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Abstract
We consider a class of ordinary differential equations featuring a non-Lipschitz
singularity at the origin. Solutions exist globally and are unique up until the
!rst time they hit the origin. After ‘blowup’, in!nitely many solutions may
exist. To study continuation, we introduce physically motivated regulariza-
tions: they consist of smoothing the vector !eld in a ν-ball. We show that the
limit ν → 0 can be understood using a certain autonomous dynamical system
obtained by a solution-dependent renormalization. This procedure maps the
pre-blowup dynamics to the solution ending at in!nitely large renormalized
time. The asymptotic behavior near blowup is described by an attractor. The
post-blowup dynamics is mapped to a different renormalized solution starting
in!nitely far in the past and, consequently, it is associated with another attractor.
The regularization establishes a relation between these two different ‘lives’ of
the renormalized system and generically selects a restricted family of solutions,
not depending on the regularization.

Keywords: selection principle, non-Lipschitz singularity, non-uniqueness in
ordinary differential equations, blowup
Mathematics Subject Classi!cation numbers: 34A12 37C83.

(Some !gures may appear in colour only in the online journal)

1. Introduction

Non-Lipschitz singularities in differential equations arise naturally in numerous physical appli-
cations. For example, such singularities are the collision points in the N-body problem [16].
Non-Lipschitz singularities, which are reached in !nite time, are wide spread in partial dif-
ferential equations, where they are often termed as blowup [27]. A classical example is shock

∗Author to whom any correspondence should be addressed.

1361-6544/21/042296+31$33.00 © 2021 IOP Publishing Ltd & London Mathematical Society Printed in the UK 2296

https://doi.org/10.1088/1361-6544/abbe60
https://orcid.org/0000-0003-2818-0376
https://orcid.org/0000-0003-1437-6204
mailto:tdrivas@math.princeton.edu
mailto:alexei@impa.br
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6544/abbe60&domain=pdf&date_stamp=2021-2-17


Nonlinearity 34 (2021) 2296 Theodore D Drivas and A A Mailybaev

formation in conservation laws and ideal compressible "uid systems, where the velocity !elds
dynamically form jump discontinuities [13]. Another important example arises in the setting
of incompressible "uid dynamics: the celebrated Kolmogorov (K41) theory stipulates that an
‘ideal’ turbulent "ow !eld is only 1/3-Hölder continuous [33, 38].

A basic understanding of such non-smooth systems can be obtained from the textbook
example

ẋ = x1/3, x(t0) = x0. (1)

This is a particular case of the equation ẋ = sgn(x)|x|α for α = 1/3. The exact solution of (1)
for t ! t0 is easily obtained by separation of variables as

x(t) = x0

[
1 +

2
3
|x0|−2/3(t − t0)

]3/2

, x0 $= 0, (2)

which is the unique solution for x0 $= 0. The right-hand side of (1) is not Lipschitz continuous
at x0 = 0 and, as a result, the solution is non-unique:

x(t) = ±
[

2
3

(t − t0)
]3/2

, x0 = 0. (3)

We remark that by Kneser’s theorem, whenever a solution of the initial value problem is non-
unique, then there are a continuous in!nity of them (see section 2.4 of [34]). Such solutions are
obtained in our case combining the trivial evolution x(t) ≡ 0 in an arbitrary interval t0 " t " t1

with any of nontrivial solutions (3), where t0 is replaced by t1. This simple example has deep
physical signi!cance within the Richardson picture of particle separation by a turbulent "ow
[49]. In fact, equation (1) with x denoting the separation between two particles can serve as a
toy model for Richardson dispersion in an ‘ideal’ K41 velocity !eld. The solution (3) implies
that particles starting at exactly the same point x0 = 0 can split and reach !nite distances apart
in !nite time [31]; related phenomena have been addressed in numerous numerical studies,
e.g., [5, 8, 28, 51].

Due to their ubiquitous nature, it is important to develop an understanding of such non-
smooth systems, when the classical theory of differential equations fails to provide uniqueness.
A particularly important question is whether or not there is a natural way to select a unique
solution or, at least, to provide a non-trivial restriction? For example, this question is answered
positively for binary collisions in the n-body problem, where solutions continuously dependent
on initial conditions are obtained using the so-called collision manifold [3, 16, 46]. An example
in partial differential equations is the theory of one-dimensional conservation laws, where the
entropy condition can be used to select a unique weak solution after blowup [13]; this is a shock
solution arising in the vanishing viscosity limit [39]. However, a natural analogue of the entropy
condition—that a weak solution dissipates energy—is known to fail as a selection principle
for three-dimensional incompressible Euler equations [10, 14, 36]. Non-smooth velocity !elds
provide interesting interplay between transport equations and ordinary differential equations
[1, 17], where non-unique solutions can also be considered backward in time [30]. The question
remains as to what extent any physically relevant criteria may serve to select unique solutions.

There are several notions of regularization used in the theory of non-smooth ordinary dif-
ferential equations, e.g., analytic regularization and block regularization (or regularization by
surgery) which require that extended solutions are continuous with respect to initial conditions
[21]. The regularization used in our work is closely related to the concept of φ-regularization
which can be used to give robust notion of a "ow in discontinuous dynamical systems, see e.g.
[40, 47].
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The goal of the present paper is to investigate fundamental constraints on possible ‘selected’
solutions, when the non-uniqueness is caused by an isolated non-Lipschitz singularity. Our
study exploits a class of ordinary differential equations described in section 2, which involve
vector !elds which are smooth away from the origin. At the origin, the equations are merely
Hölder continuous (providing a cartoon of !elds arising in "uid dynamics problems) or
even unbounded (mimicking collisional problems for particles with Newtonian potentials).
In generic situations, solutions enter the origin in !nite time, which we call blowup. Since
in!nite number of solutions also start at the origin, continuation past the blowup is strongly
non-unique.

In these models we uncover some universal characteristics of non-uniqueness in the con-
text of a ‘physically relevant’ choice. To accomplish this, we introduce a set of renormalized
phase-time variables, such that leaving the singularity takes in!nite time in the new represen-
tation. Thereby, the solution splits into two different in!nitely long evolutions before and after
blowup. Section 3 shows how the !rst evolution determines the universal asymptotic behavior
before the blowup. Section 4 studies continuation after blowup, when the uniqueness is lost.
Here we introduce in a regularization scheme, which smooths the vector !eld inside a small ν-
neighborhood of a singularity and consider the limit ν → 0. For a wide class of regularizations,
we associate such limiting solutions with an attractor of the renormalized system. Section 5
describes the case of a !xed-point attractor, when a unique post-blowup solution is selected.
Remarkably, this solution is not sensitive to a particular choice of regularization, i.e. the rel-
evant choice is foreseen by a singular differential equation. Section 6 investigates a different
situation, when the attractor is a periodic limit cycle. In this case limiting solutions are non-
unique, but the regularization imposes a highly non-trivial constraint on possible continuations,
again independent of the choice of regularization.

As a consequence, we establish a connection between the theory of attractors in autonomous
dynamical systems with the problem of non-uniqueness and continuation at the non-Lipschitz
singularity. It shows that in a generic case the equation may impose a ‘destiny’ on a solution
even after the uniqueness is lost. Our theorems are coupled with concrete examples illustrating
the non-uniqueness and speci!c choices of solutions after blowup. We end with the discussion
section, where we also speculate on similar phenomena in models of "uid dynamics.

2. Equations with an isolated non-Lipschitz singularity

We study the Cauchy problem for an autonomous system of ordinary differential equations

ẋ = f(x), x(t0) = x0, (4)

where x ∈ Rd and the derivative is taken with respect to time t ∈ R. We assume that f has an
isolated singular (non-Lipschitz) point, which we assign to the origin, x = 0. We will consider
a self-similar form of the singularity, when

f(x) = rαF(y), r = |x|, y = x/r (5)

with α < 1 and a smooth (continuously differentiable) function F(y) on a unit sphere y ∈ Sd−1.
The function f(x) is smooth everywhere except at the origin, where it is discontinuous for
negative α and Hölder continuous, f ∈ Cα(Rd) for α ∈ (0, 1). We will separate the radial and
spherical components of this function as

F(y) = Fr(y)y + Fs(y) (6)

2298



Nonlinearity 34 (2021) 2296 Theodore D Drivas and A A Mailybaev

with Fr(y) = F(y) · y and Fs de!ned implicitly by (6). The models (5) can be thought of as
multi-dimensional generalizations of the toy model (1) for α = 1/3.

Homogeneity of the !eld in (5) re"ects, in a simpli!ed form, the fundamental property of
scale invariance ubiquitous in real-world applications. We wish to emphasize that our system
should be understood as a zeroth-order (isolated singular point) model for non-smooth dynam-
ics. This model gives useful insight into more general systems that feature higher-dimensional
singular sets and, thus, cannot be cast as (5). A canonic example would be the n-body problem,
in which the Newtonian force has a singularity with α = −2 at points with equal coordinates
and arbitrary momenta of any two bodies.

For α ∈ (0, 1), the function f(x) is continuous and bounded by |f(x)| < rα max F(y), where
the maximum is taken on the unit sphere y ∈ Sd−1. Hence, the Cauchy problem (4) possesses a
solution globally in time for any initial condition [34]. However, the solutions that pass through
the singularity at the origin, are not necessarily unique.

Let us denote by tb the maximal time such that r(t) $= 0 for t ∈ [t0, tb). This provides the
largest time interval, where the uniqueness of the solution is guaranteed due to the Lipschitz
continuity. In particular, we have the global uniqueness in the case of tb = ∞. When tb < ∞,
the solution reaches the singularity at the origin in !nite time, limt→tb r(t) = 0, and we call this
scenario the !nite-time blowup. This de!nition can be related to collisions or, alternatively, can
be motivated by the blowup concept for partial differential equations, where it is linked to the
breakdown of Lipschitz continuity. Recall, for example, that solutions of the inviscid Burgers
equation have the local form u(x) ∝ −x1/3 at the blowup time [48].

