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Abstract
We prove that given initial data !0 2 L1.T2/, forcing

g 2 L1.0; T IL1.T2//;

and any T > 0, the solutions u⌫ of Navier-Stokes converge strongly in

L1.0; T IW 1;p.T2//

for any p 2 Œ1;1/ to the unique Yudovich weak solution u of the Euler equa-
tions. A consequence is that vorticity distribution functions converge to their
inviscid counterparts. As a by-product of the proof, we establish continuity of
the Euler solution map for Yudovich solutions in the Lp vorticity topology. The
main tool in these proofs is a uniformly controlled loss of regularity property of
the linear transport by Yudovich solutions. Our results provide a partial founda-
tion for the Miller-Robert statistical equilibrium theory of vortices as it applies
to slightly viscous fluids. © 2020 Wiley Periodicals LLC

1 Introduction
In this paper we discuss the connection between Yudovich solutions of the Euler

equations

(1.1) @t! C u � r! D g;

with bounded forcing g 2 L1.0; T IL1.T2//, and initial data

(1.2) !.0/ D !0 2 L1.T2/;

and the vanishing viscosity limit (lim⌫!0) of solutions of the Navier-Stokes equa-
tions,

(1.3) @t!
⌫

C u⌫
� r!⌫

D ⌫Å!⌫
C g;
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with initial data

(1.4) !⌫.0/ D !⌫

0
2 L1.T2/;

and the same forcing g. We consider uniformly bounded initial data

(1.5) sup
⌫>0

k!⌫

0
kL1.T2/  �0;1 < 1:

The solutions of (1.1), (1.2), (1.3), and (1.4) are uniformly bounded in L1.T2/:

(1.6) sup
⌫�0

sup
0tT

k!⌫.t/kL1.T2/  �1 D �0;1 C

Z
T

0

kg.t/kL1.T2/dt:

This bound is valid in T2 or R2 but is not available if boundaries are present or in
three dimensions. The bound will be used repeatedly below.

We are interested in the small viscosity behavior of vorticity distribution func-
tion ⇡!⌫.t/.dy/ defined by

(1.7)
Z
f .y/⇡!⌫.t/.dy/ D

Z
f .!⌫.t; x//dx;

for all continuous functions (observables) f . If !⌫

0
! !0 we prove that the distri-

butions convergence

(1.8) ⇡!⌫.t/.dy/
⌫!0

���! ⇡!.t/.dy/ D ⇡!0.dy/;

where the time invariance of the vorticity distribution function for the Euler equa-
tions follows from Lagrangian transport !.t/ D !0ıX�1

t
and volume preservation

of the homeomorphism At D X�1
t

.
The statement (1.8) is a consequence of the strong convergence of the vorticity in

L1.0; T ILp.T2// for all p 2 Œ1;1/ and for any T > 0. We prove this fact here,
extending previous work for vortex patch solutions with smooth boundary [6], and
removing additional assumptions on the Euler path [7]. Implications of our result
for equilibrium theories of decaying two-dimensional turbulence [17,19] are briefly
discussed at the end of this paper. Our main result is the following.

THEOREM 1. Let ! be the unique Yudovich weak solution of the Euler equations
with initial data !0 2 L1.T2/ and forcing g 2 L1.0; T IL1.T2//. Let !⌫ be
the solution of the Navier-Stokes equation with the same forcing and initial data
!⌫

0
! !0 strongly in L2.T2/. Then, for any T > 0 and p 2 Œ1;1/, the inviscid

limit !⌫
! ! holds strongly in L1.0; T ILp.T2//:

(1.9) lim
⌫!0

sup
0tT

k!⌫.t/ � !.t/kLp.T2/ D 0:

Consequently, the distributions converge,

(1.10) lim
⌫!0

⇡!⌫.t/.dy/ D ⇡!0.dy/

for all t 2 Œ0; T ç.
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REMARK 1. There are several senses in which this theorem is sharp. First, there
can be no infinite time result as the Euler solution is conservative and the Navier-
Stokes solution is dissipative. This is obvious if we consider the stationary solu-
tions !0.x/ D sin.Nx/ and g D 0. Secondly, there can be no rate without addi-
tional regularity assumptions on !0, as is the case for the heat equation. Thirdly,
there can be no strong convergence inL1 because !0 may not be continuous while
!⌫ is smooth for any t > 0. Finally, there can be no strong convergence for p > 1
in domains with boundaries if the boundary condition of the Navier-Stokes solu-
tions is no slip, and the Euler solution has nonvanishing tangential velocity at the
boundary, in other words, if there are boundary layers [14].

REMARK 2. One implication of Theorem 1 is that the dissipation of convex func-
tions of vorticity must vanish,

(1.11) lim
⌫!0

⌫

Z
T

0

Z

T2

f 00.!⌫/jr!⌫
j
2 dx dt D 0:

In the special case when f .x/ D jxj
2=2, the above is the enstrophy dissipation

(palenstrophy). In fact, it was proved by Eyink that anomalous enstrophy dissi-
pation requires that !0 … L2.T2/ [11, 13]. The idea is that, if !0 2 L2.T2/,
the enstrophy remains uniformly-in-⌫ bounded since it is nonincreasing under the
Navier-Stokes evolution. Applying the Aubin-Lions lemma yields weak conver-
gence on subsequences to !, a weak solution of the Euler equations (possibly
nonunique). Thus !⌫

! ! in C.0; T Iw � L2.T2//. Moreover, for such ini-
tial data, all weak Euler solutions can be shown to be renormalized in the sense
of DiPerna-Lions and hence conservative [8]. Thus, by weak lower semicon-
tinuity of the L2 norm, the Navier-Stokes enstrophy balance implies also that
norms converge and hence the convergence is strong in L2, pointwise in time,
i.e., !⌫.t/ ! ! in L2.T2/ for each t 2 Œ0; T ç. In fact, whenever the vorticity con-
verges weakly to a conservative weak Euler solution, one has strong convergence
and there can be no anomaly. The convergence can be made uniform in time. This
proof using compactness, however, inherently gives a qualitative statement, and
one cannot extract information about rates of convergence. On the other hand, our
proof is quantitative. Specifically, given information on, say, the spectrum of the
initial vorticity at high wavenumber, one can obtain a rate of convergence. One
class of examples that we discuss in Corollary 2 concerns vorticity in the space
!0 2 L1

\Bs
p;1 for s > 0. However, more generally, for any !0 2 L1 our proof

provides a computable rate of convergence depending on !0.

