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Smooth solutions of the incompressible Euler equations are characterized by the
property that circulation around material loops is conserved. This is the Kelvin
theorem. Likewise, smooth solutions of Navier—Stokes are characterized by a
generalized Kelvin’s theorem, introduced by Constantin—Iyer (2008). In this note, we
introduce a class of stochastic fluid equations, whose smooth solutions are
characterized by natural extensions of the Kelvin theorems of their deterministic
counterparts, which hold along certain noisy flows. These equations are called the
stochastic FEuler—Poincaré and stochastic Navier—Stokes—Poincaré equations
respectively. The stochastic Euler—Poincaré equations were previously derived from a
stochastic variational principle by Holm (2015), which we briefly review. Solutions of
these equations do not obey pathwise energy conservation/dissipation in general. In
contrast, we also discuss a class of stochastic fluid models, solutions of which possess
energy theorems but do not, in general, preserve circulation theorems.

Keywords: stochastic fluid equations; variational principle; Kelvin theorem

1. Introduction

In 1869, Lord Kelvin (Sir William Thomson) [46] discovered a beautiful property
of smooth solutions of the incompressible Euler equations. Namely, the circulation
of velocity around any closed loop advected by an ideal fluid is conserved. More
precisely, let the spatial domain of flow be Q = T¢ or R, and suppose the fluid
velocity uy == u(x,t) : Q x [0,T] — R? solves the incompressible Euler equations,

Oy + (ug - V)ug = —Vpy,
V-u =0, (1.1)
Ut|t:0 = Uo,
with scalar pressure function p;, determined by solving the Poisson equation
—Ap; = (VR V): (u @uy), (1.2)

which enforces incompressibility at each time, t. The Kelvin theorem states that any
smooth Fuler solution u; has the property that for all loops I' C €2, the circulation
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2 Theodore D. Drivas and Darryl D. Holm

integral satisfies,

]{ up - dl = % ug - d, (1.3)
X.(T) r

where X; is Lagrangian flow satisfying Xt = us(Xt), Xo = id. The Kelvin theorem
offers an elegant interpretation of the Lagrangian laws of vortex motion written
down by Helmholtz in 1858 [36].

Remarkably, the converse implication also holds. That is, any sufficiently regular
incompressible velocity field possessing the property (1.3) for all times ¢ € [0, 7]
and for any closed, rectifiable loop I' C 2 must, in fact, be a smooth Euler solution.
This follows readily from (1.3), since its time derivative implies that

% (ﬁtut + (Ut . V)Ut + (Vut)T . Ut) -dl =0 (14)
X(T)

for all loops I' and all times ¢ € [0, 7). In particular, equation (1.4) holds for the
rectifiable loop T' = X, ' (T") for any fixed ¢’ € [0, 7] (since X; is a diffeomorphism).
For such a loop, evaluating Eq. (1.4) at time ¢ = ¢’ shows that the line integral van-
ishes when X, (T") above is replaced by an arbitrary loop I''. From Stokes theorem,
equation (1.4) holds for all loops IV C €, if and only if there exists a scalar func-
tion m; = 7w(x,t) such that the integrand is equal to the gradient of this potential
Vry for all (x,t) € Q x [0, T]. Then, using the identity (Vuy)? - uy = V]ug|?/2, one
finds that equation (1.1) holds with p; replaced by ¢; == 1/2|us|* — 7. Finally, to
enforce incompressibility of u;, the scalar function ¢; solves equation (1.2) thus
fixing it as the pressure ¢ = p; (up to a constant). Therefore, one may say that
smooth solutions of the Euler equations in the domain § are characterized by the
Kelvin theorem. It is worth noting that this equivalence was already realized by
Lord Kelvin in his original 1869 paper [46].

Kelvin’s theorem has long been recognized as centrally important to the under-
standing of deterministic, smooth, ideal fluid dynamics. Its geometric meaning is
discussed in Appendix A. In the present work, we take a geometric and varia-
tional approach to answering the following question: How would Kelvin’s theorem
be changed, if the fluid flow were stochastic?

Summary of the present work. The present work follows Holm [37] in which a
family of stochastic partial differential equations (SPDEs) for fluid dynamics was
derived from a stochastic variational principle as Euler—Poincaré equations. We
will prove that these stochastic Euler-Poincaré equations are, in fact, character-
ized by the pathwise Kelvin theorem (1.3) in which the Lagrangian flow X; is a
particular stochastic process. The stochastic variational principle from which these
stochastic Euler—Poincaré equations arose is reviewed in Appendix B. A key fea-
ture of their derivation is the decomposition of the Lagrangian flow map into fast
and slow components. The fast motion of the Lagrangian trajectory is represented
by a stochastic process, whose correlate statistics are to be calibrated from data
as in [12,13]. The stochastic decomposition proposed in [37] was later derived
using multi-time homogenization by Cotter et al. [11]. The well-posedness of the
stochastic Euler fluid version of these stochastic Euler—Poincaré equations in three
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Clirculation and Energy Theorem Preserving Stochastic Fluids 3

dimensions was established in [14] for initial conditions in an appropriate Sobolev
space. This well-posedness result is discussed more specifically in remark 2.4 below.

Stochastic Euler—Poincaré equations. Next we introduce the stochastic Euler fluid
equations in [37], whose Kelvin circulation properties will be investigated in the
remainder of the paper. The derivation of these stochastic fluid equations in
standard geometric variational notation is reviewed in the Appendices.

Let (Z,F,P) be a complete filtered probability space with a filtration F of
right continuous o-algebras (F;);>o. Let {Wt(k)}keN be a collection of F;-adapted
independent 1-dimensional Brownian motions in R. The Stratonovich form of the
circulation-theorem preserving stochastic Euler—Poincaré equations introduced in
[37] for the 1-form u; reads

dut + P(ffﬁut)dt + Z]P’(ofgk)ut) o th(k) = O, with ut|t:0 = Up- (15)
k

Here, P is the dual for 1-forms of the standard Leray projection operator for vec-
tor fields, as discussed in Appendix A. The symbol o denotes the Stratonovich
sense of the stochastic product, the collection {£*)},cn contains fixed, determin-
istic divergence-free vector fields £) : Q — R?, to be calibrated in practice from
data, e.g., as in [12,13], and we define the operator £7 as

LTy =0 Vu, + (Vo) -y

(1.6)
= —v x curlu, + V(v -u,) in 3D.
In index notation, (£Iu); =vid;u; + (9;v7)u;. The geometric justification for
choosing to write the nonlinearity in the £7 form is explained in Appendix A.
Smooth solutions of the stochastic Euler—Poincaré equations in Eqns. (1.5) possess
a stochastic Kelvin theorem, which we describe in theorem 1.3 below.

2. Main Results

In this paper, we prove that the stochastic Euler—Poincaré equations are, in fact,
characterized by the pathwise Kelvin theorem (1.3). For this purpose, we consider
a class of abstract stochastic It6 SPDEs

du; + Pfidt + ZPogk)th(k) =0, with w|—o = uo. (2.1)
k

The system (2.1) maintains incompressibility V - u; = 0 while its solutions exist.
Equation (2.1) for the 1-form u; is to be understood in the weak sense: for any
solenoidal test vector field ¢ € C5°(2), the following equality holds

(s @) 12 = (0, ) s — / Gophradt =3 / (0P oyedaw®. (22)
k

We prove the following result.
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THEOREM 2.1 (Characterization of Stochastic Euler—Poincaré Fluids). Let X; be
the flow defined by the SDE with Stratonovich noise,

dX,(2) = uy (X (z dt+Z£ ) odW®, Xox)=z,  (23)
for fived smooth solenoidal wvector fields s :[0,T] x Q — R% and {£") ey :

Q— RY.
Then, ut is a smooth solution of (2.1) on [0,T] x  with

1
Jt= ££tut - Z §£5T<k)(£5T<k>ut)a (2.4)
k

(k) _ £?(k)ut7 (25)

if and only if, for every rectifiable loop T' C Q, uy has the property that for all
t € 10,7,

j{ ug - dl = %uo -dl, P oa.s. (2.6)
X (T) r

REMARK 2.2 (It form of the Stochastic Euler-Poincaré Equations). The Itd form
of equation (1.5) reads

duy + P (faut Z £30( g(,Qut)) dt+ > Pl udw™ =0, (27)
k

This follows from the Stratonovich-to-Ito conversion

t

t
/ P £ us o dWH) = / P £ usdWH + - [P££<k)u,W(k)
it

1
:/0 Pfg(,c)ugdWs(k)f§/ Pfﬁ(k)(ﬂbfg(k)us)d57

where [, ], denotes the quadratic variation and where we have used equation (1.5)
to compute this cross-variation. To obtain (2.7), we note that for any 1-form v, we
have IPOCETIP’U = PJC?U. To see this, write Pv = v 4+ Vq for some scalar ¢ and note
that ££TVq is a gradient,

£?Vq =(-V)Vq+VE-Vqg=V({-Vq). (2.8)

Hence, IE”£§TVq = 0 and equation (2.7) follows. In view of theorem 2.1, we recover
the stochastic Euler—Poincaré equations (2.7) as the unique equations for which

smooth solutions obey pathwise circulation conservation along the stochastic flow
(2.3).

REMARK 2.3 (Regularity of Flow). Provided that >, [|¢®* ch%a (@) <0 for

some n € N and o € (0,1), and u € C(0,7;C™"12(Q)) for any « € (0,a'), then
equation (2.3) generates a flow of C"*1—diffeomorphisms of 2 [51, 52]. Moreover,

Downloaded from https://www.cambridge.org/core. Nottingham Trent University, on 23 Jul 2019 at 11:22:52, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2019.43


https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2019.43
https://www.cambridge.org/core

Clirculation and Energy Theorem Preserving Stochastic Fluids )

the inverse map A, := X, ! exists and belongs to the same space C(0, T; C"+1(Q))
and the gradient belongs to VX, € C(0,T;C™*(2)). For n > 2, this sufficient reg-
ularity to justify the computations of the present paper, in particular the use of the
It6-Wentzell formula [50, 51].

