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Abstract
We prove that given initial data wg € L% (T ?2), forcing
g € L®(0, T: L®(T?)).
and any 7' > 0, the solutions u” of Navier-Stokes converge strongly in
L. T: WP (T?)

for any p € [1,00) to the unique Yudovich weak solution u of the Euler equa-
tions. A consequence is that vorticity distribution functions converge to their
inviscid counterparts. As a by-product of the proof, we establish continuity of
the Euler solution map for Yudovich solutions in the L? vorticity topology. The
main tool in these proofs is a uniformly controlled loss of regularity property of
the linear transport by Yudovich solutions. Our results provide a partial founda-

tion for the Miller-Robert statistical equilibrium theory of vortices as it applies
to slightly viscous fluids. © 2020 Wiley Periodicals LLC

1 Introduction

In this paper we discuss the connection between Yudovich solutions of the Euler
equations

(1.1) diw+u-Vo =g,
with bounded forcing g € L>°(0, T; L°(T?)), and initial data
(1.2) w(0) = wp € L®(T?),

and the vanishing viscosity limit (lim,—,¢) of solutions of the Navier-Stokes equa-
tions,

(1.3) 0w’ +u” - Vo' = vAw’ + g,
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with initial data
(1.4) 0’ (0) = wy € L®(T?),
and the same forcing g. We consider uniformly bounded initial data

(1.5) sup [|@g || Loo(m2) < 0,00 < 0.
v>0

The solutions of (I.1), (1.2)), (1.3), and (1.4) are uniformly bounded in L>°(T?):

T
(1.6)  sup sup [@" (1) ee(r2) < Qoo = Q0,00 + [ OIS OTIE
v>00<t<T 0
This bound is valid in T2 or R? but is not available if boundaries are present or in
three dimensions. The bound will be used repeatedly below.
We are interested in the small viscosity behavior of vorticity distribution func-
tion 7ev ;) (dy) defined by

(L.7) / FO) a0 (dy) = / F(@" (1, x)dx.

for all continuous functions (observables) f. If wj — wo we prove that the distri-
butions convergence

—0
(1.8) T )(dY) = 7o) (dy) = Ty (dY),

where the time invariance of the vorticity distribution function for the Euler equa-
tions follows from Lagrangian transport (¢) = wgo X; ! and volume preservation
of the homeomorphism 4, = X; 1.

The statement is a consequence of the strong convergence of the vorticity in
L>®(0,T; LP(T?)) forall p € [1,00) and for any T > 0. We prove this fact here,
extending previous work for vortex patch solutions with smooth boundary [6], and
removing additional assumptions on the Euler path [7]. Implications of our result
for equilibrium theories of decaying two-dimensional turbulence [[17/19] are briefly
discussed at the end of this paper. Our main result is the following.

THEOREM 1. Let w be the unique Yudovich weak solution of the Euler equations
with initial data wg € L°(T?) and forcing g € L>®(0, T; L>(T?)). Let " be
the solution of the Navier-Stokes equation with the same forcing and initial data
wy — wo strongly in L2(T?). Then, for any 7 > 0 and p € [1, 00), the inviscid
limit @” — o holds strongly in L>°(0, T'; L?(T?)):
(1.9) lim sup [w"(t) —()lLr(r2) = 0.

v—>00<t<T

Consequently, the distributions converge,

(1.10) lim 74,0 (1) (dy) = 7w, (dy)
v—>0

forall ¢t € [0, T].
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REMARK 1. There are several senses in which this theorem is sharp. First, there
can be no infinite time result as the Euler solution is conservative and the Navier-
Stokes solution is dissipative. This is obvious if we consider the stationary solu-
tions wo(x) = sin(Nx) and g = 0. Secondly, there can be no rate without addi-
tional regularity assumptions on wy, as is the case for the heat equation. Thirdly,
there can be no strong convergence in L°° because wg may not be continuous while
" is smooth for any ¢ > 0. Finally, there can be no strong convergence for p > 1
in domains with boundaries if the boundary condition of the Navier-Stokes solu-
tions is no slip, and the Euler solution has nonvanishing tangential velocity at the
boundary, in other words, if there are boundary layers [14].

REMARK 2. One implication of Theorem [I]is that the dissipation of convex func-
tions of vorticity must vanish,

T
(1.11) lim v[ / f"(@")|Vo®|?dx dr = 0.
v—0 0 JT2
In the special case when f(x) = |x|?/2, the above is the enstrophy dissipation

(palenstrophy). In fact, it was proved by Eyink that anomalous enstrophy dissi-
pation requires that wg ¢ LZ(T?) [11,/13]. The idea is that, if wg € L?(T?),
the enstrophy remains uniformly-in-v bounded since it is nonincreasing under the
Navier-Stokes evolution. Applying the Aubin-Lions lemma yields weak conver-
gence on subsequences to @, a weak solution of the Euler equations (possibly
nonunique). Thus ¥ — w in C(0,T;w — L?(T?)). Moreover, for such ini-
tial data, all weak Euler solutions can be shown to be renormalized in the sense
of DiPerna-Lions and hence conservative [8]. Thus, by weak lower semicon-
tinuity of the L? norm, the Navier-Stokes enstrophy balance implies also that
norms converge and hence the convergence is strong in L2, pointwise in time,
i, w”(t) = win L?*(T?) foreach ¢ € [0, T]. In fact, whenever the vorticity con-
verges weakly to a conservative weak Euler solution, one has strong convergence
and there can be no anomaly. The convergence can be made uniform in time. This
proof using compactness, however, inherently gives a qualitative statement, and
one cannot extract information about rates of convergence. On the other hand, our
proof is quantitative. Specifically, given information on, say, the spectrum of the
initial vorticity at high wavenumber, one can obtain a rate of convergence. One
class of examples that we discuss in Corollary [2| concerns vorticity in the space
wo € LN By ., fors > 0. However, more generally, for any wg € L° our proof
provides a computable rate of convergence depending on wy.

