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Abstract: Flexibility and rigidity properties of steady (time-independent) solutions of
the Euler, Boussinesq and Magnetohydrostatic equations are investigated. Specifically,
certain Liouville-type theorems are established which show that suitable steady solutions
with no stagnation points occupying a two-dimensional periodic channel, or axisymmet-
ric solutions in (hollowed out) cylinder, must have certain structural symmetries. It is
additionally shown that such solutions can be deformed to occupy domains which are
themselves small perturbations of the base domain. As application of the general scheme,
Arnol’d stable solutions are shown to be structurally stable.

1. Introduction

In this paper, we address two fundamental questions pertaining to steady configurations
of fluid motion (modeled here as solutions to the two-dimensional Euler and Boussi-
nesq equations or the three-dimensional Euler equations or Magnetohydrostatic (MHS)
equations). Specifically,

e Rigidity: Given a domain Dy with symmetry, to what extent must steady fluid states
uo conform to the symmetries of the domain?

e Flexibility: Given domains Dy, D which are “close” in some sense, and a solution
uo of a steady fluid equation in Dy, can one find a steady solution « in D nearby u¢?

To study the rigidity, we show that steady fluid configurations with no stagnation points
(non-vanishing velocity) confined to (topologically) annular regions have the following
special property: any quantity which is steadily transported (such as vorticity in two-
dimensions or temperature in the Boussinesq fluid) can be constructed as a ‘nice’ function
of the streamfunction. This fact is then exploited by recognizing that, as a consequence,
the streamfunction of such a flow must solve a certain nonlinear elliptic equation. As
such, Liouville theorems are used to constrain the possible behavior of all sufficiently
regular solutions. For the two-dimensional Euler equations on the periodic channel, this
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is the result of Hamel and Nadirashvili [18,19] that all steady flows without stagnation
points are shears. A similar statement can be made for a Boussinesq fluid with a certain
types of stratification profiles. For stationary three-dimensional axisymmetric Euler (e.g.
pipe flow), we show that non-degenerate solutions must be purely radial for a large class
of pressure profiles. That there should be a strong form of rigidity for stationary solutions
of 3d Euler was already envisioned by Harold Grad [15] who conjectured that all smooth
solutions (with a certain topological structure) must conform to a symmetry.

To study the flexibility, we modify an idea introduced by Wirosoetisno and Vanneste
[28]. To illustrate the general scheme we note that steady states uy which are tangent
to the boundary can be constructed from a scalar stream function o : Dg — R which
solves

Lo = No(o), in Do,
Yo = (const.) on d Dy,

where L is some linear elliptic operator and N is some nonlinear function. We seek a
solution in a nearby domain D by imposing that the stream function ¥ have the form

Y =vyooy !, (1.1)

where y : Dg — D is a diffeomorphism to be determined. We furthermore require that
Y satisfies

LYy =N@), inD, (1.2)

for a function V' = Ny + x with x conforming to the structure of the steady equations
to be determined. Note that by construction, we automatically have ¢ = (const.) on d D
since ¥ = (const.) on dDg and y : 9Dy — 9 D. Thus, if such a diffeomorphism can
be found, ¥ defines a stream function for a steady solution in D which is tangent to the
boundary.

Having fixed the form of ¢ by (1.1), we regard (1.2) as an equation for the diffeo-
morphism y. To solve it, we transform it into an equation in Do by composing with

Y
Ly¥o=NWo), where L,f:=L(foy oy. (1.3)

Under certain conditions on the original domain D and the base steady state v, the
equation (1.3) becomes a non-degenerate, nonlinear elliptic equation for the components
of the map y which can be solved provided the deformations are sufficiently small.
This scheme to produce a y has an infinite-dimensional degree of freedom which can
be removed by fixing the Jacobian of the diffeomorphism p = det Vy. This steady
state will solve (1.2) potentially with a modified nonlinearity N~ which is completely
determined in the construction of the map y with a given p.

Theorem 3.1 in § 3 is our main result in this direction. We illustrate its consequences
in the following three cases

e 2d Euler for domains close to the periodic channel (see Fig. 1) and Arnol’d stable
steady states on compact Riemannian manifolds.

e 2d Boussinesq for domains close to the periodic channel (see Fig. 1).

e 3d axisymmetric Euler for domains close to the cylinder (see Fig. 2).

We now describe these settings in greater detail and state our Theorems for each case
before proceeding to the proofs.
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Two-dimensional Euler Equations
Given a bounded domain Dy C R? with smooth boundary, a steady solution of 2d Euler
satisfies

ug - Vug = —Vpg, in Dy, (1.4)
V-ug=0, in Dy, (1.5)
ug-n =0, on dDy. (1.6)

As a consequence of incompressibility, the solutions u( to the above can be constructed
from a stream function ¥y via the formulauy = Vlwo with V4 = (—0y, 91).Since ug =
V41, if the velocity is tangent to the boundary then ¥ must be constant along 3 Dy.
We consider here steady solutions with additional structure, namely that the vorticity wy
is a Lipschitz function of the stream function v through wg = Fyp(p). As it turns out
(see Lemma 2.1 below), all sufficiently regular flows in annular domains and without
stagnation points have vorticity satisfying this property for some Fy. Together with
wo = V1 - ug this means v satisfies

Ao = Fo(¥o), in Do, (1.7)
Yo = (const.), on dDyg. (1.8)

On the other hand, clearly any solution of the above for a Lipschitz Fj is the stream
function of a steady solution to 2d Euler which is tangent to the boundary.
‘When the domain Dy is a channel

Do ={(,y2) | y1 €T, y €]0,1]},
IDyP = (yr =1}, 9D = {y» = 0}, (1.9)

solutions of the Euler equations exhibit a certain remarkable rigidity, Theorem 1.1 of
[18]:!

Theorem 1.1 (Rigidity of non-stagnant Euler flows). Let Dg be a periodic channel given
by (1.9) and suppose that ug : Dy — R? be a C?(Dy) solution of (1.4)—(1.6) with the
property that inf py ug > 0. Then ug is a shear flow, namely uo(y1, y2) = (v(y2), 0) for
some scalar function v(yy).

Theorem 1.1 is an example of a Liouville theorem for solutions of the incompressible
Euler equations. It shows that any smooth steady solution of the Euler equations in the
channel which never vanishes must be a shear flow, isolating such configurations from
non-shear steady states. It should be emphasized that there are many examples of non-
trivial flows with stagnation points which are non-shear (e.g. cellular flows). In fact,
Lin and Zeng [22] shows that there exist Cat’s—eye vortices arbitrarily close to Couette
flow up(y) = (y,0) in the H®, s < 3/2 topology. Similar results to Theorem 1.1 hold
when the domain is the annulus or the disk (under some additional conditions on the
solution) [19]. We remark that the very interesting recent work of Coti Zelati, Elgindi,
and Widmayer [7] shows that the assumption of non-degeneracy is not always necessary

1 We remark that Theorem 1.1, in effect, combines the results of [18,19]. In the former, they establish the
Theorem on an infinite strip for velocities with non-trivial inflow/outflow and in the latter they show solutions
in annular domains must be radial (i.e. solutions in periodic channels must be shears). See also the interesting
complementary work [13] which establishes that solutions with single-signed vorticity (possibly possessing
stagnation points) on R2 must be radial.
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Fig. 1. Deformation of periodic channel Dg by y

for such a Liouville theorem by establishing a similar rigidity of 2d Euler solutions near
Poiseuille flow up(y) = (y2 — ¢, 0) for ¢ > 0 which stagnates at y = +./c.

In light of the rigidity result of [18], we show in Theorem 1.2 that we can perturb
away from any non-vanishing solution of the two-dimensional Euler equations in the
channel u( to domains

D ={(x1,x2) | x1 €T, bo(x1) < x2 < 1+b1(x1)},
ID'P = {xy = 1 +b1(x1)}, D™ = {x2 = by(x1)}, (1.10)

for suitably small by, by (see Fig. 1) and obtain a steady solution u in D:

u-Vu=-Vp, inD,
V-u=0, in D,
u-n=0, ondD.