REMARK 2.4 (Local Existence and Regularity for Euler-Poincaré Fluids). Well-
posedness for equations (2.1) with (2.4) and (2.5) has recently been established
in [14]. In §3.3 of [14], it is shown there exists (for data in the appropriate
Sobolev space) a maximal stopping time T4 : =+ [0,00) and a unique solu-
tion u € C(0,7; W32(T3;R3)) for all T < Tynaz. Subsequently, [25] established local
existence of (1.5)—(1.6) in Hélder spaces C'(0,7;C™+1:2(Q2)) for some n € N and
some « € (0,1), by using the Weber formula (2.17) and following the Eulerian—
Lagrangian scheme of Constantin [7]. Thus, in view of remark 2.3, regularity in
the appropriate Holder spaces can be taken as the precise meaning of ‘smooth’ in
theorem 2.1 as well as in proposition 2.5 and theorem 2.12 appearing below.

The key to the proof of theorem 2.1 is a general formula for the transport of
circulations along the stochastic flow (2.3), Where the velocity u: is a stochastic

process driven by the same Brownian noise {Wt }keN

PROPOSITION 2.5 (Stratonovich Stochastic Circulation Transport). Fiz smooth
vector fields €% : Q — R?. Let uy : [0, T] x Q — R be a smooth solution of equation
(2.1) and X; := X¢(x) be the stochastic flow defined by the SDE

AX(2) = u (X (2 dt+Z£<’“> NodwW ™, Xo(z)=z.  (29)

Then, for any rectifiable loop T' C Q, the following holds for t € [0,T]
d ut-dézj[ (£ up — fr)dt - de
X,(T) X, (T)

T

+ 7{ £Tou — o) aw® . ar. (2.10)
z,; Xm( : )

(2 &) "Eg(k)ut) - ££(k)0-t ) de - de

REMARK 2.6 (It6-Wentzell formula). The noise appearing in the flow (2.9) is the
same noise that drives the stochastic evolution of u;. Consequently, these objects
are correlated and to compute the rate of change of circulation we employ the It6—
Wentzell formula. This formula results in the presence of the term £ g(,C)Ut( ) in the
second line of equation (2.10).

REMARK 2.7 (Pathwise Kelvin theorem along It6 flow). In contrast with the flow
(2.9) in proposition 2.5, we may consider loops which are transported by stochastic
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flow with It6 noise instead of Stratonovich noise; namely,

AYy(z) = w(Yi(x dt+Z£ 2)dW P, Yo(a) == (2.11)

These trajectories can be realized as solving an equivalent Stratonovich equation

AYy(z) = u(Y(2))dt + by (Y (z dt+2§<k>y; NodW™, Yo(z) == (2.12)

with vector field

known as the noise-induced drift.

Upon treating b; as an arbitrary vector field for now, an argument similar to that
made to prove proposition 2.5 shows that for any rectifiable loop I', the following
holds

d ut-dzz% (£5w+ £ ug — fo)dt - de
Y (T) Y ()

T

+ f LT oy — o) aw® . ae, 2.13
24 (fhwu—a)am (2.13)

( 2 g(k) £Z"(k)ut) - ££(h)0t ) dt - de

generalizing the formula (2.9) from proposition 2.5. This calculation has proved the
following proposition.

PROPOSITION 2.8 (It6 Stochastic Circulation Transport). The pathwise Kelvin
theorem for a loop advected by the Ito flow defined by (2.11)

j{ up - dl = j{ ug-de, P a.s. (2.14)
Y, (1) r
characterizes solenoidal vector fields uy as smooth solutions of the SPDE (2.1) with
1
fi= £ LUt — Z (2 £g(k) (£?(k)ut) + £T/2(£(1@).V)§(k~)ut> ) (2'15>
k
(k) ££(k)ut (2.16)

Upon comparing the drift f; in (2.15) with that in (2.4), we see that advection of
the loop by the It6 flow Y; in (2.11) induces the same double Lie derivative diffu-
sion term as for advection by the Stratonovich flow X in (2.9), plus an additional
advective term. Thus, a modification of the drift occurs when the It6 flow (2.11)
advects the loop, instead of the Stratonovich flow (2.9). See §1 of [37] for a dis-
cussion of a similar issue; quantification of the failure of circulation conservation
along loops which are advected by [t6 flow, when the velocity satisfies an SPDE
whose smooth solutions conserve circulation along loops evolving according to the
flow with Stratonovich noise.
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Clirculation and Energy Theorem Preserving Stochastic Fluids 7

REMARK 2.9 (Pathwise Weber Formula). A simple consequence of the calculations
used in proofs of theorem 2.1 and proposition 2.5 is that smooth solutions of the
stochastic Euler—Poincaré equations (1.5)—(1.6) satisfy a pathwise Weber formula:

ul(z) = P[(VA(2) Tuo(Ae(2))]f, P as. (2.17)

where A; = X, !is the ‘back-to-labels’ map and X; is the stochastic flow defined
by (2.3) and, when taking projection P, there is an implied transformation from
1-forms to vector fields by the operation f. See Appendix A for more explanation
of the notation #. For a proof of the representation (2.17), see [25]. This result can
be expressed also at the level of vorticity w; = curl(u;), where one has an exact
Cauchy formula of the form

wi(z) = (VXy)wp) 0 Ae(x), P a.s. (2.18)

Cauchy’s vorticity representation in (2.18) elucidates what is already apparent
directly from (2.6). Namely, the circulation theorem may be expressed, using Stokes
theorem, in terms of the flux of vorticity through advected areas. Specifically, letting
S be any smooth bounding surface of the closed loop I with I' = 95, we have

]{ wp - dS = % wo-dS, P as. (2.19)
X (S) S

REMARK 2.10 (Pathwise Energy Preserving Stochastic Fluids). In general for non-
constant {¢€()},cy, the Equations (1.5)-(1.6) do not conserve energy, neither
pathwise, nor in expectation. See remark 2.14 for more details. Here, we briefly
consider a class of stochastic fluid equations that, by design, do conserve energy
pathwise. These can be expressed with Stratonovich noise in terms of the operator
B(w,v) :=P(w - Vv) as

dug + Blupdt + Y €8 0 dW™ uy). (2.20)
k

In It6 form, equation (2.20) reads as equation (2.1) with

foi=up- Vg =y €W - VREW - Vuy), (2.21)
k

a,gk) = W) .y, (2.22)

Versions of this model were previously considered in e.g. [24,56] and discussed
in §5.4 of [22]. We now verify pathwise energy conservation of the model (2.1)
with (2.21) and (2.22). This property is most easily and directly established by
using Stratonovich calculus and making use of well known properties of the B(w, v)
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operator (see e.g. [8]). Since {£()} ey are divergence-free, we simply have

1
gllucllie = —(ur, Blurdt + 379 0 dWY, ur)) () = 0. (2.23)

On the other hand, by proposition 2.5 with o; = Zk 5(7’3) - Vus and f; == uy - Vg,
we have

d de_zjf <£(k>V§k ))-dﬁdt

Xt(F)
+ Z 7{ ) ag) - de dw M
<r>

= 27{ (VE® ) - de o dw P,
Lk /Xe(T)

Thus, unless {¢ (k)} ren are spatially constant, the class of stochastic equations (2.1)
with (2.21) and (2.22) which conserve energy pathwise are different with those that
possess a pathwise Kelvin circulation theorem.

REMARK 2.11. Spatially constant noise coefficients {£(*)},cy define a privileged
class of equations, solutions of which possess both circulation and energy conserva-
tion. In particular, when the {€*)}, cy are constants, the stochastic Euler—Poincaré
equations are essentially deterministic Euler equations in disguise. Specifically, let
uy solve equation (1.5) and define

v(x) = u <x+Z§ ““’) (2.24)

Then the process v; is incompressible V - v, = 0 and solves
8tvt + v - V’l)t = —th, (225)

where p; solves the Poisson problem (1.2) to enforce incompressibility of the field v;.
Thus, formally, v, satisfies the usual deterministic Euler equation showing that these
two equations have the same form. To see this, suppose that a strong stochastic
solution u; exists on  x [0, 7] (the existence of such a time T is provided in [14]).
Using the It6—Wentzell formula in Stratonovich form [50] we obtain

dv, = <dut +> My 0 th(k)>

k

a4y, e W)

= dut|x+2k gmw ™ T Z ¢®) - Vo, 0 am . (2.26)
%

Now, our assumption of constant {£*)},.cy implies IP’(,Cg(,C)ut) &%) . Vu,. Thus,

using equation (1.5) and (2.26), we obtain the equation, dvs + P(v; - Vug)dt = 0.
The classical time derivative ;v exists since P(v; - V) is continuous-in-time for
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Clirculation and Energy Theorem Preserving Stochastic Fluids 9

each x and, hence, equation (2.25) follows. Note that the change of variables above
from wu; to v; is not a Galilean transformation.

Since the transformation (2.24) is reversible, for sufficiently short times (while
solutions exist), the unique stochastic solution u; of the SPDE (1.5) can be recovered
from the unique solution v; of deterministic Euler (2.25) by evaluating at a random
spatial point

ug(x) = vy <x = Z §(k)Wt(k)> . (2.27)
k

Thus, as discussed in Chapter 5 of [22], no regularizing effects can possibly come by
adding this simple multiplicative noise to the Euler equations. If there is any non-
trivial regularization-by-noise within the class of Euler—Poincaré models that we
consider, it must arise due to spatial variation (and possibly solution dependence)
of the noise correlates.

Finally, we mention a related class of models in which the stochasticity is under-
stood to arise from location uncertainty [55,60-62]. These models also conserve
energy pathwise but are distinct from all of those considered here. In particular,
they involve an additional division of the fields (velocity and pressure) into slow
and fast fluctuating components and are obtained via a version of the Reynold’s
transport theorem.

