre-compactness in 
L2(Td × [0, T]) by the Aubin–Lions–Simon lemma (see also [16]). Isett pointed out to us [17] 
that the uniform boundedness assumed in lemma 1 allows such an argument also for p   =  3. 
In the physical application this means that if energy dissipation is bounded below as in equa-
tion (5) but if also {uν}ν>0 is uniformly bounded in L3([0, T]; Bσα−ε,∞

3 (Td)) for any ε > 0, 
then a limit Euler solution u will exist. Moreover, the limit will possess some spatial Besov 
regularity with exponent σα − ε but not a priori with a higher exponent σα + ε for any ε > 0. 
See remark 6 below.

The second part of the theorem slightly generalizes recent results of Constantin and Vi-
col [18] for wall-bounded domains Ω. There, it is proved that if uν ⇀ u weakly in L2(Ω) 
for a.e. t and if a second-order structure function Sν

2 (r) de!ned as in our remark 1 (but also 
time-averaged) satis!es an inertial-range scaling bound like equation  (9), then u is a weak 
solution to the Euler equations (see theorem 3.1 of [18]). Recently, the condition on weak-
convergence at a.e. time t was removed in [31] in favor of assuming a structure function bound 
within a more precise ‘inertial range’. Also, as pointed out in [18], remark 3.4, this condi-
tion may be removed by assuming a bound on the space-time structure function de!ned by 
Sν

p (r, s) := 〈〈|δuν(r, s)| p〉〉, where δuν(r, s; x, t) = uν(x + r, t + s)− uν(x, t) are space-time 
increments and where 〈〈·〉〉 denotes the space-time average over (x, t) ∈ Ω× [0, T]. Speci!-

T D Drivas and G L Eyink Nonlinearity 32 (2019) 4465
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cally, it is assumed in [18] for p   =  2 that

〈〈|uν | p〉〉 ! C0 Sν
p (r, s) ! C1

[∣∣∣∣
r
!0

∣∣∣∣+
∣∣∣∣

s
t0

∣∣∣∣

]ζp

, ∀ η(ν) ! |r| ! !0, τ(ν) ! s ! t0 (16)

with some ζp > 0, ν -independent constants C0, C1 > 0, and any scales η(ν), τ(ν) converg-
ing to 0 as ν → 0. If the bound equation (16) is assumed to hold for η(ν) = τ(ν) ≡ 0, then 
equation  (16) is the uniform regularity statement supν>0 ‖uν‖Bσ,∞

2 (Ω×[0,T]) < ∞ for some 
σ ∈ (0, 1) and compactness in L2(Ω× [0, T]) with the strong topology is immediately implied 
by the Kolmogorov–Riesz theorem [19]. Thus, subsequences νk → 0 always exist for which 
uνk → u strongly in L2 and the limit function u is automatically a weak Euler solution. We 
could likewise replace the condition (ii) at each time slice in theorem 2 by the assumption that 
equation (16) holds for p   =  3, i.e. uniform third-order space-time structure function bounds in 
the inertial range, and take u to be any weak limit point of uν ∈ L3(0, T; L3(Td)). Furthermore, 
the limiting Euler solution inherits the space-time regularity u ∈ Bσ,∞

3 (Ω× [0, T]) by an argu-
ment similar to that in remark 6.

An earlier theorem giving conditions for convergence of Navier–Stokes solutions to weak 
Euler solutions satisfying a global energy inequality is proved in the work of Chen and Glimm 
[20]. Their suf!cient conditions involve the time-average energy spectrum, or p   =  2, because 
all terms of the energy balance that are cubic in the velocity vanish when integrated over 
space.

Remark 4. It is worthwhile to review brie"y here the empirical evidence regarding the 
global energy dissipation rate in boundary-free turbulent "ow. Numerical simulations of fouri-
er-truncated Navier–Stokes dynamics by pseudo-spectral method in a periodic box correspond 
mostly closely to the conditions of our theorem 1. Free-decay simulations with body-force 
f ν = 0 such as [21, 22] do show a non-vanishing energy "ux in the inertial-range, consistent 
with D[u]  >  0 as de!ned in equation (14), but there seems to have been no systematic study of 
the dependence of space-average 〈εν(t)〉 upon ν = 1/Re in such simulations. Forced simula-
tions with very smooth (large-scale) forces f ν  [23, 24] provide the best evidence for a space-
time average 〈εν〉 which is nearly independent of ν = 1/Re as Re → ∞. These simulations 
are nominally ‘long-time steady-states’ with T → ∞, but in practice the time-averages are 
performed only over several large-eddy turnover times, so that our theorem 1 applies. Given 
the data plotted in !gure 1 of [23] or !gure 3 of [24] a reasonable inference is that the dissipa-
tion rate does not vanish as Re → ∞, or vanishes only weakly with viscosity. Accepting this 
as an empirical fact, our theorem 1 for p = ∞ implies that Onsager’s prediction of Hölder 
exponents h ! 1/3 [1] remains valid as a statement about ‘quasi-singularities’ of Leray solu-
tions. If any of the reasonable conditions in the theorem 2 hold as well, then Onsager’s con-
jecture on weak Euler solutions remains true, even if the dissipation rate is vanishing weakly 
as ν → 0. In the latter case the Euler solutions may be spatially ‘singular’ or ‘rough’, but 
conserve energy. It should be emphasized that the Euler singularities inferred by this argument 
need not develop in !nite time from smooth initial data. A standard practice in such numer-
ical simulations is the initialization uν(·, 0) = uν