Theorem 1.2 (Flexibility of non-stagnant Euler flows). Let Dg be defined by (1.9) and
D be defined by (1.10). Suppose o : Dy — R with Uy := inf p, [Vyo| > 0 and g €
Ck%(Dy) for some o > 0, k > 3 such that ug = Vv satisfies (1.5)—(1.6). Then there
is an Fy € CK=2%(R) such that vV satisfies (1.7)—(1.8) and constants €, €> depending
only on Uy, Dy, Fy and ||Vl cke such that if by, by : R — Rand p : Dy — R with
fDo o = Vol(D) satisfy

bollcrowy + 1011l chery < €1,
IT = plickapy) = €2,

there is a diffeomorphism y : Dy — D with Jacobian det(Vy) = p, and a function
F : R — R close in C¥=2% to Fy in so that y = ¥ o vy le Ck(D) and satisfies
Ay = F(W). Thus, u = V> is an Euler solution in D nearby uq.

This theorem is a generalization of Theorem 1 of Wirosoetisno and Vanneste [28] to
include non-volume preserving maps y and follows from a much more general theorem
which we prove, Theorem 3.1. The freedom of choosing the Jacobian of the map gives
an additional mechanism to reach nearby other steady states. When bg and b are zero,
the perturbed domain is again a channel and the solution must be a shear flow, which
is a consequence of the Theorem of [18] discussed above. Nevertheless, due to the fact
that the Jacobian is an arbitrary function near unity, our procedure picks out different
solutions, allowing us to “slide" along the space of shear flows in the channel. Note
also that radial solutions on the annulus or the disk can also be deformed. In the case
of a simply connected domain such as the disk, the base state must have a stagnation
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point and Theorem 1.2 applies provided that v satisfies the non-degeneracy Hypothesis
(H2) below. We finally we make some remarks about the case where Hypothesis (H2)
is violated. In this case, if one has that the linearized operator A — F{j() has a trivial
kernel, then a standard implicit function theorem argument produces ‘nearby’ stationary
states for ‘nearby’ vorticity profiles F. This condition is implied by Arnol’d stability
(see discussion below) and it holds also, for example, for Couette flow whose vorticity is
constant so that F{j = 0. On the other hand, this argument does not give much information
on the structure of the solution, whereas Theorem 1.2 and the other below allow one to
understand and control the geometry of the streamlines to a certain extent.

A different class of flows which display a remarkably general form of rigidity and
flexibility on any domains with a symmetry are so-called Arnol’d stable steady states.
Recall that a stationary state on a domain  C R? is called Arnol’d stable if the vorticity
of an Euler solution w = F () satisfies either of the following two conditions

—M < F' () <0, or 0<F'(¢) <00 (1.11)

where A1 := A1(2) > 01isthe smallest eigenvalue of — A in Q2. See [2] or Theorem 4.3 of
[3]. The above two ranges are referred to type I and type II Arnol’d stability conditions.
These conditions ensure that the steady state is either a minimum or a maximum of the
energy (the action) for a fixed vorticity distribution and guarantee that such states are
orbitally stable in the topology of L>(£2) of the vorticity.

To emphasize the generality of what follows, let (M, g) be a two-dimensional Rie-
mannian manifold with smooth boundary 9 M and let & be a Killing field for g. Suppose
that £ is tangent to d M. Consider a solution v of

DAY =F()), inM, (1.12)
Y = (const.), ondM, (1.13)

where A, is the Laplace—Beltrami operator on M. The velocity constructed from y by

W
= —y/detg g ejkg =: V;‘Iﬂ

is automatically a solution of the Euler equation on M with vorticity w = —2— -2 (g ki ky

Jdetg dxl
= F (). In the language of differential forms u = (xgd ¥)* where ¢ and {f denote the

Hodge star and musical isomorphism associated to the metric g and d denotes the dif-
ferential. Since £ is Killing for g, the commutator of the Lie derivative £¢ with the
Laplace—Beltrami operator vanishes [Lg, Ag] = 0 (applied to tensors of any rank).
Moreover, since & is tangent to 92, on which i takes constant values, we have that
Ley = 0 on 09. Thus, differentiating (1.12)—(1.13) we obtain the equation

(Ag - F’(w))ﬁgw —0, inM,
Leyp =0, on oM.

Clearly if the operator A, — F' () has a trivial kernel in H, !, then Ley = 0. A sufficient
condition to ensure this is that F'(y) > —A where 1; is the first eigenvalue of —A,
on M. Both type I and type II Arnol’d stability conditions ensure this. Thus, we obtain

Proposition 1.1 (Rigidity of Arnol’d stable states). Let (M, g) be a compact two-
dimensional Riemannian manifold with smooth boundary OM and let & be a Killing
field for g. Suppose that & is tangent to 9M. Letu - M — R%> be au = Vgiw e CX(M)
Arnol’d stable state. Then L& = 0.
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In some simple cases, Proposition 1.1 implies

e on the periodic channel with § = ey, and ¢ = ey,, all Arnol’d stable stationary
solutions are shears u = v(y2)ey,.

e on the disk (or annulus), with & = ¢y and ¢ = e,, all Arnol’d stable stationary
solutions are radial u = v(r)eg.

e on a spherical cap” with & = ¢, and ¢ = ey, all Arnol’d stable stationary solutions
are zonal (functions of latitude) u = v(¢)e;.

e on manifolds without boundary possessing two transverse Killing fields (e.g. the
two-torus or the sphere), there can be no Arnol’d stable steady states (see [29]).

We remark that in fact the statement for the periodic channel or annulus hold whether
or not the state is Arnol’d stable, see [18,19], provided that the flow has no stagnation
points.

Thus, Proposition 1.1 reveals a strong form of rigidity of Arnol’d stable steady states.
However, we also show that are also flexible in the sense that nearby stable steady states
exist on wrinkled domains (slight changes of the background metric) with wiggled
boundaries.

Specifically, consider a steady solution on My C R? satisfying the following hy-
potheses:

(H1) The vorticity wo = Fo (o) satisfies Fj(10) > —A1(Mo).
(H2) There is a constant cy, > 0 such that for all ¢ € im(y9) we have

de 1
< . (1.14)
two=c} [V¥ol — cyq

Hypothesis (H1) is ensured for type I and II Arnol’d states by (1.11). Hypothesis
(H2) ensures that the period of rotation of fluid parcels along streamlines (left-hand-
side of (1.14)) is bounded and is automatically satisfied for any base flow without
stagnation points on annular domains and it holds on simply connected domains if there
is non-vanishing vorticity Fy # O at the critical point. We call flows satisfying (H2)
non-degenerate. With these, our result is:

Theorem 1.3 (Structural stability of Arnol’d stable states). Let « € (0, 1) and k > 3.
Let (My, o) be a compact two-dimensional Riemannian submanifold of R* with C*¢
boundary. Suppose Yo € C**(My) is a non-degenerate, Arnol’d stable steady state
on (Mo, go) with vorticity profile Fy € Ck=2a (R). Then there are constants €1, €3, €3
depending only on My, Fy, go and ||Vl ck.« such that if (M, g) is a compact Riemannian
manifold and p : My — R with fDo p dvolgy = Vol, (D) and g : My — R? satisfy

[0M — dMollcre < 1,
o = ke py) < €2.
g — gollcremy) = €3,

there is a diffeomorphism y : My — M with Jacobian det(Vy) = p, and a function
F : R — R close in CK=2% 10 Fy so that = Yoo y~' € CH*(M) and ¥ satisfies
(1.12)—(1.13) on (M, g). Thus, u = VgLIII is a non-degenerate, Arnol’d stable steady
Euler solution on (M, g) nearby ug whose vorticity w = F ().

2 On the cap of a sphere of radius R, we use spherical coordinates x = (R, A, ¢), where A € [—m, ] is
longitude and ¢ € [—m/2, /2] is latitude, with the poles at ¢ = £ /2.
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We remark that hypothesis necessary to run Theorem 1.3, Hypothesis (H1), is weaker
than Arnol’d stability since it allows the deformation of states of constant vorticity
F’(¥9) = 0. Theorem 1.3 shows that such steady states are non-isolated from other
stable stationary states, even fixing the domain and metric, since the Jacobian p can be
freely chosen. A very interesting open issue is whether any time-independent solution of
the two-dimensional Euler equation can be isolated from other steady solutions. Note that
that the deformation scheme can be repeated to deformation between two “far apart”
domains provided along the path of steady states Hypothesis (H1) and (H2) remain
true. Finally, as discussed above, if one is not interested in controlling aspects of the
streamline geometry of the new steady states, then an implicit function argument can be
used to dispense with the non-degeneracy hypothesis (H2) and allow the construction
of solutions with nearby vorticity profiles F. See, for example, the work of Choffrut and
Sverak [8].