So long as r(t) > 0, we can de!ne the logarithmic radial coordinate as z(t) = ln r(t). The
original solution is then expressed as

x(t) = ez(t)y(t). (7)

Equations for z(t) and y(t) are obtained directly from (4) and read:

ẏ = e−(1−α)zFs(y), y(t0) = y0, (8)

ż = e−(1−α)zFr(y), z(t0) = z0. (9)

where the initial conditions are given by y0 = x0/|x0| and z0 = ln|x0|.

3. Pre-blowup dynamics

For t < tb, we introduce the a new temporal variable s = s(t) de!ned by

s(t) =

∫ t

t0

e−(1−α)z(t′)dt′. (10)

The map s(t) is monotonically increasing with s(t0) = 0, and let us denote sb = limt→tb s(t).
Hence, the inverse monotonically increasing function t = t̃(s) exists with t̃(0) = t0 and
tb = lims→sb t̃(s). We denote ỹ(s) := y(̃t(s)) and z̃(s) := z(̃t(s)); here and below we use tildes
to denote functions of the new time variable s. By the inverse function theorem, the derivative
of t̃(s), obtained from (10), can be written in the form d̃t/ds = e(1−α)̃z(s) and integrated as

t̃(s) = t0 +

∫ s

0
e(1−α)̃z(s′)ds′. (11)
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Using s(t) as the new temporal variable in system (8) and (9), a simple computation yields
the renormalized system in the form

dỹ/ds = Fs(ỹ), ỹ(0) = y0, (12)

dz̃/ds = Fr(ỹ), z̃(0) = z0. (13)

In this system, the !rst equation (12) is uncoupled, and the second equation (13) is integrated
as

z̃(s) = z0 +

∫ s

0
Fr(ỹ(s′))ds′. (14)

Since the functions Fs and Fr are continuous on the unit sphere Sd−1 and therefore bounded,
solutions ỹ(s) and z̃(s) exist globally in renormalized time and are unique. The solution x(t) of
the original system (4) for t ∈ [t0, tb) can be recovered from the global histories ỹ(s) and z̃(s)
with s = s(t) given by (10) through the transformations x(t) = x̃(s(t)) and x̃(s) = ez̃(s)ỹ(s).

Proposition 1. Let us de!ne the following upper and lower renormalized-time averages:

Fr = lim inf
s→∞

1
s

∫ s

0
Fr(ỹ(s′))ds′, Fr = lim sup

s→∞

1
s

∫ s

0
Fr(ỹ(s′))ds′. (15)

These averages are !nite, because Fr is bounded, and characterize blowup as

(a) If Fr > 0, then tb = ∞ and limt→∞ r(t) = ∞.
(b) If Fr < 0, then the solution x(t) blows up at !nite time tb < ∞, i.e., limt→tb r(t) = 0.

Proof. First, let us show that sb = ∞. In the case of blowup, tb < ∞, we have z(t) =
ln r(t) →−∞ as t → tb. Since the function Fr is bounded, the corresponding behavior z̃(s)
→−∞ as s → sb in (14) yields sb = ∞. Therefore, using t̃(s) from (11), one has

tb = lim
s→∞

t̃(s) = t0 +

∫ ∞

0
e(1−α)̃z(s′)ds′. (16)

The same conclusion can be drawn in the case of no blowup, tb = ∞, because t̃(s) is !nite for
any !nite value of s.

Next, by de!nition, for any ε > 0 there exists an sε > 0 such that

Fr − ε/2 <
1
s

∫ s

0
Fr(ỹ(s′))ds′ < Fr + ε/2 for s > sε. (17)

The value of sε can be chosen suf!ciently large such that

|z0| < εsε/2. (18)

Using (17) and (18) in expression (14), we !nd
(
Fr − ε

)
s < z̃(s) <

(
Fr + ε

)
s for s > sε. (19)

(a) If Fr > 0, then the !rst inequality in (19) with ε = Fr/2 yields

z̃(s) > Frs/2 for s > sε. (20)
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Using this estimate in (11), we obtain the lower bound:

t̃(s) > t̃(sε) +

∫ s

sε
e(1−α)Fr s′/2ds′ for s > sε. (21)

Since α < 1 and Fr > 0, the integral in (21) diverges as s →∞ and we have tb =
lims→∞ t̃(s) = ∞. This proves that the solution x(t) does not blow up in !nite time. From
equation (20), it follows that limt→∞ r(t) = lims→∞ ez̃(s) = ∞.

(b) If Fr < 0, a similar argument with ε = −Fr/2 > 0 and the second inequality in (19) yields

z̃(s) < Frs/2 for s > sε. (22)

This guarantees that lims→∞ z̃(s) = −∞ and the integral in (11) converges to a !nite value
tb = lims→∞ t̃(s) < ∞. Thus, the solution reaches the origin limt→tb r(t) = 0 in a !nite
time tb. #

Proposition 1 demonstrates that the key property of the renormalization is to extend the
blowup time (if it exists) to in!nity, while maintaining the equations in autonomous form (12)
and (13). Hence, it is natural to associate the blowup with a dynamical attractor A of system
(12). Recall that the attractor A is a nonempty, compact, invariant set that has a neighborhood
U0 with the property∩s!0Us = A, where Us is the neighborhood U0 transported by the system
"ux at time s > 0, see, e.g., [26, 35]. The basin of attraction, B(A), is the set of all points that
approach A asymptotically under s →∞. According to proposition 1, if y0 ∈ B(A), then the
blowup dynamics is controlled by the average of the function Fr on the attractor.

Definition 1. We say that the attractor of the system (12) is focusing if Fr < 0 for any y0 ∈
B(A). Similarly, we call the attractor defocusing if Fr > 0 for any y0 ∈ B(A).

For simple attractors like an asymptotically stable !xed point or a limit cycle, there exists
an average value, 〈Fr〉 = Fr = Fr, which is independent of the initial condition y0 ∈ B(A). For
example, if A is a !xed point {y∗}, then 〈Fr〉 = Fr(y∗). If A is a limit cycle, then 〈Fr〉 is the
average of Fr(ỹ(s)) over one period of the attractor. The average 〈Fr〉 can also exist in more
complex situations, in the case of quasi-periodic and chaotic attractors under proper ergodicity
assumptions. For example for suf!ciently mixing "ows, 〈Fr〉 exists and is computed as an
average of Fr(ỹ(s)) over the attractor, with respect to the SRB measure; see [9, 26] for precise
de!nitions.

With the well-de!ned average value, the property of the attractor to be focusing (〈Fr〉 < 0)
or defocusing (〈Fr〉 > 0) is robust. The only exception is given by the degeneracy condition
〈Fr〉 = 0. The immediate consequence of proposition 1 is:

Theorem 1. If y0 ∈ B(A) for a defocusing attractor A of system (12), then tb = ∞ and
limt→∞r (t) = ∞. If y0 ∈ B(A) for a focusing attractor A, then the solution x(t) blows
up in !nite time and the attractor describes the asymptotics of the spherical variables:
limt→tb dist(y(t), A) = 0.

This result provides a natural tool for characterizing and classifying possible types of
blowup. In general, when 〈Fr〉 < 0, the integrals (11) and (14) yield the estimates

z̃(s) ∼ 〈Fr〉s, tb − t̃(s) ∼ exp
[
(1 − α)〈Fr〉s

]
for s →∞, (23)

which lead to the power-law asymptotic for r = ez as

r(t) ∼ (tb − t)
1

1−α for t → tb. (24)

2301



Nonlinearity 34 (2021) 2296 Theodore D Drivas and A A Mailybaev

Thus, near the singularity the solution behaves as a power law conforming to the scaling
symmetry of the equation and is, in this sense, asymptotically self-similar.

We remark that the discussed scenarios of blowup in the !nite-dimensional singular system
(4) and (5) closely resemble the blowup dynamics in partial differential equations [27, 48] and
in!nite-dimensional turbulence models [18, 41, 42], where the asymptotic blowup dynamics
is associated to the attractor of a renormalized system. Similar renormalized systems are also
known as the blowing-up construction for classi!cation of vector !eld singularities and local
bifurcation theory [22, 23, 52]; notice that the notion of ‘blow up’ in this approach refers to the
unfolding transformation of original equations rather than to a !nite-time singularity addressed
here.

To conclude this section, we give a concrete example.

Example 1. In the simplest case an attractor A is a !xed point, say A = {y∗} with Fs(y∗)
= 0. Assuming that y0 ∈ B({y∗}), we !nd the average value 〈Fr〉 = Fr(y∗). A negative value of
Fr(y∗) guarantees the !nite-time blowup. For x0 = r0y∗ and r0 = ez0 , the !xed-point solution
ỹ(s) ≡ y∗ with expressions (14) and (11) yield

z̃(s) = z0 + Fr(y∗)s, t̃(s) = tb −
exp

[
(1 − α)(z0 + Fr(y∗)s)

]

(α− 1)Fr(y∗)
, (25)

where the blowup time (16) is given by

tb = t0 +
exp[(1 − α)z0]
(α− 1)Fr(y∗)

= t0 +
r1−α

0

(α− 1)Fr(y∗)
. (26)

Recall that (α− 1)Fr(y∗) > 0 for negative Fr(y∗) andα < 1. The second expression in (25) can
be used to solve the equation t = t̃(s) with respect to s = s(t). Then the solution x(t) = r(t)y(t)
with y(t) ≡ y∗ and r(t) = ez̃(s(t)) is obtained in the form

x(t) = r(t)y∗, r(t) =
[
(α− 1)Fr(y∗)(tb − t)

] 1
1−α . (27)

In the more general case, when y0 belongs to the basin of attraction of y∗, expression (27)
provides the asymptotic form of the solution before the blowup, as t → tb.