A corollary of the proof of Theorem [I] and Lemma [4] is the continuity of the
Yudovich solution map w(t) = S¢(wp) in the L? topology when restricted to fixed
balls in L°°.
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COROLLARY 1. For any wg, wy € L*°(T 2) such that wy is uniformly bounded in
L>®(T?) and wy — wop as n — oo strongly in L?(T?) we have

(1.12) im [[S; (wf) = St(@0) | o (p2) =0
for each time ¢t > 0.

The proof of Theorem [1]is based on the fact that linear transport by Yudovich
solutions has a short-time uniformly controlled loss of regularity: it maps bounded
setsin W12, p > 2, to bounded sets in A !, uniformly in viscosity. More precisely,
we consider the Yudovich solutions w(¢) and w" (¢) of the Euler and Navier-Stokes
equations with initial data wg € L°° and denote their corresponding velocities by
u(t) and u”(t), respectively. We take a sequence of regularizations wg , € W 1>
of wg, which is uniformly bounded in whp, p > 2, and is such that wg, —
wy strongly in L2. We let w,(¢) be the unique solutions of the linear transport
problems

drwy +u -V, =0
and w, (t) of
oy +u” - Vo, =vAow,.

On one hand, w,(¢) remains close to w(¢) and w, (t) remains close to w"(¢) in
LP spaces because linear transport by Yudovich velocities is clearly bounded in
LP. The essential additional ingredient we show is a controlled loss of regularity:
wy(t) and ! (¢) are bounded in H'! on a short time interval by their initial norms
in WP p > 2. This uses the fact that Vu and Vu" are exponentially integrable.
The rest of the proof rests on these observations as well as energy estimates and a
time splitting.

In the direction of propagating regularity, we also prove the fact that if additional
smoothness is assumed on the data, then some degree of fractional smoothness
in L? can be propagated uniformly in viscosity. We consider the unforced case
g = 0 and fix initial data wy = wp for simplicity, the natural extension being
straightforward.

PROPOSITION 1. Suppose wg € (L*° N BIS,’OO)(T2) for some s > 0 and some
p > 1. Then the solutions of the Navier-Stokes equations satisfy w" (¢) € (L*° N

B;,(éz,)(]“ 2) uniformly in v, where
s(t) = sexp(—=Ct|wol oo (T2))
for some universal constant C > 0.

The proof of Proposition |1 relies on the fact that the velocity is log-Lipschitz
uniformly in v and shows that the exponential estimate with loss of [1] holds uni-
formly in viscosity. Our proof uses the stochastic Lagrangian representation for-
mula of [5]:

(1.13) dX;(x) = u” (X (x), 0)dt + V20 dW;,  Xo(x) = x,
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yielding the representation formula
(1.14) w”(t) = Elwg o A¢]

where back-to-labels map is defined as A; = X~ 1. The noisy Lagrangian picture
allows for a nearly direct application of the theorems and proofs of [1,2] to the
viscous case. We remark that the uniform Sobolev regularity can be established by
similar arguments; if wg € (L% N W5P)(T2), then w”(¢) € (L NW®-P)(T?2)
with uniformly bounded norms.

The uniform regularity of Proposition|1]is used to deduce the following:

COROLLARY 2. Letwg € (L* N By )(T?) with s > 0, and let w and w" solve
respectively (L.I) and (L.3), with the same initial data wj = wg. Then the L?
convergence of vorticity, for any p € [1, co) and any finite time 7" > 0, occurs at
the rate

sexp(=2CTllwglloc)
(1.15) sup ”wl)(t) _ w(l)||LP(T2) < (UT) pI+sexp(=CTllwglloo))
t€l0,T]

with the universal constant C > 0 in Proposition

REMARK 3. Recently the estimate with loss of [1] was sharpened for fixed p €
(1,00) in [3[], where it is shown that the propagated regularity decays inversely
with time rather than exponentially, i.e., 5(¢) = s/(1 + Ctps) for some universal
constant C > 0. See corollary 1.4 of [3[]. This improvement is accomplished by
taking greater advantage of the uniform exponential integrability of the velocity
gradient stated in Lemma [1] below. The stochastic representation can also be used
to show uniform boundedness of the vorticity in w"(¢) € (L*° N B;,(Q)) as was
done in Proposition |1} We omit details here, which are straightforward extensions
of the proofs of [3]. This extension can lead to an improved rate in Corollary

Corollary[2applies in particular to the inviscid limits of vortex patches with non-
smooth boundary. Indeed, lemma 3.2 of [7] shows that if wg = ygq is the character-
istic function of a bounded domain whose boundary has box-counting (fractal) di-
mension D not larger than the dimension of space d = 2, i.e., dp(IQ) := D < 2,
then wo € B;,?O_OD)/ P(T?). Proposition M then shows that some degree of frac-
tional Besov regularity of the solution w" () is retained uniformly in viscosity for
any finite time 7 < oo and Corollary [2| provides a rate depending only D, T, and
p at which the vanishing viscosity limit holds, removing therefore the need for the
additional assumptions on the solution imposed in [7].