′
(·, T ′) of the simulation at high Re by the 

!nal state at time T ′ of a smaller Reynolds-number Re′ < Re simulation performed at lower 
resolution, interpolated onto the !ner grid of the Re-simulation (e.g. see p L21 of [24]). This 
practice of ‘nested’ initialization means that initial conditions uν(·, 0) have Kolmogorov-type 
spectra over increasing ranges of scales as ν  decreases and do not correspond to uniformly 
smooth initial data.

T D Drivas and G L Eyink Nonlinearity 32 (2019) 4465
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Similar remarks apply to studies of dissipation rates in boundary-free "ows by laboratory 
experiment. The most common experiments study turbulence produced downstream of wire-
mesh grids in wind-tunnels or turbulent wakes generated by "ows past other solid obstacles, 
such as plates, cylinders, etc [25–27]. These experiments measure the time-averaged kinetic 
energy (1/2)〈|uν(x, ·)|2〉 at distances x down-stream of the obstacle. If the data are reinterpret-
ed by ‘Taylor’s hypothesis’ as space-averages (1/2)〈|uν(·, t)|2〉 at times t = x/U, with U the 
mean "ow velocity, then these studies yield the space-average dissipation rate 〈εν(t)〉 by time-
differentiation. The data plotted in [25–27] again provide corroboratory evidence that 〈εν(t)〉 
is nearly independent of ν = 1/Re as Re increases. These experiments are obviously not in 
the space-periodic framework of our theorem 1. Ignoring the effects of walls in the wind-
tunnel, at some distance from the turbulent wake, these "ows might be regarded as contained 
in some large box with zero velocities at the wall (and thus periodic). However, the creation 
of the turbulence by "ow past solid obstacles implies that these experiments are closer to the 
setting of [18], with vorticity fed into the "ow by viscous boundary layers that detach from 
the walls. Since the boundary layers become thinner as ν = 1/Re decreases, the initial data of 
these experiments also cannot be considered to be smooth uniformly in ν > 0.

Remark 5. In light of the discussion in remark 4, theoretically incorporating the effects 
of solid con!ning walls is of great practical importance. The experimental observations are 
rather different for wall-bounded turbulence, such as seen as in pipes, channels, closed con-
tainers, etc than those reviewed above for boundary-free "ows. Energy dissipation in con!ned 
turbulent "ows with rough walls tends to constant values for Re ! 1, whereas energy dis-
sipation in "ows with smooth walls is generally observed to vanish with increasing Re, yet 
much more slowly than the laminar rate  ∼1/Re. For example, see the study [28] whose results 
are typical. Recently, there have been a number of papers proving Onsager-type theorems on 
necessary conditions for anomalous dissipation by weak solutions of the Euler equations on 
domains with solid boundaries [29, 30, 32]. The statements of energy dissipation are slightly 
more involved due to the fact that assumptions need to be made both in the interior and near 
the walls. The results of Drivas and Nguyen [32], which focus on vanishing viscosity limits 
of Leray solutions, may be modi!ed to provide results in the same spirit of our theorem 1. In 
particular, section 2.4 of [32] provides a connection between the physical energy dissipation 
and coarse-grained "uxes as in lemma 2. If one supposes that the energy dissipation is lower 
bounded as in equation (5) and introduces quantitative versions of the near-wall assumptions 
(i.e. impose how rapidly the velocity itself of the near-wall dissipation vanishes within a vis-
cous boundary layer as viscosity tends to zero), then theorems 2 and 3 of [32] can translated 
into constraints on uniform interior Besov regularity and boundary-layer behavior of Leray–
Hopf solutions. Detailed implications are left for future investigation.