Two-dimensional Boussinesq equations
Given a domain Dy C R? with smooth boundary, steady states of the Boussinesq system
satisfy

ug - Vug = —Vpo +6pez, in Dy,

ug - Vb = 0, in Dy,
V.uy=0, in Dy, (1.15)
up-n=20, on dDy. (1.16)

Introducing the vorticity wy = V- - ug, Eq. (1.15) can be written as
a)oué = V Py +6pey,

1
—Py:= po+ z|uo|2. (1.17)

Letting ug = VJ‘I//(), wo = Ayrg and ué‘ = —Vy Eq. (1.17) reads
—AYyoVig = VP + 6per.

The Grad—Shafranov-like equation (analogous to Eqgs. (1.7)—(1.8) of 2d Euler) is obtained
by assuming that 6y, Py can be constructed from the stream function, in the sense that

Oo(y1, y2) = Og(Yo(¥1, y2)), (1.18)
Po(y1, y2) = =y200W0(y1, y2)) — Go(Yo(y1, y2)), (1.19)

for smooth functions Go, ®¢. This again turns out to be completely general provided
that ug never vanishes, see Lemma 2.1. In this case, provided that G, ® are sufficiently
smooth the stream function must satisfy

Ao — y204(¥0) — Gy (o) = 0, in Dy, (1.20)
Yo = (const.), on dDy. (1.21)

Given a solution g to (1.20)—(1.21), the function ug = Vv solves (1.15)—(1.16) with
temperature 6y determined by (1.18) and pressure Py determined by (1.19).

As for 2d Euler, if Dy is a periodic channel the Boussinesq equations have a certain
rigidity. Specifically, all smooth steady states with nowhere vanishing velocity must be
shear flows and the temperature and pressures must satisfy the equations of state (1.18),
(1.19) for some Lipschitz functions ®¢ and Gg:
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Theorem 1.4 (Rigidity of non-stagnant Boussinesq flows). Let Do be a periodic channel
given by (1.9) and suppose that ug : Do — RZ and 6y : Do — Rbea CZ(DO) solution of
(1.15)-(1.16) with inf p, ug > 0. Then there exists Lipschitz functions ©¢, Go : R — R
such that (1.18), (1.19) hold and if furthermore

®y(¥o) <0,

then ug is a shear flow, namely up(x, y) = (v(y), 0) for some scalar function v(y).

We next establish the flexibility of Boussinesq solutions by proving the existence of
steady solutions on the channel to solutions on nearby domains. Fix Dy to be a channel
defined by (1.9) and fix functions v, ®¢, G satisfying (1.20)—(1.21) on Dg. Given a
function ®, we then deform v to obtain a steady solution ¥ to (1.20) defined on D
given by (1.10) (for suitably small bg, b1) with temperature profile ® and some vorticity
profile G. As aresult,u = V= and 6 = © () satisfy the steady Boussinesq equations
on D:

u-Vu=-Vp+0e, inD,

uV@:O, inD,
V-u=0, in D,
u-n=>0, on dD.

Specifically, we prove

Theorem 1.5 (Flexibility of non-stagnant Boussinesq flows). Let Dg be defined by (1.9)
and D be defined by (1.10). Suppose ¥ : [0, 1] — R is a shear with yrg € Ck’“(Do)for
some a > 0, k > 3 satisfying (1.20)—(1.21) for a given Go, ®y € C*¥~1-2(R) having no
stagnation points Uy := inf p, |Vyo| > 0. Then there are constants €1, &2, €3 depending
only on Uy, Do, ®¢, Go and ||Yollcke such that if bg, by : R - R, ® : R — R and
o0 : Dy — R with fDo o = Vol(D) satisfy

boll cke®y + 1011l chomy < €1,
11— pllcke(py) = €2
100 — Ollck2a(r)y < €3,

there is a diffeomorphism y : Dy — D with Jacobian det(Vy) = p, and a function
G : R — R close to Gg so that = g o y~' € CH*(D) and  satisfies

AY — 20 (W) —G'(Y) =0 in D.

Thus, u = V1 and @ = O () defines a Boussinesq solution in D nearby ug = V-,
o = ©o(Yo).

Note that, in light of Theorem 1.4, if the base state ¥y has no stagnation points and
@6 < 0, all smooth steady states are shears and so the assumption that v is a shear is
automatic.
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Three-dimensional axisymmetric Euler
Let Ty C R? be a domain with smooth boundary. The three-dimensional steady Euler
equations (or, equivalently, the three-dimensional steady Magnetohydrostatic equations)
read

wo X ug = VPy, in Ty,
V.ug =0, in Tp, (1.22)
ug-n =0, on 07y, (1.23)

where wy = V X ug denotes the vorticity and Py denotes the pressure.

The issue of existence of solutions to (1.22)—(1.23) is of fundamental importance to
the problem of magnetic confinement fusion. In particular, one strategy to achieve fusion
is to drive a plasma contained in an axisymmetric toroidal domain (tokamak) towards
an equilibrium configuration which is (ideally) stable and enjoys certain properties that
make it suitable for confining particles which, to first approximation, travel along its
magnetic field lines well inside the domain. Once such a suitable steady state is identified,
the control of the plasma to remain near this state is a very important and challenging
engineering problem. However, as Grad remarked in [15], “Almost all stability analyses
are predicated on the existence of an equilibrium state that is then subject to perturbation.
But a more primitive reason than instability for lack of confinement is the absence of an
appropriate equilibrium state." Grad goes on to write that there are exactly four known
symmetries for which smooth toroidal plasma equilibria with nested magnetic surfaces
canexist. These are: two-dimensional, axial, helical and reflection symmetries. He asserts
in [16] that “no additional exceptions have arisen since 1967, when it was conjectured that
toroidal existence... of smooth solutions with simple nested surfaces admits only these

. exceptions. ... The proper formulation of the nonexistence statement is that, other
than stated symmetric exceptions, there are no families of solutions depending smoothly
on a parameter." We formalize this statement as a rigidity property of solutions of
three-dimensional Euler (Magnetohydrostatics):

Conjecture 1(H. Grad [15,16]). Any non-isolated and non-vanishing (away from the
“magnetic axis") smooth unforced MHS equilibrium on a (topologically toroidal or
cylindrical) domain T C R> that has a pressure possessing nested level sets which
foliate T has either plane-reflection, axial or helical symmetry.

By an isolated stationary state, we mean that, in some suitably topology, there are
no nearby steady states aside from those which correspond to a trivial rescaling or
translation of the original. It is possible that no such object exists. The qualifier is
included to make precise Grad’s assertion that the conjecture apply to solutions which
appear in continuous‘‘families".

Complementary to Grad’s conjecture, here we prove that solutions with symmetry
can also be severely restricted to conform to a stronger form of symmetry. Specifically,
we consider periodic-in-z solutions in the (hollowed out) axisymmetric cylinder (see
right half of Fig. 2)

To=DyxT, Do={(r,z)e [1/2,1] x T}, (1.24)

which are axisymmetric in the sense thatug = uq(r, 7). We remark that solutions with this
symmetry on this domain are not suitable for the confinement of a plasma in a tokamak
and instead describe steady flow in a pipe. To find solutions with this symmetry, we
make the ansatz

1 1
uo = —eg x Vb + ;Co(%)e@ (1.25)
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Fig. 2. Axisymmetric deformation of the cylinder (corrugated pipe)

for a function Cp : R — R and ¥y = ¥(r, z) is to be determined. In fact, by the
results in [5], any sufficiently smooth solution to (1.22)—(1.23) possessing symmetry
in the 6 direction and curl(ug X eg) = 0 and possessing a nowhere vanishing pressure
gradient is necessarily of the form (1.25). If we seek a solution with pressure of the form
Py = Ty (o) for some profile function Iy : R — R, then (1.25) satisfies (1.22)—(1.23)
provided v satisfies

92 92 19 ,
mlﬂo + 3—Z21ﬁ0 - ;a—rlﬂo = —r*TI (o) + CoCH(Yo), in Do, (1.26)

Yo = (const.), on dDy. (1.27)

The Eq. (1.26) is known in plasma physics as the Grad—Shafranov equation [14,24].3
Here we prove that all solutions whose pressure has a certain property must be radial.