Stochastic Navier—Stokes—Poincaré equations In this note, we also obtain a class
of natural stochastic generalizations of Navier—Stokes. Similar to the Stochastic
Euler—Poincaré equation, we ‘randomize’ the Navier—Stokes equations by insisting
that they possess a certain analog of the Kelvin theorem — called the Constantin—
Iyer-Kelvin theorem — which we now review. In their paper [9], Constantin and
Iyer proved that smooth solutions u; of the Navier—Stokes equations

Opug + (ug - V)ug = —Vpy + vAuy, (2.28)
V-u, =0, (2.29)
Ut |t=0 = uo, (2.30)

are characterized by the following statistical Kelvin theorem; for all loops I' C €2

/ u - dl =E / ug - dé] , (2.31)
r A (T)

where A; = X, Lis the back-to-labels map for the stochastic flow defined by the
forward It6 equation’

dXy(z) = u (X (x))dt + V20 dBy,  Xo(z) = 2. (2.32)

Here, B; is a d-dimensional standard Brownian motion. The Constantin—Iyer—
Kelvin theorem has the beautifully simple implication that smooth Navier—Stokes

1Rather than introduce the back-to-labels map, the Constantin-Iyer—Kelvin theorem can also
be naturally stated in terms of time-reversed Brownian motion and backwards Itd SDEs [16]. For
detailed discussions of backward stochastic flows, see [29,51].
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solutions are uniquely characterized as those velocity fields which have the prop-
erty that circulations are backwards martingales of the stochastic flow (2.32). We
note also that F. Rezakhanlou has extended the results of Constantin and Iyer to
more irregular drifts [63], and has advanced a ‘stochastic Hamilton equations’ per-
spective [64] which is similar in spirit to our work. As we will describe in detail
below, theorem 2.12 of the present work identifies a privileged class of stochas-
tic fluid equations characterized by the Lagrangian transport properties discussed
in [63,64] along the (doubly) noisy trajectories (2.33). The resulting models can
be thought to generalizations of Navier—Stokes to the stochastic setting via the
Constantin—Iyer—Kelvin theorem. A few more remarks are now in order.

Unlike the pathwise Kelvin theorem (2.6) which holds for solutions of the Stochas-
tic Euler—Poincaré equations, (2.31) is completely deterministic; since, the fluid
velocity u; is a solution of equations (2.28)—(2.30). The noise appearing in the flow
(2.32) is, in a sense, artificial. It plays a similar role as the noise used in Feynman-
Kac representations for linear parabolic equations. Namely, it is a mathematical
tool to represent the Laplacian appearing in (2.28). However, unlike the Feynman—
Kac representations for linear equations, the stochastic Kelvin theorem (2.31),(2.32)
constitutes a nonlinear fixed-point condition since the drift velocity in the trajecto-
ries (2.32) is also the solution for which the circulation is computed (2.31). In fact, a
stochastic Weber formulation (equivalent to Kelvin theorem for smooth solutions)
can be used to prove local existence of solutions of the incompressible Navier—Stokes
[44]. See also remark 2.16, below.

We briefly recall some results connected to the formulation (2.31), (2.32).
First, a different perspective on the Constantin—Iyer—Kelvin theorem was explored
by Eyink in [20], where it is shown that (2.31) arises as a consequence of
Noether’s theorem via the particle relabeling symmetry of a certain stochastic
action principle for the deterministic incompressible Navier—Stokes equations. See
also [16] for a reformulation of Navier—-Stokes as a system of stochastic Hamilton’s
equations, which yield a particularly simple derivation of the statistical Kelvin
theorem. This formulation has since been extended to domains with solid bound-
ary [10] and to a Riemannian manifold when the de Rham-Hodge Laplacian is
the viscous dissipation operator [66]. Finally, Eyink [19] extended the work of
Constantin and Iyer to nonideal hydromagnetic models. There, a stochastic ana-
logue of the classical Alfvén theorem was proved to be equivalent to smooth
solutions of the deterministic, nonideal, incompressible magnetohydrodynamic
equations.

In what follows, we derive a class of SPDEs, smooth solutions of which pos-
sess (and are characterized by) a pathwise Constantin-Iyer—Kelvin theorem. We
term these the stochastic Navier—Stokes—Poincaré equations. Just as for (1.5)-
(1.6), these equations are driven by Brownian motions {Wt(k)}keN defined on
the probability space (Z,F,P). Relative to equations (1.5)—(1.6), the stochastic
Navier-Stokes—Poincaré equations contain additional terms which can be regarded
as arising due to the presence of an artificial Brownian noise on the trajectories,
just as in the Constantin—Iyer formalism. This collection of 1-dimensional Brownian
motions {ng)}keN is independent of the noise {Wt(k)}keN. We may now state our
result.
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Clirculation and Energy Theorem Preserving Stochastic Fluids 11

THEOREM 2.12 (Characterization of Stochastic Navier-Stokes—Poincaré Fluids).
Let X; be the flow defined by

AX;(z) = wp (X, (z))dt + Zg<k ) o dw*)
V2w Z ™ (Xy(z)) o dBY,  Xo(z) =z, (2.33)

for fived smooth solenoidal wvector fields wg: [0,T] x Q— R and {£€¥)},en,
{U(k)}keN : Q- RY
Then, uy is a smooth solution of equations (2.1) on [0,T] x Q with

f LUt — Z £ (k) (k)ut VZ £f<k>(£f<k>m), (2.34)
k
Ut(k) = £5(k>ut, (2.35)

if and only if, for every rectifiable loop T, us has the property that for t € [0,T],
conditioned on realizations of {W(k)}keN, circulations are backwards martingales

?{ut.dg:E % ug - d¢ ‘ ]_-t{w<k>}
r A (T)

(k)
where Ay = X; ' is the back-to-labels map and ft{Wk} is the sigma-algebra
generated by the increments Ws(k) W‘f/k), 0<s <s<t keN.

P a.s. (2.36)

The idea above is that, upon conditioning on the knowledge of the processes
{W®)},cn during [0,2], we obtain a Constantin-Iyer-type circulation theorem
(2.36) by averaging over the ‘unresolved’ Brownian motions {B(k)}keN. The proof
of theorem 2.12 follows a different approach than that of theorem 2.1. Instead of
computing the rate of change of circulation and using the Ito—Wentzell formula, we
follow the original approach of [9] to prove the equivalence of (2.1) with (2.34) and
(2.35) with a fixed-point characterization in terms of a stochastic Weber formula.
This, in turn, is equivalent to the Kelvin theorem (2.36).

REMARK 2.13 (Stochastic Fluids with Standard Viscous Friction). If the B®*)-noise
amplitudes are constant and act only in the d Euclidean directions {e; }2_,; that is,
if

{n(k)}kGN: {617627637"'765170707~~.}7 (237)

then vy, £§(k)(£§(k)ut) = vAu, and the usual viscous Laplacian appearing in
(2.28) is recovered. Thus (2.1) with (2.34) and (2.35) and {1®) } ey given by (2.37)

form a family of stochastic generalizations of the deterministic Navier—Stokes which
satisfy the Constantin-Iyer—Kelvin relation (2.36).

REMARK 2.14 (Energetic Properties of Circulation-Theorem Preserving Stochastic
Fluids). We now consider the energetics of the stochastic circulation-theorem—
preserving models discussed here. Using (2.1) with (2.34) and (2.35) (the case with
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12 Theodore D. Drivas and Darryl D. Holm

(2.4) and (2.5) is obtained by setting v = 0) we have by Itd’s product rule in the
Hilbert space L%(f2) (see [49]) that

1
d||ut||2L2(Q) = Z <ut, f.ifg(k)(f?(k)ut) + l/£:(k)(£§(k)ut)) dt

; 2 12(@)
1
+ */ d[ut;ut]tdm
2 Ja
+ 3 (ur, £y ue AWM 2. (2.38)
k
Recall from (A.5) in Appendix A that the Lie derivative of a vector field w is
defined by
—£Lew = [§w] =& Vw—w- VE,
and its adjoint operator satisfies the identity (f,’?v,w),;z(g) = —(v, £ew) 12 (), see

equation (A.8). Upon integrating by parts in (2.38) using the adjoint relation and
recalling that wu; is divergence-free, we find

1
d||ut||2L2(Q) = —5 Z(ff&(k)ut, £§k)Ut)L2(Q)dt — I/Z(fn(k)ut, £Z(k)ut)L2(Q)dt
k k
1
+ 3 Z(Pi’?(k)ut, fg(k)ut)Lz(Q)dt + Z(ut’ Vf(k) . Ut)L2(Q)th(k).
k k
(2.39)

Now, if £ and v are divergence-free, then so is £¢v. Consequently, we find that

(£§(k)ut, £z}k)ut)L2(Q) — (P££k)ut, OEZ(;C)ut)Lz(Q)
= (P(OEE(k)Ut — .fj?(k)ut), £5T(k)ut)L2(Q)
= —(P(uy - Vf(k) + Vf(k) ), £§T(k)ut)Lz(Q).

Thus

1
dllue| 720y = 5 Z(P(Ut VEW +VEW wy), £ ur) 20 dt

k
—v Z(fn(k)ut, £Z(k)ut)L2(Q)dt + Z(ut, Vf(k) . Ut)L2(Q)th(k').
k k
(2.40)

Unlike equations (2.1) with (2.21) and (2.22) discussed in remark 2.10, the above
computation shows that circulation-theorem preserving models do not, in general,
satisfy a simple energy equality even when v = 0 unless the £(*) are spatially con-
stant. Firstly, the energy in (2.38) is a fluctuating quantity. Moreover, even the
average energy is neither increasing, nor decreasing, a priori. Energy can be intro-
duced or removed from the system by the action of spatial gradients of the noise
correlates {£®)} on the solution. However it is clear from (2.39) that if, for example,
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Clirculation and Energy Theorem Preserving Stochastic Fluids 13

the n(*) are constant in space and span R? (e.g. as in remark 2.13) and if v is taken
to be sufficiently large, relative to the magnitude of £) and its spatial gradient,
then the system is dissipative on the average. That is, smooth solutions satisfy the
inequality

1 1
IE§||Ut||2L2(Q) < §||U0||%2(Q)a (2.41)

where the expectation E denotes averaging over the Brownian motions {Wt(k)}keN.
Thus, among the class of models (2.1) satisfying (2.34) and (2.35) (i.e., among
the choices for §(k)), there are equations which have solutions possessing the
Constantin—Iyer Kelvin theorem P almost surely and are, on the average, dissi-
pative.