The proof our lemma 1 will be based on the same method employed by Constantin-E-
Titi [3] to prove the original Onsager statement for weak Euler solutions, by means of a 
spatial molli!cation. Speci!cally, let G be a standard molli#er, with G ∈ D(Td), G ! 0, and 
also 

∫
Td G(r)dr = 1. Without loss of generality, we can assume that supp(G) is contained in 

the Euclidean unit ball in d dimensions. De!ne the dilatation G!(r) = !−dG(r/!) and space-
re"ection Ǧ(r) = G(−r). For any v ∈ D′(Td), we de!ne its coarse-graining at scale ! by

v! = Ǧ! ∗ v ∈ C∞(Td). (17)

Then, we have the following:
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Lemma 2. Let initial data uν
0 ∈ L2(Td), forcing f ν ∈ L2([0, T]; L2(Td)) and uν  be corre-

sponding Leray solutions of the incompressible Navier–Stokes equations on Td × [0, T] for 
ν > 0. Then, the following local resolved energy balance holds for any ! > 0, for every 
x ∈ Td and a.e. t ∈ [0, T]

∂t

(
1
2
|(uν)"|

2
)
+∇ · Jν" = −Π"[uν ]− ν|∇(uν)"|

2 + (uν)" · ( f ν)", (18)

with

Jν" :=
(

1
2
|(uν)"|

2 + ( pν)"

)
(uν)" + (uν)" · τ"(u

ν , uν)− ν∇
(

1
2
|(uν)"|

2
)

 (19)

where the coarse-graining cumulant is de#ned by τ!(g, h) := (g ⊗ h)! − g! ⊗ h! for 
g, h ∈ L2(Td,Rd), the trace is denoted by τ!(g; h) := Tr τ!(g, h) and where

Π![uν ] := −∇(uν)! : τ!(uν , uν). (20)

Furthermore, for a.e. T ! 0 and for any standard molli#er G and any ! > 0, we have:
∫ T

0

∫

Td
ε[uν ] dxdt =

∫ T

0

∫

Td
Π"[uν ] dxdt +

∫ T

0

∫

Td
ν|∇(uν)"|

2 dxdt

+
1
2

∫

Td
τ"(uν0 ; uν0 ) dx − 1

2

∫

Td
τ"(uν(·, T); uν(·, T))

+

∫ T

0

∫

Td
τ"(uν ; f ν) dxdt.

 

(21)

The key ingredient of the proof of lemma 1 is a simple exact formula derived in [3] which 
expresses the ‘energy "ux’ Π![uν ] in terms of velocity increments. Our relation equation (14) 
can thus be interpreted as an extension of the celebrated Kolmogorov 4/5-law to in!nite 
Reynolds-number limits of Leray solutions.

2. Proofs

Proof of lemma 2. Any Leray weak solution uν  of Navier–Stokes satis!es point-wise in 
x ∈ Td and distributionally in t ∈ [0, T] the coarse-grained equations

∂t(uν)" +∇ · [(uν ⊗ uν)"] = −∇( pν)" + ν∆(uν)" + ( f ν)". (22)

We use here the velocity-pressure formulation of Leray solutions, with pressure 
pν ∈ W−1,∞(0, T; L2(Td)) (e.g. see theorem V.1.4 of [35]). The d equation (22) can then be 
obtained by mollifying the Navier–Stokes equations with (non-solenoidal) test functions ϕi, 
i = 1, 2, . . . , d, of the form ϕi(r, t) := ψ(t)G!(r − x)ei where ψ ∈ C∞

0 ((0, T)), G ∈ C∞(Td), 
and ei is the unit vector in the ith coordinate direction.

We now show that the classical time derivative of (uν)"(x, t) exists for every x ∈ Td and 
a.e. t ∈ [0, T]. See also Prop. 2 of [36]. Since Leray solutions satisfy uν ∈ L∞([0, T]; L2(Td)), 
then for every x ∈ Td
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‖∇ · [(uν ⊗ uν)"](x, ·)‖L∞([0,T]) !
1
!
‖(∇G)"‖∞‖u‖2

L∞([0,T];L2(Td)),

‖ν∆(uν)"(x, ·)‖L∞([0,T]) !
ν

!2 ‖(∆G)"‖2‖u‖L∞([0,T];L2(Td)),
 (23)

by Young’s convolution inequality. The pressure-gradient term ∇( pν)"(x, t) in equation (22) 
is determined using ∇ · f ν = 0 from the Poisson equation

−∆∇( pν)"(·, t) = (∇⊗∇⊗∇) : (uν ⊗ uν)"(·, t) (24)

and the righthand-side belongs to C∞(Td) for a.e. time t and is bounded above by a constant 
of the form (1/!3)‖((∇⊗∇⊗∇)G)!‖∞‖u(·, t)‖2

L2(Td). The solution of the Poisson problem 
thus satis!es a similar estimate as equation (23), i.e. for some constant C and every x ∈ Td:

‖∇( pν)"(x, ·)‖L∞([0,T]) !
C
!3 ‖((∇⊗∇⊗∇)G)"‖∞‖u‖2

L∞([0,T];L2(Td)). (25)

We thus see that, except for ( f ν)"(x, ·), every term in equation (22) for the distributional de-
rivative ∂t(uν)"(x, ·) belongs to L∞([0, T]). Since we assume that f ν ∈ L2([0, T]; L2(Td)), we 
have for every x ∈ Td at least:

‖( f ν)"(x, ·)‖L2([0,T]) ! ‖G"‖2‖f ν‖L2([0,T];L2(Td)). (26)

It follows from equation (22) that ∂t(uν)"(x, ·) ∈ L2([0, T]), so that (uν)"(x, ·) for every x ∈ Td 
is absolutely continuous in time and the classical time-derivative exists and is given by equa-
tion (22) for a.e. t ∈ [0, T].