2 Proofs
PROOF OF THEOREM 1L It suffices to prove that

(2.1 lim sup [lw”(t) = @(t)llL2(r2) = 0.
v—0t€[0,T]



6 P. CONSTANTIN, T. DRIVAS, AND T. ELGINDI

Indeed, convergence in L? for any p € [2, 00) then follows from interpolation and

boundedness in L*°:
p—2

p=2 2
(22) lo” (@) = (D)l Lr(r2) < 2R068 0"(1) = @)l 572

In order to establish strong LS°L2 convergence for arbitrary finite times 7, it is
enough to the convergence for a short time which depends only on a uniform L*°
bound on the initial vorticity:

PROPOSITION 2. Let w and w” solve (1.1)) and (1.3) respectively, with initial data
(1.2) and (1.4). Assume that the Navier-Stokes initial data converge uniformly in
L*(T?)

(2.3) lim [|wg — wollz2(r2) = 0.
v—0

Assume also that there exists a contant {24, such that the initial data are uniformly
bounded in L>®(T?):

(2.4) sup [lwg Il Lo (T2) < Qoo-
v>0
Then there exists a constant Cx such that the vanishing viscosity limit holds,
(2.5) lim  sup [lo”(t) —o()llL2(r2) =0,
v—>0 t€[0,T%]

on the time interval [0, Tyx] where
(2.6) Te = (C+Q00) L.
Once this proposition is established, the proof of Theorem I]follows by dividing
the time interval [0, T] in subintervals
[0,T] = [0, Ts] U [T, 2Tx] U ---

where T is determined from the uniform bound and by applying Proposition
to each interval, with initial data w(nTx) and w"(nTyx) for Euler and Navier-
Stokes, respectively. . As there is no required rate of convergence for the initial
data in Proposition 2] Theorem [I]follows.

PROOF OF PROPOSITION[2l We introduce functions w; and a)g, which are the
unique solutions of the following linear problems. We fix £ > 0 and let

2.7 drwg +u-Voy =@ * g, wg(0) = @ * wo,
(2.8) drwy +u” - Vo, =vAw) + ¢ x g, ) (0) = ¢ x wy,
where ¢y is a standard mollifier at scale £ and where u and u” are respectively
the unique solutions of Euler and Navier-Stokes equations. Note that the solutions

to the linear problems (2.7) and (2.8) exist globally and are unique because the
Yudovich velocity field u is log-Lipshitz. We observe that we have

0" (1) = 0Ol 212 < o) = D)l 2002 + l0” 1) — 0} Ol 212
+ f (1) = 0l 2(r2).
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Because the equations for wy, @, and, respectively, @, ®" share the same incom-
pressible velocities, we find

() — wg(®)llL2(T2)

(2.9) '
< Jlwo — p¢ * woll2(r2) + /0 18(5) — @1 * g(5) L2 cr2)ds.

o () — wy (O)lL2(T2)
(2.10) ; ) t
< 0 — gp % w8l 22 + /0 12(s) — 01 % g() | L2r2)ds.

As mollification can be removed strongly in L?, the two terms in the right-hand
sides converge to 0 as £, v — 0 in any order. It remains to show that

2.11) lim sup Hwe(t) wﬁ(l)”m(iﬁ)_)o
v—>0 t€[0,T%]

for fixed £. In order to establish this, we use two auxiliary results. The first one is
a general statement about the Biot-Savart law in dimension two.

LEMMA 1. Let w € L*(T?2), and let u be obtained from w by the Biot-Savart law
u = Klo] = V+(=A)o.

There exist constants y > 0 (nondimensional and Cg (with units of area) such that

12 | esotpIvucpax < cx
T2
holds for any 8 > 0 such that

(2.13) Bllollpoo(r2y < 7.

PROOF OF LEMMA [Il The bound (2.12) holds due to the fact that Calderon-
Zygmund operators map L to BMO [21], w € L*° + Vu = VK[u] € BMO,
and from the John-Nirenberg inequality [12]] for BMO functions. We provide be-
low a direct and elementary argument (modulo a fact about norms of singular in-
tergal operators) for the sake of completeness.

We recall that there exists a constant Cy so that for all p > 2,

(2.14) IVK[llLrer2) = IV @ V(=A) "0l Lrr2) < CeplvliLr(r2)
(see [21]]). The dependence of (2.14) on p is the important point. Thus,
Va7 (CuBllollr(r2)” p?
BIVuly p LP(T ) * L7 (T?)
[ ax = Zﬁ )

p=0 P!

(2.15)

A

2| i C*ﬂ||w||Loo(1r2))pl?p
- p! '
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This is a convergent series provided Cxf ||| 0o(r2)y < 1/e. Indeed, this can be

seen using Stirling’s bound n! > /271" T1/2¢7" which yields
e} oo —
cP p? p1/2 )
(2.16) <1+ (ce)? < provided ¢ € [0, 1/e)
p;, p! p; V2r 1

where ¢ := CxfB|@||poo(T2)- We may take thus
(2.17) y = (2Cxe) !, Ckx =2|T?|.
The constant y depends on the Biot-Savart kernel and is nondimensional; the con-

stant Cg then is proportional to the area of the domain. O

The second auxiliary result concerns scalars transported and amplified by a ve-
locity with bounded curl in two dimensions.