REMARK 2.15 (Energetics of Dissipating Stochastic Fluids). We describe one last
class of models; those which dissipate energy pathwise and thus generalize (2.1) with
(2.21) and (2.22) to the non-ideal setting. Fixing solenoidal vector fields {£*)},.cn
and {n")},.cy and using the notation introduced for (2.20), they read

duy + B(udt + Z £®) o th(k), u) =v ZIP’(?](]“) VP(™®) - V). (2.42)
k k

The form of the ‘viscous term’ is chosen as the piece of the double-(adjoint) Lie
operator £Z(,€) (£Z(k)ut) appearing in the stochastic Navier—Stokes—Poincaré equa-
tions which ensures that this term cannot increase the energy. There are, of course,
other choices for the dissipation operator. In It6 form, equation (2.42) is (2.1) with

fo=up Vup =3 ¢ VPED  Vu) = vy @ IPG® - Tuy),  (243)
k k

o) = e®) vy, (2.44)

Due to the properties of B(w,v) discussed in remark 2.10, solutions of (2.1) with
(2.43) and (2.44) satisfy an pathwise energy balance

1 1 ¢
Slluellzaay = SlluolZo) — v / [Bn®) - Vu|7agyds, Pas.  (245)
k

Unsurprisingly, such fluids do not possess a Constantin—Iyer—Kelvin theorem, in
general, unless the noise vector fields {£€*)} e and {n*) } 4o are spatially constant.

REMARK 2.16 (Pathwise Stochastic Weber Formula). In the proof of theorem 2.12,
we show that solutions of the stochastic Navier-Stokes—Poincaré equations (1.5)—
(1.6) satisfy a pathwise stochastic Weber formula:

W () = B[PV A, (2)Tuo(Ay(@))f | V™Y, P as. (2.46)

in which the expectation averages over the standard Brownian motions {B(k)}keN.
By Stokes theorem applied to (2.36), we find that the vorticity-flux through
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14 Theodore D. Drivas and Darryl D. Holm

comoving areas is statistically frozen

// wtdS:E // deS ft{W(k)}
S A (S)

P a.s. (2.47)

3. Proofs

Proof of proposition 2.5. The proof follows from a direct computation. First, we
convert (2.9) to an equivalent It6 SDE governing the paths

dX;(z) = (Ut + % Z&(k) . vg(k))
k

dt+ WXy (2)dW ™, Xo(z) = .
Xt(x) k

(3.1)

The new term appearing in (3.1) is called the ‘noise-induced drift’. Now, for any
rectifiable loop T', let T'(s) : [0,1] +— T be a parametrization. Then the circulation
around the loop I' can be represented as

oot [ O wnres

- / /(5) - VXL (5)) - ug(Xo(T(s)))ds. (3.2)

Upon differentiating the circulation in this representation and applying the Ito
product rule, we have

1
d Ut - df = / F’(s) . (VXt . dut(Xt)
X (T) 0

+ dVXt . Ut(Xt) + d[VXt, ut(Xt)]t) z:F(g)dS. (33)

The flow u; is random, driven by the same noise as on the particle trajectories.
Therefore, to compute the stochastic differential d(u;(X;(x))), we apply the Ito—
Wentzell formula. For details, see, e.g., theorem 1.1. of [50] or theorem 3.3.1 of [51].
This calculation introduces the Wentzell correction, as

d(u(Xy(2))) = (duy + dX, - Vut)‘Xt ®)

1
+ §V ® VUt N d[Xt, Xt]t + d[VUt, Xt]t’Xt(z)

1
= <dut + (Ut . Vut + 5 zk:(f(k) . V)f(k) . Vut

1
Z (k) & ¢k) .
+2§k€ ®E& -V®Vut>dt>

k
+ ;(S(k) ’ v)ut|Xt,(l‘)th( ) + d[vut; Xt]t|Xt(m)'

Xy (x)
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Clirculation and Energy Theorem Preserving Stochastic Fluids 15

To compute the Wentzell correction d[Vut;Xt]t} X, (2) explicitly, we take the
gradient of equation (2.1)

AV = ~VPfidt — > VPoPaw,. (3.4)
k

The martingale part of dVu, is —3, VIF’at(k)th(k). Consequently, the Wentzell
correction is given by

d[vut;Xt ‘X [8 Ut, z]t|xt(z) = 72(5(]“) ' V)PO’gkatdt. (35)
k

Putting this together, we obtain the full differential

d(ut(X¢(2))) = (ue - Vug — Pfy)

dt—&-z (€% - Vyu = Poy)| ., AWV

t

+Z< g(k) f(k) Vg

1
n §5<k> @ W) vV @V, — 5. Waﬁ’“)) dt. (3.6)

X (x)

Next, the gradient of the stochastic flow is easily found to satisfy

AV X;(x) = VXy() - <Vut Xi(x Zv ¢® v §<k>)> dt (3.7)
+3 VX (2) - veP (X, (x))dWé’”,
k
VXo(z) =L (3.8)

In view of (3.6) and (3.7), the quadratic cross-variation between the Lagrangian
velocity and deformation matrix is

AVXpu(Xe)le = VX, -y VER (€W - V)u = Poy)|, dt. (3.9)
k

Finally, the remaining term in (3.3) can be expressed using (3.7) as follows
1 1
dVX, -u (X)) = VX, - ((v <2|ut|2) +5 > ovE® v -ut> dt
k

(3.10)

X (x)
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16 Theodore D. Drivas and Darryl D. Holm

Upon putting the various elements of this computation together, we have

djé uy - dl

X (T)
! 1

= / IM(s)- VX (T(s)) - (ut -Vu, +V (2|ut|2> - IF’ft> dtds

0 X, ((s)

+ Z/ VX (D(s)) - (;(5““) V)EFR) Ty + %5““) ® W)V @ YV,

ds

1
+5V(E - VED) up + VED - (€0 Ty — £§T(,C)I%t(k)>
X (I'(s))

Y / I'(s) - VX, (I(s))
k

(€W vy + VER) Ly, — P dw P dtds. (3.11)

X¢(L(s))

Recall from the computation (2.8) that £§TPU = £?v + V(¢-Vq), for any vector
field v and some scalar function ¢. Since gradients vanish upon integration over
closed loops (and, consequently, the action of the Leray projector is trivial on loop
integrals), we have that

d% ut~d€:?{ (L0 ug— fr)dt-de
X (T) X () (

1
+ 27{ ( € W)W Vu + 560 0 6M: Vo Vu

2
+ ]( LT u — oy ) aw ™ . ae. (3.12)
Zk: X (T) ( ¢ )

Now note that the double (adjoint) Lie derivative (1.6) can be expanded as follows:

4 L9E® vy uy 4 ve® L (€® vy, - £l ) dt - d¢

£8(£5v) = £L(E05v; + 0;v))
= RO (E1 00 + 0iE00;) + 0,8 (E10u1, + )
=(E-V)E-Vu+ (8 : (Ve Vi
+ 0,6 (& Vv + ((€- V)0 )vj + (0:87) (€ - V)vj + (8:€") 01 v;

:(§~V)§~Vv+(§®£):(V®V)v+2Vf-(f-V)U—kV((f-V)fz-v :
3.13

Upon substituting this simplification into (3.12), we finally obtain equation (2.10).
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Clirculation and Energy Theorem Preserving Stochastic Fluids 17

We remark that, geometrically, the right-hand side of equation (3.13) is the L2
dual of the double Lie bracket [, [, u]] of the vector field £ acting on wu; that is,

(£ (£8v),u) = (v,[€, €, u])-

Moreover, in three-dimensional Euclidean space, by using the second form given in
equation (1.6) one can obtain the following alternative expression for the double
(adjoint) Lie derivative involving cross-products and the curl operator:

LE(£Ev) = £L(—€ x curlv + V(€ - v))
= ¢ x curl(¢ x curlv) — V(¢ - (€ X curlv)) + £gT(V(§ o))
= & x cwrl(€ x curlv) + £ (V(£ - v))
= ¢ x curl(¢é x curlv) + V(£ - V(€ - v)), (3.14)

where we have used the identity £ - (£ x curlv) = curlv - (£ X £) =0 and the fact
that £§TVq = V(£ - Vq) which was verified in equation (2.8). Note that the final
term in (3.14) is a total gradient and therefore vanishes upon integration over any
closed, rectifiable loop T'. O

Proof of Theorem 2.1. We proceed in the same spirit as in the proof of the equiva-
lence of the usual Kelvin theorem to smooth solutions of deterministic Euler given
in the Introduction.

Direction 1: Stochastic Euler—Poincaré solutions have a pathwise Kelvin
theorem. In view of proposition 2.5, one direction is simple: by using equation
(2.1) with f; and {Ut(k)}keN defined by (2.4) and (2.5) in theorem 2.1, and applying
proposition 2.5 to the unique smooth solution u; for given initial conditions wug
(which always exists provided, at least, that T is taken sufficiently small [14, 25],
see remark 2.4), one has that realization-by-realization of the Brownian processes

{Wt(k)}keN circulations are materially conserved (2.6).

Direction 2: Pathwise Kelvin theorem for all loops implies u; is a stochas-
tic Euler—Poincaré solution. For the other direction, assume that the circulation
is conserved along all material loops I'. Since u; and {§ (k)} ken are assumed smooth,
the map x +— X;(x) is a Fr-adapted diffeomorphism [51,52]. Its spatial inverse
A= X, !'is Fi-adapted, pointwise in z. See remark 2.3 for a precise, sufficient
regularity assumption. First we establish the form of the noise in the SPDE.