Taking the Euclidean inner product of equation (22) with (uν)"(x, ·) for each x ∈ Td and 
writing (uν ⊗ uν)" = (uν)" ⊗ (uν)" + τ"(uν , uν) yields by the Leibniz product rule the ‘re-
solved energy’ balance:

∂t

(
1
2
|(uν)"|

2
)
+∇ · Jν" = −Π"[uν ]− ν|∇(uν)"|

2 + (uν)" · ( f ν)", (27)

with

Jν" :=
(

1
2
|(uν)"|

2 + ( pν)"

)
(uν)" + (uν)" · τ"(u

ν , uν)− ν∇
(

1
2
|(uν)"|

2
)

,

 
(28)

which, again, holds for every x ∈ Td and a.e. t ∈ [0, T] (and thus distributionally in space-time 
as well). Since |(uν)"|2(x, ·)/2 is absolutely continuous in time, upon integrating we have:

1
2
|(uν)"(x, T)|2 − 1

2
|(uν0 )"(x)|

2

=

∫ T

0

[
−∇ · Jν" −Π"[uν ]− ν|∇(uν)"|

2 + (uν)" · ( f ν)"
]
(x, t) dt

 

(29)
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for every T ! 0 and x ∈ Td. Since Leray solutions satisfy uν ∈ L3([0, T]; L3(Td)) and, con-
sequently, pν ∈ L3/2([0, T]; L3/2(Td)) (see e.g. Proposition 1 of [4]), each term of the in-
tegrand inside the square brackets in equation  (29) is easily checked by the de!nitions 
equations (19) and (20) to belong to L1([0, T]; L1(Td)). The Fubini theorem then gives that ∫
Td

∫ T
0 ∇ · Jν" dt dx =

∫ T
0

∫
Td ∇ · Jν" dx dt = 0 by space-periodicity, so that integrating equa-

tion (29) over Td, we obtain the global balance of resolved energy:

1
2

∫

Td
|(uν)"(x, T)|2dx − 1

2

∫

Td
|(u0)"(x)|

2dx +
∫ T

0

∫

Td
Π"[uν ] dxdt

+

∫ T

0

∫

Td
ν|∇(uν)"|

2 dxdt −
∫ T

0

∫

Td
(uν)" · ( f )" dxdt = 0.

 

(30)

We now show that any Leray solution satis!es the global energy balance equation (3) for 
almost every T ! 0. Duchon and Robert [4] prove a local version of equation (3), i.e. they 
show that Leray solutions satisfy

∂t

(
1
2
|uν |2

)
+∇ ·

[(
1
2
|uν |2 + pν

)
uν − ν∇

(
1
2
|uν |2

)]
= −ε[uν ] + uν · f

 (31)

in the sense of distributions on space-time. We smear equation (31) with a test function of 
the form ϕε(x, t) = ψε(t)χTd(x), where ψε(t) approximates the characteristic function of the 
time-interval [0, T] and χTd(x) is the characteristic function of the whole torus (the constant 
function 1). This yields:

−
∫ ∞

0
ψε′

(∫

Td

1
2
|uν |2dx

)
dt = −

∫ ∞

0
ψε

∫

Td
ε[uν ]dxdt +

∫ ∞

0
ψε

∫

Td
uν · f dxdt. (32)

Recall that Leray solutions uν  are right-continuous in time, strongly in L2(Td), for a.e. 
t ! 0 and, in particular, at t = 0, as a consequence of the energy inequality (see remark 2 of 
[33]). To make use of this one-sided continuity, let 0 ! ψε(t) ! 1 be supported on the interval 
[0, T + ε] and equal to 1 on [ε, T]. The derivative ψε′(t) gives the difference of two bump func-
tions, one supported on [T , T + ε] and the other supported on [0, ε]. Taking ε→ 0 we obtain by 
the right-continuity that:

−
∫ ∞

0
ψε′

(∫

Td

1
2
|uν |2dx

)
dt →

∫

Td

1
2
|uν(x, T)|2dx −

∫

Td

1
2
|uν0 (x)|2dx, a.e. T ! 0. (33)

The assumption f ν ∈ L2([0, T]; L2(Td)), a priori estimate uν ∈ L∞([0, T]; L2(Td))∩
L2([0, T]; H1(Td)) and the fact that D[uν ] is a Radon measure permit the dominated conv-
ergence theorem to be applied to guarantee that as ε→ 0

−
∫ ∞

0
ψε

∫

Td
ε[uν ]dxdt +

∫ ∞

0
ψε

∫

Td
uν · f dxdt → −

∫ T

0

∫

Td
ε[uν ]dxdt +

∫ T

0

∫

Td
uν · f dxdt.