LEMMA 2. Letu := u(x,t) be divergence free and

w:=Vtoue L®0.T;L%°(T?) with sup [|o(t)]poo(r2) < QLoo.
0<t<T
Consider a nonnegative scalar field 8 := 6(x, t) satisfying the differential inequal-
ity
(2.18) 0:0 +u-V0 —vAO < |Vu|b + f,
with initial data 8];—¢9 = 6y € L>®(T?), and forcing f € L>®(0, T; L*(T?)).
Let y > 0 be the constant from Lemma |1} Then, for any p > 1 and the time

T(p) = 425 it holds that

(2.19) sup  [10(1)llz2¢r2) < Cill00]1 222y + Ca
t€[0,T (p)]

for some constants C1, C depending only on p, Qoo and || /| 0o (0,7;1.50(T2))-

PROOF OF LEMMAQRL Let p := p(t) with p(0) = po and time dependence of
p(t) to be specified below. Consider

li/ 10127®dx
2dt Jr2

= p’(z)/ In|0]|6)>?®dx +p(t)/ 161270=203,6 dx
T2 T2
(2.20) < p’(z)/ 1n|9||9|2p(’)dx—p(t)/ 16127020y . V6 dx
'][*2 Tz
—i—vp(t)/ 16127200 dx +p(t)/ 1612702y |62 dx
T2 T2

+p0) [ 16270267 ax.
’]I‘Z
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We now use the following facts:

(221) /T 6127720 dx < Cll fllzsqo,rizoecr2p 161135
1
(2.22) p/ 16]>P726u - VO dx = —/ u-V(6)*P)dx = 0,
T2 2 Jr2

(2.23) v/ |60?P20A0 dx = —v(2p — 1)[ 16|2P72|V6|? dx < 0.
T2 T2

In the second equality we used the fact that the velocity is divergence free. Alto-
gether we thus find

2p(?)
S S IBOI2 0

(2.24) <0 [ mioloPr©as

+ p(0) / 16122 Vuldx + p)I| f Lo 101557".

We now use the following elementary inequality: fora € R and b > 0,
(2.25) ab <e” +blnb —b.

In fact, we use only thatab < e?®+b Inb. The inequality (2.25) is proved via calcu-
lus and follows because the Legendre transform of the convex function b Inb—b+-1
is e? — 1. Settinga = B|Vu| and b = %|9|2P, and applying (2.25) and Lemma
we obtain

2p(@)
Ea” ( )||2p(t)

fp’(t)/ 1n|9||9|2pdx+&/ (86 1%7)]612? dx

(2.26) () f P IVdx + Cp()] f < 16]227"

2
< (ror+ 2205 [ mietiorrar + 2w ewZ;

+ p(0)Ck + Cp)| flzllO557",

where Cg is the constant from Lemmal|ljand 8 = Q depends on the bound for
lw()||Loo. We now choose p to evolve according to

Bpo
B+ 2pot’

Note that p(¢) is a positive monotonically decreasing function of 7. Let the time
t« defined by 2. = T(po) := B(po — 1)/2po be such that p(t«) = 1. Then

Q21 p)y=-2""p®)* p0)=p0o = p@)=
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p(t) € [1, po] for all ¢ € [0, z«]. Note also from (2.27) that

2

t 28 3
e PO 2pot \?
/0 p(s)ds = log(p(t)) = log(l + i ) .

Defining m(z) = % 16(2) ||§§ 8 and using (2.27) we have the differential inequality

2Cy

’ 2pot\ B
m'(t) < p(t)(Cim(t) +Cz) = Cim(t)+C3 < (C1m0+C2)(1 + T)

with Cy and C; depending on || f'|| 1,00 (0, 7;1,50(T2))» Po» Ck and B. Thus

zpot)zcl/ﬂ C, |:( ZpOI)ZCI/ﬂ :|
m(t) <mo(l+ —— + =11+ — -1
=mf1+7% C p

Note that po/p(t) = 1 4 2poB~!¢ is increasing on [0, 4] from 1 to po/p(ts) =
po. Consequently,

(2.28) 16 ll2pe) < Cilloll55, + Ca

where the constants C; and C, have been redefined but the dependence on param-
eters is the same. As p(t) € [1, po] for all ¢ € [0,7,] we have that ||0(¢)|> <
16(t)ll2p(r) and we obtain

sup [0(D)]l2 < C1ll6oll5, + C2,
t€[0,t]

which completes the proof. O
A similar idea to our Lemma [2] was used in [10, lemma 3]. We apply our two

lemmas to the two-dimensional linearized Euler and Navier-Stokes equations to
obtain uniform boundedness of vorticity gradients for short time.

LEMMA 3. Fix £ > 0 and let @; and @, solve (2.7) and (2.8), respectively. Then
there exists a constant Cy and a constant Cy < oo depending only on ¢, the forcing
norm ||g|| 1,00 (0,7: .00 (T2))» and the uniform bound on solutions given in (1.6) such

that for Tx < (Cx Qoo)_l, we have that

sup (o llgr + oy Ollg1) < Ce.
t€[0,T%]

PROOF. We focus on proving a viscosity independent bound for [lw; ()|l g1
The proof for |[wg(?)| g1 is the same, when setting v = 0. We show that |V, |
obeys (2.18). Differentiating (2.8)), we find

(0 +u” - V)V, + Vu" - Vo, = vA(Vwoy) + V(g * g).
A standard computation shows that |Vw/ | satisfies

(0 +u" -V —=vA)|Vay| < |Vul[Voy | + V(g * g)l.
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which is a particular case of the scalar inequality (2.18) with 6 = [Vw/|, initial
data g = |V (g * wg)| € L>®(T?), and forcing

[ =1V(pe x )| € L0, T; L®(T?)),
as claimed. Applying Lemma 2| we find that for any p > 1 (e.g., p = 2) we have

v _ i v 2p 1/2
te?(l)l,l;"*]Hwe (Z)HHI B CIZP (/11’2‘600 i (V(/))g‘ dX) TG

(229) < Cel| g || 7 o2y < CeREe

The constant Cy depends on Q2. It diverges with the mollification scale £, through
the prefactor £=7 and through the dependence on ||V(¢; * g)|lzc < £ g]lLeo.
The important point, however, is that (2.29) holds uniformly in viscosity, complet-
ing the proof. U

We return now now to the proof of the main theorem. Using Lemma 3| the
difference energy obeys

d
a”w; —wé||i2(Tz) = —Az(uv —u) - Vo (o] — wg)dx
— v/ ‘Va)ﬂzdx + vf Vo, - Vo dx
T2 T2
<4Q|u’ —ulr2 ”sz HL2 + UHVC{)Z' HL2||Va)g||Lz

S Cellw? = ullpooqo,rsL2(r2)) + VCL-
Integrating we find
2 2
(230) [0 = weliz 5 ge* (@5 = o)1
+ CZT”uv — u”LOO(O,T;LZ(”JFZ)) + l)CezT.