Speci!cally, let us consider system (4) and (5) for any α < 1 and F(y) = (F1, F2) with

F1(y) = y2
1 + y1y2 + y1y2

2, F2(y) = y1y2 + y2
2 − y2

1y2. (28)

Phase diagram of this system is shown in !gure 1(a). For all initial conditions on the left half-
plane x1 < 0 and semi-axis x1 = 0, x2 < 0, solutions enter the singularity at the origin in !nite
time (blowup). On the other hand, all solutions in the upper half-place x2 > 0 and semi-axis
x1 > 0, x2 = 0 originate at the origin. The curves in the fourth quadrant x1 > 0, x2 < 0 never
hit the singularity.

We can express y = ( cosϕ, sinϕ), where the real variable ϕ ∈ S1 describes the angular
dynamics. Then the radial and circular components of the vector !eld are introduced as

(
F1

F2

)
=

(
y1

y2

)
Fr +

(
−y2

y1

)
Fs, Fr(ϕ) =

√
2 sin

(
ϕ +

π

4

)
,

Fs(ϕ) = − sin 2ϕ
2

.

(29)
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Figure 1. (a) Vector !eld of equations (4), (5) and (28) with representative solutions.
Curves entering the origin in !nite time (blowup) are colored blue. (b) Phase portrait of
the renormalized system on a circle. Attractors are shown by black circles and repellers
by white circles.

For the renormalized system (12) and (13) we obtain

dϕ̃/ds = Fs(ϕ̃), dz̃/ds = Fr(ϕ̃), (30)

for ϕ̃(s) :=ϕ(̃t(s)). Dynamics of the equation for ϕ̃ in (30) is very simple as it possesses only
two !xed-point attractors at ϕ̃ = 0 and π, see !gure 1(b). The corresponding basins of attrac-
tion are separated by the two unstable !xed points at ϕ̃ = ±π/2. Since Fr(0) = 1 > 0 for
the !rst attractor, it does not correspond to the blowup. The second attractor with ϕ̃ = π has
Fr(π) = −1 < 0 with the basin of attraction π/2 < ϕ̃ < 3π/2. Therefore, it describes the
blowup from the initial condition at any point of the left half-plane x1 < 0 (basin of attrac-
tion). This is con!rmed in !gure 1(a) demonstrating the phase portrait of original system (4)
and (5). All blue curves enter the origin in !nite time.

The stable !xed-point de!nes the blowup solution (27), which in our example takes the
form

x(t) = −
(

[(1 − α)(tb − t)]
1

1−α

0

)
, 0 " t " tb. (31)

By theorem 1, the solution (31) is asymptotic for all solutions that end at the singularity from
the left half-plane x1 < 0; see the bold blue line in !gure 1(a). There also exists a single solution
corresponding to the unstable !xed point ϕ̃ = 3π/2, see !gure 1(b). This solution is similarly
found as

x(t) = −
(

0
[(1 − α)(tb − t)]

1
1−α

)
, 0 " t " tb. (32)

However, this solution corresponds to a zero measure set of initial conditions. Thus, expression
(31) describes asymptotically the only generic blowup scenario in the system.
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4. Post-blowup dynamics

Our system is not Lipschitz continuous at the origin and, hence, there can be multiple solu-
tions starting at the singularity; see, for example !gure 1(a), where all solutions with x2 > 0
originate at the singularity at !nite time. This prevents one from uniquely de!ning the solution
globally in time and motivates the study of regularized problems for the search of selection
principles.

4.1. ν-regularization and ‘inviscid’ limit

In this section, we consider a class of regularized problems ẋ = fν(x) which have unique global
solutions and provide a selection rule by taking the limit ν → 0 in which the regularization is
removed. A priori, there are in!nitely many different ways to regularize the vector !eld. For
example, one can take the convolution fν = Gν∗f with any smooth scaled molli!er Gν which
approximates the identity Gν → δ as ν → 0. Often, a physical application determines a relevant
regularization.

For analytical convenience, we consider the family fν(x) obtained by smoothing the function
f(x) in equation (5) inside a sphere of radius ν centered at the origin. Then the vector !eld is
constructed by patching together the regularized and the original !elds inside and outside the
sphere. Due to the self-similar form of f(x), it is convenient to de!ne the regularization for all
ν > 0 with the same function G(x) scaled properly inside the ν-sphere. More speci!cally, we
say x = xν(t) is a solution of a ν-regularized problem if it solves

ẋ = fν(x), fν(x) :=

{
rαF(x/r) r > ν;

ναG(x/ν) r " ν,
x(t0) = x0, (33)

where the function G(x) is designed so that fν(x) is continuously differentiable everywhere.
Such regularization is demonstrated schematically in !gure 2(a). We remark that there are
non-trivial topological constraints on possible vector !elds G that can be chosen inside this
ν-ball. These issues are discussed in [12, 25]. It is easy to see that the regularized solution
xν (t) exists and is unique globally in time.

There is some similarity between our regularization and the role of viscosity in "uid dynam-
ics: both change the system at small scales, which are responsible to the blowup. Motivated by
this analogy, the limit ν → 0 can be termed the inviscid limit. We now show that xν(t) converges
(along subsequences) to a solution of the original singular system (4).

Theorem 2. Given any initial condition x0 and any !nite time interval [t0, t1], there exists a
vanishing subsequence limn→∞ νn → 0 such that the ν-regularized solutions {xνn(t)}n!0 with
xνn (t0) = x0 converge uniformly to a limit

x(t) = lim
n→∞

xνn (t) for t ∈ [t0, t1]. (34)

The limiting function x(t) is a solution of the original system (4) with x(t0) = x0.

Proof. Let us !rst consider the case α ∈ [0, 1). Equation (33) provides the estimate for the
time derivative of the norm rν(t) = |xν(t)| as

ṙν " A max (rν , ν)α " A(rν + ν)α, (35)
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Figure 2. (a) Outline of the regularized system (33): the red line corresponds to blowup
solution for ν = 0. The curve xν(t) shows the regularized solution with the equation
modi!ed in the disk of small radius ν > 0. The other curve X(τ ) is a solution of the
rescaled system (48), which corresponds to ν = 1.

where A ! 0 is the maximum value of the norms |F(y)| for y ∈ Sd−1 and |G(x)| for |x| " 1.
The extremal solution rνext(t) of differential inequality (35) can be found as

rνext(t) =
[
A(1 − α)(t − t0) + (r0 + ν)1−α

]1/(1−α) − ν, (36)

where r0 = rν(t0) = |x0|. The function (36) in the interval t ∈ [t0, t1] attains its maximum at
the !nal time t1. In particular, given the initial value r0, a !nite interval [t0, t1] and !xing an
arbitrary ν0 > 0, there is a ball of !nite radius rb =

[
A(1 − α)(t1 − t0) + (r0 + ν0)1−α

]1/(1−α)

such that

rν(t) " rb for any t ∈ [t0, t1], ν ∈ (0, ν0]. (37)

In particular, solutions of (33) are bounded uniformly in ν.
We will now show that the family {xν(t)}ν>0 is equicontinuous. To see this, note that

solutions of (33) satisfy the integral form of the equation:

xν(t) = x0 +

∫ t

t0

fν(xν(t′))dt′, ν > 0. (38)

Let B be the maximum value of the norm |fν (x)| in the compact set {x : |x| " rb} and ν ∈
[0, ν0]. Then the relations (37) and (38) guarantee that

|xν(t) − xν(t′)| " B|t − t′| for any t, t′ ∈ [t0, t1], ν ∈ (0, ν0]. (39)

This inequality proves that the family of solutions {xν(t)}ν>0 is equicontinuous. Thus, by the
Arzelà–Ascoli theorem (see, e.g. [50]), there exists a subsequence ν0, ν1, ν2, . . . , such that
limn→∞ νn = 0 and the corresponding solutions converge uniformly to the continuous function
(34). Finally, since the function fν(x) is uniformly continuous in the compact set |x| " rb,
ν ∈ [0, ν0], one can pass to the limit in equation (38), which yields

x(t) = x0 +

∫ t

t0

f(x(t′))dt′. (40)
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This implies that the limiting solution x(t) solves the original equation (4).
In the case of negative α we use the transformation

xnew = r−αx, νnew = ν1−α, (41)

reducing system (33) to the form

ẋnew =

{
Fnew(y) rnew > νnew;

Gnew(xnew/νnew) rnew " νnew,
xnew(t0) = |x0|1−αy0, (42)

where

Fnew(y) = (1 − α)Fr(y)y + Fs(y),

Gnew(x) = r−β
[
(1 − α)Gr

(
rβy

)
y + Gs

(
rβy

)]
,

(43)

with β = α/(1 − α). Here Gr(x) = y · G(x) and Gs(x) = G(x) − Gr(x)y are the radial and
spherical parts of G(x). The function Gnew in (43) is continuous in the case of α < 0. It remains
to notice that the system (42) corresponds to the case α = 0, for which the statement of the
theorem was already proved; note that this proof required only the continuity of G. #

4.2. Selection by renormalization

Although convergent subsequences are guaranteed by theorem 2, the limits are generally not
unique after the blowup time tb. Different sequences νn → 0 may lead to different limits, as we
show with explicit examples below. Despite this non-uniqueness, we will see in this section
that the regularization procedure drastically decreases the number of ‘choices’ that the system
can make after the blowup. Most importantly, we will show a counterintuitive fact that this set
of possible choices is controlled primarily by the properties of the original singular system,
rather than by a speci!c form of the regularization.

In this paper we only address the post-blowup dynamics in the simplest case, when the
blowup is asymptotically self-similar (see theorem 1 and example 1), i.e., it corresponds to the
!xed-point attractor y∗ of the renormalized system (12) with Fr(y∗) < 0. Thus, the angular part
of our initial condition is assumed to be in the basin of attraction B({y∗}).