 (34)

Thus, the global energy balance equation (3) is proved.
Adding to equation (3) the resolved energy balance equation (30) gives, for almost every 

T ! 0,

T D Drivas and G L Eyink Nonlinearity 32 (2019) 4465



4475

∫ T

0

∫

Td
ε[uν ] dxdt =

∫ T

0

∫

Td
Π"[uν ] dxdt +

∫

Td
ν|∇(uν)"|

2 dxdt

− 1
2

∫

Td

(
|uν(·, T)|2 − |(uν(·, T))"|

2
)

dx +
1
2

∫

Td

(
|u0|2 − |(u0)"|

2
)

dx

+

∫ T

0

∫

Td
(uν · f − (uν)" · ( f )") dxdt.

Since, for integrable g ∈ L1(Td) one has 
∫
Td g!(x)dx =

∫
Td g(x)dx, we arrive at identity equa-

tion (21). □ 

Proof of lemma 1. we !rst prove the upper bound on the total dissipation of Leray solu-
tions. By lemma 2, the global energy dissipation is given by the formula equation (21). Note 
that |(uν)"|2 ! (|uν |2)" by convexity and thus the contribution from τ!(uν(·, T); uν(·, T)) ! 0 
in equation (21) is non-positive and we may drop it at the expense of an inequality:

∫ T

0

∫

Td
ε[uν ] dxdt !

∫ T

0

∫

Td
Π"[uν ] dxdt +

∫ T

0

∫

Td
ν|∇(uν)"|

2 dxdt

+
1
2

∫

Td
τ"(uν0 ; uν0 ) dx +

∫ T

0

∫

Td
τ"(uν ; f ν) dxdt.

 
(35)

The inequality (35) then implies:
∫ T

0

∫

Td
ε[uν ] dxdt !

∫ T

0
‖Π"[uν ]‖1dt +

∫ T

0
ν‖∇(uν)"‖

2
2 dt

+
1
2
‖τ"(uν0 ; uν0 )‖1 +

∫ T

0
‖τ"(uν ; f ν)‖1dt.

 (36)

The energy "ux-through-scale is bounded using the Constantin-E-Titi commutator estimate 
[3]:

∫ T

0
‖Π![uν(t)]‖1dt ! CG!

3σ−1
∫ T

0
‖uν(t)‖3

Bσ,∞
3 (Td)dt = O(!3σ−1). (37)

Above, CG is a constant depending on G but not on !, ν  and the ‘big-O’ notation denotes an 
upper bound with a constant prefactor depending only upon G and u. Next, using the nesting 
property L p(Td) ⊆ Lq(Td), p ! q, we bound the resolved energy dissipation term
∫ T

0
ν‖∇(uν)"‖

2
2 dt !

∫ T

0
ν‖∇(uν)"‖

2
3 dt ! C′

Gν"
2(σ−1)

∫ T

0
‖uν(t)‖2

Bσ,∞
3

dt = O(ν"2(σ−1)). (38)

The remaining terms in equation (36) are bounded using estimates for coarse-graining cumu-
lants (see, e.g. [3, 34]):

‖τ!(uν
0 ; uν0 )‖1 ! C′′

G"
2σ sup

ν>0
‖uν

0‖2
Bσ,∞

2 (Td) = O("2σ), (39)

∫ T

0
‖τ!(uν ; f ν)‖1dt ! C′′

G"
2σ sup

ν>0
‖f ν‖L2([0,T];Bσ,∞

2 (Td)) sup
ν>0

‖uν‖L3([0,T];Bσ,∞
3 (Td)) = O("2σ). (40)
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Thus, combining the estimates equations (37)–(40) in the inequality equation (36), we !nd 
that:

∫ T

0

∫

Td
ε[uν ] dxdt = O("3σ−1) + O(ν"2(σ−1)). (41)

Here a term O(!2σ) has been absorbed into O(!3σ−1), since for σ ! 1 it is always smaller 
as !→ 0. Because ! > 0 in equation (41) is arbitrary, we specify a relation between ! and ν  
which optimizes the upper bound by balancing the contribution of the nonlinear "ux with the 
resolved dissipation. This !xes a relationship ! ∼ ν1/(σ+1) and yields the !nal upper bound:

∫ T

0

∫

Td
ε[uν ] dxdt = O(ν

3σ−1
σ+1 )

as claimed in equation (6). It is worth remarking that ! ∼ ν1/(σ+1) is the expected scaling in 
phenomenological theory for the ‘dissipation length’ where nonlinear energy "ux and vis-
cous energy dissipation become comparable, when the velocity increments exhibit scaling 
δu(") ∼ "σ. See [38, 39]. □ 

Proof of theorem 2. we now show under either condition (i) or (ii) that u is a weak solu-
tion of the Euler equations which satis!es distributionally the local energy balance:

∂t

(
1
2
|u|2

)
+∇ ·

[(
1
2
|u|2 + p

)
u
]
= −D[u] + u · f , D[u] := D′- lim

!→0
Π![u].