Theorem 1.6 (Rigidity of axisymmetric pipe flows). Let Dg be given by (1.24). Suppose
Iy, Co : R — R are Lipchitz functions and that ¥y : Dy — R is C2(D0) solution of
the Grad—Shafranov equation (1.26)—(1.27) with inf p, |0, Y¥o| > O. If furthermore Tlg
satisfies

My (Yo) = 0, (1.28)

then Vg is radial, i.e. Yo(r, 7) = Yo (r).

Physically, Theorem 1.6 says that in order to support some non-trivial structure in
pipe flow, the pressure cannot satisfy (1.28). It is conceivable that this has some bearing
for identifying good flow configurations from the point of view of drag reduction.

Liouville theorems constraining axisymmetric solutions of three-dimensional fluid
equations have appeared previously in the work of Shvydkoy for Euler on R? (§5 of
[25]) and by Koch—Nadirashvili—Seregin—Sverdk [21] for ancient solutions of Navier-
Stokes on R>. Establishing similar rigidity results for the full three-dimensional problem
outside of symmetry—which is necessary to address Grad’s conjecture—seems to be
out of reach of existing techniques.

3 In fact, (1.26) has been derived long before by Hicks in 1898 [20]. Consequently, in the fluid dynamics
community, the same equation is known as the Hicks equation and also as the Bragg—Hawthorne equation [4]
and the Squire-Long equation [23,26] due to independent re-derivations. One can derive versions of (1.26)
for other symmetries as well; see [5] for a generalization of (1.26) in this direction.
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We prove also the complementary flexibility result for periodic-in-z solutions. Specif-
ically, we construct solutions of

Py Ly rmgyeecw), wo
ar? 972 ror? o
Y = (const.), ondD. (1.29)
where the domain occupied by the fluid is given by
T=DxT, D={(@z) € [by(z),b1(z)] x T}. (1.30)
See the left half of Fig. 2 for a depiction of a possible domain.

Theorem 1.7 (Flexibility of axisymmetric pipe flows). Let Dy be given by (1.24) and
D defined by (1.30). Fix k > 3, a € (0, 1). Suppose yo € C*%(Dy) is a solution to the
axisymmetric Grad—Shafranov equation (1.26)—(1.27) for some Tly, Co € C*¥~1*(R),
having no stagnation points in the sense that Uy := inf |Vyrg| > 0 in Dg. Suppose that
additionally Ty, Co and g satisfy

M (Yo) > 5 (CoCp)' (Vo).

Then there are constants €1, &2, €3 depending only on Ug and || o || ck.e (py)» ITLoll ch-1.0,
and ||Col|ck-1,« such that if bo,by : R — R, I1 : R — Rand p : Dy — R with
fDo p = Vol(D) satisfy

6ol cra(wy + 101l chery < €1,
11— pllcke(py) = €2
Iy — | ck2.0R) < €3,

there is a diffeomorphism y : Dy — D and a function C € C*¥~1*(R) so that ¢ =
Vo o y~ ! satisfies (1.29) in D with pressure T1 and swirl C. In particular,

1 1
u=—-eg x Vi + —C(r)eg
r r

satisfies the Euler equation (1.22)—(1.23) with pressure P = T1({) in the domain
T=DxT.

We remark, for the deforming scheme, that it is not necessary to cut out the inner part
of the cylinder. Theorem 1.7 applies provided that (H2) on non-degeneracy is satisfied

by ¥o.

2. Rigidity: Liouville Theorems

To establish the claimed Liouville theorems, we first show that functions which satisfy
steady transport by a velocity ug = V-1 with no stagnation points can be constructed
from the streamfunction v viaa ‘nice’ equation of state. This is the content of Lemma 2.1
below.

Lemma 2.1. Fix k > 3 and let Dg be diffeomorphic to the annulus and Yy : Dy — R
satisfy
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e Yo € C*(Dy),
® Yolyppot = co and Yol pyor = c1 for constants co # ci.
0
e |Vl # 0 in Dy.
Suppose that 6 € C*=2(Dy) satisfies
V1YoV =0, in Dy.

Then, there exists a (k — 2)—times continuously differentiable function ® : R — R such
that

0(x,y) = Oo(x,y), in Do.

Proof of Lemma 2.1. Our Lemma 2.1 essentially appears as Lemma 2.4 of [19] in the
case when Dy is the channel. We summarize the argument here for the sake of com-
pleteness. Given p € Dy and let £, = &,(¢) denote the integral curve of VL starting
at p at “time" ¢ = 0, namely

d
&0 = Vi E,(),  E,0) =p, teR

By Lemma 2.2 of [19], &,(¢) is uniquely defined for all # € R and is periodic in # and
moreover the curve &,(R) passes through each x € [0, 27). Identifying the periodic
channel with the annulus, this means that the curve &,(R) surrounds the inner disc.
Given g € Dy we also let o, denote the integral curve of Vi,

d
aoq () = Vip(oy (1)), 04(0) =¢q, teR.

We now fix any point g = (g1, 0) at the bottom of the channel {y = 0}. As aconsequence
of the fact that the vector field Vg points normal to the boundary, it is shown in [19]
that there is a 7, < 00 so that o, () lies at the top of the channel, o,(#;) = (g2, 1).

Writing g(1) = ¥ (o,4(1)), we have g'(r) = |Vio(oy (1)|> > 0 so it follows that g is
invertible with C*¥~2 inverse. We define © by
O(1) = 60y (g~ (1))

Then © is C¥~2 and O (o4 (s))) = 0(oy(s)) for any s. Finally, fix now any point
p € Dy. For large enough ¢, there is an s so that &,,(t) = o, (s). Since VLlpo -Vo =0,
we have 6(p) = 0(§,(t)) = 6(04(s)). This completes the proof since then we have

0(p) = 0(04(s)) = O(Yo(oy(s))) = OWo(p)).
O

We will need the following result which ensures that the stream function takes dif-
ferent values at the top and bottom, and ranges between these values in the interior:

Lemma 2.2 (Lemma 2.6 of [18], Lemma 2.1 of [19]). Let Do be diffeomorphic to the
annulus and let Yy € c3 (Do) with |Vyrg| # 0 on Dy satisfy

¢O|3D3"l €0, w()'aD(l)‘)p =C1,
or some cp, C| € R. Then ¢ C1 and
. 0 0

min{co, c1} < Yo < max{cp, c1}, on Dy \ dDy.
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The proof of this result can be found in the cited references. There, (2.2) is established
when Dy is periodic channel (1.9), but an inspection of the proof shows that the result
holds more generally.

Finally, we prove the corresponding Liouville theorem which modestly generalizes
Theorem 1.6 of [18] to accommodate the additional terms arising in the settings of the
Boussinesq and axisymmetric Euler equations.

Theorem 2.1 (Liouville Theorem). Let Dy = T x [1/2,1] and let f = f(y),g =
g(y,¥), h = h() be Lipschitz functions. Let € C*(Dy) be a solution to

AY + fyY +g(y, ¥) +h(y) =0, in Do,
where r is periodic in x € T with boundary conditions
Y(x,1/2) =0,  Y(x, 1) =c>0.

Suppose that one of the following conditions holds

.gy»fyZO»andO<1/f<Cl.nD(),
e gy, fy >0, and ¥y > 0 on Dy.

Then  is independent of x, namely  := ¥ (y).

Proof of Theorem 2.1. The proof is nearly identical to the one in [18] with minor exten-
sion to accommodate f and g. For the sake of completeness we include a proof here.
Fix £ € R? with & = (&, &) with & > 0. For 7 € (0, 1/&), set

Dot =T x (1/2,1 — &),
and
w(x) =Y (x+76) —Y(x), xeDy. 2.1
Then the main ingredient for the proof of Theorem 2.1 is the following lemma
Lemma 2.3. For w*® defined by (2.1) we have
w' >0 inDy, forallt e (1/2,1/&).