To conclude the proof we must show that, at fixed £ > 0, we have
. v _
VIEI})”‘”Z — W HLZ(Tz) =0.

Recall that by our assumption (2.3) we have that limy—¢ [[@g — @ol|2(T2) — O.
So we need only establish strong convergence of the velocity in L2(0, T'; L2(T?)).
If ¢ = 0 and ug = uo, this is a consequence of theorem 1.4 of [4]. Below
is a generalization of [4] that applies in our setting and is proved by a different
argument.

LEMMA 4. Let wg € LOO(TZ). There exist constants U, €25, and K (see below
(2.34), (2.35), and (2.50)) depending on norms of the initial data and of the forcing
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such that the difference v = u” — u of velocities of solutions (1.1) and (1.3) obeys

2
oIl 2 - St
(2.31) su=tp@oo [ [[V(0) 7272 Q3 ’
<3U%K 2
= ’ vz T VoraL”
for all 0 < ¢y < ¢. By iterating the above, we obtain
2
||U(t)||L2 710:5200
(2.32) —roraeasy [ TPO7 5 pa Q2 \°
< 20U2K1me el @) 2
= TEERRRATET W

provided that ||v(0) || y T yvQ3/ Qo < 9KU2.

2
L2(T2
REMARK 4 (Continuity of Solution Map). At zero viscosity, Lemma [4]establishes

Holder continuity of the Yudovich (velocity) solution map. Specifically, denoting
us := S/ (up) and setting v = 0, a consequence of Lemmais that

|57 2t0) = SP )| 22y = Cllo — |35,

c

where «(7) := e ¢! and ¢, C > 0 are appropriate constants. This fact is used to

prove Corollary I} It is worth noting that the condition on the data ||v(0) ||i2 T2) =
9K U? required for the above estimate to hold is O(1) (data need not be taken very

close).
PROOF OF LEMMA [l The proof proceeds in two steps.

Step 1. Short time bound. The proof of the lemma starts from the equation
obeyed by the difference v,

drv+u’-Vo+v-Vu+ Vp =vAv +vAu

leading to the inequality

d
(2.33) Ellvlliz +v[VolZ, < vVulZ, + 2/ |Vu|[v]? dx

which is a straightforward consequence of the equation, using just integration by
parts. We use the bound Q2 (1.6) for the vorticity of the Euler solution. We also
use a bound for the L2 norms

(2.34) sup ([’ (@)l 2cr2) + lu@)llL2(T2)) < U.

0<t<T

which is easily obtained from energy balance. We use also bounds for L? norms
of vorticity,

(2.35) Qp = sup [w@)lLr(T2) < Roo-

0<t<T
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We split the integral
/|Vu||v|2dx=/ |Vu||v|2dx—l—/ [Vul|v]? dx
B T2\B

B ={x||v(x,0)| = MU}

with M to be determined below. Although B depends in general on time, it has
small measure if M is large,

where

|B| < M2,

The constant M has dimensions of inverse length. We bound

1
(2.36) 2/3 Vullo]? dx < 2|[Vull2[[v]74 < 2IBI% | Vul Lallv@)]7.
where we used [ |[Vu|?dx < |B|% ||Vu||i4. We now use the fact that we are in
Yudovich class and Ladyzhenskaya inequality to deduce

lv®I74 = Clv@ll2llwollL> + lglLio.r:22)] < CUR,

and we also use

|Vullp+ < [Clloollps + lIgllL10,;04)] = L4
to bound (2.36) by

(2.37) 2/ IVu|[v]?dx < CUQQ4M ™2,
B

We nondimensionalize by dividing by U? and we multiply by 8 = y/Qc0. The
quantity

10O 202,

(2.38) y(@) = 72
obeys the inequality
ay Q2 Q. i / vl
2.39 — < Bv—=+CBQRU—M"2+4+2 Vu|— dx.
Q3 B =P CPReM T2 | Bl ax
We write the term
(2.40)
1
2/ ,B|Vu||v|2U_2dx=2/ (ﬁquI+loge+log—)|v|2U_2dx
T2\B T2\B €

with € (with units of inverse area) to be determined below. We use the inequality
(2.25) and Lemmal[1] with
_ P

a = B|Vu| +loge, b= Tz
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to deduce
M2
(2.41) 2/ BIVul|v|?U2dx < 2¢Ck + 2log —y(1).
T2\B €

Inserting (2.41) in (2.39) we obtain

d M?
(2.42) B < F 1 log(—)y(t)

dr €
with

Q% Qr 1
(2.43) F = ,va + CﬂQ47M 2 4 2eCk.

Note that F and MTz are nondimensional. From (2.42) we obtain immediately

t—tg 1=t

M2 B F M2 B

(2.44) y(t) =\— y(ZO) + YN — -1

€ lo (M_) €
‘We choose M such that

Q> 1 Q2
(2.45) CPQu— M2 = ﬁvU—§ + y(to)
and we choose € such that
QZ
(2.46) 2¢Ck = ﬁuU—g + y(to).
These choices imply
92

(2.47) F = 3ﬂuU—§ + 2y(to).