A corollary of the proof of Theorem 1 and Lemma 4 is the continuity of the
Yudovich solution map !.t/ D St .!0/ in the Lp topology when restricted to fixed
balls in L1.
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COROLLARY 1. For any !0; !
n

0
2 L1.T2/ such that !n

0
is uniformly bounded in

L1.T2/ and !n

0
! !0 as n ! 1 strongly in L2.T2/ we have

(1.12) lim
n!1

��St

�
!n

0

�
� St .!0/

��
Lp.T2/

D 0

for each time t > 0.

The proof of Theorem 1 is based on the fact that linear transport by Yudovich
solutions has a short-time uniformly controlled loss of regularity: it maps bounded
sets inW 1;p, p > 2, to bounded sets inH 1, uniformly in viscosity. More precisely,
we consider the Yudovich solutions !.t/ and !⌫.t/ of the Euler and Navier-Stokes
equations with initial data !0 2 L1 and denote their corresponding velocities by
u.t/ and u⌫.t/, respectively. We take a sequence of regularizations !0;n 2 W 1;1

of !0, which is uniformly bounded in W 1;p, p > 2, and is such that !0;n !

!0 strongly in L2. We let !n.t/ be the unique solutions of the linear transport
problems

@t!n C u � r!n D 0

and !⌫
n
.t/ of

@t!
⌫

n
C u⌫

� r!⌫

n
D ⌫Å!⌫

n
:

On one hand, !n.t/ remains close to !.t/ and !⌫
n
.t/ remains close to !⌫.t/ in

Lp spaces because linear transport by Yudovich velocities is clearly bounded in
Lp. The essential additional ingredient we show is a controlled loss of regularity:
!n.t/ and !⌫

n
.t/ are bounded in H 1 on a short time interval by their initial norms

in W 1;p, p > 2. This uses the fact that ru and ru⌫ are exponentially integrable.
The rest of the proof rests on these observations as well as energy estimates and a
time splitting.

In the direction of propagating regularity, we also prove the fact that if additional
smoothness is assumed on the data, then some degree of fractional smoothness
in Lp can be propagated uniformly in viscosity. We consider the unforced case
g D 0 and fix initial data !⌫

0
D !0 for simplicity, the natural extension being

straightforward.

PROPOSITION 1. Suppose !0 2 .L1
\ Bs

p;1/.T
2/ for some s > 0 and some

p � 1. Then the solutions of the Navier-Stokes equations satisfy !⌫.t/ 2 .L1
\

B
s.t/

p;1/.T2/ uniformly in ⌫, where

s.t/ D s exp.�Ctk!0kL1.T2//

for some universal constant C > 0.

The proof of Proposition 1 relies on the fact that the velocity is log-Lipschitz
uniformly in ⌫ and shows that the exponential estimate with loss of [1] holds uni-
formly in viscosity. Our proof uses the stochastic Lagrangian representation for-
mula of [5]:

(1.13) dXt .x/ D u⌫.Xt .x/; t/dt C

p

2⌫ dWt ; X0.x/ D x;
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yielding the representation formula

(1.14) !⌫.t/ D EŒ!0 ı At ç

where back-to-labels map is defined as At D X�1
t

. The noisy Lagrangian picture
allows for a nearly direct application of the theorems and proofs of [1, 2] to the
viscous case. We remark that the uniform Sobolev regularity can be established by
similar arguments; if !0 2 .L1

\W s;p/.T2/, then !⌫.t/ 2 .L1
\W s.t/;p/.T2/

with uniformly bounded norms.
The uniform regularity of Proposition 1 is used to deduce the following:

COROLLARY 2. Let !0 2 .L1
\ Bs

2;1/.T
2/ with s > 0, and let ! and !⌫ solve

respectively (1.1) and (1.3), with the same initial data !⌫

0
D !0. Then the Lp

convergence of vorticity, for any p 2 Œ1;1/ and any finite time T > 0, occurs at
the rate

(1.15) sup
t2Œ0;T ç

k!⌫.t/ � !.t/kLp.T2/ . .⌫T /
s exp.�2C T k!0k1/

p.1Cs exp.�C T k!0k1// �
;

with the universal constant C > 0 in Proposition 1.

REMARK 3. Recently the estimate with loss of [1] was sharpened for fixed p 2

.1;1/ in [3], where it is shown that the propagated regularity decays inversely
with time rather than exponentially, i.e., zs.t/ D s=.1C Ctps/ for some universal
constant C > 0. See corollary 1.4 of [3]. This improvement is accomplished by
taking greater advantage of the uniform exponential integrability of the velocity
gradient stated in Lemma 1 below. The stochastic representation can also be used
to show uniform boundedness of the vorticity in !⌫.t/ 2 .L1

\ B
zs.t/

p;1/ as was
done in Proposition 1. We omit details here, which are straightforward extensions
of the proofs of [3]. This extension can lead to an improved rate in Corollary 2.

Corollary 2 applies in particular to the inviscid limits of vortex patches with non-
smooth boundary. Indeed, lemma 3.2 of [7] shows that if !0 D �� is the character-
istic function of a bounded domain whose boundary has box-counting (fractal) di-
mensionD not larger than the dimension of space d D 2, i.e., dF .@�/ WD D < 2,
then !0 2 B

.2�D/=p

p;1 .T2/. Proposition 1 then shows that some degree of frac-
tional Besov regularity of the solution !⌫.t/ is retained uniformly in viscosity for
any finite time T < 1 and Corollary 2 provides a rate depending only D;T , and
p at which the vanishing viscosity limit holds, removing therefore the need for the
additional assumptions on the solution imposed in [7].

2 Proofs
PROOF OF THEOREM 1. It suffices to prove that

(2.1) lim
⌫!0

sup
t2Œ0;T ç

k!⌫.t/ � !.t/kL2.T2/ D 0:
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Indeed, convergence in Lp for any p 2 Œ2;1/ then follows from interpolation and
boundedness in L1:

k!⌫.t/ � !.t/kLp.T2/  2�
p�2

p1 k!⌫.t/ � !.t/k
2
p

L2.T2/
:(2.2)

In order to establish strong L1
t
L2

x
convergence for arbitrary finite times T , it is

enough to the convergence for a short time which depends only on a uniform L1
bound on the initial vorticity:

PROPOSITION 2. Let ! and !⌫ solve (1.1) and (1.3) respectively, with initial data
(1.2) and (1.4). Assume that the Navier-Stokes initial data converge uniformly in
L2.T2/

(2.3) lim
⌫!0

k!⌫

0
� !0kL2.T2/ D 0:

Assume also that there exists a contant �1 such that the initial data are uniformly
bounded in L1.T2/:

(2.4) sup
⌫>0

k!⌫

0
kL1.T2/  �1:

Then there exists a constant C⇤ such that the vanishing viscosity limit holds,

(2.5) lim
⌫!0

sup
t2Œ0;T⇤ç

k!⌫.t/ � !.t/kL2.T2/ D 0;

on the time interval Œ0; T⇤ç where

(2.6) T⇤ D .C⇤�1/�1:

Once this proposition is established, the proof of Theorem 1 follows by dividing
the time interval Œ0; T ç in subintervals

Œ0; T ç D Œ0; T⇤ç [ ŒT⇤; 2T⇤ç [ � � �

where T⇤ is determined from the uniform bound (1.6) and by applying Proposition
2 to each interval, with initial data !.nT⇤/ and !⌫.nT⇤/ for Euler and Navier-
Stokes, respectively. . As there is no required rate of convergence for the initial
data in Proposition 2, Theorem 1 follows.