We start by focusing on a speci!c initial condition x0 = r0y∗ for some r0 > 0. As we showed
in the previous section, this initial condition leads to solution (27), which blows up at !nite
time tb given in (26). The same solution is valid for the regularized system (33) in the interval
t0 " t " tνent, where

tνent := tb −
ν1−α

Fr(y∗)(α− 1)
(44)

is the time when solution (27) hits the sphere {x : r = ν} and starts to be affected by the regu-
larization. First, we show that the limit ν → 0 reduces to the scaling limit for a single function
X(τ ) de!ned by

xν(t) = νX(τν (t)), τν (t) := ν−(1−α)(t − tb). (45)

By matching the representation (45) with (27), we obtain

X(τ ) =
[
Fr(y∗)(1 − α)τ

] 1
1−α y∗, τ0 " τ " τent, (46)
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where τ 0 and τ ent correspond to t0 and tνent via

τ0 := − ν−(1−α)(tb − t0), τent := − ν−(1−α)(tb − tνent) = − 1
Fr(y∗)(α− 1)

. (47)

Past the time τ > τ ent, we !nd the behavior of X(τ ) by substituting (45) into (33) to obtain:

dX
dτ

=

{
RαF(Y), R > 1

G(X), R " 1
, X(τent) = y∗, (48)

where R = |X| and Y = X/R. Thus both the equation (48) and initial conditions determining
X(τ ) are completely independent of ν, and xν may be genuinely obtained by the scaling (45).
Equation (48) has a unique global solution X(τ ). Due to the scaling property (45), the inviscid
limit ν → 0 depends on the behavior of the solution X(τ ) at large τ , see !gure 2.

Clearly, for times t < tb before the singularity, we can use continuous dependence of the
solution xν(t) on the parameter ν. Hence, the limit ν → 0 exists, it is unique and equal to the
solution x(t) of the original system (4). By continuity, we extend this statement to the singular
point, i.e., for the full time interval t ∈ [t0, tb]. The following de!nition and theorem distinguish
two opposite scenarios in the inviscid limit for t > tb, namely, when the solution is trapped at
or immediately leaves the singular point.

Definition 2. Given the solution X(τ ) of (48), we say that the regularization is expelling,
if there exists a !nite time τ esc > τ ent such that R(τ esc) = 1 and the solution is outside the
regularization region, R(τ ) > 1, for all τ > τ esc. We say that the regularization is trapping, if
the solution stays (or returns to) the regularization region, R(τ ) " 1, for arbitrarily large τ and,
additionally, remains bounded, R(τ ) " Rb < ∞ for all τ > τ ent.

Theorem 3. Let xν(t) be a solution to the regularized problem (33) for the initial condition
x0 = r0y∗ satisfying Fs(y∗) = 0 and Fr(y∗) < 0.

(a) For the trapping regularization, the inviscid limit is trivial: x(t) = limν→0 xν(t) = 0 for all
t > tb.

(b) For the expelling regularization, let νn → 0 be a subsequence providing (by theorem 2)
the uniformly convergent solutions xνn (t) → x(t) in a given time interval [tb, t1]. Let yesc

∗ ∈
B(A′) for a defocusing attractor A′ (see de!nition 1) and assume that the solution Ỹ(S)
of system (52) introduced below satis!es the condition

lim sup
S→∞

∫ S

0
exp

[
−(1 − α)

∫ S

S′
Fr(Ỹ(S′′))dS′′

]
dS′ < ∞. (49)

Then r(t) > 0 and y(t) ∈ A′ for all t > tb.

Proof.

From equation (45), we express rν = νR for t = tb + ν1−ατ ν > tb + ν1−ατ ent. In case
of trapping regularization, the renormalized solution is bounded, R(τ ) " Rb. With these
properties, in the limit ν → 0 we obtain r = 0 for t > tb.
In the case of expelling regularization, equation (48) reduces to Ẋ = RαF(Y) for τ ! τ esc.
Thus, we can follow the same steps as in (7), (10) and de!ne

Z(τ ) = ln R(τ ), S(τ ) =

∫ τ

τesc

e−(1−α)Z(τ ′)dτ ′. (50)
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We denote by τ = τ̃ (S) the inverse of the monotonously increasing function S = S(τ ) and
de!ne Ỹ(S) := Y(τ̃ (S)) and Z̃(S) := Z(τ̃ (S)). Similarly to (11), we have

τ̃ (S) = τesc +

∫ S

0
e(1−α)Z̃(S′)dS′. (51)

In analogy to (12) and (13), the renormalized equations for Ỹ(S) and Z̃(S) are written as

dỸ/dS = Fs(Ỹ), Ỹ(0) = yesc
∗ , (52)

dZ̃/dS = Fr(Ỹ), Z̃(0) = 0, (53)

where the initial conditions follow from the assumption X(τesc) = yesc
∗ with Z(τ esc) =

ln|X(τ esc)| = 0 and S(τ esc) = 0. The solution of (52) and (53) exists globally for S ! 0.
The solution X(τ ) is recovered from (50) and (51) via X(τ ) = X̃(S(τ )) with X̃(S) =
eZ̃(S)Ỹ(S).

Since system (52) has the same form (apart from initial conditions) as (12) in the previ-
ous section, we can use the same terminology of focusing and defocusing attractors given
by de!nition 1. Recall that the attractors describe the dynamics of spherical components
Ỹ(S), while the property of being focusing or defocusing characterizes the radial variable
R̃(S) = eZ̃(S). In the focusing case, orbits of the ideal system starting in the basin of attrac-
tion converge exponentially to the origin R̃(S) → 0 as S →∞, and in the defocusing case they
diverge exponentially to in!nity.

Consider a subsequence limn→∞ νn → 0 given by theorem 2. It provides the uniformly
convergent limit x(t) = limn→∞ xνn (t), which solves equations (4) and (5). Let us !x some
time t > tb. Since α < 1, the sequence of corresponding values of τn = τνn (t) given by (45)
diverges: limn→∞ τ n = ∞. The corresponding values of the renormalized time Sn = S(τ n)
can be obtained from (50), or implicitly by inverting (51). Here the value of Z̃(S) =
ln R̃(S) ! 0 is bounded from below because R̃(S) ! 1 for all S > 0 by the assumptions of the
expelling regularization. The upper bound is obtained from equation (53) as Z̃(S) " SM, where
M := maxY∈Sd−1 Fr(Y). We must have M > 0 for the expelling regularization. These estimates
applied to the relation (51) yield

τesc + S " τ̃ (S) " τesc +
exp [(1 − α)SM] − 1

(1 − α)M
for S ! 0. (54)

Substituting S = S(τ ) into the second inequality of (54), which yields τ̃ (S(τ )) = τ , after simple
manipulation we have

S(τ ) ! ln [(1 − α)M(τ − τesc) + 1]
(1 − α)M

for τ ! τesc. (55)

As we already mentioned, limn→∞ τ n = ∞. The inequality (55) proves that limn→∞ Sn = ∞.
From (45) and (51), using the fact that τ̃ (S) = τν (t) when S = S(τ ν(t)), we express

ν1−α =
(
t − tb − ν1−ατesc

)
(∫ S(τν (t))

0
e(1−α)Z̃(S′)dS′

)−1

. (56)

Using the relations r = νR = νeZ with Z = Z̃(S(τν(t))) and substituting ν from (56), we obtain

r(t) =
(
t − tb − ν1−ατesc

) 1
1−α

(∫ S(τν (t))

0
e−(1−α)(Z̃(S(τν (t)))−Z̃(S′))dS′

)− 1
1−α

. (57)
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In the inviscid limit νn → 0, the !rst factor in (57) tends to (t − tb)
1

1−α > 0. Integrating
equation (53) as

Z̃(S(τν(t))) − Z̃(S′) =

∫ S(τν (t))

S′
Fr(Ỹ(S′′))dS′′ (58)

and using (49), we conclude that expression (57) provides r(t) > 0 for t > tb in the limit
νn → 0.

For the angular variables, we write

y(t) = lim
n→∞

yνn (t) = lim
n→∞

Y(τn) = lim
n→∞

Ỹ(Sn). (59)

Since limn→∞ Sn = ∞ and the initial condition Ỹ(0) = yesc
∗ ∈ B(A′) is assumed to be in the

basin of attraction, then limn→∞ Ỹ(Sn) ∈ A′ and we conclude that y(t) belongs to the attractor
A′. #

Theorem 3 constitutes severe restriction on the limiting solutions: the spherical component
of the solution must belong to the attractor A′ given by the ideal system, independently on a
particular form of regularization function G. Below we provide a proposition with an example
of concrete condition on the function Fr that guarantees that property (49) holds.

Proposition 2. Inequality (49) in theorem 3 holds if there are constants c1 > 0 and c0 ∈ R
such that the inequality

∫ S

S′
Fr(Ỹ(S′′))dS′′ > c1(S − S′) + c0 (60)

is satis!ed for any S > S′ ! 0. In particular, this is the case when Fr(Y) > 0 for all Y ∈ A′.

Proof. Since α < 1, we can use (60) in the estimate

∫ S

0
exp

[
−(1 − α)

∫ S

S′
Fr(Ỹ(S′′))dS′′

]
dS′ < e−(1−α)c0

∫ S

0
e−c1(1−α)(S−S′)dS′ <

e−(1−α)c0

(1 − α)c1
.

(61)

This implies (49). In the case, when Fr(Y) > 0 for all Y ∈ A′ on the attractor, we can choose
c1 = 1

2 minY∈A′ Fr(Y) > 0. Then, for any solution Ỹ(S) attracted to A′, there exists an S1 < ∞
such that Fr(Ỹ(S)) > c1 for all S ! S1. Thus, inequality (60) is satis!ed for S > S′ ! S1 with
c0 = 0. One can verify that this inequality can be extended to the intervals with S > S′ ! 0 and

c0 = −c1S1 −
∫ S1

0
|Fr(Ỹ(S′′))|dS′′. (62)

#
4.3. Extension to generic initial conditions

Now let us return to the generic case, when the initial condition in (4) has the angular part y0
belonging to the basin of attraction of the !xed point, B({y∗}), instead of being exactly y∗. By
theorem 1, the corresponding solution blows up in !nite time tb with the angular part tending to
the !xed-point attractor, y(t) → y∗, as the time increases to the moment of blowup, t → tb. For
the ν-regularized problem this implies that, for a suf!ciently small ν, there is time tνent ∈ [t0, tb),
when the solution enters the regularization region. Furthermore, the value yν

ent = y(tνent) can be
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made arbitrarily close to y∗. Therefore, the inviscid limit ν → 0 corresponds to the problem
(48), where y∗ in the initial condition is substituted by an arbitrarily close state yν

ent depending
on ν.