Then we see that
-5
M?2 Q,0\* Q2
(2.48) F=" =2Ck(CBRU=2) x[Bv=2 +y(t0)]| .
€ U U2

Taking without loss of generality logI" > 1, we have from (2.44)

Q% t—tg
y() <3 y(lo)—i-ﬂvﬁ I8

_5([—[0) 5(t—tg)

o2\ 7 Q4 7
(2.49) < 3(y(lo) + ,BVU—g) X (ZCK (C,BQ47) )

Recalling that § = y/Qc0 and denoting the nondimensional constant

2\*
(2.50) K =20k (C,BQ47)
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we established
| 5U=19)Q0c0

s (0@ 22gsy 02\
o\ e

Thus, we established (2.31).

Step 2. Long time bound. With (2.31) established, we now prove (2.32). Let
¢ =5Qc0/y, At =1/2¢,and t; = tj—1 + At and aq; = ||v(z‘i)||iz/U2 fori € N.
Then (2.31) states

(2.52) ai < Ci(ai—1 + Cov)V/?, i=1,2,...

¢ 2
PO _

2.51) 02

. 5800 1 Q2
with C1 = 3K 2¢v =3K?2 and C = 'BU_% We set

a; + Cv

2.53 8, = —— “=°
and observe that (2.52) is
(2.54) S < V-1 +V
where

~ C2V
2.55 7= =~
(2.55) 2

is a nondimensional inverse Reynolds number. It follows then by induction that
n—1 )

(2.56) Sn < (80)* "+ Y @7
i=0

Indeed, the induction step follows from

(2.57) Sn+1 < VOp +V
and the subadditivity of A > +/A. If
1
(2.58) v < ,
V5—1
then the iteration (2.54) starting from 0 < §o < r, where r is the positive root of

the equation x2 — x — ¥ = 0, remains in the interval (0, r), and for any n, 8, obeys
(2.56). We observe that

n—1
—i —n n— 1 —n+1
2.59 2 =M 0+ YT < —— @)
(259) ;)(v) @ (14 @) £ =)
and therefore (2.32) follows from (2.56). We note that the iteration defined with

equality in (2.54) converges as n — oo to r. Fixing any ¢+ > 0 and letting n =
[t/At] = [2ct] = [10t Qo /Y] establishes the bound. O
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Due to assumption (2.3) we have that limy o [[uy — uollz2(r2) — 0. LemmaH
then allows us to conclude from (2.30) that limy—¢ sup,¢po,7,] oy —¢ |l L2(T2) —
0 at fixed £ > 0, and the proof of Proposition[2|is complete. U

With the proposition proved, the proof of the strong convergence of the vorticity
in the LP? statement in the theorem is established. To obtain convergence of the
distribution functions, see theorem 3.6 in [[7]. Il

PROOF OF PROPOSITION[I. This proof makes use of the the stochastic La-
grangian representation for Navier-Stokes solutions [3], together with the uniform-
in-v boundedness of vorticity. In light of the Lagrangian representation (1.13),
(1.14), the key ingredient of propagating some degree of fractional regularity on
the vorticity is the (uniform) Holder regularity of the inverse flow A;. Since the dif-
fusion coefficients on the additive noise on (1.13) are spatially constant, it follows
that the results of chapter 3 of [2]] hold realization-by-realization for the stochastic
flow X; and its inverse A;, uniformly in viscosity. This gives uniform bounds on
the separation of two trajectories driven by the same realization of Brownian noise,
independent of viscosity, thereby establishing spatial Holder regularity of the flow.
Although straightforward, we include a proof of this statement for completeness.

PROPOSITION 3. There exists a unique measure-preserving stochastic flow of
homeomorphisms solving (I.13). This flow and the back-to-labels map are contin-
uous flows X, A, which for all 7 € [0, T'] are uniformly-in-v of the class C*®)(T2)
with (1) = exp(—Ct/p) with constants defined in (2.60).

PROOF OF PROPOSITION[3. We employ the log-Lipschitz property of u"; i.e.,
there exists an absolute constant C > 2 such that one has the uniform-in-viscosity
estimate

(2.60) [u’(x,t) —u”(y,1)| < %d(x,y) ln(%) Vx,y e T2,

where B and Ck are the constants in Lemma 1} which depend only on |lwg || zoo;
see lemma A.1 of [3]. Here d(x, y) := min{|x — y — k| : k € Z%, |k| < 2} is the
geodesic distance on the torus upon the identification T¢ = [0, 1)¢. Now, due to
the spatial uniformity of the noise on the trajectories,

(2.61) dX;(x) = u(X:(x),0)dt + ~2v dW;, Xo(x) = x,
we find that the difference has no martingale part and satisfies
262)  d(X,(x0) = X, (1) = (" (Xe(x).1) —u” (X, (). 1)) dr.
Upon integration, we obtain the inequality

d(Xt(x), Xe(¥))

(2.63) Ed(x’yﬁ_Q/td(xs(x),Xs(y))ln(
B Jo

CCk )
d(Xs(x), Xs(»))?
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for all x,y € T?2. The solution of this integro-inequality (with a possibly larger
constant C) is

@264)  d(X(x). X:(») = (CC)T Ay as

Since the bound holds almost surely, this says that the map X;(-) is Holder con-
tinuous C*®(T2) with (r) = e~€*/# as claimed. We remark that deterministic
trajectories in a log-Lipschitz field satisfying (2.60) satisfy precisely the same up-

per bound (2.64).
To obtain Holder regularity of the back-to-labels map, it suffices to note that

Ay can be identified with the backwards flow X; ¢, which solves the following
backward stochastic differential equation

(2.65) AX; o (x) = u(Xss(x), 8)ds + V20 dWs, X, 4(x) = x,

where the d indicates that the backward differential End WS = Wiy — W is a
Brownian motion adapted to the backward filtration . 7! := U{Wu, u € [0, s]}. For
a discussion of backward Ito equations; see, e.g., [16]. With this identification, one
finds as above that for any # > 0 and all s € [0, ¢], one has

(2.66)  d(X1s(x), X1,5(»)) < (CCg)'e d(x,y)

By setting s = 0 we find that A; = X, ¢ satisfies the same estimate (2.64) as X,
and therefore is Holder continuous with the same exponentially decaying exponent.
g

—C(t—s)/B e—Clu—s)/B

Proceeding forward to obtain uniform bounds we wish to make use of the rep-
resentation formula (1.13)—(1.14). This requires some regularity on the initial con-
dition, so we replace wo € L (T ?) with a mollification of it, wg * ¢, € C*(T?)
for £ > 0. All the bounds will be manifestly independent of £, which can be taken
to zero at the end, so we simplify the notation by writing “wq.”