 (42)

We prove these conclusions separately for condition (i) and for condition (ii):

Proof of theorem 2(i). We apply the Aubin–Lions–Simon lemma, stated as in theorem 
II.5.16 of [35], with p = 3, r = 3/2, B0 = Bσ,∞

3 (Td), B1 = L3(Td), and B2 = Bσ−2,∞
3/2 (Td). 

The imbedding of Bσ,∞
3 (Td) in L3(Td) is compact by the Kolmogorov–Riesz theorem and 

L3(Td) = F0,2
3 (Td), a Triebel–Lizorkin space (see [37], section 3.5), is continuously embed-

ded in Bσ−2,∞
3/2 (Td) (e.g. remark 3.5.1.4, [37]).

We now show that a distributional Navier–Stokes solution u ∈ L3([0, T]; Bσ,∞
3 (Td)) has a 

weak time-derivative in the sense of de!nition II.5.7 of [35], which is given by

duν

dt
= −P∇ · (uν ⊗ uν) + ν∆uν + f ν ∈ L3/2([0, T]; Bσ−2,∞

3/2 (Td)), (43)

with P the Leray projector. To see this, choose smooth test functions of the form 
ϕ(t, x) = ψ(t)φ(x) with ψ ∈ C∞

0 ((0, T)) and φ ∈ C∞(Td,Rd), giving
〈∫ T

0
∂tψ(t)u(t)dt,φ

〉
= −

〈∫ T

0
ψ(t)

[
− P∇ · (u ⊗ u)(t) + ν∆u(t) + f ν(t)

]
dt,φ

〉
, (44)

where 〈·, ·〉 denotes the usual pairing between elements of D′(Td) and D(Td) = C∞(Td). We 
next observe that each term inside the square bracket on the righthand side of the previous 
equation belongs to L3/2([0, T]; Bσ−2,∞

3/2 (Td)) with norms uniformly bounded in ν . First, by 
the Calderon–Zygmund inequality we have for some constant c0 depending only on space 
dimension d the estimate
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‖P∇ · (uν ⊗ uν)‖L3/2([0,T];Bσ−2,∞
3/2 (Td)) ! c0‖uν ⊗ uν‖L3/2([0,T];Bσ−1,∞

3/2 (Td)) ! c0‖uν‖2
L3([0,T];Bσ,∞

3 (Td)).
 

(45)
On the other hand,

‖∆uν‖L3/2([0,T];Bσ−2,∞
3/2 (Td)) ! c1‖uν‖L3/2([0,T];Bσ,∞

3/2 (Td)) ! c1‖uν‖L3([0,T];Bσ,∞
3 (Td)).

 (46)

Finally, because the sequence f ν  is strongly convergent, it is uniformly bounded in 
L2([0, T]; L2(Td)) and

‖f ν‖L3/2([0,T];Bσ−2,∞
3/2 (Td)) ! ‖f ν‖L2([0,T];L2(Td)). (47)

These bounds imply that the element of D′(Td) which is paired with φ on the right side of equa-
tion (44) in fact belongs to Bσ−2,∞

3/2 (Td). Moreover, 
∫ T

0 ∂tψ(t)u(t) dt ∈ Bσ,∞
3 (Td) on the left 

side of equation (44). Since there is the Banach space duality 
(

B2−σ,1
3 (Td)

)′
= Bσ−2,∞

3/2 (Td) 

and D(Td) is dense in B2−σ,1
3 (Td) ([37], section  3.5.6), we can extend the relation equa-

tion (44) to φ ∈ B2−σ,1
3 (Td) by continuity and this implies the equality

∫ T

0
∂tψ(t)u(t)dt = −

∫ T

0
ψ(t)

[
− P∇ · (u ⊗ u)(t) + ν∆u(t) + f ν(t)

]
dt,

 (48)

as elements of Bσ−2,∞
3/2 (Td). It follows that equation (43) holds in the sense of de!nition II.5.7 

of [35].
By the estimates equations (45)–(47), one has furthermore

∥∥∥∥
duν

dt

∥∥∥∥
L3/2([0,T];Bσ−2,∞

3/2 (Td))

! c0‖uν‖2
L3([0,T];Bσ,∞

3 (Td)) + νc1‖uν‖L3([0,T];Bσ,∞
3 (Td))

+ ‖f ν‖L2([0,T];L2(Td)).
 (49)

In view of our assumptions (i) in theorem 2, the family of weak time-derivatives {duν/dt}ν>0 
is uniformly bounded in L3/2([0, T]; Bσ−2,∞