For the rigorous study of the inviscid limit, let us enhance the notions of expelling and
trapping regularizations. We call the regularization locally expelling if all solutions X(t) of (48)
with the initial conditions X(τ ent) = yent in some neighborhood of y∗ are expelled in the sense
of de!nition 2; additionally, we require that the point yesc = X(τ esc) depends smoothly on yent.
The latter condition is provided naturally by the smooth dependence on initial conditions, if the
vector F(yesc

∗ ) is transversal to the unit sphere, where yesc
∗ corresponds to the solution starting

exactly at y∗. Similarly, we call the regularization locally trapping, if all solutions X(t) of (48)
with the initial conditions in some neighborhood of y∗ are trapped in the sense of de!nition 2
with the same bound R(τ ) " Rb < ∞ for τ > τ ent. Now we can formulate the straightforward
extension of theorem 3 as

Corollary 1. Let xν (t) be a solution to the regularized problem (33) for the initial condition
x0 = r0y0 with y0 ∈ B({y∗}), where Fs(y∗) = 0 and Fr(y∗) < 0.

(a) For the locally trapping regularization, the inviscid limit is trivial: x(t) = limν→0 xν(t) = 0
for all t > tb.

(b) For the locally expelling regularization, let νn → 0 be a subsequence providing (by
theorem 2) the uniformly convergent solutions xνn(t) → x(t) in a given time interval [tb, t1].
Let yesc

∗ belong to the basin of attraction B(A′) for a defocusing attractor A′ of system
(52). Additionally, we assume that any solution Ỹ(S) starting in some neighborhood of
yesc
∗ satis!es condition (49). Then r(t) > 0 and y(t) ∈ A′ for all t > tb.

Corollary 1 extends the conclusion of theorem 3 to an open subset of initial conditions x0:
the spherical component of the limiting solutions after blowup must belong to the attractor A′

given by the ideal singular system, independently on a particular form of the regularization
function G. This restriction can be very strong, providing a constructive selection rule, as we
describe in the next sections for the examples of !xed-point and periodic attractors A′.

5. Fixed-point attractor and the unique inviscid limit

Let us consider the simplest case when A′ = {y′
∗} is a !xed-point attractor, which is the case

when Fs(y′
∗) = 0. With the additional condition Fr(y′

∗) > 0, we guarantee that the attractor is
defocusing and, by proposition 2, the inequality (49) holds. The part (b) of theorem 3 and
corollary 1 state that the limiting solution for t > tb must satisfy the original equation (4) with
y(t) = y′

∗ and r(t) > 0. Such a solution is unique and can be derived similarly to (27) in the
form

x(t) =
[
(1 − α)Fr(y′

∗)(t − tb)
] 1

1−α y′
∗, t > tb. (63)

Combining these arguments, we have

Theorem 4. Let xν(t) be a solution to the regularized problem (33) for the initial condition
x0 = r0y0 with y0 ∈ B({y∗}), where Fs(y∗) = 0 and Fr(y∗) < 0. Assume that the regularization
is locally expelling and yesc

∗ is in the basin of attraction for A′ = {y′
∗} with Fs(y′

∗) = 0 and
Fr(y′

∗) > 0. Then the inviscid limit x(t) = limν→0 xν(t) exists and is given by (63).

We see that the inviscid limit in the case of a !xed-point attractor is unique for all times and
it is fully determined by the properties of the ideal system: a speci!c form of the regularization
function G has no effect on the limiting solution as far as the generic conditions of theorem
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Figure 3. (a) Solid black curves show an in!nite number of trajectories starting at the
origin for the singular system. The bold green line indicates the unique solution chosen
by a generic expelling regularization, see also !gure 4(c). (b) Solution X(τ ) of the system
with trapping regularization con!ned to the red circle r " 1.

4 are satis!ed. We will illustrate this rather counterintuitive property with the following two
examples.

Example 2. Let us investigate continuation past blowup in the system of example 1, assum-
ing that α = 1/3. As shown in !gure 3(a), there are an in!nite number of solutions which start
at the singularity. Also, for any time t2 > tb there exist solutions which remain at the origin,
x(t) = 0 for t ∈ [tb, t2) and for t > t2 escape the origin along any nontrivial path. We will now
see how the regularization provides a speci!c choice of the solution for t > tb.

For the regularized system (33), we de!ne

G(x) = ξ(r)f(x) + (1 − ξ(r))G0, r = |x| " 1, (64)

where G0 is a constant vector and ξ(r) = 3r2 − 2r3 smoothly interpolates between ξ(0) = 0
and ξ(1) = 1. Let us !rst choose G = (1, 1.3). The corresponding solution X(τ ) of the reg-
ularized system (48) with y∗ = (−1, 0) is obtained numerically and presented in !gure 3(b).
Clearly, the proposed regularization is trapping. By corollary 1, for any initial condition in the
left half-plane x1 < 0, the solution blows up in !nite time tb and the inviscid limit provides the
trivial solution, x(t) = 0, for t ! tb.

As the second choice, we take G = (1,−2). The corresponding solution X(τ ) of the regu-
larized system (48) is shown in !gure 4(a). This regularization is expelling: the solution enters
the regularization region r " 1 through the point y∗ and exits forever at yesc

∗ . The state yesc
∗

belongs to the basin of attraction of the !xed point y′
∗ = (1, 0) (i.e., ϕ = 0) of the renormalized

system (52) with Fr(y′
∗) = 1 > 0, see !gure 1(b). By theorem 4, the inviscid limit de!nes the

unique solution

x(t) =

(
[(1 − α)(t − tb)]

1
1−α

0

)
, t ! tb. (65)
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Figure 4. Expelling regularization: (a) solution X(τ ) of the rescaled regularized
problem; the red circle indicates the regularization region R " 1. (b) Inviscid limit ν → 0
of the regularized solutions xν (t) from the same initial condition. The black curves depict
solutions for different values of ν. Together with the corresponding circular regulariza-
tion regions r " ν, they are distinguished by the line width. (c) Solutions of the singular
system obtained in the inviscid limit. Solid blue curves correspond to solutions that blow
up in !nite time, continued identically past the singularity (green line). Dashed lines
correspond to solutions that do not blow up, when initial conditions are taken on the
right half-plane. The red dotted line corresponds to initial conditions that may lead to a
non-generic behavior after blowup.

Exactly the same solution after blowup is obtained for any initial condition in the half-plane
x1 < 0, because these solutions blow up in !nite time tb with the same asymptotic behavior.
This result is con!rmed in !gure 4(b) showing the sequence of regularized solutions xν(t) with
ν → 0.

We conclude that the regularization provides a unique global-in-time solution to the problem
(4) and (5) for generic initial condition, see !gure 4(c). In particular, all solutions with
x1(t0) < 0 blow up in !nite time and continue past the singularity in exactly the same way
(65). The solutions with x1(t0) > 0, as well as x1(t0) = 0 and x2(t0) > 0 do not blowup. Finally,
there is a set of initial conditions, x1(t0) = 0 and x2(t0) " 0, which requires a separate analysis.
However, this set has zero measure, i.e., the corresponding initial conditions are not generic.

It is crucial that, for generic initial conditions, the inviscid limit x(t) = limν→0xν(t) is de!ned
primarily by the properties of the original singular system, namely, by attractors of the renor-
malized equations. Thus, the solution does not depend on !ne details of the regularization. This
means that the solution x(t) remains exactly the same under any (suf!ciently small) deforma-
tion of the regularization function G. However, very different regularizations (e.g., trapping
vs expelling) may lead to different results. Further choices may appear in case of multiple
attractors, as we demonstrate in the next simple example.

Example 3. Consider the one-dimension system (1) from the introduction, which is often
used as a prototypical example of non-uniqueness. This system has no blowup. However, the
equation possesses non-unique solutions starting exactly at the origin. One such solution is
x(t) ≡ 0 for all t ! t0, and there are two extremal solutions (3), which leave the origin imme-
diately. Furthermore, there are a continuum in!nity of solutions, which stay at the origin until
an arbitrary time t1 ! t0 and peal off as x(t) = ±

(
2
3 (t − t1)

)3/2
for t > t1.

The renormalized system for (1) is trivial, since y = x/|x| = ±1 can take only two discrete
values for any x $= 0. Both these values can be seen as !xed-point attractors in the terminology
of theorem 4, with the corresponding limiting solutions given by (3). Let us modify the problem

2312



Nonlinearity 34 (2021) 2296 Theodore D Drivas and A A Mailybaev

Figure 5. The function f(x) = x1/3 (dashed black) and its ν-regularizations: (a) that
expel solutions to the right (σ = 1) or to the left (σ = −1) in blue and (b) that traps the
solutions in red. The regularization region is |x| " ν with ν = 0.4.

by replacing (1) with a ν-regularized dynamics (33) as discussed in section 4.1. Similarly to
(64), we consider the ν-regularization with

G(x) = ξ(r) f (x) + [1 − ξ(r)]
σ + x

2
, (66)

where r = |x| and the sign σ = ±1 de!nes two different regularizations. The resulting regular-
ized functions fν(x) are shown in !gure 5(a) by the blue lines. This regularization is expelling
for the solution with x(t0) = 0, and the inviscid limit ν → 0 yields the extreme solution (3)
with the same sign σ. Another example is given by

G(x) = ξ(r) f (x) + [1 − ξ(r)]
1 − 8x

6
, (67)

with the function fν(x) shown in !gure 5(b) by the red line. In this case, the solution starting
at the origin is attracted to a !xed-point located slightly to the right from the origin (trapping
regularization). Thus, the inviscid-limit solution is x(t) ≡ 0.