Form of noise:. From (2.10), the quadratic variation of the circulation (denoted
for a process (; by [(t]+) is

t=T"
f Ut - d/
Xt(F) t=0 T
T r1
X/,

for any T € [0,T]. On the other hand, if the pathwise Kelvin theorem holds,
then the left-hand side must vanish. By assumption, the function f(¢,s) =

I'(s) - VX (T(s)) - (£wyur — 0 ’ dtds,  (3.15)

(’f))|
t1X(I(s))
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18 Theodore D. Drivas and Darryl D. Holm

I(s) - VX(I'(s)) - (.fff(k)ut )|Xf(r(s)) is continuous on [0, 7] x [0, 1]. Thus, we
conclude that for all (¢,s) € [0 T] x [0,1],

I'(s) - VXi(D(5)) - (£8w0ue — o) ryd =0 VkeN (3.16)

We now show that the matrix VX, in (3.16) is non-singular almost surely for all
x € Q. For this, we apply

LEMMA 3.1. Fiz smooth vector fields by : [0,T] x Q + R? and {£€¥)} ey : Q — R,
Let x — X () be the regular stochastic flow of diffeomorphisms [51] associated
to the Ité6 SDE

dX,(z) = by (X, (x))dt + Zf(k) (k)’ Xo(z) = 2. (3.17)

Then the following formula for the Jacobian holds

ds
Xs(z)

det(VX(z)) = exp /Ot (V b, — %Z(Vé‘(k))T : Vg(k)>

k

+ Z/ v.e®|, dW(’“)> (3.18)

Proof. Recall the classic formula In(det A) = tr(In A), for any invertible matrix A.
The first- and second-order Gateaux derivative of In(det A) in direction ¢ and in
(¢,1) resp. may then be computed to be

Din(det A)[¢] = tr[pA™'], D?In(det A)(A)[p, ] = —tr[pA" PpA™].  (3.19)

The proof will follow as a direct computation. First, by taking the gradient in the
initial data of (3.17) we have

dVX;(z) = VXi(x) - Vbt(Xt(m))dt
+ vat ®) (X, (z))aW ™, VXo(z) =L (3.20)
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Clirculation and Energy Theorem Preserving Stochastic Fluids 19

Next, applying Itd’s formula and using equation (3.20) and the formulae (3.19), we
compute

dIndet(VX(z))
= DIndet(VXy(2))[VXi(x) - Vb (X (2))]dt

+ 3" DIndet(VX4())[VXe(2) - VE® (X4 ()] aw, ")
k

+ % 3" D2 Indet (VX (2)) [V Xy (2) - VO (X, (2)), VX, () - V) (X, ()]t
k

= (Vb)) (Xi(@)dt + Y tr(VER) (X, ()

1
) D (VEMTveW] L dt.
k

We integrate in time and evaluate Indet(VXo(z)) =0, since det(VXy(z)) = 1.
This yields a formula for In det(V X, (z)); whereupon formula (3.18) emerges, upon
exponentiating the result. O

In view of (3.1), we apply lemma 3.1 with b, = u; + 1/23", £ . V&), Note that
Vb=V u + — Z( A3 k) vf(k‘)Jer(k).v(v.g(k))) )
)

Thus, for divergence-free vector fields u; and {¢()} oy, we find from (3.18) that
the Stratonovich stochastic flow (2.3) is volume preserving, det(VX;(x)) = 1. Thus,
the kernel of VX; is trivial P almost surely pointwise in (¢, z) € [0,T] x Q. Now, for
any point x € €2, choose a collection of loops {I';(s)}i=1,... 4 such that at = I';(s;)
for some s; € [0, 1] and with linearly independent tangents {T%(s4) }iz1....,
(3.16) holds for all such loops and the matrix VX, (z) is non-singular, it follows that
£g(k)ut - at(k) =0 at X;(x) for all ¢t € [0,7T], P almost surely. The above argument

can be applied to all z € Q by choosing the appropriate collection of loops {I';} and
we conclude,

ot %) = £ wlx,@), VEEN, (1) €[0,T)xQ, P as. (3.21)

Finally, fix any y € Q. Then, for any ¢ € [0, T] and P a.e. @ (where @ denotes sample
space dependence), letting x = A (y) allows us to conclude that ng) =£ §T( i Uy for

all (t,y) € [0,T] x Q, P almost surely.
Form of drift. Upon using the fact that Ut( — £l Ut pointwise in spacetime P

a.s., Prop. 2.5, implies that

T/
1
/ 7{< <r>(£5tut =5 ew (Lewu) = fi) - de dt =0,
! %
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20 Theodore D. Drivas and Darryl D. Holm

for all rectifiable loops I' and all 7" € [0, 7. Since it is continuous, the integrand in
the time integral above must vanish identically for all ¢ € [0, T]. Now, let I be any
rectifiable loop. Then, for any fixed ¢ € [0,T] and P a.e. @, let I' = AZ(I"). Thus,
we deduce that for any loop I the following holds

Lo, u = £5(A>(£5<k>ut) fe ] -de=0.
F/

Finally, we can conclude that there exists a scalar process ¢; (not necessarily of
bounded variation) such that

fe= (i’ftut Z £im g(k)ut)> + V.

By the fact that the Leray—Hodge projector P vanishes on gradients, it follows that
equation (2.1) is satisfied with f; given by the expression (2.4). O

Proof of theorem 2.12. Our proof employs a different method than that of our
theorem 2.1. In particular, we establish equivalence to a stochastic Weber formula,

ur(x) = E[P(VA(2)) uo(An(2)) | F7Y, P as. (3.22)

where A; = X; ! is the back-to-labels map and X solves (2.33). Note that, together,
equations (3.22) and (2.33) form a fixed point problem. It should be possible to solve
this problem (pathwise in %)) by combining the methods of [25] for the stochastic
Euler—Poincaré with those of [44] which establish local existence of deterministic
Navier—Stokes from the stochastic Weber formula. We do not pursue this issue here.
Instead, we simply assume that smooth solutions of (2.33), (3.22) exist, at least for
sufficiently small times 7" > 0.

Note that it is clear that for sufficiently smooth u;, the stochastic Weber formula
(3.22) is equivalent to its integrated form on loops — the Constantin—Iyer Kelvin

theorem:
%ut.de —E V P(V A, () o (Ay (o ’ {W(“}}
r r

) V g - | ft{W“”}] .
A4(r)

Thus, equivalence to the Constantin—Iyer Kelvin theorem for smooth solutions will
follow from the same fixed point problem and the stochastic Navier—Stokes—Poincaré
equations (2.1) with f; and {a,gk)}keN defined by (2.34) and (2.35). We note that
this strategy has also been used in [19] to prove the equivalence of certain non-ideal
hydromagnetic models to their stochastic Alfvén theorems.

Direction 1: Solution of the fixed-point problem (2.33), (3.22) solves
equation (2.1). We first prove that a solution of the fixed point problem (3.22)
provides a representation for a solution of equation(2.1) with (2.34) and (2.35).
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We begin by using (3.22) to show that for any solenoidal vector field v for all
0<s<t<T we have

(ug,v) 2 = E[((VA)Tug(Ay),v) 2 ft{W(k-)}} — E[(uo(Ay), (VALY 12 }_t{W(k)}]
= EKUO, (VAt)(Xt)U(Xt)> W(k)}] EKUO, (At)*U>L2 {W““)}]
(3.23)

where we have recalled that (VA)(X;)v(X,) = (A)*v = (X; ')*v is the pull-back
of v by the flow X;. Now, by Kunita’s formula [51], we have for flows X; generated
by the SDE (2.33) that

(Ay) v—'UJrZ/ ££(k)'U dW( )+\/21/Z/ Lymv dB( )

o)

+ v E n(k) ,,mv)

In the interest of being self-contained, we prove the identity (3.24) in a slightly
different but equivalent form in lemma 3.3 below Substituting (3.24) into (3.23)

and recalling that v/2v " & fo n(”” dB k) is a martingale, conditioned on the
history of the process W( ) , We have

( £usv+ Z ££(k) ££(k)’U>

ds. (3.24)

(k)
<’U¢,U>L2 = uo, L2 —I—ZE |:/ uo’ )*fg(k)U>L2(Q) dWS(k) ‘ ]:t{W }:|

t
+ [ e
0

+”Z o, (As)* £, (£,000)) L2 () ‘ }-{W(M}} ds. (3.25)

1
(ug, (As)" Luv)r2() + 5 ) (s, (As) Lo (Lewv)) L2(0)
2
%

Upon using the equivalence (3.23), which holds for any divergence-free vector field
(a property which is satisfied by all of £,,v, Leamyv, £y (££<k>v), and £, (£, v)
since £#) and n®) are assumed solenoidal), we see that

t
<’u,t,’l)>L2 = (uo,v>L2 + Z/ <’LLS,£E(I¢)’U>L2(Q) dWS(k)
r YO0

+/
0

+ VZ(US, fn(k)(£n(k)v)>L2(Q)] ds. (3.26)
k

1
(Us, £4,0) L2(02) + B Z<u57 Lew (£ewyv)) L2(0)
2
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22 Theodore D. Drivas and Darryl D. Holm

The resulting equation corresponds exactly with the definition of the weak form
(2.2), thereby establishing that (3.22) is the solution in the sense of definition 3
of [14].

Direction 2: Smooth solutions equation (2.1) satisfy the fixed-point prob-
lem (2.33), (3.22). Given a smooth solution u,;, we may construct a smooth flow
X; solving (3.22), as well as its back-to-labels map A; which solves

dAe(2) + ue(z) - VA (z)dt + Y P - VA (z) o dw,V
k

+V2w Y W VA(z) 0 dBM =0, (3.27)
k

with data A;(x)|;=0 = . This equation is easily established by applying the It6
formula to A; o X; =id. The spatial gradient of the back-to-labels map is then
found to solve

A VA (2) + £1, VA (2)dt + Y £50VA(x) 0 aw )
k

+V2r Y LT VA(x) 0 dBM =0, (3.28)
k

with data VA;(x)|t=o = [. Define now @; := 4 (z) from ug, A and VA; by
©)
T(z) =E [JP’(VAt(x))Tuo(At(x)) ‘ Fw }} , Pas. (3.29)

We aim to show that @ is a solution to the fixed point problem (2.33), (3.22). To
do so, we derive now a stochastic evolution equation for @;(x). This will require the
following two lemmas

LEMMA 3.2. Letv € C(0,T;C?%(Q)) be deterministic. Then, the process 0y == v; o Ay
solves the SPDE

dib; = (&stt —ug - VO + %Z(f(k) V(€W - V)6r)
k

+ vy (V)™ V)Gt)> dt
k

S e® . vhaw® —var S g™ . ve,aBP. (3.30)
k k
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Proof. First, the Ito form of equation (3.27) reads

di Ay (z) 4 ue(z) - VA (z)dt — % D ER V(€W - V) Ay(x))dt
k

— v 3 ® V) (D - V) Ay(a))at
k

+ 3 e® . VA (2)d W“@H@Zn VA (z)dB® = 0. (3.31)

Now, applying the Itd product formula, we have

1
dat = at’U|Atdt + dAt . V’Ut|At —+ §d[At,At]t . (V ® ert)|At

= Ovla,dt — (ue - VA - Vor|a,dt = (W) - VAy) - Vg 4, dW P
k

1
- \/ﬂz (™ .V A,) - Vuy|a,dBF + A4 Ade : (V© Vo) a,

+= Z (€D V) Ag(2)) - V| a,dt

+v Y " V) (" - V) Ay()) - Vor|a,dt.