We continue by following closely the proof of theorem 3.32 of [2]. In particular,
we introduce the space F, (T4) (which belongs to the family of Triebel-Lizorkin
spaces Flf = F;f,oo provided p > 1) that is comprised of measurable functions

f € LP(T?) that are finite in the seminorm

267) [f1rs =

inf  A{lgllpreray: 1 f(X) = fOD)] < d(x, y)*(g(x) + g(»))
geL?(T4)

Vx,yETd}<oo

where d(x, y) is the distance function on the torus defined above; see definition
3.30 of [2]. The key to the argument is understanding how composition with a
(uniformly) Holder continuous stochastic diffeomorphism provided by Proposition
operates on F’ If . Using the stochastic representation (1.14),

(2.68) (1) = E[wo o A¢].
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Jensen’s inequality, Holder continuity of the back-to-labels map, and the fact that
wo € F$, we have

0¥ (x. 1) — " (y.1)]

d(x,y)*
_ |Elwo(Ar(x)) — @o(A: (y))]|
d(x,y)™®
(2.69) < E[le(At(x)) - wO(At()’))|:|
d(x,y)*®
_ E['wO(At(x)) — wo(A: ()] d (4 (x), Az(y))s}
d(As(x), A((y))’ d(x,y)*®

< [[A¢llcaElg(A:(x) + g(A: ()]

for any g € L?(T?), where we used that wy € F, together with the definition
(2.67). Let g(x) := E[g(A4;(x))]. Note that, since A; is measure preserving and
we can apply Jensen’s inequality, we have |[gz»(T2) < gllL»(T2) < 0o. Thus
g € LP(T?), and it follows by the linearity of the expectation that the right-hand-
side of (2.69) is an L? function. This shows that

@70 [0 O gy < (CRP T Daglgy. () = sexp(=C1/).

where we used the explicit bound on the Holder norm computed in (2.64). The
bound (2.70) holds uniformly in viscosity. In order to connect to some By .,
(which is a larger space) we need to use an embedding for the initial data

(2.71) Byl C By C WP C F)l

with s3 > s2 > 7. The proposition follows from lemma 3.31 of [2], which shows
that the Triebel-Lizorkin spaces are continuously embedded in the Besov spaces,
ie., FS(T4) < B (T9). O

PROOF OF COROLLARY 2. We need the following elementary lemma:

LEMMA 5. Forany s > 0 and f € Bg’oo(ﬂl“d), the following inequality holds for
all0 < 5" < s:

"[(1+s’ 1/(1+s"
272) 1/ z2way < WIS s ot
PROOF. First note that the interpolation inequality
"J(1+s’ 1/(1+s’
(2.73) | lcray < WIS E N o)

which follows from the Holder inequality and the Fourier definition of the Sobolev
norm. The claim follows from the embedding B, , (T4) B;/ q,(Td) fors’ <s
and any ¢’, g (see §2.3.2 of [22]) and the identification H® := B3 ,. g
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Proceeding with the proof, applying LemmaU 5| for all ¢ € [0, T] we have

_1
lw” (1) = 0@l L2(12) = ll0” () — 0 @) ””1 2ylle’ @) —o@)] 1?55 (T2)

< sup lu"(1) —u@)]| o
t€l0,T] L2(T2)
for any s’ < s(f) := sexp(—=CT|wp|lco). In the above, we appealed to Propo-

sition [1| to establish uniform-in-v boundedness of the solution @' in the space
L°°(0,1; B;(:% (T?2)). We now use Lemma@to conclude

”a)v(t) - w(t)”Lp(']I‘z)
p=2 2
2.74) = ”a)v - w”Lgo(O T; L°°(']I‘2))”wv(t) - w(t)”ZZ(']Tz)

sexp(—=2C T |lwglloo)

sup @)~ FE 5 )T
t€[0,T]

A

This completes our proof. g

REMARK 5. The stochastic Lagrangian representation of the vorticity also offers
an expression for the enstrophy dissipation as the variance of the (randomly sam-
pled) initial data

t
(2.75) v// Vo' (', x)|? dx dt’ = l/ Var[wg (4 (x))]dx.
0JT2 2, T2

The above is a special case of the Lagrangian fluctuation dissipation relation for
active scalars derived in [9]. This relation is easily generalized to incorporate the
effect of body forces. A consequence of Theorem [1|is that the enstrophy dissi-
pation vanishes in the high Reynolds number limit, forcing also the variance to
become 0. Thus, there is no “spontaneous stochasticity” of Lagrangian trajecto-
ries in the vanishing viscosity limit for 2D Navier-Stokes with initial data in the
Yudovich class.