We see that only three (out of the in!nite number of) solutions can be selected by a generic
ν-regularization. We remark that the two solutions appear simultaneously for the system with
additive-noise regularization:

dx = sgn(x)|x|αdt +
√

2κdWt, x(0) = 0, (68)

where Wt is the standard Wiener process and α ∈ (0, 1). In this case, the zero-noise limit
(κ→ 0) selects a non-trivial probability measure (spontaneously stochastic solution), which
is distributed symmetrically between the two extremal solutions (3); see [2, 24, 32].

6. Limit cycle attractor and the non-unique inviscid limit

In this section we consider the case when the post-blowup dynamics in theorem 3(b) is gov-
erned by a limit cycle attractor A′. The limit cycle is represented (up to a phase shift in S) by
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a periodic solution Ỹp(S) of system dỸ/dS = Fs(Ỹ):

Ỹp(S) = Ỹp(S + T), (69)

with period T . We de!ne the mean value of the radial function Fr(y) on the limit cycle as

〈Fr〉 :=
I(0, T)

T
, I(S1, S2) =

∫ S2

S1

Fr(Ỹp(S))dS. (70)

For further use, the integral function is extended for S1 > S2 as I(S1, S2) = −I(S2, S1). Note
that the function I(S1, S2) − 〈Fr〉(S2 − S1) is T-periodic with respect to both S1 and S2.
Hence,

〈Fr〉(S2 − S1) + Cm < I(S1, S2) < 〈Fr〉(S2 − S1) + CM (71)

for some constants Cm and CM .
First, let us describe a family of solutions of the original problem (4) and (5), which start at

the singularity and are induced by the limit cycle (69).

Proposition 3. Consider a periodic solution (69) with a positive mean value, 〈Fr〉 > 0.
Then there is a family of solutions of system (4) and (5) starting at the singularity x = 0 at
t = tb and having the form

x(t) = (t − tb)
1

1−α Xp

(
ln
[
(t − tb)

1
1−α

]
+ ζ

)
, (72)

where ζ ∈ R is a constant parameter and the function Xp has period T〈Fr〉 with respect to its
argument; this function is de!ned as Xp := xp◦ψ−1, where

xp(s) = e−ϕ(s,s)Ỹp(s), (73)

ϕ(s1, s2) =
1

1 − α
ln
[∫ 0

−∞
e−(1−α)I(s1+s′ ,s2)ds′

]
(74)

and ψ−1 : R 0→ R is the well de!ned inverse map of the function ψ(s) :=ϕ(s, 0).

Proof. Following relations (11)–(13), solution x(t) of (4) at time t = t̃(s) for s ! 0 can be
written as

x(̃t(s)) = ez̃(s)ỹ(s) (75)

where the functions z̃(s), ỹ(s) and t̃(s) satisfy the equations

dỹ
ds

= Fs(ỹ),
dz̃
ds

= Fr(ỹ),
d̃t
ds

= e(1−α)̃z(s), (76)

and s is the auxiliary variable. By the assumption, the !rst equation possesses the periodic
solution

ỹ(s) = Ỹp(s). (77)

The second equation in (76) is integrated as

z̃(s) = −I(s, 0) − ζ, (78)
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where I is given in (70) and ζ is an arbitrary integration constant.
Notice that

lim
s→−∞

z̃(s) = −∞, lim
s→+∞

z̃(s) = +∞, (79)

because of (71) with 〈Fr〉 > 0. Hence, |x̃(s)| = ez̃(s) → 0 in the limit s →−∞, i.e., the solution
tends to the singularity. Let us choose the solution of the last equation in (76) as

t̃(s) = tb +

∫ s

−∞
e(1−α)̃z(s′)ds′, (80)

which has the property t̃(s) → tb as s →−∞. Using (78), this yields

t̃(s) = tb +

∫ s

−∞
e−(1−α)(I(s′ ,0)+ζ)ds′, (81)

where the integral converges because of (71) for 〈Fr〉 > 0. Expression (81) can be rewritten
after changing the integration variable s′ 0→ s′ + s and using (74) as

t̃(s) = tb + e(1−α)(ϕ(s,0)−ζ). (82)

Recalling the notation ψ(s) :=ϕ(s, 0), we write (82) in the form

ψ(s) = ln
[
(̃t(s) − tb)

1
(1−α)

]
+ ζ. (83)

Substituting the expression I(s + s′, 0) = I(s + s′, s) + I(s, 0) into the formula (74) for
ϕ(s, 0) and then expressing I(s, 0) from (78), one can deduce that

ψ(s) = ϕ(s, 0) = ϕ(s, s) − I(s, 0) = ϕ(s, s) + z̃(s) + ζ. (84)

In view of (83) and (84), we have

z̃(s) = ln
[
(̃t(s) − tb)

1
1−α

]
− ϕ(s, s). (85)

Using (77), (85) and the de!nitions (73) and (75), we express

x(̃t(s)) = (̃t(s) − tb)
1

1−α xp(s), s ∈ R. (86)

The function t = t̃(s) is monotonically increasing with a positive derivative; see the last
equation in (76). Due to the properties (79), this function maps t̃ : R 0→ (tb,∞). Thus, the
inverse function s = s(t), which maps (tb,∞) 0→ R, is well de!ned. This allows one to rewrite
(86) in the form

x(t) = (t − tb)
1

1−α xp(s(t)), t ∈ (tb,∞). (87)

The same properties of t̃(s) imply that the functionψ(s) in (83) is monotonically increasing with
a positive derivative, and it maps R 0→ R. Hence, the inverse function exists: ψ−1 : R 0→ R.
Using ψ−1 in (83) evaluated at s = s(t), we have

s(t) = ψ−1
(

ln
[
(t − tb)

1
1−α

]
+ ζ

)
. (88)
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Figure 6. Vector !eld and non-unique trajectories emanating from the origin for
equation (92).

Composing (87) and (88), we have

x(t) = (t − tb)
1

1−α (xp ◦ ψ−1)
(

ln
[
(t − tb)

1
1−α

]
+ ζ

)
(89)

which yields (72) as claimed.
Because of the T-periodicity of Ỹp(s) in the expressions (70), one has

I(s + T + s′, s + T) = I(s + s′, s), I(s + T + s′, 0) = I(s + s′, 0) − 〈Fr〉T.

(90)

Using these formulas in (74), one obtains for ϕ(s, s) and ψ(s) :=ϕ(s, 0):

ϕ(s, s) = ϕ(s + T, s + T), ψ(s) = ψ(s + T) − 〈Fr〉T. (91)

The former equality implies that xp(s) in (73) is T-periodic, while the latter yields that the
composition Xp = xp ◦ ψ−1 has period T〈Fr〉. #

Example 4. To illustrate proposition 3 with a simple example, let us consider the system

ẋ = rα−1(x1 − x2, x1 + x2), (92)

with x = (x1, x2) and α < 1. The corresponding vector !eld is shown in !gure 6, demonstrat-
ing that all solutions emanate from the singularity at the origin. We will !nd these solutions
explicitly assuming that they start from the singularity x(tb) = 0 at time t = tb.

The right-hand side of system (92) can be written as rαF(y) with y = (y1, y2) = x/r and
F(y) = (y1 − y2, y1 + y2). As in example 1, it is convenient to work with the angle variable
ϕ ∈ S1 on the circle y = ( cosϕ, sinϕ). Then the radial and circular components of F are given
by

Fr(ϕ) = Fs(ϕ) = 1. (93)
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For the renormalized system (30), the !rst equation dϕ̃/ds = Fs(ϕ̃) has the particular solution
ϕ̃(s) = s. In the original variables, this yields the 2π-periodic solution

Ỹp(s) = (cos s, sin s). (94)

Since Fr ≡ 1, we have I(s1, s2) = s2 − s1 from equation (70). A simple calculation using the
de!nition (74) yields

ϕ(s, s) = − ln(1 − α)
1 − α

, ψ(s) :=ϕ(s, 0) = s − ln(1 − α)
1 − α

.

ψ−1(ξ) = ξ +
ln(1 − α)

1 − α
.

(95)

Then, formulas (72) and (73) of proposition 3 yield the explicit solutions

x(t) = [(1 − α)(t − tb)]
1

1−α (cos ξ, sin ξ), ξ = ln
[
(t − tb)

1
1−α

]
+ ζ1, (96)

where ζ1 = ζ + (1 − α)−1 ln(1 − α) is an arbitrary constant parameter.
We obtained a family of solutions with the same initial condition at the singularity, which

depend 2π-periodically on the constant phase parameter ζ1. When α ∈ (0, 1), one can also
construct solutions that sit at the origin for an arbitrary period of time prior to being shed
off following any of the paths (96). This describes all (non-unique) solutions that start at the
singularity at !nite time. For system (92), all such solutions are related to the limit cycle in the
renormalized equation. This is not the case in general, as we will see in the next example: for
systems of higher dimension, d > 2, solutions of proposition 3 form a zero-measure subset of
all solutions originating from the singular point.

Now let us consider the ν-regularized problem. The results of theorem 3 establish that any
solution after blowup obtained by a sequence of expelling regularizations must have angular
part that lives on an attractor of the renormalized system. We now prove that, for limit cycle
attractors, solutions of proposition 3 are the only possibility arising from ‘inviscid limit’ of
expelling regularizations.

We assume that all characteristic exponents of the linearized problem near the limit
cycle Ỹp(S) have negative real parts, except for the single vanishing exponent responsible to
time-translations, Ỹp(S + δS). In this case the corresponding attractor A′ = {Y = Ỹp(S) : S ∈
[0, T)} is exponentially stable. More speci!cally, every solution Ỹ(S) with the initial conditions
from the basin of attraction, Ỹ(0) = yesc

∗ ∈ B(A′), approaches the limit cycle exponentially fast

Ỹ(S) = Ỹp(S + S1) + εY(S) (97)

with

|εY(S)| < CYe−λS for S ! 0 (98)

for some constant phase 0 " S1 < T and λ > 0, CY > 0; see, e.g. [34, p 254]. Since Ỹ(S) tends
to the limit cycle, we can de!ne the average value

〈Fr〉 = lim
S→∞

1
S

∫ S

0
Fr(Ỹ(S′))dS′ =

1
T

∫ T

0
Fr(Ỹp(S))dS, (99)

which is the same as the average (70) on the periodic attractor A′. Recall that 〈Fr〉 ! 0 is a
necessary condition for the expelling regularization.
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The next theorem characterizes all solutions that can be obtained in the inviscid limit after
the blowup for a speci!c type of initial conditions. The result is a one-parameter family of
solutions, depending on the viscous subsequence. First, we consider initial conditions of the
self-similar blowup, which is governed by a !xed-point attractor Fs(y∗) = 0 with the property
Fr(y∗) < 0, see section 3. Later, we will extend the results to more general initial conditions.