Using (3.31), we compute the quadratic variation term as

%d[AuAt]t 3 Z(g(k) V)Ar @ (€W - V) Aydt

+v Z V)A; @ (n®) - V) A,dt. (3.32)

Thus, putting (3.32) together with our calculation of df;, we arrive at the following
equation

det = 8tUt|Atdt — (Ut . VAt) . V’Ut|Atdt — Z(g(k) . VAt) . Vvt|Atth(k)
k
- \/2VZ *) .V Ay) - Vog|4,dBF)
+3 Z (ER) V) Ay - (V@ V)|, - (€8 - V) Adt

+I/Z (V@ Vuy)|a, - (g™ - V)A,dt
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24 Theodore D. Drivas and Darryl D. Holm

+5 Zé’“ )(€®) - V) Ay(2)) - Vg a,dt

+VZ ®) ) (n®) - V) Ay(2)) - Vg a,dt.

Using finally the chain rule via both (u-VA;) - Vv = u - VO, and the identity

€-V)A - (VO Vu)la, - (€ V)A + (£ V)((§ - V)Au(2)) - Vi 4,
= (§-V)((§- V)by),
we deduce the stated evolution equation (3.30). O
We now derive the evolution of the ‘Weber velocity’ w;, generalizing theorem 2.2
of [9] to multiplicative noise. It can also be derived as an application of Kunita’s

formula (3.24) above, but we prove it here directly.

LEMMA 3.3. Let v e C(0,T;C*()) and 0, :=wv,0A;. The process w; =
(VA (2))T0; solves the SPDE

dywy + (f?;twt Z L (LLwws) —v Y Ll («f:mwt)) dt

k
+ 3 £l wdw M + V2 S £7 wd B =o. (3.33)
k k

Proof. First, the It6 form of equation (3.28) reads
VA (z) + £1 VA (w)dt — Z £ (£80 VA (2))dt

-V Z f?(k) (£n<k>VAt(l’))dt
k

+ 3 L5, VA 2)aW P + V2w 3 LT, VA (2)dB = 0. (3.34)
k k

Applying the 1t6 product formula, we have
dtwt = d(VAt)TOt + <VAt)Td9t + d[(VAt)T, Ht]t. (335)

Using equation (3.34) and (3.30) from lemma 3.2, we compute the quadratic
variation term to be

A(VA)", 0] =D £80 (VAT (W) - Vo)At + 20 ) " £1, (VA)" (™ - V6,)dt
k k

(3.36)
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We have also that

A(VA)T0, = —£T (VA)T0,dt + - Zfaw £80(VA)T)b,dt
+ yz £70 (£10 VAT brdt

N £L, (VA 0w, — v ST LT (VAT 0, d B
k k

(VA)TAO, = —(VA) T uy - VOt + %Z(VAt)T(g(k) V)W - v)8,)dt
k

+0 Y (VAT (™ - 9)(® - V)b )dt = 3 (VA)TED - Vo aw, P
k

— V2 Y (vA)T*) - ve,dBM.
k

For any vector field v, one has the identity,
LTw, = (LT(VA)0 + (VAN (v-V)b;.

Consequently, the form of the noise and first drift term in (3.33) are fixed. Grouping
the remaining terms in (3.35) involving & and 7, using the identity (3.13) and then
performing some straightforward but tedious computations, we obtain the stated
evolution equation (3.33). We remark that Kunita’s formula (3.24) can be obtained
by pairing (in L2(£2)) the equation (3.33) with an arbitrary solenoidal vector field
v and integrating by parts. O

Finally, let @ (z) = (VA (2)) uo(As(2)) so that @ = E[P(a(x))| " .
Applying lemma 3.3 to the stochastic Weber velocity ;, projecting onto dlvergence—
free and averaging over the Brownian motions {B®*)},cx, we deduce that 7, solves
the following linear SPDE

deug + P ( Z £ (£ Tr) VZ £ (£ Tt ) dt

+ > PeL mdw* > =0, (3.37)
k

with initial condition %y = wug. Clearly, one solution of (3.37) is u; itself. Uniqueness
of the inital value problem for this type of linear stochastic system with regular
coefficients follows from the argument given in the proof of proposition 11 of [14].
Thus, we conclude that @; = u; for all ¢ € [0,7] and therefore smooth solutions u,
of equation (2.1) solve the fixed-point problem (2.33), (3.22). O

4. Discussion

In this note, we have considered two classes of stochastic models of Eulerian incom-
pressible fluid flow which differ in their nonlinear transport operators. These two
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26 Theodore D. Drivas and Darryl D. Holm

classes may be compared explicitly in their vector field forms, upon defining the
stochastic vector field for the transport velocity written in terms of the smooth,
invertible, volume-preserving flow map X; in equation (2.3) as

_ k
(dX)X, " = wdt+ Y €®o aw®. (4.1)

The stochastic transport operator for the energy-conserving stochastic fluid models
we have treated here takes the form

duy + P((dX: X, ") - Vug) = 0. (4.2)

However, stochastic fluid models with this transport operator do not conserve the
Kelvin circulation, unless the spatial gradients of their correlation eigenvectors &(*)
all vanish.

In contrast, the transport operator in the stochastic fluid models we have treated
here that do conserve Kelvin circulation take the form

dup +P(£{ .,y 1yue) =0, (4.3)
where
£T v u= (XX Vu+ (VXX )T - w. (4.4)

Thus, the transport operators for the two classes of stochastic Euler equations
treated here, in equation (4.2) which conserve energy and in equation (4.3) which
conserve circulations, only differ by a single term.

Indeed, we have shown that the stochastic fluid equations in equation (4.3) are
characterized by the property that circulations are conserved (pathwise in case
of Euler-type models and in mean for Navier—Stokes-type) on smooth solutions.
Brownian forces enter into these equations as a novel type of multiplicative noise;
which involves the Lie derivative of the circulation velocity along the spatial cor-
relation eigenvectors of the noise. This structure has geometric significance which
ensures that the stochastic equations retain the Lagrangian properties of circula-
tion, vorticity, and helicity which their deterministic counterparts possess. However,
stochastic fluid models with the transport operator in equation (4.3) turn out not
to conserve energy, unless the spatial gradients of their correlation eigenvectors &(*)
in the cylindrical noise all vanish.

The difference between these two classes of stochastic models may appear small,
especially since their transport operators exactly coincide in the deterministic case,
where they each conserve both energy and Kelvin circulation. However, we have
found that this difference has profound effects in the conservation properties of the
stochastic fluid models treated here. Thus, the introduction of gradients into the
spatial correlations of the cylindrical noise in these two classes of stochastic fluid
models has introduced a sort of ‘Sophie’s choice’ between conservation of either
energy, or circulation, but not both.

This comparison is summarized explicitly in the following table.

With these models in hand, we must address the following important ques-
tions: what physical systems do they represent; what insights do they yield; and
how can they be exploited in practice? To address the first question, we mention
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Clirculation and Energy Theorem Preserving Stochastic Fluids 27

Comparison of Energy and Circulation Properties of Stochastic Fluid Models

Euler Circulation  Euler Energy Navier—Stokes Navier—Stokes
Thm. Thm. Circulation Energy Thm.
Thm.
Equation (2.1) Equation (2.1) Equation (2.1) Equation (2.1)
with (2.4) and with (2.21) and with (2.34) and with (2.43) and
(2.5) (2.22) (2.35) (2.44)

the recent work of [11] which shows that the stochastic Euler—Poincaré equations
(equation (2.1) with (2.4) and (2.5)) arise naturally upon representing the deter-
ministic Lagrangian flow map as a composition of smooth maps with two different
time scales. The first map has slowly varying time dependence. It is followed by
composition with the second map which has rapidly fluctuating time dependence,
with zero mean when homogenized over the rapid time scale. When dissipation
is important, the corresponding Navier—Stokes—Poincaré equations (equation (2.1)
with (2.34) and (2.35)) arise from similar considerations. The result of [11] shows
that this stochastic model has some features in common with a deterministic regu-
larization of the Navier—Stokes equation called the LANS-«o model, which has been
proposed as a model for large-scale turbulence and also preserves a certain Kelvin
circulation theorem [5,27,28, 38, 40].

The above considerations motivate the utility of circulation-theorem preserving
stochastic models as reduced descriptions of nonlinear dynamical systems which
account for the advective transport effects of the small, rapid, unresolvable scales of
fluid motion on the variability of computationally resolvable. See, respectively, [12,
13] for computational investigations of the Navier—Stokes—Poincaré equations in
two dimensions for regions with fixed boundaries and for a 2-layer quasi-geostrophic
model. See also [30] for a recent review, and see [31] for discussions of stochastic
fluid models with non-stationary statistics.

On the other hand, for certain applications (depending on what observable the
stochastic solution is intended to describe) it may be more important to enforce
a pathwise energy balance. In this case, the models treated here which preserve
the corresponding energy theorems (equation (2.1) with (2.21) and (2.22) or (2.43)
and (2.44)) could be very useful. In particular, another deterministic regularization
of the Navier—Stokes equation due to Leray [53] called the Leray-a model, which
conserves energy in the absence of viscosity, has also been developed for simulations
of turbulence and studied numerically in comparison with the LANS-« model [32,
33]. These matters will be discussed further, elsewhere.

It is only when the noise-coefficients are spatially homogeneous that these two
models simultaneously preserve their respective energy and circulation theorems.
Thus, as is typical in the modeling business, an application-dependent choice must
be made whenever implementing these SPDEs as a practical reduced description.
These issues are currently being explored and remain the subject of active and
ongoing research.
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28 Theodore D. Drivas and Darryl D. Holm

Appendix A. Geometric background and notation

We discuss Kelvin’s circulation theorem from a geometric viewpoint. To begin,
recall that SDiff(Q2) is the space of volume-preserving (special) diffeomorphisms,
and let X; € SDiff(Q2) (i.e., smooth invertible flow, whose inverse is also smooth)
which maps the manifold without boundaries,  C R? onto itself. Introduce the
transport velocity, us, as a vector field,

wp = u(z,t) : Q x [0,T] — X(RY),

where X(R?) is the space of volume-preserving vector fields defined over R?; so that
V - uy = 0. Next, define the corresponding circulation velocity, u?, which appears in
the integrand of Kelvin’s theorem,

w =’ (z,t) : Q x [0,T] — A*(RY).
Here u? is in the space of 1-forms A'(R?) dual to the divergence-free transport
velocity vector fields, u; € X(R?), under the L? pairing between the Lie algebra of
vector fields and its dual,

(-, ) : AY(R?Y) x X(RY) — R,

on the domain of flow . Here, the familiar musical operations flat (b) and its
inverse sharp (f) essentially lower and raise vector indices, respectively, although
no Riemannian metric will be needed here, because we work on R?. For example,
the operation b : X(R?) — A!(R?) maps a vector field into a 1-form, and vice versa
for # (so that (u)* = uy, for example). The musical notation which distinguishes
between u? and u; helps one make proper mathematical sense of the operations of
divergence, Lie derivative, Leray-Hodge projection, etc.