We first prove Theorem 2.1 assuming the result of this lemma.

Note that ¢ > 0 on Dy, since v, > 0 on Dy by assumption and the boundary values
are ¥|y=1/2 = 0 and ¥|y—; = ¢ > 0. Taking & — 0 in the inequality w*® > 0 shows
that

Yx+8,y) = ¥x, y). 2.2)

This holds for any £&; € R and we claim that this implies that we actually have equality
in (2.2). Indeed, suppose that there are x, 7, &1, y so that ¥ (x + t&1,y) > ¥(x, ).
Applying (2.2) we have

Yx,y) =vx —t& +781,y) 2 ¥ (x +781,y) > ¥(x, y),

a contradiction. This completes the proof. O
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Proof of Lemma 2.3. Set
1, = inf{r € (1/2,1/&) suchthat w® > 0 in Do, whenever v’ € (z, 1/£)}.

By the maximum principle for narrow domains [11] we have 7, < 1/&. We are going
to prove that 7, = 1/2. Suppose that instead 7, > 1/2. Then w™ > 0in D_OT* and there
are sequences % € (1/2, t,] and (x¥, y¥) € Dy so that

ok yF) e D™, and  w™(xk, yb) <.
Define

Ue(x,y) =¥ (x+x5y),  for  (x,y) € Dy.

The functions v are uniformly bounded in C 2.2(Dy™), and so we can extract a conver-
gent subsequence with ¢, — W € C%(Dp™). Taking k — co we see that 0 < W < c.
We now show that these inequalities are strict. Taking kK — o0 in the equation for ¥ and
differentiating in y we see that

AWy + fF(M Wy + (fr(0) + 8wy, W) + hy (W))W = —g, (v, ¥) <0,

by assumption. Since we also have W, > 0 on the boundary, it follows from the maximum
principle for non-negative functions that W, > 0 in the interior as well, and so

0<V¥<ec. (2.3)

Next, the points y are bounded and so we can extract a convergent subsequence y* — .
We have

V(T2 § + 1:62) = W(0, ), (2.4)

because w™ > 0 in Do™ and w™ (x¥, y¥) < 0. If (0, §) € dDy™ then either § = 0 or
y =1 — t,.&. But by (2.4) and (2.3) neither of these are possible. The only possibility
left is (0, y) € Do™. Set

Wx) = W(x +1.8) — W(x),

then writing W, (x) = W (x +1.£) we see thatin D", since f, g are Lipschitz in ¢ there
is an L function ¢ = ¢(x, y) so that

AW + f(y)oy W +c(x, )W
= (f()’) —fOy+ T*EZ))ayqu* +8(y, W) —g(y + &1, W) <0
because &, > 0 and that 9, W > 0 (which is only needed f is nonzero) and that f, g are
increasing in y. Also we have W > 0in Do, W > 0 on d Dy. By the maximum principle

for non-negative functions this implies that W = 0 and in particular W = 0 on d Dg. As
we have shown that this is impossible, we conclude 7, = % O
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2.1. Proof of Theorem 1.1. We assume Yy € C3(Dy). Note that, since the vorticity
satisfies

ug - Vg =0

and |ug| # 0 and wy € C'(Dy), Lemma 2.1 implies that there exists a C 1(R) function
Fp such that wg = Fy(¥). Consequently, the stream function v satisfies the elliptic
equation
Ao = Fo(Yo) in Do,
w|3D50P=C17 1//|8D(t)°p2629
for some constants c; and ¢ with ¢; # ¢» by Lemma 2.2. Without loss of generality, we

may take c; = 0 and ¢ > 0 by shifting ¥ — o — c1, sending Yo — —yp if 2 <O,
and replacing Fo (o) with =Fy(£yo + c1). Moreover, by Lemma 2.2 we have

0 < Yo <cy in Dyg.

Applying Theorem 2.1 with b = 0, f = 0 and g = — Fy gives the result.

2.2. Proof of Theorem 1.4. We argue as in the proof of Theorem 1.1, but we apply
Theorem 2.1 with f =0, g(y, ¥) = yOu(¥) and h(Y) = —Go(Y).

2.3. Proof of Theorem 1.6. Assuming (1.28), the proof follows as in Theorem 1.1, but
now f = —1, g(y, ¥) = rTH(¥) and h(¥) = CoCy(¥).

3. Flexibility: Deforming Domains

We prove here a more general theorem, which covers the specific settings of Theo-
rems 1.2, 1.5and 1.7. We now outline the general setup. Consider two bounded domains
Dy, D C R2 given by the zero level sets of functions By, B : R? > R:

9Dy = {By =0}, dD ={B =0). 3.1

It is convenient to denote points in Do by y = (y1, y2) and points in D by x = (x1, x2).
We will consider the problem of solving a certain elliptic equation on D by deforming
a solution of a ‘nearby’ elliptic equation on Dy.

Elliptic equation on Dy: Consider a second-order elliptic operator on Dy of the form

e I I 9
Lo = al () ——+Y bi(y)—, (3.2)

where ag, bi) are smooth functions defined on R? and where the matrix a;’ satisfies

afzizj = Mz, VzeR? (3.3)
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for some M > 0. We assume that we have a solution v to the following nonlinear
equation

Loyo = Fo(¥o) + Go(y, ¥o), in Do,
Yo = (const.), on d Dy, (3.4

with functions Fp : R — Rand Gg : Dy x R — R.

Elliptic equation on D: Given coefficients a'/, b’ defined on R?, we set

2
L= Y a0t Zb’(x)%,

i,j=1
which is assumed to be elliptic as in (3.3). Consider the following equation for v

Ly =FW)+Gx,v¥), inD,
Y = (const.), ondD, (3.5)

with functions F : R —- Rand G: D x R — R.

Problem Let D and Dg by two nearby domains (in the sense that B and By are close)
Let Fy, Go and a solution vy to (3.4) on Dy be given. Let G be a given function close
to Go. Find a diffeomorphism y : Dy — D and a function F close to Fy so that the
Sfunction

Y =ypoy! (3.6)

is a solution to (3.5).

The important observation of [28] is that if we write y = id+Vn+ V¢ for functions
1, ¢, then plugging (3.6) into (3.5) leads to an Dirichlet problem for d;¢ := V1o - V.
The function 7 is free in the problem but if one wants to fix the value of the Jacobian
determinant p := det Vy, n can be determined by solving a Neumann problem. We
formalize this in the following Proposition.

Proposition 3.1 (Elliptic system for diffeomorphism). Fix two domains Dy, D € R?
as in (3.1) and a solution to (3.4) Yo : Dy — R. Let Fy, Go and G be given. Let
p : Do — R be a given continuous function such that f Dy P = Vol(D). Suppose that

n, ¢ : Dy — R satisfy
An=p—1+N,,
(Lo — N)ds¢p = (F — Fo)(Yo) + Ly + No, (3.7

for some F = F (i), where Ly is as in (3.2), A := Fé(wo) + (3y Go)(y, Vo), where
ds¢ = VLo - Vo, and where

Ly = Ly(8a,8b,8F, 385G, dag, dbo, 3°1, dp, 305, dyy; 9>o)

is defined by (B.7) consists of terms which are linear in ¢ and n (and their derivatives),
multiplied by small factors, where

Ny = N, (021, 9%¢)
Np = Ny (0%ao, 9*bo, 9°¢, 9°n, 3p, 9°0s6; 0°o)

are nonlinearities with N, is defined by (B.1) and Ny by (B.8), and where 6a = a — ag
and similarly for 8b, §F, 8G. If y = id + V¢ + Vn is a diffeomorphism y : Dy — D
with det Vy = p, then the function ¥ = Yo o y ' is a solution of (3.5) in D.
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This Proposition is proved in § B (see Lemma B.2). With this in hand, we address
the above problem by constructing solutions with one (infinite dimensional) degree of
freedom fixed by choosing the Jacobian of the map. This requires three hypotheses on
Yo and the quantities in (3.5).

We need one hypothesis on the invertibility of the operator appearing in Propo-
sition 3.1 so the 9,9 can be recovered from Eq. (3.7) at the linear level. We view
Lo : Hi N H? — L? and require:

Hypothesis 1 (H1): Let A = Fé(l//o) + (3y Go) (¥, ¥o). The problem

(Lo—Mu=0 in Dy,
u=0 on 9Dy,

admits only the trivial solution in H& (Dyg).