PROOF OF PROPOSITION 2. We introduce functions !` and !⌫

`
, which are the

unique solutions of the following linear problems. We fix ` > 0 and let

@t!` C u � r!` D '` ⇤ g; !`.0/ D '` ⇤ !0;(2.7)
@t!

⌫

`
C u⌫

� r!⌫

`
D ⌫Å!⌫

`
C '` ⇤ g; !⌫

`
.0/ D '` ⇤ !⌫

0
;(2.8)

where '` is a standard mollifier at scale ` and where u and u⌫ are respectively
the unique solutions of Euler and Navier-Stokes equations. Note that the solutions
to the linear problems (2.7) and (2.8) exist globally and are unique because the
Yudovich velocity field u is log-Lipshitz. We observe that we have

k!⌫.t/ � !.t/kL2.T2/  k!.t/ � !`.t/kL2.T2/ C k!⌫.t/ � !⌫

`
.t/kL2.T2/

C k!⌫

`
.t/ � !`.t/kL2.T2/:
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Because the equations for !`; !
⌫

`
and, respectively, !;!⌫ share the same incom-

pressible velocities, we find

(2.9)
k!.t/ � !`.t/kL2.T2/

 k!0 � '` ⇤ !0kL2.T2/ C

Z
t

0

kg.s/ � '` ⇤ g.s/kL2.T2/ds;

(2.10)
k!⌫.t/ � !⌫

`
.t/kL2.T2/

 k!⌫

0
� '` ⇤ !⌫

0
kL2.T2/ C

Z
t

0

kg.s/ � '` ⇤ g.s/kL2.T2/ds:

As mollification can be removed strongly in Lp, the two terms in the right-hand
sides converge to 0 as `; ⌫ ! 0 in any order. It remains to show that

(2.11) lim
⌫!0

sup
t2Œ0;T⇤ç

��!⌫

`
.t/ � !`.t/

��
L2.T2/

! 0

for fixed `. In order to establish this, we use two auxiliary results. The first one is
a general statement about the Biot-Savart law in dimension two.

LEMMA 1. Let ! 2 L1.T2/, and let u be obtained from ! by the Biot-Savart law

u D KŒ!ç D r
?.�Å/�1!:

There exist constants � > 0 (nondimensional and CK (with units of area) such that

(2.12)
Z

T2

expfˇjru.x/jgdx  CK

holds for any ˇ > 0 such that

(2.13) ˇk!kL1.T2/  �:

PROOF OF LEMMA 1. The bound (2.12) holds due to the fact that Calderon-
Zygmund operators map L1 to BMO [21], ! 2 L1

7! ru D rKŒuç 2 BMO,
and from the John-Nirenberg inequality [12] for BMO functions. We provide be-
low a direct and elementary argument (modulo a fact about norms of singular in-
tergal operators) for the sake of completeness.

We recall that there exists a constant C⇤ so that for all p � 2,

(2.14) krKŒvçkLp.T2/ D kr ˝ r.�Å/�1vkLp.T2/  C⇤pkvkLp.T2/

(see [21]). The dependence of (2.14) on p is the important point. Thus,
Z

T2

eˇ jrujdx D

1X

pD0

ˇp
kruk

p

Lp.T2/

pä


1X

pD0

�
C⇤ˇk!kLp.T2/

�p
pp

pä

 jT2
j

1X

pD0

�
C⇤ˇk!kL1.T2/

�p
pp

pä
:(2.15)



8 P. CONSTANTIN, T. DRIVAS, AND T. ELGINDI

This is a convergent series provided C⇤ˇk!kL1.T2/ < 1=e. Indeed, this can be
seen using Stirling’s bound nä �

p

2⇡nnC1=2e�n, which yields

(2.16)
1X

pD0

cppp

pä
 1C

1X

pD1

p�1=2

p

2⇡
.ce/p 

1

1 � ce
provided c 2 Œ0; 1=e/

where c WD C⇤ˇk!kL1.T2/. We may take thus

(2.17) � D .2C⇤e/�1; CK D 2jT2
j:

The constant � depends on the Biot-Savart kernel and is nondimensional; the con-
stant CK then is proportional to the area of the domain. ⇤

The second auxiliary result concerns scalars transported and amplified by a ve-
locity with bounded curl in two dimensions.

LEMMA 2. Let u WD u.x; t/ be divergence free and

! WD r
?

� u 2 L1.0; T IL1.T2// with sup
0tT

k!.t/kL1.T2/  �1:

Consider a nonnegative scalar field ✓ WD ✓.x; t/ satisfying the differential inequal-
ity

(2.18) @t✓ C u � r✓ � ⌫Å✓  jruj✓ C f;

with initial data ✓ jtD0 D ✓0 2 L1.T2/, and forcing f 2 L1.0; T IL1.T2//.
Let � > 0 be the constant from Lemma 1. Then, for any p > 1 and the time
T .p/ D

�.p�1/

2p�1 , it holds that

(2.19) sup
t2Œ0;T .p/ç

k✓.t/kL2.T2/  C1k✓0k

p

L2p.T2/
C C2

for some constants C1; C2 depending only on p, �1 and kf kL1.0;T IL1.T2//.