REMARK A.1 (Discussion of musical isomorphisms on a Riemannian manifold).
On a Riemannian manifold M, the musical isomorphisms are defined by the Riesz
representation and inverse maps with respect to the metric. That is,

g:T"M — TM as <aﬁ7w> = a(w),
b: TM — T'M as u(w)=(v,w).
In Riemannian geometry, the Levi—Civita connection respects the musical iso-

morphisms, namely for v,w € X(M) a vector field and o € A'(M) a 1-form
density:

Thus, the musical isomorphisms identify vector fields with 1-forms and allow them
to be differentiated in the same way.
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Clirculation and Energy Theorem Preserving Stochastic Fluids 29

Suppose the transport and circulation velocities u; and u?, respectively, together
solve the incompressible Euler equations, written in vector form as

8tuz + (ug - V)ug = —Vp; (A1)

with scalar pressure function p;, determined by solving the Poisson equation
~Ap; = (V@ V) : (uy @ ul). The Kelvin theorem in equation (1.3) now states that
any smooth Euler solution u; has the property that for all loops I' C ), the

circulation integral satisfies,
f = f 4
X (I) Xo(T)

where the time-dependent Lagrangian flow map X; with Xy = id is obtained by
integrating the vector field

Xt = Ut(Xt) = Xt*ut,

where the asterix on X;* denotes pull back by the smooth invertible map X;. Con-
sequently, the transport velocity vector field in the Eulerian representation is given
by

=X, X' e x(RY),

in which the right action on the tangent vector X, by the inverse map X, !
(shown as concatenation from the right) translates the tangent vector along the
Lagrangian path back to the identity. Thus, the Fulerian transport velocity vec-
tor field u; € X(R?) is right-invariant. That is, u, = X, X, ! is invariant under the
action of the diffeomorphisms from the right, upon transforming X, — X, X, for any
other volume-preserving diffeomorphism, X; € SDiff(R?). As we shall see, right-
invariance is the key to understanding the Kelvin circulation theorem from the
viewpoint of Noether’s theorem.

The Kelvin theorem in (1.3) offers some insight into the geometric meaning of the
Euler fluid equations. In the geometric notation introduced above, the calculation
in equation (1.4) may be validated as

i]f uy = 7{ 4 xzu)
dt Xt(r) Xo(F) dt

:7{ X7 (0 + £, x1)u)
Xo(T)

(A.2)
:% (at—‘r.,gXtX—l)uz
X () !
:7{ O + (X1 - Vg + V(XX - ) - dl = 0.
X¢(T)
In the second line of this calculation, we have used the formula [54]
d * *
ST Wh) = XF (O + £, ), (43)
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in which the pull-back by the flow map X; acting on the Lie derivative £y, thlui of

a 1-form u? with respect to the vector field X, X, ! is defined as the time derivative
of the pull-back of the 1-form ui by the flow map X;. In the third line above in
(A.2), transforming the integrand back into fixed Eulerian coordinates yields the Lie
derivative itself, defined as the tangent of the pull-back, evaluated at the identity;
which, as a vector expression is given by,

d . .
£XtX;1“? = {dt(Xt*“i)} = ((Xe X, 1) -Vur + V(X X 1)T cug) - dl, (A4)
id

thereby finishing the calculation.

Now, in comparing equation (1.4) with equation (A.4), we realize that the geo-
metric meaning of the Euler fluid equations was disguised in equation (1.4), by
not distinguishing between the transport velocity vector field and the circulation
velocity 1-form. Of course, this distinction is unnecessary in Euclidean coordinates.
However, even in Euclidean coordinates we will benefit in what follows by keeping
track of this distinction. In particular, the properties of the Lie derivative will be
very useful to us in what follows; and the Lie derivative of a 1-form is not the same
as the Lie derivative of a vector field.

The Lie derivative of one (right-invariant, Eulerian) vector field w by another
one ¢ is defined by the following well-known formula, see, e.g., [2, 39, 41],

—Lew=—((§-V)w— (w-V)§) -V :=[{,w] = adew. (A.5)

In contrast, the Lie derivative of a 1-form v” by the vector field £ is given as in the
calculation (A.2) above as

L£ev” = ((€- Vv + (VT - v) - de = adfr’. (A.6)

In the pairing (:,-)z2(q) with respect to the standard L?(Q) inner product, the
operations ad and ad™ are dual to each other, being related by [39, 41]

(adzvb, w>L2(Q) = <1}b, ad5w>L2 (Q)- (A7)

To simplify notation in what follows, we now define the adjoint operator £ g by the
identity,

(ngan)H(Q) = <('£gv)baw>L2(Q) = <£§Ubaw>L2(Q) = *<W,££W>L2(Q)7 (A-8)

where the round brackets (-, -)72(q) denote the usual L? integral of the dot product
of vector-valued functions. Consequently, (.,f,’§T11)b =£ 5vb, upon identifying corre-
sponding terms. This relation follows due to the nondegeneracy of the L?(£2) pairing
for a manifold without boundaries. It may also be verified by substituting (A.5)
into (A.8) and integrating by parts.

Upon taking the £ of equation (A.1) to transform it from 1-forms to vector fields
and applying the Leray-Hodge projection P, it becomes du; + P(fa ug)dt = 0.

Downloaded from https://www.cambridge.org/core. Nottingham Trent University, on 23 Jul 2019 at 11:22:52, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2019.43


https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2019.43
https://www.cambridge.org/core

Clirculation and Energy Theorem Preserving Stochastic Fluids 31

Thus, the corresponding equation for the vector field u; = u; - V can be expressed
as

dus + P(astut) dt =0,

where the binary operation among vector fields ad' : X x ¥ — X is defined for
vector fields £ and v by

adzv = (adva) = (£e0”) = £gv. (A.9)
Having identified
adZvb = L0 = (££Tv)b and adzv = .,E&Tv,

from equations (A.7), (A.8) and (A.9), we see that the musical notations sharp
(#) and flat (b) can now be replaced by the simpler £g notation. Namely, in
what follows, we will distinguish notationally between components of Lie-derivative
operations on vector fields and 1-forms as,

—Lew =6, w] = (- VIw— (w-V)E and (£:0°)F = £5Tv =&-Vo+ VE-w.
(A.10)

This notation distinguishes between divergence free vector fields and their L?-dual
1-forms only by whether the action of vector fields £ on them appears as £¢ or £ g

We note that the operation f? is denoted as B(¢, ) in [2], as may be identified in
the following relation,

(£&v,w)r2(9) = (B(E,v), ) 12(0)-

The operator B in [2] is distinct from B(w,v) = P(w - Vv) (see e.g. [8]) introduced
for equation (2.21).

REMARK A.2 (Commutator in three-dimensional Euclidean space). As we see above
in equation (A.10), the commutator of two (right-invariant) vector fields is (minus)
their Lie derivative. The commutator of divergence-free vector fields in a three-
dimensional Euclidean space R? is given by the formula

—Lew = [§,w] = curl(¢ x w),

where ¢ x w is the cross product. Hence, we may rewite the relations in
equation (A.8) in this notation as

(£8v,w) 200y = (0, [6,w])r2(0) = (v, curl(§ X w))r2(q)
= (curlv, & X w) ) = (=€ X curlv, w)r2(q).
Thus, we find, in ordinary vector notation,
,£gv = —¢& x curlv,

modulo a gradient term, since V - w = 0.
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Appendix B. Variational Principle for the Stochastic Euler—Poincaré
equations

In this appendix, we treat only the formal aspects of stochastic variational principles
in infinite dimensions, for the purpose of modeling time-dependent spatial correla-
tions. As discussed in remark 2.4, some of the fundamental questions in analysis
for the stochastic 3D Euler—Poincaré fluid model have been answered in [14], who
proved local in time existence, uniqueness, and well posedness of their solutions in
regular spaces, as well as a Beale-Kato-Majda blow-up criterion for these equa-
tions. These are precisely the same analytical properties as for the deterministic 3D
Euler fluid equations. Thus, in this case, introducing stochasticity that preserved
the geometric properties of the Euler fluid equations also preserved their analytical
properties. The corresponding questions still remain open for the other stochastic
fluid models discussed here.

Brief history of variational derivations of the Navier—Stokes equations
from stochastic equations

The derivation of Navier—Stokes equations in the context of stochastic processes has
a long and well-known history. See. e.g., Constantin and Iyer [9], Eyink [20], and
references therein. Previous specifically variational treatments of fluid equations
generally started from the famous remark by Arnold [1966] about Euler’s equations
for the incompressible flow of an ideal fluid being geodesic for kinetic energy given
by the L? norm of fluid velocity, 2 and they have mainly treated It6 noise in this
variational context. For more discussion of variational derivations of fluid equations
and their relation to the stochastic processes, one should consult original sources
such as, in chronological order, Inoue and Funaki [43], Rapoport [58,59], Gomes
[35], Cipriano and Cruzeiro [6], Constantin and Iyer [9], Eyink [18], Gliklikh [34],
Arnaudon, Chen and Cruzeiro [1], Eyink and Drivas [21]. For additional informa-
tion, review and background references for random perturbations of PDEs and fluid
dynamic models, viewed from complementary viewpoints to the present paper, see
also Flandoli et al. [23,26]. In particular, the latter paper studies the interesting
possibility that adding stochasticity would have a regularizing effect on fluid equa-
tions which might otherwise be ill-posed. However, it is not our intention to make
another variational derivation of the Navier—Stokes equations in the present work,
as we explain below.