It is easy to see that Hypothesis (H1) is guaranteed if A avoids the discrete spectrum
of — Lo, an open condition. In light of this, a stronger but easier to verify hypothesis that
implies (H1) is
Hypothesis 1’ (H1'): The operator (Lo — A) is positive definite, i.e. for all f € H(} (Do)
there is a constant C > 0 such that (Lo — A) f, f)r2(py) = C||f||§11(Do).

This holds in the case of the 2d Euler equation if the base state is Arnol’d stable or
if it is a shear flow without stagnation points (see Lemma 4.1).

The next two hypotheses are needed in order to recover ¢ from 9ds¢ once the latter
is obtained by solving Eq. (3.7) using (H1). Since 8; = V1 - V, in order to recover
¢, we must be able to integrate along streamlines of 1y which requires a certain non-
degeneracy of the base state. On a multiply connected domain diffeomorphic to the
annulus, the base state must have no stagnation points (points at which Vip = 0). On a
simply connected domain diffeomorphic to a disc, there must be exactly one stagnation
point. This is quantified by the following hypothesis on the “travel-time" p of a parcel
moving at speed | V| to make a complete revolution on a streamline:

Hypothesis 2 (H2): Let I = im(y). There exists a constant C > 0 so that

de
,u(c):f <C forall cel
wo=c} Vol

where £ is the arc-length parameter. Note if ¥ € Ck(Dg) then u € CF=1e ().
Finally, we need an additional hypothesis that allows us to recover ¢ once we solve
Eq. (3.7) for d;¢. Specifically, at the linear level, ¢ needs to be chosen to satisfy (Lo —
A)ds¢ = F + N, for a given function N and for F to be determined. An obvious
necessary condition for solvability is that (Lo — A);blc(F + N) should have integral zero
along streamlines. We must therefore be able to choose F' to satisfy this condition while
maintaining that ' = F () is a function only of the stream function in order for the
resulting ¥ to solve the correct equation.
Hypothesis 3 (H3): Fix k > 2, « € (0, 1) and let / = im(rp). Let Ky, : ck=2e(p) -
Ck(I) be

de
Vol

Forany g € C*(I) such that g (o (d D)) = 0, there exists a u € C¥~>%(I) such that
Kyyu = g. Moreover, |[ullck-2a(7) S l1gllcher)-

(Kyou)(c) = (Lo — Ak [u 0 0]

m(e) Jiwo=c)
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It turns out that (H3) is a consequence of (H1’) and (H2). To prepare for the proof,
we define the streamline projector Py, which maps functions on Dy to functions which
are constant on level sets of the streamfunction ¥,

Py, f)(c) = L f ds, forall c el
w(©) Jipo=c)
where ds = d¢/|Vyg|. This operation is well defined on functions which can be in-
tegrated on curves (e.g. functions that are in H'(Dg)) by Hypothesis (H2). With this
notation we have Ky, u := Py, (Lo — A)gblc[u]. Note that if f, g are such that Py, f =0
and Py, g = g then

/ fg:/(% fgds) dc:/g(f fds) de =0. (3.8)
Do I \J{yo=c} 1 {Yo=c}

Here we use the fact that g satisfies (H2) and therefore has streamlines which foliate
Dy so we can use action-angle coordinates to compute the integral (3.8). For further
discussion see § E herein or the textbook [1]. It follows that Py, is orthogonal in L2(Dy),
i.e. for any h € C(Dg) we have

)12, = fD (|Pw0h|2+2<ﬂ>¢0h)(@¢0h)+|@¢oh|2) = [Pyohll2 + 1Quohll3
0

where Qy,, = 1 — Py, . In light of these properties, Py, is a projection on L.

The motivation for Lemma 3.1 in a Hilbert space H is that if P is a projection
(P? = P and P* = P) and A is bounded positive operator then the compression P A P
is positive in P H since

(PAPx,x)g = (APx, Px)yg > C(Px, Px)q.

The fact that A is bounded is used only to make sure that P H is included in the domain
of A.

Lemma 3.1. Fix k > 2 and suppose Hypotheses (H1’) and (H2) hold. Then (H3) holds.

The proofis deferred to § A. We remark that, invertibility of Lo — A alone (Hypothesis
(H1)) cannot be expected to imply Hypothesis (H3) itself as is easily demonstrated in
finite dimensions. Positive definiteness is a crucial point in our argument. We finally
note that if we further know that (Lo — A)g (o) is itself a function of ¥y, which is the
case when the base solution and the operator Lg enjoy some mutual symmetry, we can
find the solution of Hypothesis (H3) explicitly

Lemma 3.2. Suppose for any f € C%(I), the function (Lo — A) f (¥0) depends only
on the value of the stream function, (Lo — A) f (Yo) = h(Y¥) for some h € Cck2 I).
Then (H3) holds withu = (Lo — A)g.

Our main theorem on deforming solutions of elliptic equations is a quantitative ver-
sion of the implicit function theorem. As stated above, this generalizes the setup and re-
sults of Wirosoetisno and Vanneste [28]. It is also similar in spirit to the result of Choffrut
and Sverdk [8] which, on annular domains, establishes a one-to-one correspondence be-
tween vorticity distribution functions and steady states of two-dimensional Euler nearby
a solution satisfying a version of (H1) (see also [9]). In our theorem, F := F (i) (which
plays the role of the vorticity distribution function for 2d Euler) is not chosen ahead
of time but rather accommodates the deformation of the other parameters (boundary,
coefficients, Jacobian) so as the resulting streamfunction remain a solution. We prove
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Theorem 3.1 (Deforming solutions of elliptic equations). Let « € (0, 1) and k > 2.
Fix two domains Do, D C R? with C* boundaries given by (3.1) and a solution ¥ :
Do — Rto (3.4) on Do with g € C*%(Dy) and Fy € CK=12(R). Suppose in addition
that (H1), (H2) and (H3) are satisfied. Let p : Dy — R such that p € C*~1%(Dg) and
fDo p = Vol(D). Suppose that for sufficiently small ¢ > 0, |Vol(D) — Vol(Dg)| < € as

well as

B — Bollcke <, lo—1lcrk-—1e <&
lla —aollcke < e, 16— bollcra = €,
G — Gollck—2.0 < e.

Then, for € sufficiently small, there exists a diffeomorphism y : Dy — D such that
det Vy = p and a function F : R — R satisfying |F — Follct-2« S € such that the

function W = Yooy~ satisfies the Eq. (3.5) in D. The diffeomorphism y is of the form
y =id + Vi + V¢ and n, ¢ satisfy the estimates

9snllcke + [105Pllcra + Mllcra + D]l cha
< Cra(llp = Ukt + lla — aollcra + 16— boll c.

+|G = Gollck-2« + | B — Bollcre) (3.9)

for constants Cy o depending on k,a, Dy, the ellipticity constant M and ||ao|| ci.e,
lboll ck.e-

Theorem 3.1 is used in [6] to construct approximate solutions to the Magnetohydro-
static equations on wobbled tori which are nearly quasisymmetric. As in [27], one may
think about these deformations arising dynamically from a slow adiabatic deformation
of the boundary, though we do not establish this point here. We remark also that (H1)
may not be strictly needed for the Theorem 3.1 provided kernel of Lo — A is very
well understood. This is demonstrated in a slightly different context by the recent work
[7] for Kolmogorov flow ug = (sin(y), 0) which is a shear with stagnation points so
that Lemma 4.1 does not apply and the corresponding operator A — F; (o) has a non-
trivial kernel (consisting of linear combinations of {sin(y), cos(y), sin(x), cos(x)}). To
deal with this degeneracy, extra degrees of freedom are introduced in the contraction
scheme.