PROOF OF LEMMA 2. Let p WD p.t/ with p.0/ D p0 and time dependence of
p.t/ to be specified below. Consider

(2.20)

1

2

d
dt

Z

T2

j✓ j
2p.t/dx

D p0.t/
Z

T2

ln j✓ jj✓ j
2p.t/dx C p.t/

Z

T2

j✓ j
2p.t/�2✓@t✓ dx

 p0.t/
Z

T2

ln j✓ jj✓ j
2p.t/dx � p.t/

Z

T2

j✓ j
2p.t/�2✓u � r✓ dx

C ⌫p.t/

Z

T2

j✓ j
2p.t/�2✓Å✓ dx C p.t/

Z

T2

j✓ j
2p.t/�2

jruj✓2 dx

C p.t/

Z

T2

j✓ j
2p.t/�2✓f dx:
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We now use the following facts:
Z

T2

j✓ j
2p�2✓f dx  Ckf kL1.0;T IL1.T2//k✓k

2p�1

2p
;(2.21)

p

Z

T2

j✓ j
2p�2✓u � r✓ dx D

1

2

Z

T2

u � r.j✓ j
2p/dx D 0;(2.22)

⌫

Z

T2

j✓ j
2p�2✓Å✓ dx D �⌫.2p � 1/

Z

T2

j✓ j
2p�2

jr✓ j
2 dx  0:(2.23)

In the second equality we used the fact that the velocity is divergence free. Alto-
gether we thus find

(2.24)

1

2

d
dt

k✓.t/k
2p.t/

2p.t/
dx

 p0.t/
Z

T2

ln j✓ jj✓ j
2p.t/dx

C p.t/

Z

T2

j✓ j
2p.t/

jrujdx C p.t/kf kL1k✓k

2p�1

2p
:

We now use the following elementary inequality: for a 2 R and b > 0,

(2.25) ab  ea
C b ln b � b:

In fact, we use only that ab  ea
Cb ln b. The inequality (2.25) is proved via calcu-

lus and follows because the Legendre transform of the convex function b ln b�bC1
is ea

� 1. Setting a D ˇjruj and b D
1

ˇ
j✓ j

2p, and applying (2.25) and Lemma 1,
we obtain

(2.26)

1

2

d
dt

k✓.t/k
2p.t/

2p.t/

 p0.t/
Z

T2

ln j✓ jj✓ j
2pdx C

p.t/

ˇ

Z

T2

ln.ˇ�1
j✓ j

2p/j✓ j
2p dx

C p.t/

Z

T2

eˇ jrujdx C Cp.t/kf kL1k✓k

2p�1

2p



✓
p0.t/C

2p.t/2

ˇ

◆ Z

T2

ln j✓ jj✓ j
2pdx C

p.t/

ˇ
ln.ˇ�1/k✓.t/k

2p

2p

C p.t/CK C Cp.t/kf kL1k✓k

2p�1

2p
;

where CK is the constant from Lemma 1 and ˇ D
�

�1 depends on the bound for
k!.t/kL1 . We now choose p to evolve according to

(2.27) p0.t/ D �2ˇ�1p.t/2; p.0/ D p0 H) p.t/ D

ˇp0

ˇ C 2p0t
:

Note that p.t/ is a positive monotonically decreasing function of t . Let the time
t⇤ defined by t⇤ D T .p0/ WD ˇ.p0 � 1/=2p0 be such that p.t⇤/ D 1. Then
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p.t/ 2 Œ1; p0ç for all t 2 Œ0; t⇤ç. Note also from (2.27) that
Z

t

0

p.s/ds D log
✓
p0

p.t/

◆2ˇ

D log
✓
1C

2p0t

ˇ

◆ 2
ˇ

:

Definingm.t/ D
1

2
k✓.t/k

2p.t/

2p.t/
and using (2.27) we have the differential inequality

m0.t/  p.t/.C1m.t/CC2/ H) C1m.t/CC2  .C1m0 CC2/

✓
1C

2p0t

ˇ

◆ 2C1
ˇ

with C1 and C2 depending on kf kL1.0;T IL1.T2//, p0, CK , and ˇ. Thus

m.t/  m0

✓
1C

2p0t

ˇ

◆2C1=ˇ

C

C2

C1

✓
1C

2p0t

ˇ

◆2C1=ˇ

� 1

�
:

Note that p0=p.t/ D 1C 2p0ˇ
�1t is increasing on Œ0; t⇤ç from 1 to p0=p.t⇤/ D

p0. Consequently,

(2.28) k✓.t/k2p.t/  C1k✓0k

p0

2p0
C C2

where the constants C1 and C2 have been redefined but the dependence on param-
eters is the same. As p.t/ 2 Œ1; p0ç for all t 2 Œ0; t⇤ç we have that k✓.t/k2 

k✓.t/k2p.t/ and we obtain

sup
t2Œ0;t⇤ç

k✓.t/k2  C1k✓0k

p0

2p0
C C2;

which completes the proof. ⇤

A similar idea to our Lemma 2 was used in [10, lemma 3]. We apply our two
lemmas to the two-dimensional linearized Euler and Navier-Stokes equations to
obtain uniform boundedness of vorticity gradients for short time.

LEMMA 3. Fix ` > 0 and let !` and !⌫

`
solve (2.7) and (2.8), respectively. Then

there exists a constant C⇤ and a constant C` < 1 depending only on `, the forcing
norm kgkL1.0;T IL1.T2//, and the uniform bound on solutions given in (1.6) such
that for T⇤  .C⇤�1/�1, we have that

sup
t2Œ0;T⇤ç

�
k!`.t/kH 1 C k!⌫

`
.t/kH 1

�
 C`:

PROOF. We focus on proving a viscosity independent bound for k!⌫

`
.t/kH 1 .

The proof for k!`.t/kH 1 is the same, when setting ⌫ D 0. We show that jr!⌫

`
j

obeys (2.18). Differentiating (2.8), we find

.@t C u⌫
� r/r!⌫

`
C ru⌫

� r!⌫

`
D ⌫Å.r!⌫

`
/C r.'` ⇤ g/:

A standard computation shows that jr!⌫

`
j satisfies

.@t C u⌫
� r � ⌫Å/jr!⌫

`
j  jrujjr!⌫

`
j C jr.'` ⇤ g/j;
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which is a particular case of the scalar inequality (2.18) with ✓ D jr!⌫

`
j, initial

data ✓0 D jr.'` ⇤ !⌫

0
/j 2 L1.T2/, and forcing

f D jr.'` ⇤ g/j 2 L1.0; T IL1.T2//;

as claimed. Applying Lemma 2, we find that for any p > 1 (e.g., p D 2) we have

sup
t2Œ0;T⇤ç

��!⌫

`
.t/

��
H 1 D C1

1

`p

✓Z

T2

ˇ̌
!⌫

0
⇤ .r'/`

ˇ̌
2p dx

◆1=2

C C2

. C`

��!⌫

0

��p

L1.T2/
. C`�

p

1:(2.29)

The constant C` depends on�1. It diverges with the mollification scale `, through
the prefactor `�p and through the dependence on kr.'` ⇤ g/kL1 . `�1

kgkL1 .
The important point, however, is that (2.29) holds uniformly in viscosity, complet-
ing the proof. ⇤

We return now now to the proof of the main theorem. Using Lemma 3, the
difference energy obeys

d
dt

k!⌫

`
� !`k

2

L2.T2/
D �

Z

T2

.u⌫
� u/ � r!⌫

`

�
!⌫

`
� !`

�
dx

� ⌫

Z

T2

ˇ̌
r!⌫

`

ˇ̌
2 dx C ⌫

Z

T2

r!⌫

`
� r!` dx

 4�ku⌫
� ukL2

��
r!⌫

`

��
L2 C ⌫

��
r!⌫

`

��
L2kr!`kL2

. C`ku⌫
� ukL1.0;T IL2.T2// C ⌫C 2

`
:

Integrating we find
��!⌫

`
� !`

��2

L2 .
��'` ⇤

�
!⌫

0
� !0

���2

L2

C C`T ku⌫
� ukL1.0;T IL2.T2// C ⌫C 2

`
T:

(2.30)

To conclude the proof we must show that, at fixed ` > 0, we have

lim
⌫!0

��!⌫

`
� !`

��
L2.T2/

D 0:

Recall that by our assumption (2.3) we have that lim⌫!0 k!⌫

0
� !0kL2.T2/ ! 0.