3 Discussion

Predicting the long-time vortex structures in two-dimensional turbulence is of
longstanding interest, starting with the work on dynamics of point vortices by On-
sager [18]]. There have been a number of theories developed to this effect. We
briefly review the celebrated mean-field theory of Miller [[17] and Robert [[19] to
give context to our result. The idea is to describe an equilibrium configuration weq
satisfying

G.1) o) =5 o

in some sense. If w(¢) is an Euler path with bounded initial vorticity, then one has
the following information:
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(1) conservation of energy:

(3.2) lu@ll2(T2y = lluollL2(T2),

(2) conservation of vorticity “casmirs”: for any continuous f,

(3.3) I = /T2 flo(x,t)dx = /T2 f(wo(x))dx.

For long-time limits of Euler flows, there is a natural candidate object to describe
weq. In particular, provided only wo € L>®(T?), then w(t) € L>®(T?) is the
unique solution of Euler [23], and in the weak-* sense

(3.4) lim / P(xX)w(x, ty)dx = / e(x)@(x)dx V¢ e LY(T?)
n—o0 J12 T2

for some @ € L°°(T?) and some subsequence f, — oo as n — o0o. However,
large oscillations can remain in this limit. In particular, the above convergence does
not imply for all continuous functions f that f(w(x,t,)) converges to f(w(x)) in
the same sense, so it is not clear how the information and can be retained
and in what sense. On the other hand, the fundamental theorem of Young measures
guarantees

M
65 Jim [ eof@eamar= [ o [ romdaas

with M = ||wo|| 1,00 (T2)- Note that, having introduced the Young measure vy (dy),
the convergence (3.4) holds with

M
(3.6) o = [ _3nsy) VS € C(=M. M),
Kraichnan developed a theory for the equilibrium distribution @ discarding most of
the information on the casmirs, keeping only conservation of energy and enstrophy
[15]. However, it was since recognized that invariants involving higher powers
of vorticity should not be neglected on compact domains such as T2. In order
to retain as much information about the Euler solution as possible, Miller [[17]]
and Robert [[19] independently suggested that the long-time vorticity distribution
resulting from freely decaying two-dimensional turbulence is a Young measure of
the form

(3.7) vx(dy) = p(x, y)dy.

These Young measures have the property that their marginal distribution is the
(initial) vorticity distribution function (1.8), which is left invariant under the Euler
flow. Thus, if a measure with the above property can be constructed such that
also the energy associated to w equals that of wg, then the information on all ideal
invariants is retained at the level of the predicted equilibrium distribution. Miller
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and Robert provide such a construction Specifically, by a Boltzmann counting
argument, they showed that the entropy associated with a given density p(x, y)
of the Young measure has a specific form. Assuming ergodicity at long times,
i.e., that the 2D Euler flow is sufficiently chaotic in phase space, they suggested
to maximize this entropy subject to the above constraints. The prediction of the
theory is the long-time distribution is

exp(B[yv (x) + n(»)])
I8 exp(By ¥ (x) + w(»)])dy

where the “inverse temperature”  and “chemical potential” u(y) are Lagrange
multipliers to enforce energy conservation and the marginal density e, [dy] re-
spectively, and where the stream function i solves

S v exp(By ¥ (x) + M(y)])dy‘
I exp (B[ (x) + n(y)])dy

Thus, the prediction is that the expected (average or coarsened) vorticity solves a
very particular steady Euler equation @ = F (i) where ¥ is the stream function.
The function F depends on the distribution 74, [dy] and the energy Ey. It is im-
portant to remark that conservation individual casmirs may not survive as ¢ — 00,
but that according to this theory, at a given energy Ey, they are forever remem-
bered at the level of the equilibrium distribution. Some numerical simulations have
provided corroboratory evidence supporting this theory over competitive ones such
as the Onsager-Joyce-Montgomery theory, at least in situations where wq is sup-
ported on a finite area [20]. Whether or not the theory rigorously applies is an open
question.

There are two major questions remaining about the domain of applicability of
the Miller-Robert theory. The first being whether or not 2D Euler possesses the
requisite ergodicity properties to justify entropy maximization. The second, and
the one that motivates the present study, is whether the theory should apply to 2D
Navier-Stokes solutions at small viscosity. This is related to the issue of anomalies
in ideally conserved quantities. For energy, there is no question since

(3.8 p(x,y) =

(3.9) AY(X) =0 =

1
E’(t) := —/ ()2 dx 225 E,
2 Jr2

!'We remark that the Miller-Robert theory applies to any compact domain  C R? with smooth
boundary, with the torus & = T?2 as a special case. It is worth noting that convergence of higher-
order vorticity moments in the zero viscosity limit on domains with boundaries is, in general, false. In
fact, if the Euler velocity u is not identically 0 along the boundary and no-slip Navier-Stokes solutions
converge to these u¥ — u weakly in L% (0, T'; L?(R2)), then limsup,,_, o lw¥llLeoqo,T;r Q) =
oo for all p € (1, 00] (see theorem 3.1 of [14]). If weak convergence fails to hold, then by Kato’s
energy dissipation condition, we know limsup,_,q [@"|| 12(0,T;:12(Q)) = ©°- Thus, unless the
Euler solution is identically zero on the boundary, higher moments of vorticity must diverge in the
inviscid limit, presenting a great difficulty for the Miller-Robert theory as it applies to inviscid limits.
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for any finite time under the assumption that wg € L% (T?). On the other hand,
it has not been clear that high-order ideal moments such as I} = [ |0”(¢)[" dx
for n > 2 will be conserved in the limit of zero viscosity or if there will be an
associated anomaly due to fine-scale mixing of the vorticity field. If they are not,
it seems unlikely that these casmirs should be remembered at the level of the equi-
librium distribution of vorticity. Our theorem establishes that there can be no such
anomalies of higher-order invariants on any finite time interval [0, 7] with T arbi-
trarily large. Thus, it shows that the dependence of F' on viscosity is slow, which
provides a partial foundation for the Miller-Robert theory as it applies to slightly
viscous fluids.
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