We note that we can iterate the above theorem to impose a nonlinear constraint on
p. Specifically, given a function X = X (y, ¢, n, Vo, Vn, Vosp, Visn) with X|s ;=0
sufficiently close to one, we can solve for the diffeomorphism y so that p = X, at the
expense of slightly modifying the domain. Fixing notation, we consider

X : Dy xR x R x R* x R? x R? x R?, X =X(,q1,9, p1, P2, P3, P4)
(3.10)

and write
Xo(y) = Xlg,m=0,00 DXo(y) = (VgX,VpX)l(g,p)=0,0) (3.11)

with ¢ = (g1, q2), p = (p1, P2, P3, P4)-
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Theorem 3.2 (Deforming with an imposed nonlinear constraint). Let o« € (0, 1) and
k > 2. Fix two domains Do, D C R? with C&* boundaries given by (3.1) and a solution
Vo : Dy — R to (3.4) on Dy with g € C¥(Dy) and Fy € Ck=2*(R). Let X be as in
(3.10) and satisfy X € Ck.

Suppose that for sufficiently small €, ex > 0, |Vol(D) — Vol(Dy)| < & and that

B — Bollcke <&,  lla—aollcre <&,
16 —bollcke <&, G — Gollck-2a <&,

and with notation as in (3.11),
| Xo — lcke + [|DXollck-1.0 < €x. (3.12)

Then there exists a o > 0 and a diffeomorphism y : Dy — Dy where Dy, = oD is a
dilation-by-o of the domain D satisfying

det Vy =:p = X(y.n, ¢, ¢, 951, Vign, Vi), (3.13)

with the dilation factor o > 0 given by o 1= VolD/ fDo p. Moreover, there is a function

F : R — R satisfying |F — Follck-2.« S € such that = g o y s a solution to the
(3.5) in Dy.

We do not apply Theorem 3.2 in the present paper. We record it here since it exploits a
freedom in the construction and may be useful to build solutions with additional desirable
properties (such as quasisymmetry in the context of plasma confinement fusion, see [6]).

4. Applications to Fluid Systems

4.1. Proof of Theorem 1.2. In the case of two-dimensional Euler equations on the chan-
nel, we apply Theorem 3.1 withay = a'/ = 8", b) =b' =0,c0=c=0,G =Gy =0
and Fy = Fj, the vorticity of the base state. As a result of Theorem 1.1, our base state
ug = (vo(y), 0) is a shear where vo(y) = —v((y) never vanishes. As a consequence,
it satisfies (1.7) with Fy(y) = 1//({(1#61 (1¥)). We now show that all the hypotheses are
met.

We first claim that in this setting Hypothesis (H1’) is a consequence of the nonde-
generacy of the base shear flow. This follows immediately from the following Lemma
(seee.g. [17])

Lemma 4.1. Let 2 the periodic channel and let ug = (vo(y2), 0) be a shear flow steady
Euler solution and suppose infq |vg| > 0. For all u such that u|yq = 0, the following

holds
u
\Y
( [vo(2)] )

Proof. Note that Fj(0(y2)) = (vj/vo)(y2). The result follows from direct computa-
tion. O

2
dyidy;.

/ (& = Fyo) ) dyadya = —/ o)
Q Q

Hypothesis (H2) follows by our assumption that there are no stagnation points.
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4.2. Proof of Theorem 1.3. In the case of two-dimensional Euler equations on (Mg, go)
we apply Theorem 3.1 Ly = Ag  and L = A,. The coefficients can be computed
directly in terms of the metrics and it is clear that the hypotheses on the closeness of ag
and a (resp bg and D) hold when gy is close to g. Note also that under our hypotheses,
Leyr = 0 according to Theorem 1.1.

Hypothesis (H1’) follows by the assumption of Arnol’d stability.

Hypothesis (H2) follows by our assumption on the base states that they are non-
degenerate.

Persistence of stability follows because Arnol’d stability conditions are open and our
perturbation is small.

Remark (Hypothesis (H3). on Domains with Symmetry) We remark that if the domain
admits a symmetry direction tangent to the boundary (so that all Arnol’d stable solutions
enjoy the same symmetry according to Proposition 1.1), we may apply Lemma 3.2 to
write explicitly the solution in Hypothesis (H3). Specifically, we apply the Lemma with
Lo = Ay and A = F’, and appeal to the following result

Lemma 4.2. Let Ag be the Laplace—Beltrami operator on (M, g). Suppose & is a non-
vanishing Killing field for g which is tangent to M. Assume for y € C**(M) satisfies
(H2) and that Ley = 0. Then for any function f € Ck2(R), we have Agf(¥) =GW)
for some function G € CK~2%(R).

Proof. First, by assumption the integral curves of & foliate M. Since Ly = 0, we know
that v is constant on integral curves of . Moreover, since (H2) guarantees that |V, | >
0 except at one point (if the domain is simply connected, and nowhere otherwise),
Y takes different values on different integral curves of &. Since & is a Killing field,
LeAg f(Y) = Ag(f'(W)Ley) = 0 and therefore Lg A, f () is constant on integral
curves of & and thus a function of . O

Therefore, Lemmas 3.2 and 4.2 show that Hypothesis (H3) holds with an explicit u
in the symmetric setting.

4.3. Proof of Theorem 1.5. In the case of two-dimensional Boussinesq equations on
the channel, we have a(i)j =al =8, b =b =0,c0 =c=0,Gy = yO,(¥o),
G =y®'(¥), and Fy = Gj,. Then Lo = A and A = G (¥o) + y20,(¥0).

Hypothesis (H1’) is verified for the following reason. Since v is a shear ¥y =
Yo(y2). Given this, we know that Ayrg = ) (y2) sothat Go(c)+y2®o(c) = Iﬁ(/)/(l//(;l(c)).
Thus

vy (v2)
vo(y2)

A = Go(¥o) + 1204 (o) =

where vg = V. Thus Lemma 4.1 is applicable and the hypothesis follows.

Hypothesis (H2) follows by our assumption that there are no stagnation points.

The result of the deformation defines a stream function  for the Boussinesq equations
with velocity u = V11 and temperature profile 6 = ® () (note © is recovered from
©®’ up to a constant, which can be absorbed into the pressure).
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4.4. Proof of Theorem 1.7. Hypothesis (H1) is verified when
1
im((CoC())’(wo) - rzPé(wo)) ¢ Spec (—A + -a,) .
r

Since —A + }3, is a positive operator Hypothesis (H1') is verified when

(CoCy) (Yo) — r* P(wo) < 0.

Hypothesis (H2) follows by our assumption that there are no stagnation points.
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Appendix A. Proof of Lemma 3.1

We aim to solve Ky, [u] = g for a g := g(vyp) with g(9Dg) = 0. To avoid technical
difficulties of defining the trace of a function which is just in L2, we solve this equation
assuming g € H' foran u € H~'. Define the spaces

SO = {f € HY (Do) | Qy, f =0},
o) = {f € H (Do) | Quy f = 0. [lap, = 0}.

Note that for k > 1 the operator Py, : (H kNnH 1)(Do) — S(()k) is a continuous operator

(which follows from (E.2)) and that therefore S ( ) is a closed subspace of H kA H(} . We

also remark that for all f € S¥, we know that VJ-l//O -V f = 0 and therefore by (a minor
extension of) Lemma 2.1, there exists a function ¥ € H*(I) such that f = F o .
Recall now that for u € S® and with this notation we have Ky,u := Py (Lo —

A)}?blc[u].Fork > 1, this operator Ky, : §*k=2) S(()k) is continuous since (L()—A)l:blC :
H*2(Dy) — (H* N Hy)(Dy) is continuous by Hypothesis (H1') together with the fact
that Py, is continuous. We remark that for f € SD, we have (Lo — A){blc[f] e H'.
Define now

Sk =Ky, f | f eS8V,

We aim to show that Sy = S(gl), that is, Ky, : SED S(()l) is onto. Since Ky, :
§k=2) 5 S(()k) is continuous, Sk is a closed subspace of Sél) in the H'(Dy) topology.*

4 By the continuity of Ky, it suffices to prove that if Ky,[f"] — g in H! with f* € H™!, then f"
converges in H ™ L By (A.2) we have

ol f" = FMI2 L < (= M KoL = £ < CIE = gt 1K g L = £l g

which can be justified by an approximation. From this, we conclude that the sequence { f"},,>( is Cauchy in
H L
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Thus, S(()]) =Sk & ng where
Sk =1 €S 1 (f, g)gy =0forall g € Sk}, (A.1)

where the S(!) topology is equivalent to the H' topology and will be defined shortly.
Note that for any h € S I% c SD | the function K woh € Sk, it follows from (A.1) that