So we need only establish strong convergence of the velocity inL2.0; T IL2.T2//.
If g D 0 and u⌫

0
D u0, this is a consequence of theorem 1.4 of [4]. Below

is a generalization of [4] that applies in our setting and is proved by a different
argument.

LEMMA 4. Let !0 2 L1.T2/. There exist constants U , �2, and K (see below
(2.34), (2.35), and (2.50)) depending on norms of the initial data and of the forcing
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such that the difference v D u⌫
� u of velocities of solutions (1.1) and (1.3) obeys

kv.t/k2

L2

 3U 2K
5.t�t0/�1

�

 
kv.t0/k

2

L2.T2/

U 2
C �

�2

2

U 2�1
⌫

!1� 5.t�t0/�1
�(2.31)

for all 0  t0  t . By iterating the above, we obtain

kv.t/k2

L2

 20U 2K1�e
�10t�1=�

 
kv.0/k2

L2.T2/

U 2
C �

�2

2

U 2�1
⌫

!e
� 10t�1

�

(2.32)

provided that kv.0/k2

L2.T2/
C �⌫�2

2
=�1  9KU 2.

REMARK 4 (Continuity of Solution Map). At zero viscosity, Lemma 4 establishes
Hölder continuity of the Yudovich (velocity) solution map. Specifically, denoting
ut WD Sv

t
.u0/ and setting ⌫ D 0, a consequence of Lemma 4 is that

��Sv

t
.u0/ � Sv

t
.u0

0
/
��

L2.T2/
 Cku0 � u0

0
k

˛.t/

L2.T2/

where ˛.t/ WD e�ct and c; C > 0 are appropriate constants. This fact is used to
prove Corollary 1. It is worth noting that the condition on the data kv.0/k2

L2.T2/


9KU 2 required for the above estimate to hold isO.1/ (data need not be taken very
close).

PROOF OF LEMMA 4. The proof proceeds in two steps.

Step 1. Short time bound. The proof of the lemma starts from the equation
obeyed by the difference v,

@tv C u⌫
� rv C v � ruC rp D ⌫Åv C ⌫Åu

leading to the inequality

(2.33)
d

dt
kvk

2

L2 C ⌫krvk
2

L2  ⌫kruk
2

L2 C 2

Z
jrujjvj

2 dx

which is a straightforward consequence of the equation, using just integration by
parts. We use the bound �1 (1.6) for the vorticity of the Euler solution. We also
use a bound for the L2 norms

(2.34) sup
0tT

�
ku⌫.t/kL2.T2/ C ku.t/kL2.T2/

�
 U;

which is easily obtained from energy balance. We use also bounds for Lp norms
of vorticity,

(2.35) �p D sup
0tT

k!.t/kLp.T2/  �1:
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We split the integral
Z

jrujjvj
2 dx D

Z

B

jrujjvj
2 dx C

Z

T2nB

jrujjvj
2 dx

where
B D fx j jv.x; t/j � MU g

with M to be determined below. Although B depends in general on time, it has
small measure if M is large,

jBj  M�2:

The constant M has dimensions of inverse length. We bound

(2.36) 2

Z

B

jrujjvj
2 dx  2krukL2kvk

2

L4  2jBj

1
4 krukL4kv.t/k2

L4

where we used
R

B
jruj

2 dx  jBj

1
2 kruk

2

L4 . We now use the fact that we are in
Yudovich class and Ladyzhenskaya inequality to deduce

kv.t/k2

L4  Ckv.t/kL2 Œk!0kL2 C kgkL1.0;T IL2/ç  CU�2;

and we also use

krukL4  ŒCk!0kL4 C kgkL1.0;T IL4/ç D �4

to bound (2.36) by

(2.37) 2

Z

B

jrujjvj
2 dx  CU�2�4M

� 1
2 ;

We nondimensionalize by dividing by U 2 and we multiply by ˇ D �=�1. The
quantity

(2.38) y.t/ D

kv.t/k2

L2.T2/

U 2

obeys the inequality

(2.39) ˇ
dy
dt

 ˇ⌫
�2

2

U 2
C Cˇ�4

�2

U
M� 1

2 C 2

Z

T2nB

ˇjruj

jvj
2

U 2
dx:

We write the term
(2.40)

2

Z

T2nB

ˇjrujjvj
2U�2 dx D 2

Z

T2nB

✓
ˇjruj C log ✏ C log

1

✏

◆
jvj

2U�2 dx

with ✏ (with units of inverse area) to be determined below. We use the inequality
(2.25) and Lemma 1 with

a D ˇjruj C log ✏; b D

jvj
2

U 2
;
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to deduce

(2.41) 2

Z

T2nB

ˇjrujjvj
2U�2 dx  2✏CK C 2 log

M 2

✏
y.t/:

Inserting (2.41) in (2.39) we obtain

(2.42) ˇ
dy
dt

 F C log
✓
M 2

✏

◆
y.t/

with

(2.43) F D ˇ⌫
�2

2

U 2
C Cˇ�4

�2

U
M� 1

2 C 2✏CK :

Note that F and M
2

✏
are nondimensional. From (2.42) we obtain immediately

(2.44) y.t/ 

✓
M 2

✏

◆ t�t0
ˇ

y.t0/C

F

log
�

M 2

✏

�

0

@
✓
M 2

✏

◆ t�t0
ˇ

� 1

1

A:

We choose M such that

(2.45) Cˇ�4

�2

U
M� 1

2 D ˇ⌫
�2

2

U 2
C y.t0/

and we choose ✏ such that

(2.46) 2✏CK D ˇ⌫
�2

2

U 2
C y.t0/:

These choices imply

(2.47) F D 3ˇ⌫
�2

2

U 2
C 2y.t0/:

Then we see that

(2.48) Ä D

M 2

✏
D 2CK

✓
Cˇ�4

�2

U

◆4

⇥

 
ˇ⌫
�2

2

U 2
C y.t0/

!�5

:

Taking without loss of generality logÄ � 1, we have from (2.44)

y.t/  3

 
y.t0/C ˇ⌫

�2

2

U 2

!
Ä

t�t0
ˇ

 3

 
y.t0/C ˇ⌫

�2

2

U 2

!1� 5.t�t0/

ˇ

⇥

 
2CK

✓
Cˇ�4

�2

U

◆4
! 5.t�t0/

ˇ

:(2.49)

Recalling that ˇ D �=�1 and denoting the nondimensional constant

(2.50) K D 2CK

✓
Cˇ�4

�2

U

◆4
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we established

(2.51)
kv.t/k2

U 2
 3K

5.t�t0/�1
�

 
kv.t0/k

2

L2.T2/

U 2
C ˇ⌫

�2

2

U 2

!1� 5.t�t0/�1
�

:

Thus, we established (2.31).
Step 2. Long time bound. With (2.31) established, we now prove (2.32). Let

c D 5�1=� ,Åt D 1=2c, and ti D ti�1 CÅt and ai D kv.ti /k
2

L2=U
2 for i 2 N.

Then (2.31) states

(2.52) ai  C1.ai�1 C C2⌫/
1=2; i D 1; 2; : : :

with C1 D 3K
5�1
2c�

D 3K
1
2 and C2 D ˇ

�
2
2

U 2 . We set

(2.53) ın D

ai C C2⌫

C 2

1

and observe that (2.52) is

(2.54) ın 

p
ın�1 C z⌫

where

(2.55) z⌫ D

C2⌫

C 2

1

is a nondimensional inverse Reynolds number. It follows then by induction that

(2.56) ın  .ı0/
2

�n

C

n�1X

iD0

.z⌫/2
�i

:

Indeed, the induction step follows from

(2.57) ınC1 

p
ın C z⌫

and the subadditivity of � 7!

p

�. If

(2.58) z⌫ 

1
p

5 � 1
;

then the iteration (2.54) starting from 0 < ı0 < r , where r is the positive root of
the equation x2

�x� z⌫ D 0, remains in the interval .0; r/, and for any n, ın obeys
(2.56). We observe that

(2.59)
n�1X

iD0

.z⌫/2
�i

D .z⌫/2
�nC1�

1C � � � C .z⌫/2
n�1�



1

1 � z⌫
.z⌫/2

�nC1

;

and therefore (2.32) follows from (2.56). We note that the iteration defined with
equality in (2.54) converges as n ! 1 to r . Fixing any t > 0 and letting n D

dt=Åte D d2cte D d10t�1=�e establishes the bound. ⇤
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Due to assumption (2.3) we have that lim⌫!0 ku⌫

0
� u0kL2.T2/ ! 0. Lemma 4

then allows us to conclude from (2.30) that lim⌫!0 supt2Œ0;T⇤ç k!⌫

`
�!`kL2.T2/ !

0 at fixed ` > 0, and the proof of Proposition 2 is complete. ⇤

With the proposition proved, the proof of the strong convergence of the vorticity
in the Lp statement in the theorem is established. To obtain convergence of the
distribution functions, see theorem 3.6 in [7]. ⇤

PROOF OF PROPOSITION 1. This proof makes use of the the stochastic La-
grangian representation for Navier-Stokes solutions [5], together with the uniform-
in-⌫ boundedness of vorticity. In light of the Lagrangian representation (1.13),
(1.14), the key ingredient of propagating some degree of fractional regularity on
the vorticity is the (uniform) Hölder regularity of the inverse flowAt . Since the dif-
fusion coefficients on the additive noise on (1.13) are spatially constant, it follows
that the results of chapter 3 of [2] hold realization-by-realization for the stochastic
flow Xt and its inverse At , uniformly in viscosity. This gives uniform bounds on
the separation of two trajectories driven by the same realization of Brownian noise,
independent of viscosity, thereby establishing spatial Hölder regularity of the flow.
Although straightforward, we include a proof of this statement for completeness.

PROPOSITION 3. There exists a unique measure-preserving stochastic flow of
homeomorphisms solving (1.13). This flow and the back-to-labels map are contin-
uous flowsX;A, which for all t 2 Œ0; T ç are uniformly-in-⌫ of the class C ˛.t/.T2/
with ˛.t/ D exp.�Ct=ˇ/ with constants defined in (2.60).

PROOF OF PROPOSITION 3. We employ the log-Lipschitz property of u⌫ ; i.e.,
there exists an absolute constant C > 2 such that one has the uniform-in-viscosity
estimate

(2.60) ju⌫.x; t/ � u⌫.y; t/j 

C

ˇ
d.x; y/ ln

✓
CCK

d.x; y/2

◆
8x; y 2 T2;

where ˇ and CK are the constants in Lemma 1, which depend only on k!0kL1 ;
see lemma A.1 of [3]. Here d.x; y/ WD minfjx � y � kj W k 2 Zd ; jkj  2g is the
geodesic distance on the torus upon the identification Td

D Œ0; 1/d . Now, due to
the spatial uniformity of the noise on the trajectories,

(2.61) dXt .x/ D u.Xt .x/; t/dt C

p

2⌫ dWt ; X0.x/ D x;

we find that the difference has no martingale part and satisfies

(2.62) d.Xt .x/ �Xt .y// D

�
u⌫.Xt .x/; t/ � u⌫.Xt .y/; t/

�
dt:

Upon integration, we obtain the inequality

(2.63)
d.Xt .x/; Xt .y//

 d.x; y/C

C

ˇ

Z
t

0

d.Xs.x/; Xs.y// ln
✓

CCK

d.Xs.x/; Xs.y//
2

◆
ds
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for all x; y 2 T2. The solution of this integro-inequality (with a possibly larger
constant C ) is

(2.64) d.Xt .x/; Xt .y//  .CCK/
1Ce

�C t=ˇ

d.x; y/e
�C t=ˇ

a.s.

Since the bound holds almost surely, this says that the map Xt .�/ is Hölder con-
tinuous C ˛.t/.T2/ with ˛.t/ D e�C t=ˇ as claimed. We remark that deterministic
trajectories in a log-Lipschitz field satisfying (2.60) satisfy precisely the same up-
per bound (2.64).