3/2 (Td)). The conditions of the Aubin–Lions–Simon 
lemma are therefore satis!ed, so that {uν}ν>0 is relatively compact in L3([0, T], L3(Td)). 
Subsequences νk → 0+ thus always exist so that uνk → u strongly in L3(Td × [0, T]). For any 
such subsequence, we can apply the arguments of [4] to obtain the statements equations (13)–
(15). □ 

Proof of theorem 2(ii). First we show any limit u is a weak Euler solution. Recall our assump-
tions equation (12): for ν → 0

uν(·, t)⇀
L3

u(·, t), (uν ⊗ uν)(·, t) ⇀
L3/2

(u ⊗ u)(·, t), f ν(·, t)⇀
L2

f (·, t) a.e. t ∈ [0, T]. (50)

These conditions imply that ( f ν)" → ( f )", (uν)" → (u)" and (uν ⊗ uν)" → (u ⊗ u)" point-
wise in space, a.e. t. Integrating the coarse-grained Navier–Stokes equations equation (22) 
against an arbitrary solenoidal test function ϕ ∈ D([0, T]× Td) yields:

−〈∂tϕ, (uν)"〉 = 〈∇ϕ, (uν ⊗ uν)"〉+ ν〈∆ϕ, (uν)"〉+ 〈ϕ, ( f ν)"〉. (51)
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To show convergence as ν → 0, we obtain uniform bounds for all the integrands in equa-
tion (51) and apply Lebesgue dominated convergence. Such bounds are easily obtained by 
applying Young’s inequality for convolutions:

|(uν)"(x, t)| ! ‖G"‖3/2‖uν(·, t)‖3 " ‖uν(·, t)‖3, (52)

|(uν ⊗ uν)"(x, t)| ! ‖G"‖3‖uν ⊗ uν(·, t)‖3/2 " ‖uν(·, t)‖2
3, (53)

|( f ν)"(x, t)| ! ‖G"‖2‖f ν(·, t)‖2 " ‖f ν(·, t)‖2, (54)

where the notation ! indicates an upper bound with constant prefactor depending on G and 
!, but not on ν . By our assumption uν ∈ L3([0, T]; L3(Td)) and f ν ∈ L2([0, T]; L2(Td)) with 
norms uniformly bounded, all of the upper bounds equations (52)–(54) are in L1(Td × [0, T]) 
uniformly in ν > 0. Note that the term in equation (51) with viscosity as a pre-factor vanishes 
as ν → 0

ν〈∆ϕ, (uν)"〉 ! ν‖∆ϕ‖2‖uν‖L∞([0,T];L2(Td)) −→
ν→0

0. (55)

We may therefore apply dominated convergence to obtain from equation (51) for !xed ! > 0 
that in the limit ν → 0

−〈∂tϕ, u!〉 = 〈∇ϕ, (u ⊗ u)!〉+ 〈ϕ, f !〉.

The argument is completed by taking the limit !→ 0, using the fact that molli!cation can be 
removed strongly in Lp . Taking the limit of equation (56) thus shows that u is a weak Euler 
solution.

The energy balance equation  (42) is proved by a very similar argument. Smearing the 
resolved energy balance equation (18) established in lemma 2 with an arbitrary test function 
ϕ ∈ D([0, T]× Td) yields:

−〈∂tϕ,
1
2
|(uν)"|

2〉 = 〈∇ϕ, J0
" [u

ν ]〉 − 〈∆ϕ,
ν

2
|(uν)"|

2〉

+ 〈ϕ,−Π"[uν ]− ν|∇(uν)"|
2 + (uν)" · ( f ν)"〉

 
(56)

where J0
! [u

ν ] is the inviscid part of the energy current J![uν ] de!ned in equation (19), or

J0
! [u

ν ] :=
(

1
2
|(uν)!|

2 + ( pν)!

)
(uν)! + (uν)! · τ!(u

ν , uν).

First note that the terms involving viscosity as a pre-factor vanish pointwise in space-time:

ν|∇(uν)"(x, t)|2 ! ν

"2 ‖(∇G)"‖2
2‖uν‖2

L∞([0,T];L2(Td)) −→ν→0
0, (57)

ν

2
|(uν)"(x, t)|2 ! ν

2
‖G"‖2

2‖uν‖2
L∞([0,T];L2(Td)) −→ν→0

0. (58)

The above bounds follow from Young’s inequality for convolutions. Thus, the contribution 
from these terms will vanish in equation (56) for ν → 0 and we must now argue that the re-
maining terms converge.
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In addition to the pointwise-in-x convergence of the molli!ed quantities discussed above, 
we have similarly that τ!(uν , uν) → τ!(u, u) pointwise in space for a.e. t. Moreover, by gen-
eral theory of Calderón-Zygmund operators, the map uν ⊗ uν → pν is strongly continuous 
in L p(Td) for p ∈ (1,∞) (see e.g. [4]). In particular, for p = 3/2, the assumption on weak 
convergence of uν ⊗ uν  in equation (50) implies that pν ⇀ p weakly in L3/2(Td) a.e. t. Thus, 
all of the following terms converge pointwise in space, for a.e. t:

1
2
|(uν)"|

2 → 1
2
|u"|2, J0

" [u
ν ] → J0

" [u], Π"[uν ] → Π"[u], (uν)" · ( f ν)" → u" · f " (59)

since they are made up of products of objects which converge pointwise.
Once again, convergence in the sense of distributions follows if integrable bounds can be 

obtained that allow us to infer limits of the smeared terms in equation (56) by dominated conv-
ergence. Recall by our assumptions that uν ∈ L3([0, T]; L3(Td)) and pν ∈ L3/2([0, T]; L3/2(Td)) 
not only for each ν > 0 (as holds for every Leray solution) but also with norms bounded uni-
formly in ν > 0. Using Young’s inequality for convolutions and Hölder’s inequality, we have 
pointwise in space-time:

|∇(uν)"(x, t)| ! 1
!
‖(∇G)"‖3/2‖uν(·, t)‖3 " ‖uν(·, t)‖3 (60)

|τ!(uν , uν)(x, t)| ! ‖G!‖3‖(uν ⊗ uν)(·, t)‖3/2 + ‖G!‖2
3/2‖uν(·, t)‖2

3 " ‖uν(·, t)‖2
3.

 (61)

Likewise we have for the terms appearing in equation (56) that

1
2
|uν(x, t)"|

2 ! ‖uν(·, t)‖2
2, |J0

" [u
ν ](x, t)]| ! ‖uν(·, t)‖3

3 + ‖pν(·, t)‖3/2‖uν(·, t)‖3,

|Π"[uν ](x, t)]| ! ‖uν(·, t)‖3
3, |(uν)"(x, t) · ( f ν)"(x, t)| ! ‖uν(·, t)‖2‖f ν(·, t)‖2.

 (62)

Since all of the latter upper bounds are in L1(Td × [0, T]) uniformly in ν > 0 under our as-
sumptions, we can apply dominated convergence theorem to obtain from equation (56) for 
!xed ! > 0 that in the limit ν → 0

∂t

(
1
2
|u!|2

)
+∇ · J0

! [u] = −Π![u] + u! · f !, (63)

in the sense of space-time distributions. We note in particular that

D′- lim
ν→0

Π"[uν ] = Π"[u] := −∇(u)" : τ"(u, u). (64)

The argument is completed by taking the limit !→ 0 of equation (63) and showing that 
equation  (42) holds distributionally. This fact is proved in [4] using a somewhat different 
regularization. For all terms except Π![u], distributional convergence follows directly from the 
strong continuity of shifts in Lp  since u ∈ L3([0, T]; L3(Td)) and p ∈ L3/2([0, T]; L3/2(Td)). In 
particular, the term u! · τ!(u, u) in J0

! [u] vanishes by the commutator identity for τ!(u, u) in [3]. 
Convergence of the "ux Π![u] is then inferred from the distributional equality:

−D′- lim
!→0

Π![u] = ∂t

(
1
2
|u|2

)
+∇ ·

[(
1
2
|u|2 + p

)
u
]
− u · f := D[u]. (65)
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Under condition (i), the limiting Euler solutions u ∈ L3(Td × [0, T]) have additional space- 
regularity. The uniform boundedness condition in (i) of theorem 2, supν>0

‖uν‖L3([0,T];Bσ,∞
3 (Td)) < ∞, implies that

‖uν‖L3(Td×[0,T]) < C′, ‖uν(·+ r, ·)− uν‖L3(Td×[0,T]) < C|r|σ (66)

with constants C, C′ independent of viscosity. The inequalities equation (66) are preserved 
under strong limits in L3(Td × [0, T]) and thus the limiting Euler solutions u under condi-
tion (i) satisfy them as well. This yields immediately u ∈ L3([0, T], Bσ′,c0

3 (Td) for any σ′ < σ, 
with de!nitions as in remark 2. Finally, D[u]  =  0 for σ ∈ (1/3, 1] follows from the additional 
space-regularity by the results of [5]. □ 

Remark 6. Although not stated in the theorem, the inequalities equation (66) are again pre-
served in the limit if we add to condition (ii) the assumption that equation (66) holds with con-
stants C, C′ independent of viscosity. Weak lower-semicontinuity of the L3(Td)-norm and of

‖uν(·+ r, t)− uν(·, t)‖3 = sup
‖w‖3/2=1

|〈w(·− r)− w, uν(·, t)〉| (67)

and Fatou’s lemma in time, together with the assumption equation (66), guarantees that limit-
ing Euler solutions u under this strengthened condition (ii) satisfy the same bound. This is 
analogous to remark 3.5 in [18].
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