Theorem 5. Let xν(t) be a solution to the regularized problem (33) for the initial condition
x0 = r0y∗, where Fs(y∗) = 0 and Fr(y∗) < 0. Assume that the regularization is expelling and
yesc
∗ is in the basin of attraction B(A′) for an exponentially stable limit cycle A′ with the aver-

age 〈Fr〉 > 0. Then the inviscid limit x(t) = limn→∞ xνn(t) exists for the sequence (geometric
progression)

νn = e−T〈Fr〉n+χ (100)

with an arbitrary !xed χ. After the blowup, for t > tb, the limiting solution coincides with the
one given by proposition 3 with ζ = c − χ for some regularization-dependent constant c.

Proof. As described in section 4.2, for the times t ∈ [t0, tb], the inviscid limit is given by
the blowup solution (26) and (27) of the original system (4) and (5). For the times after the
blowup, t > tb, the limit can be studied using the relation (45), where X(τ ) is the solution of the
ν-independent regularized system (48). After leaving the regularization region, τ ! τ esc, this
system is equivalent to equations (51)–(53) providing separately τ̃ (S) and X̃(S) = eZ̃(S)Ỹ(S) as
functions of the auxiliary variable S. Thus, we start by studying the solutions Ỹ(S), Z̃(S) and
τ̃ (S), where behavior of Ỹ(S) is already described by relation (97).

Since the function Fr(Y) : Sd−1 0→ R is smooth and de!ned on the sphere, there is a positive
constant cvar bounding the variation of this function as

|Fr(Y) − Fr(Y′)| < cvar|Y − Y′| (101)

for all Y, Y′ ∈ Sd−1. Using this property with the relations (97) and (98), we have

Fr(Ỹ(S)) = Fr(Ỹp(S + S1)) + εr(S), (102)

where the exponentially decaying correction term is bounded as

|εr(S)| < Cre−λS for S ! 0 (103)

and the positive coef!cient Cr = cvarCY .
The solutions Z̃(S) of equation (53) can be written using (102) as

Z̃(S) =

∫ S

0
Fr(Ỹ(S′))dS′ =

∫ S

0
Fr(Ỹp(S′ + S1))dS′ +

∫ S

0
εr(S′)dS′. (104)

Using the integral notation from (70) and introducing the quantities

c = I(0, S1) −
∫ ∞

0
εr(S′)dS′, εZ(S) = −

∫ ∞

S
εr(S′)dS′, (105)

we write (104) after changing the integration variable S′ 0→ S′ + S1 as

Z̃(S) = I(0, S + S1) − c + εZ(S) = −I(S + S1, 0) − c + εZ(S). (106)
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Notice that the integrals in (105) converge because of the bound (103). This bound guarantees
also that

|εZ(S)| < CZe−λS for S ! 0 (107)

and the positive constant CZ = Cr/λ.
The function τ̃ (S) is given by equation (51), which we write using (106) in the form

τ̃ (S) = τesc +

∫ S

0
e(1−α)[−I(S′+S1,0)−c+εZ (S′)]dS′

= τesc +

∫ 0

−S
e(1−α)[−I(S′+S+S1,0)−c+εZ (S+S′)]dS′, (108)

where we changed the integration variable S′ 0→ S + S′ in the last expression. This can be recast
as

τ̃ (S) = τesc + e−(1−α)c [1 + ε1(S) + ε2(S) + ε3(S)]
∫ 0

−∞
e−(1−α)I(S′+S+S1,0)dS′, (109)

where we introduced

ε1(S) = −
(∫ 0

−∞
e−(1−α)I(S′+S+S1,0)dS′

)−1∫ −S

−∞
e−(1−α)I(S′+S+S1,0)dS′ , (110)

ε2(S) =

(∫ 0

−∞
e−(1−α)I(S′+S+S1,0)dS′

)−1∫ −S/2

−S
e−(1−α)I(S′+S+S1,0)

(
eεZ(S+S′) − 1

)
dS′, (111)

ε3(S) =

(∫ 0

−∞
e−(1−α)I(S′+S+S1,0)dS′

)−1∫ 0

−S/2
e−(1−α)I(S′+S+S1,0)

(
eεZ (S+S′) − 1

)
dS′. (112)

Using the function ϕ de!ned in (74), we reduce (109) to the form

τ̃ (S) = τesc + e(1−α)[ϕ(S+S1,0)−c] [1 + ετ (S)] , (113)

where ετ (S) = ε1(S) + ε2(S) + ε3(S).
We now show that

lim
S→∞

ε1(S) = 0, lim
S→∞

ε2(S) = 0, lim
S→∞

ε3(S) = 0, (114)

which implies

lim
S→∞

ετ (S) = 0. (115)

From the bounds (71), for arbitrary Sa < Sb, it follows that

Ameβ(S+S1) (eβSb − eβSa
)

<

∫ Sb

Sa

e−(1−α)I(S′+S+S1,0)dS′ < AMeβ(S+S1) (eβSb − eβSa
)
.

(116)
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with β = (1 − α)〈Fr〉 > 0 and some positive constants Am and AM . Using these inequalities in
the de!nition (110) yields

|ε1(S)| < AMe−βS/Am. (117)

From this estimate, the !rst limit in (114) easily follows. Absolute value of the last factor
in (111) has the form

∣∣∣eεZ(S+S′) − 1
∣∣∣ with −S " S′ " −S/2, and it can be bounded by unity

for large S using (107). Then the second limit in (114) is obtained similarly using (116). For
−S/2 " S′ " 0 and suf!ciently large S, one can use the same relation (107) and elementary
analysis to show

∣∣∣eεZ(S+S′) − 1
∣∣∣ <

∣∣∣eCZe−λS/2 − 1
∣∣∣ < 2CZe−λS/2. (118)

Using (116) and (118) in the expression (112) proves the last limit in (114).
Now let us return to the regularized solution xν(t). The functions Ỹ(S), Z̃(S) and τ̃ (S) given

by (97), (106) and (113) de!ne implicitly the function X(τ ) with τ = τ̃ (S) and X(τ̃ (S)) =
X̃(S) = eZ̃(S)Ỹ(S). Then, relations (45) provide the implicit representation for the function xν(t)
with t = t̃ν(S) and xν (̃tν(S)) = x̃ν(S) de!ned by

x̃ν(S) = νX̃(S) = νeZ̃(S)Ỹ(S), t̃ν(S) = tb + ν(1−α)τ̃ (S). (119)

Recall that τ̃ (S) is the unbounded strictly increasing function with the !xed initial value τ (0)
= τ esc; see (51). Hence, given a !xed time t > tb and suf!ciently small ν > 0, there exists a
unique S satisfying

t = t̃ν(S) = tb + ν(1−α)τ̃ (S). (120)

We denote by Sn the solution corresponding to νn = e−T〈Fr〉n+χ from (100). Since νn → 0
as n →∞, the solution Sn exists and is unique for large n. For this solution, we rewrite
equation (120) using (113) as

t = tb + ν(1−α)
n τesc + e(1−α)[ϕ(Sn+S1,0)−T〈Fr〉n−c+χ] (1 + ετ (Sn)) . (121)

One can see from (70) and (74) that

I(Sn + S1, 0) + T〈Fr〉n = I(Sn + S1 − nT, 0),
ϕ(Sn + S1, 0) − T〈Fr〉n = ϕ(Sn + S1 − nT, 0).

(122)

Therefore, equation (121) takes the form

t = tb + ν(1−α)
n τesc + e(1−α)[ϕ(ξn,0)−ζ] (1 + ετ (Sn)) , (123)

where we de!ned

ξn = Sn + S1 − nT, ζ = c − χ. (124)

Expressing ψ(ξn) :=ϕ(ξn, 0), we have

ψ(ξn) =
1

1 − α
ln
[

t − tb − ν(1−α)
n τesc

1 + ετ (Sn)

]
+ ζ. (125)
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Using the inverse map ψ−1 de!ned in proposition 3 and solving (125) for ξn yields

ξn = ψ−1
(

1
1 − α

ln
[

t − tb − ν(1−α)
n τesc

1 + ετ (Sn)

]
+ ζ

)
. (126)

Recall that, since ψ is continuously differentiable and monotonically increasing, ψ−1 is also
continuous. Thus, it is possible to take the limit n →∞ in the right-hand side with both νn → 0
and ετ (Sn) → 0, which we denote as

s = lim
n→∞

ξn = ψ−1
(

ln
[
(t − tb)

1
1−α

]
+ ζ

)
. (127)

Finally, from the !rst relation of (119) with expressions (97) and (106), we have

x̃ν(S) = νe−I(S+S1,0)−c+εZ (S) [Ỹp(S + S1) + εY (S)
]
. (128)

Taking this relation for ν = νn = e−T〈Fr〉n+χ and S = Sn, yields

x̃νn(Sn) = e−I(Sn+S1,0)−T〈Fr〉n+χ−c+εZ (Sn) [Ỹp(Sn + S1) + εY(Sn)
]
. (129)

Adopting notations (124) and using relations (69), (122), we write

x̃νn(Sn) = e−I(ξn,0)−ζ+εZ (ξn−S1+nT) [Ỹp(ξn) + εY(ξn − S1 + nT)
]
. (130)

We can de!ne the limit

x̃(s) := lim
n→∞

x̃νn(Sn) = e−I(s,0)−ζỸp(s), (131)

which was computed using (127) and (98), (107). Recalling the relation (78), we see that the
relations (127) and (131) provide exactly the solution x(t) of proposition 3 in the implicit form.
Therefore, we proved that the values of the regularized solution xνn (t) for given t > tb (these
values are determined by the auxiliary variable S = Sn) converge to x(t). #

It is now straightforward to extend the result of theorem 5 from the speci!c initial data
x0 = r0y∗ to an arbitrary point from the basin of attraction of y∗. As we know from section 3,
all such initial points lead to the blowup with the same asymptotic form. The next statement
describes their continuation past the blowup time.