To obtain Hölder regularity of the back-to-labels map, it suffices to note that
At can be identified with the backwards flow Xt;0, which solves the following
backward stochastic differential equation

(2.65) ydXt;s.x/ D u.Xt;s.x/; s/ds C

p

2⌫ yd ÄWs; Xt;t .x/ D x;

where the yd indicates that the backward differential and ÄWs D Wt�s � Wt is a
Brownian motion adapted to the backward filtration ÄF t

s
WD �f

ÄWu; u 2 Œ0; sçg. For
a discussion of backward Itxo equations; see, e.g., [16]. With this identification, one
finds as above that for any t > 0 and all s 2 Œ0; t ç, one has

(2.66) d.Xt;s.x/; Xt;s.y//  .CCK/
1Ce

�C.t�s/=ˇ

d.x; y/e
�C.t�s/=ˇ

a.s.

By setting s D 0 we find that At D Xt;0 satisfies the same estimate (2.64) as Xt

and therefore is Hölder continuous with the same exponentially decaying exponent.
⇤

Proceeding forward to obtain uniform bounds we wish to make use of the rep-
resentation formula (1.13)–(1.14). This requires some regularity on the initial con-
dition, so we replace !0 2 L1.T2/ with a mollification of it, !0 ⇤ '` 2 C1.T2/
for ` > 0. All the bounds will be manifestly independent of `, which can be taken
to zero at the end, so we simplify the notation by writing “!0.”

We continue by following closely the proof of theorem 3.32 of [2]. In particular,
we introduce the space F s

p
.Td / (which belongs to the family of Triebel-Lizorkin

spaces F s
p

D F s
p;1 provided p > 1) that is comprised of measurable functions

f 2 Lp.Td / that are finite in the seminorm

(2.67) Œf çF s
p

WD

inf
g2Lp.Td /

˚
kgkLp.Td / W jf .x/ � f .y/j  d.x; y/˛.g.x/C g.y//

8x; y 2 Td
 
< 1

where d.x; y/ is the distance function on the torus defined above; see definition
3.30 of [2]. The key to the argument is understanding how composition with a
(uniformly) Hölder continuous stochastic diffeomorphism provided by Proposition
3 operates on F s

p
. Using the stochastic representation (1.14),

(2.68) !⌫.t/ D EŒ!0 ı At ç;
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Jensen’s inequality, Hölder continuity of the back-to-labels map, and the fact that
!0 2 F s

p
, we have

(2.69)

j!⌫.x; t/ � !⌫.y; t/j

d.x; y/s˛

D

jEŒ!0.At .x// � !0.At .y//çj

d.x; y/s˛

 E


j!0.At .x// � !0.At .y//j

d.x; y/s˛

�

D E


j!0.At .x// � !0.At .y//j

d.At .x/; At .y//
s

d.At .x/; At .y//
s

d.x; y/s˛

�

 kAtk
s

C ˛ EŒg.At .x//C g.At .y//ç

for any g 2 Lp.T2/, where we used that !0 2 F s
p

together with the definition
(2.67). Let zg.x/ WD EŒg.At .x//ç. Note that, since At is measure preserving and
we can apply Jensen’s inequality, we have kzgkLp.T2/  kgkLp.T2/ < 1. Thus
zg 2 Lp.T2/, and it follows by the linearity of the expectation that the right-hand-
side of (2.69) is an Lp function. This shows that

(2.70) Œ!⌫.t/ç
F

s.t/
p

 .CK/s.1Ce
�C t=ˇ

/Œ!0çF s
p
; s.t/ D s exp.�Ct=ˇ/;

where we used the explicit bound on the Hölder norm computed in (2.64). The
bound (2.70) holds uniformly in viscosity. In order to connect to some Bs

p;1
(which is a larger space) we need to use an embedding for the initial data

(2.71) Bs3
p;1 ⇢ Bs2

p;1
⇢ W s2;p

⇢ F s1
p

with s3 > s2 > s1. The proposition follows from lemma 3.31 of [2], which shows
that the Triebel–Lizorkin spaces are continuously embedded in the Besov spaces,
i.e., F s

p
.Td / ,! Bs

p;1.T
d /. ⇤

PROOF OF COROLLARY 2. We need the following elementary lemma:

LEMMA 5. For any s > 0 and f 2 Bs

2;1.T
d /, the following inequality holds for

all 0 < s0 < s:

(2.72) kf kL2.Td /  kf k

s
0
=.1Cs

0
/

H �1.Td /
kf k

1=.1Cs
0
/

B
s
2;1.Td /

:

PROOF. First note that the interpolation inequality

(2.73) kf kL2.Td /  kf k

s
0
=.1Cs

0
/

H �1.Td /
kf k

1=.1Cs
0
/

H s0
.Td /

;

which follows from the Hölder inequality and the Fourier definition of the Sobolev
norm. The claim follows from the embedding Bs

p;q
.Td / ⇢ Bs

0
p;q0.Td / for s0 < s

and any q0; q (see §2.3.2 of [22]) and the identification H s
WD Bs

2;2
. ⇤
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Proceeding with the proof, applying Lemma 5 for all t 2 Œ0; T ç we have

k!⌫.t/ � !.t/kL2.T2/  k!⌫.t/ � !.t/k
s0

1Cs0
H �1.T2/

k!⌫.t/ � !.t/k
1

1Cs0
B

s.t/
2;1.T2/

. sup
t2Œ0;T ç

ku⌫.t/ � u.t/k
s.t/

1Cs.t/ �
L2.T2/

for any s0 < s.t/ WD s exp.�CT k!0k1/. In the above, we appealed to Propo-
sition 1 to establish uniform-in-⌫ boundedness of the solution !⌫ in the space
L1.0; t IBs.t/

2;1.T
2//. We now use Lemma 4 to conclude

(2.74)

k!⌫.t/ � !.t/kLp.T2/

 k!⌫
� !k

p�2
p

L1.0;T IL1.T2//
k!⌫.t/ � !.t/k

2
p

L2.T2/

. sup
t2Œ0;T ç

ku⌫.t/ � u.t/k
2s.t/

p.1Cs.t// �
L2.T2/

. .⌫T /
s exp.�2C T k!0k1/

p.1Cs exp.�C T k!0k1// �
:

This completes our proof. ⇤
REMARK 5. The stochastic Lagrangian representation of the vorticity also offers
an expression for the enstrophy dissipation as the variance of the (randomly sam-
pled) initial data

(2.75) ⌫

Z
t

0

Z

T2

jr!⌫.t 0; x/j2 dx dt 0 D

1

2

Z

T2

Var
⇥
!⌫

0
.At .x//

⇤
dx:

The above is a special case of the Lagrangian fluctuation dissipation relation for
active scalars derived in [9]. This relation is easily generalized to incorporate the
effect of body forces. A consequence of Theorem 1 is that the enstrophy dissi-
pation vanishes in the high Reynolds number limit, forcing also the variance to
become 0. Thus, there is no “spontaneous stochasticity” of Lagrangian trajecto-
ries in the vanishing viscosity limit for 2D Navier-Stokes with initial data in the
Yudovich class.