Appendix B.1. The stochastic Hamilton—Pontryagin variational
principle [31]

We proceed formally here and below to derive the stochastic Euler—Poincaré equa-
tions in (1.5), by considering the reduced stochastic Hamilton—Pontryagin (RSHP)
principle in which the Lagrangian path in equation (2.3) in theorem 2.1 is written
in Eulerian coordinates and imposed as a constraint on variations in the Eulerian

2See Arnold and Khesin [2] for discussion of the many implications of this remark for Euler fluid
motions.
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representation of Hamilton’s principle, as
T
5/ [ue)dt + (m, (AX) X" —wpdt =Y €@ 0aW ™) 2] =0,  (B.1)
0 k

with respect to variations du, X, dm, for the Lagrangian functional [(w;). This
is the reduced stochastic Hamilton—Pontryagin (RSHP) principle found in [31]. Its
Eulerian stationarity conditions are

om: (dX)X; " =wdt + Y €®o aw®,

ol
oup : — =
Uy 5, m,
0X, dm+ad>(kdxt)X;1m:0,

where we have applied the formula for integration by parts for a Stratonovich
stochastic process [57] in computing the dynamics of the Lagrange multiplier, m.
In this computation, we have also used the relation,

S((AX) X, ) = dw — ad gy, x-1w, for the vector field w = (X)Xt

and dropped the endpoint term (m,w)|d, since the variation §X vanishes at the
endpoints of interval [0, T].
In the Euler fluid case, the Lagrangian is the fluid kinetic energy

1
up) = §HutH%2(Q)

and its variation with respect to the velocity vector field is given by the circulation
1-form,

_ 0L
5’U,t t

Now, taking the f of the variational equation for m above and using the divergence
free property of the vector field (dX;)X, Lin the pairing, yields the velocity vector-
field equation,

0 = d(Pm*) + P(,e(dxt)x;lm)u = duy + ]P’(,Eaxt)xt,lut).
Thus, for the Euler case, the stochastic RSHP principle in (B.1) yields the stochastic
Euler-Poincaré motion equation in (1.5).

The Eulerian vector field (dX;) X; ' € X(R?) is invariant under the action of
the diffeomorphisms from the right, given by X; — X;X for any fixed volume-
preserving diffeomorphism X € SDiff(R?). Since the motion of a Lagrangian
trajectory is given by applying X; to an initial condition z(, this symmetry simply
corresponds to well-known invariance of the Eulerian fluid velocity vector field uy
under relabeling of the Lagrangian coordinates as g — Xxo.
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Appendix B.2. Noether’s theorem and preservation of Kelvin
circulation

The Eulerian vector field (dX;) X; ' € X(R?) is invariant under the action of the dif-
feomorphisms from the right, given by X, — X, X for any fixed volume-preserving
diffeomorphism X € SDiff(R?). Since the motion of a Lagrangian trajectory is given
by applying X; to an initial condition z(, this symmetry corresponds to well-
known invariance of the Eulerian fluid velocity vector field w; under relabeling
of the Lagrangian coordinates as z¢o — Xxo. As we shall see below, this symme-
try of the Eulerian velocity vector field under relabeling of Lagrangian particles
by smooth invertible maps leads via Noether’s theorem to conservation of circula-
tion around each fluid loop and also to conservation of an integrated topological
quantity known as helicity. See Chapter 4 of [42] for a review of Noether’s theorem
relating symmetries and conservation laws.

The endpoint term arising from integration by parts in the RSHP variational
principle is (m,w), as shown above. Vanishing of the endpoint term leads to the
variational equations of motion. However, according to Noether’s theorem, if §.5 = 0
due to invariance of the Lagrangian under a Lie symmetry transformation, then
the endpoint term will keep its value under the evolution governed by variational
equations. In the present case, the right-invariant vector field w generates an arbi-
trary time-independent diffeomorphism of the reference flow domain, under which
the Lagrangian is invariant, since the Eulerian representation is invariant under a
volume-preserving diffeomorphism of the Lagrangian parcel labels.

In the Euler fluid case, m is a 1-form density and the quantity m/D is a 1-
form, although we can ignore the difference, since D = 1 results as the Jacobian
for the flow map generated by a divergence-free vector field. Thus, we can regard
m = u'; = u - dx as simply a 1-form, which is evolving by coadjoint action on it by
the diffeomorphism X, so that it satisfies

d
X:(dm + ad)(kdXt)X;I m) = %(X:m) - —X:(dp),

where X} is the pullback of the Lagrangian flow and we have introduced —dp =
—Vp - dx to account for incompressibility of mf. The previous equation implies that
the integral of the 1-form m around any loop that moves with the flow is constant,
as a result of its RSHP equation of motion. Thus, by Noether’s theorem, invariance
of the Eulerian form of the fluid Lagrangian under fluid particle relabeling implies
preservation of Kelvin’s circulation integral.

REMARK B.1 (Conservation of helicity). The previous equation is equivalent to the
Eulerian expression,

dm = _"C(dxt)xglm — dp.
Consequently, the stochastic evolution of the helicity density (a 3-form) is given by
d(m A dm) = —(f(dxt)xt_lm +dp) Adm) —m A (.,E(dxt)xt—l dm)
= 7£(dXt)Xt’1(m A dm) — d(p dm)
= —div(((dXy)X; ) (u - curlu) + peurlu)d®z.
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For homogeneous boundary conditions, this implies the conservation of the helicity
integral,

d/(m/\ dm) :d/ u-curlud®z =0,

Q Q

which is interpreted as the conservation of the average self-linking number of
vorticity field lines, [3, 65].

Appendix B.3. Passing to the Lie-Poisson Hamiltonian formulation

The Noether quantity also plays an important geometric role on the Hamiltonian
side. The reduced Legendre transformation in the Eulerian representation is given
by, cf. equation (B.1),

h(m) = (m, (dX,)X; )2

- [l(ut) dt + <m, (AX) X —updt = W0 th<k>> ]
k L2

= <m, ug dt + Z ¢® o th(k)> — l(ug) dt
k

L2

(B.2)

1
:2<mm redt + (m Zg V2 o dWF),

where we have used I(u;) = 1/2(u’,u) 2> = 1/2(m,m?) > and the symmetry of the
pairing (-, -)z2 to simplify and regroup terms in the final step of deriving the
reduced Hamiltonian, h(m). We note that the stochastic part of the Hamiltonian
h(m) in (B.2) couples the noise to the momentum map by L? pairing. The varia-
tional derivative of h(m) with respect to m returns the original stochastic Eulerian
vector field,

oh
- f (k) _
6mfmdt+g W o dw ™ = (dx,) X!

Finally, we may rearrange the Euler fluid motion equation into the Lie-Poisson
Hamiltonian form [39]

dm = — ad;h/&n m = {m, h(m)},

in which the stochastic Hamiltonian is given above in the last line in equation (B.2),
and the Lie—Poisson bracket for functionals f and h is defined by

af(m) = {f(m), h(m)} = — <m adgh/am(fﬁ 2=—<m [;Z ;{zD .
r " (B.3)

This Lie-Poisson bracket satisfies the Jacobi identity, because it is a linear func-
tional of the Lie bracket for the Lie algebra of divergence-free vector fields, which
is known to satisfy the Jacobi identity.
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Nonconservation of the deterministic energy under this Hamiltonian dynamics
can be checked easily by setting f(m) = 1(m,m*) = L|ju;||2, in the equation (B.3)

and denoting = =", ¢® o th(k), to find,

1
d=

1 x
2<m,m”>L2 = {<m,mﬁ>L2(Q)7h(m)} = _<ad(dx,,X;1)m’u>L2

2

= —(£Lu, u)p> = (2 x curlu, u) 2 = (—u x curlu, )2

={(u-Vu, Z)p2 = —/ uiEfjuj d,
Q
where we have used the divergence-free property twice in the last line, when inte-
grating by parts. This result is the Stratonovich version of equation (2.40) when
viscosity v is absent. Namely, the original deterministic fluid kinetic energy is not
conserved under the evolution of the circulation conserving stochastic fluid model,
unless the spatial gradients of the correlation eigenvectors ¢*) vanish.

REMARK B.2 (Purely stochastic passive 1-form transport). If we simply drop the
fluid kinetic energy in the total Hamiltonian h(m) in equation (B.2), then only the
stochastic part would remain. Consequently, the Lie-Poisson bracket in (B.3) would
produce a linear passive 1-form transport equation given by
* —
dm + ad(zk 0 aw®)y M = —dp,

where p is determined by requiring that the gauge V - A; = 0 be preserved. In our
other notation, the above equation can be written for a 1-form A; as

dA, =Y P(£5, A o dwM =0, (B.4)
k

where .,€?(,€)At =R VA + (VEENT . A, in vector notation. Equation (B.4) is
the dual problem to the passive Lie-transport equation for the vector field B; =
curlA;,

dBy + Y £ew Brodw M =0, (B.5)
k

where £ By = (%) . V)B; — (B - V)€™ in vector notation. Note that, since V -
A; = 0, the field A; can be recovered uniquely from B; via the Biot-Savart law A; =
(—=A)~teurl(B;). In parallel with remark B.1, for this linear stochastic transport
problem, the magnetic helicity (A¢, By)2(q) is conserved pathwise.

The equation (B.5) is known as the Kazantsev—Kraichnan model of kinematic
dynamo, in which B; represents a transported magnetic field by a white-in-time
Gaussian advecting velocity which is typically assumed to be spatially rough
[45,47,48]. Not unexpectedly, when the noise correlates {£*)},cn are smooth,
the Kelvin theorem for equation (B.4) preserves the circulation around closed loops
which are transported along stochastic Lagrangian paths in the Stratonovich sense.
In this setting, the circulation integral represents the gauge-invariant magnetic flux
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and the conservation law corresponds to Alfvén’s theorem. The stochastically prop-
agating closed loops must each retain its linkage number; since diffeomorphisms
cannot change the topology of a curve embedded in the flow, even if the flow has a
stochastic time dependence. This may fail to be true in the Kazantsev—Kraichnan
model in which the fields {£(®)} < are assumed to be only Holder continuous C(9)
with exponent a € (0,1). In this case, Lagrangian trajectories in fixed realizations
of the advecting Gaussian velocity may become non-unique and the phenomenon of
spontaneous stochasticity [4, 15] must be accounted for when discussing Lagrangian
transport properties, see [16-18].
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