Corollary 2. The statement of theorem 5 remains valid for arbitrary initial condition x0

= r0y0, where y0 belongs to the basin of attraction B({y∗}) of the !xed-point attractor.

Proof. In theorem 5, we proved our statement for the speci!c initial condition with y(t0)
= y∗. Consider now the case of initial conditions with arbitrary y0 = B({y∗}), i.e., for any
initial condition leading to the same asymptotic form of self-similar blowup. In this case, both
the time tνent and the point yν

ent, at which the solution enters the regularization region, depend on
ν. Let us write the regularized solution xν(t) in the form (45), where the function X(τ ) satis!es
the same ν-independent equation (48) but for the ν-dependent initial condition X(τνent) = yν

ent.
From the results of section 3 it follows that yνent → y∗ in the inviscid limit ν → 0. Also, the
corresponding rescaled time τνent converges to τ ent given in (47).

Continuous dependence on initial conditions guarantees that, for any !xed τ , the ν-
dependent solution X(τ ) converges to the analogous ν-independent solution considered in the
proof of theorem 5 as ν → 0. Recall that the solution can be represented as X(τ ) = eZ(τ )Y(τ )
given implicitly by the renormalized equations (51)–(53) outside the regularization region. The
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Figure 7. Vector !eld Fs(y) on the sphere y ∈ S2 from two different points of view. The
color indicates the sign and magnitude of the axial component Fr(y) with blue corre-
sponding to Fr < 0 and red to Fr > 0. (a) Fixed-point repeller (white dot) and periodic
attractor (black strip). (b) Fixed-point attractor (black dot) and periodic repeller (white
strip).

convergence for Z and Y in the inviscid limit is uniform with respect to τ , which follows from
the exponential stability of periodic solutions; see, e.g. [34, p 254]. One can verify that such
uniform convergence is suf!cient for extending the proof of theorem 5 to the more general case
under consideration. #

The non-uniqueness of post-blowup dynamics described in theorem 5 and corollary 2 was
observed after the blowup in the in!nite dimensional shell model of turbulence in [43], where
the periodic attractor has the form of a periodic wave in the renormalized system. Below we
provide a much simpler illustrative example of !nite dimension.

Example 5. Consider the system of three equation (4) with x = (x1, x2, x3) and the right-
hand side

f(x) = rα
[

a +
y3

2
b +

(
y2

3 −
1
4

)
c
]

, α =
1
3

, (132)

where r = |x|, y = x/r and

a = (−y2, y1, 0), b = (y1, y2, y3), c = a × b. (133)

In this case the angular and radial parts of the vector !eld take the form

Fs(y) = a +

(
y2

3 −
1
4

)
c, Fr(y) =

y3

2
. (134)

Phase portrait of the system dy/ds = Fs(y) on the sphere y ∈ S2 is shown in !gure 7. There
are two !xed-point solutions (attractor and repeller) and two periodic solutions (attractor and
repeller), which con!ne the qualitative behavior of all other solutions. With the color in !gure 7
we indicate the regions with Fr < 0 (blue) and Fr > 0 (red).

Let us consider the !xed-point attractor y∗ = (0, 0,−1), show as a black dot in !gure 7(b).
All solutions with y0 ∈ B({y∗}) blow up in !nite time. The basin of attraction B({y∗}) is
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Figure 8. (a) Solid bold line shows the solution X(τ ) of the rescaled regularized problem
(48). This solution enters the unit ball at y∗ and exists at yesc

∗ . Regularized solutions
x = xν(t) with the same initial condition are shown for ν = νn from (100) with χ = 0
and n = 1 (dashed line), n = 2 (dotted line) and n = 3 (red solid line). These solutions
converge to the solution of the singular problem as n →∞. (b) Different inviscid-limit
solutions with the same initial condition x0 obtained for the subsequences (100) with
χ/T = 0, 0.1, . . . , 0.9.

bounded by the unstable limit cycle (white strip) in !gure 7(b). To de!ne solutions after
the blowup, let us consider the regularization (64) with G0 = (0, 0.1, 1). The corresponding
solution X(τ ) of the regularized system (48) is shown by the bold line in !gure 8(a). The regu-
larization is expelling: the solution X(τ ) leaves the unit ball at the point yesc

∗ . This point belongs
to the basin of attraction B(A′), where A′ is the stable limit cycle shown with the black strip
in !gure 7(a).

By theorem 5 and corollary 2, solutions in the inviscid limit are given implicitly by expres-
sions (72) obtained by solving equation (76) on the limit cycle attractor. In our case, integration
of the !rst equation in (76) with the !rst expression of (134) yields

Ỹp(s) =

(√
3

2
cos s,

√
3

2
sin s,

1
2

)
, (135)

where the period T = 2π. The respective average value, 〈Fr〉 = T−1
∫ T

0 Fr(Ỹp(s))ds = 1/4. As
in example 4, from (72) we obtain solutions of the form

x(t) =

[
(1 − α)(t − tb)

4

] 1
1−α

(√
3

2
cos s,

√
3

2
sin s,

1
2

)
, s = 4 ln

[
(t − tb)

1
1−α

]
+ ζ,

(136)

where ζ is an arbitrary constant parameter.
The relation (100) of theorem 5 is veri!ed in !gure 8(a), which presents the solutions com-

puted numerically for n = 1, 2, 3 and χ = 0. These solutions converge to the solution (136)
for a speci!c value of ζ . A family of solutions (136) for different ζ ∈ [0, T) span the coni-
cal surface as shown in !gure 8(b). Only these solutions are selected in the inviscid limit of
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the regularization G(x) under consideration, as well as of regularizations obtained by any (not
too large) deformation of G(x). We stress that solutions (136) represent only a small (zero-
measure) subset of all solutions starting at the singularity x = 0. In fact, one can show that all
solutions inside the cone in !gure 8(b) also originate at the singularity.

We conclude that the inviscid limit in this example is non-unique (depends on the particu-
lar subsequence νn → 0) for times after the blowup. However, all possible inviscid limits are
restricted to a very small (zero measure) subset of all possible solutions. Once again, remark-
ably, this subset is selected by the ideal system, i.e., it is not sensitive to the details of the
regularization procedure.

7. Discussion

In the present work, we studied a class of singular ordinary differential equations with an iso-
lated non-Lipschitz point, when a continuation of solutions past singularity (termed as blowup)
is in!nitely non-unique. We showed that solutions chosen by a generic ‘viscous’ regularization
procedure, which !rst smooths the vector !eld in ν-vicinity of a singular point and then sends
ν → 0, remain highly constrained by the underlying singular equation and these constraints
are (nearly) independent of regularization procedure. Such constraints are obtained from the
solution-dependent renormalization, which maps the pre-blowup and post-blowup dynamics
into two different in!nite evolutions in the new phase-time variables. This describes the asymp-
totic form of blowup by the attractor of the !rst evolution, and the post-blowup continuation
by the attractor in the second evolution. The viscous regularization acts as a bridge between
these two in!nitely long ‘lives’ of the renormalized solution.

The restrictions imposed in this way on a selected non-unique solution depend crucially
on the type of attractors. For the pre-blowup dynamics, the !xed-point attractors describe an
asymptotically self-similar power-law dynamics closely resembling self-similar !nite-time sin-
gularities in partial differential equations [27]. As for more sophisticated attractors, we can
mention analogies with the chaotic Belinsky–Khalatnikov–Lifshitz singularity in general rel-
ativity [4, 37] or chaotic blowup in turbulence models [11, 15, 42]. Attractors play even more
decisive role for post-blowup dynamics, because they describe the exact dynamics rather than
its asymptotic form. It is appealing to compare the case of a !xed-point attractor, when the
unique solution is selected, with shock wave formation in conservation laws. In both cases the
viscous regularization chooses a speci!c unique solution, which is not sensitive (within certain
limits) to the details of this regularization. For example, the same shock in the Burgers equation
results from the limit of vanishing viscosity or hyper-viscosity. A similar renormalization pro-
cedure on both sides of blowup can be formally introduced for the Burgers equation, where
the attractors take the form of traveling waves propagating in log–log space-time coordinates
[27, 44].

The case of a periodic attractor offers non-unique choices within a one-parameter family,
resulting from different geometric subsequences of vanishing viscous parameters ν. Though
we are not aware of real-world physical phenomena that have this property, such periodic non-
uniqueness was readily observed in a popular in!nite-dimensional model of turbulence (shell
model) [43]. We remark that the same shell model demonstrates a different regime, when the
attractor is chaotic [44]. As we prove in a separate companion paper [20], the proper selection of
post-blowup solutions in the chaotic case requires a source of randomness, which must be intro-
duced and removed through the regularization procedure. Then, the limit exists in a stochastic
sense, selecting different post-blowup solutions with a well-de!ned probability. Such behavior
resembles the spontaneous stochasticity observed in models of passive advection [6, 19], par-
ticle trajectories in presence of shocks [30], simple quantum systems [29], Rayleigh–Taylor
turbulence [7, 45] and singular vortex sheets [53].
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One may think of a large variety of interesting situations, when attractors governing both
pre- and post-blowup dynamics are not !xed points. We expect that a degree of sensitivity to a
regularization varies from case to case, which require separate studies. Nevertheless, according
to theorem 1, the asymptotic behavior still must ‘shadow’ some trajectories on the attractors
and, therefore, remain highly constrained independently of the regularization details.
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