3 Discussion
Predicting the long-time vortex structures in two-dimensional turbulence is of

longstanding interest, starting with the work on dynamics of point vortices by On-
sager [18]. There have been a number of theories developed to this effect. We
briefly review the celebrated mean-field theory of Miller [17] and Robert [19] to
give context to our result. The idea is to describe an equilibrium configuration !eq
satisfying

(3.1) !.t/
t!1
����! !eq

in some sense. If !.t/ is an Euler path with bounded initial vorticity, then one has
the following information:
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(1) conservation of energy:

(3.2) ku.t/kL2.T2/ D ku0kL2.T2/;

(2) conservation of vorticity “casmirs”: for any continuous f ,

(3.3) If WD

Z

T2

f .!.x; t//dx D

Z

T2

f .!0.x//dx:

For long-time limits of Euler flows, there is a natural candidate object to describe
!eq. In particular, provided only !0 2 L1.T2/, then !.t/ 2 L1.T2/ is the
unique solution of Euler [23], and in the weak-⇤ sense

(3.4) lim
n!1

Z

T2

'.x/!.x; tn/dx D

Z

T2

'.x/x!.x/dx 8' 2 L1.T2/

for some x! 2 L1.T2/ and some subsequence tn ! 1 as n ! 1. However,
large oscillations can remain in this limit. In particular, the above convergence does
not imply for all continuous functions f that f .!.x; tn// converges to f .x!.x// in
the same sense, so it is not clear how the information (3.2) and (3.3) can be retained
and in what sense. On the other hand, the fundamental theorem of Young measures
guarantees

(3.5) lim
n!1

Z

T2

'.x/f .!.x; tn//dx D

Z

T2

'.x/

Z
M

�M

f .y/⌫x.dy/dx

with M D k!0kL1.T2/. Note that, having introduced the Young measure ⌫x.dy/,
the convergence (3.4) holds with

(3.6) x!.x/ D

Z
M

�M

y⌫x.dy/ 8f 2 C.Œ�M;M ç/:

Kraichnan developed a theory for the equilibrium distribution x! discarding most of
the information on the casmirs, keeping only conservation of energy and enstrophy
[15]. However, it was since recognized that invariants involving higher powers
of vorticity should not be neglected on compact domains such as T2. In order
to retain as much information about the Euler solution as possible, Miller [17]
and Robert [19] independently suggested that the long-time vorticity distribution
resulting from freely decaying two-dimensional turbulence is a Young measure of
the form

(3.7) ⌫x.dy/ D ⇢.x; y/dy:

These Young measures have the property that their marginal distribution is the
(initial) vorticity distribution function (1.8), which is left invariant under the Euler
flow. Thus, if a measure (3.7) with the above property can be constructed such that
also the energy associated to x! equals that of !0, then the information on all ideal
invariants is retained at the level of the predicted equilibrium distribution. Miller
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and Robert provide such a construction.1 Specifically, by a Boltzmann counting
argument, they showed that the entropy associated with a given density ⇢.x; y/
of the Young measure has a specific form. Assuming ergodicity at long times,
i.e., that the 2D Euler flow is sufficiently chaotic in phase space, they suggested
to maximize this entropy subject to the above constraints. The prediction of the
theory is the long-time distribution is

(3.8) ⇢.x; y/ D

exp
�
ˇ
⇥
y x .x/C �.y/

⇤�

R
M

�M
exp

�
ˇ
⇥
y x .x/C �.y/

⇤�
dy
;

where the “inverse temperature” ˇ and “chemical potential” �.y/ are Lagrange
multipliers to enforce energy conservation and the marginal density ⇡!0 Œdyç re-
spectively, and where the stream function x solves

(3.9) Å x .x/ D x! D

R
M

�M
y exp

�
ˇ
⇥
y x .x/C �.y/

⇤�
dy

R
M

�M
exp

�
ˇ
⇥
y x .x/C �.y/

⇤�
dy

:

Thus, the prediction is that the expected (average or coarsened) vorticity solves a
very particular steady Euler equation ! D F. / where  is the stream function.
The function F depends on the distribution ⇡!0 Œdyç and the energy E0. It is im-
portant to remark that conservation individual casmirs may not survive as t ! 1,
but that according to this theory, at a given energy E0, they are forever remem-
bered at the level of the equilibrium distribution. Some numerical simulations have
provided corroboratory evidence supporting this theory over competitive ones such
as the Onsager-Joyce-Montgomery theory, at least in situations where !0 is sup-
ported on a finite area [20]. Whether or not the theory rigorously applies is an open
question.

There are two major questions remaining about the domain of applicability of
the Miller-Robert theory. The first being whether or not 2D Euler possesses the
requisite ergodicity properties to justify entropy maximization. The second, and
the one that motivates the present study, is whether the theory should apply to 2D
Navier-Stokes solutions at small viscosity. This is related to the issue of anomalies
in ideally conserved quantities. For energy, there is no question since

E⌫.t/ WD

1

2

Z

T2

ju⌫.t/j2 dx
⌫!0

���! E0

1 We remark that the Miller-Robert theory applies to any compact domain � ⇢ R2 with smooth
boundary, with the torus � D T2 as a special case. It is worth noting that convergence of higher-
order vorticity moments in the zero viscosity limit on domains with boundaries is, in general, false. In
fact, if the Euler velocity u is not identically 0 along the boundary and no-slip Navier-Stokes solutions
converge to these u⌫ * u weakly in L1.0; T IL2.�//, then lim sup⌫!0 k!⌫

kL1.0;T ILp.�// D

1 for all p 2 .1;1ç (see theorem 3.1 of [14]). If weak convergence fails to hold, then by Kato’s
energy dissipation condition, we know lim sup⌫!0 k!⌫

k
L2.0;T IL2.�//

D 1. Thus, unless the
Euler solution is identically zero on the boundary, higher moments of vorticity must diverge in the
inviscid limit, presenting a great difficulty for the Miller-Robert theory as it applies to inviscid limits.
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for any finite time under the assumption that !0 2 L1.T2/. On the other hand,
it has not been clear that high-order ideal moments such as I ⌫

n
D

R
T2 j!⌫.t/jn dx

for n > 2 will be conserved in the limit of zero viscosity or if there will be an
associated anomaly due to fine-scale mixing of the vorticity field. If they are not,
it seems unlikely that these casmirs should be remembered at the level of the equi-
librium distribution of vorticity. Our theorem establishes that there can be no such
anomalies of higher-order invariants on any finite time interval Œ0; T ç with T arbi-
trarily large. Thus, it shows that the dependence of F on viscosity is slow, which
provides a partial foundation for the Miller-Robert theory as it applies to slightly
viscous fluids.
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