(h, Kyyh)gay = 0. Thus, to conclude that S,% = {0}, we show that Ky, has a trivial
kernel in S(()l). This is accomplished by designing a topology on S1) which is equivalent

to the H'! topology and showing that for all 7 € S, there is a constant ¢ > 0 depending
only on ¥ such that

1
(hy Kyghysar = cllhlo e Vhe Sy

We now design the topology. First, we equip S©) with the L?(Dy) topology:

(fs 8)s0 =/ fe.
Dy

Note that, using orthogonality of the projection (3.8), by Hypothesis (H1’) we have
(h, Kyoh) g0 := (. Pyy (Lo — Nypeh) 0 = (h, (Lo — M)peh) 2 > collall3 = 0
(A.2)

for some ¢y > 0 where ||i]| g-1 = Vgl 2 where Ag = h and g = 0 at the boundary.
Now let 9y, = % - V. Recalling for any & € S there exists H € H¥(I) such
that h = H o v, we note that dyoh = H' (). Now let
(f, 8) s = Oy [, By &) s + M(f, )50

for some large constant M to be specified shortly. This topology is obviously equivalent
to that of H' on S'. To see this, denoting ¥ = x/|x|, we can write V = ﬂ)ﬂ) .
\% +€%€W\0 V and notice thaton any f € §', Vf = V00dy, f. Now note that, since
h = 0and Py (Lo — A)l:blch = 0 on the boundary, we have

(h, Pyo(Lo — M) s
= (Iyoh, APy (Lo — A){blch>5<o) + M (h, Py, (Lo — A);blch)gm
= — (35,1, Pyy (Lo — Mpph) s + MR, (Lo — A)ppeh) s,
= (dyoh, dyo (Lo — Appuh) s + M(h, (Lo — N)ppih) g0

In the above we repeatedly used that Py, is an orthogonal projection on L? so that
(fs Pyo8) s = (Py, f, &) s . Thus, when paired with functions only of v such as

or Bioh, the projector is the identity. Introducing f = (Lo — A);blch, we have
(@poh. By (Lo = M) 50 = (g (Lo — M) f. By )50 = —((Lo = A) £, 95, ) 50

since (Lo — A) f = h which is zero at the boundary. Now, by (c.f. §7.2, pg 390 of [10])
we have

(Lo — M) £33, F)so = BIFIRz = vILFIR.
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for some constants 8, y > 0. Moreover, by our hypotheses, we have for some constant
¢ > 0 that

clfI < (Lo =M S, fso.

Combining the above bounds we obtain

(h, Pyy(Lo — Mippehysir = Bl fII32 — I £lI72 + M| £113,0.

It follows that by choosing M sufficiently large that for some c¢; > 0 depending only on
Yo we have

(h, Pyy(Lo — My = cill f13

and we deduce (h, Py, (Lo — A)h_blch>s(l) is coercive.

Thus we have established that for all g € S(()l), there exists a unique u € S =D such
that

Now we want to show that for k > 1,if g € S(k), then u € S*2), Let g € S(()z). We

know there is a solution u € S((fl). We wish to show that actually u € S(()O). To see this,
we formally differentiate:

o Ky [u] = By 8-

The following formal apriori calculation can be made rigorous by an approximation
argument. We compute the commutator of derivative with Ky,

[Oygs Kyolf = Oy Kyo[f1 — K[y f]
= Oy Py (Lo — A){blcf — Py (Lo — A)h_blcalllof
= Py dy (Lo = M f = Py (Lo = Mped f + [Py 3y 1(Lo = Ape f
= Py [y, (Lo — Mpped £+ [Py dyo (Lo — Ay S

Now note that by Lemma E.2 we have

w Ao — 2« Vil
Fu uls = <P (G + S ) o]

Thus, commutator of derivative with streamline projector is of zero order:

I[Py, dyqlgllL2 = Cligll L2

Also the commutator of derivative and the inverse operator is zero smoothing of degree
-2. Specifically, note that with f = (Lo — A)l:blC g we have

[8yg» (Lo — A)ppelg = dyo f — (Lo — M)k dye (Lo — A) f
= (Lo — M)y [8yy, Lo — Af.

The commutator [dy,, Lo — A]is a differential operator of order 2. Thus we obtain

I8y (Lo — Mpilgll 2 < ClI(Lo — A)plgll 2,
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and we obtain the estimate
1[3yg. Kyl £l 2 < Cll(Lo = Mo f Il 22-

Moreover, [0y, Ky,]f is zero on the boundary. Thenifu € § =D and g€ Séz)

Koy [9you] = [Byy, Ky lu + 0y 8 € S(gl)'

It follows that 9y, u € S and thus u € S©. Higher regularity follows by similar
arguments.
Appendix B. Proof of Proposition 3.1

Let Dy, D be two nearby domains and let y : Dy — D be a diffeomorphism. Denote
points in D by (x1, x3) and points in Dg by (y1, ¥2). Decompose the diffeomorphism

y =id+ (a, B) = id + V¢ + V.

where V4 = (=8, 91). Let p =detVy and 0 < |p| < oo. Write ¥ = g oy’].More
explicitly

x1=y1+a(y,y2), x2=y2+B01, ).
and
a(y1, y2) = —0y,@ +dym,  B(y1, y2) = 0y, P + 0y, 7.
We have so Vo = Vy - (Vi) oy, and
_ Ay, By, B
v =(Vy) LV, Vy=I+(070 0.
(Vx)oy Vy) }Iﬂo 14 <8yza 8y2ﬂ>

Jacobian of Transformation: Note that, with p = det Vy we find
o =1+0y0+0y,B+(dy,ady,p — dy,ady, ) = 1 + An — N, (871, 3%¢)
where
Ny 1= dy,ady, f — dy,@dy, p = —Va - V1. (B.1)

Inverse Gradient: A useful expression for the inverse gradient of the transformation is
2 2
(1 + < ayzﬂ _ay1/3>> — l <I + <8%'28y1¢ + 8yz77 _8y1¢ - 8yl agzrl))
_ayza ayla p 8)72¢) - ayl ayzn _ayz ay1¢ + 8}’] 77
<[ + <ay228y1¢ _ay21¢ ) + ( 3_5277 —8}%8),27]))
8y2¢ —0y,0y, ¢ —0dy,0y,1 8y1 n

(= Goeid) - (o)
dy, Vy ¢ dy, Vy n

V)l =

D)= D= D=
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Derivatives of v/ := /g 0 y ~': In the above, 3y, V; ¢ and similar terms are understood
as row vectors forming the matrices. Thus

1 1
(Vey) oy = (Vavo + Vi + (V76 Vo) Vo) = (V3-am + (Vo - V) Vo).

where we introduced the notation for streamline derivatives 3, = V- - Vy. In the
future, we will bin terms involving 7 in

1
Lo(d*n, p; 9°Y0) = (vyiam +(Vyn- vywywo). (B.2)

I

Note we track only the highest number derivatives in the notation on the left. We now
obtain a formula for the Hessian in terms of 19 and the diffeomorphism. First note that

(Vi @ Va) oy = (V1) 7'V, (V) o 7).
The right-hand-side of the above is calculated as
Vy((Vawov) =¥y~ & (V) oy
1
v (vy ® Vyio + (Vy ® Vy)dsg + (Vy ® Vy¢) (Vy ® Vy1ho)

+(Vy¢ - V)V, ® Vytho — (Vy ® V;)dsn

- (Vy ® Vyn)(vy ® vyl/fO) - (Vyn : V)Vy ® VylﬁO)-
Thus we obtain

1 1
(Vx ® Vxl/f) oy = ?Vy b2 V)'1//0 + ?((Vy (24 Vy)as¢ - (Vyd) : Vl)vy by Vy@[f0>

+L£1(8%1, 3p; 33P0) + N1(3%¢, 92959, 9°1, 3p; 3 ),

where we have grouped the terms linear in n and Vp

L1(8%n, 3p; 83 ¥0)

1
= __2<Vyp ® (Vap) oy +(Vy ® V;_)asn +(Vyn-VIVy ® Vy1/f0>s (B.3)
P
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as well as all terms which are quadratic in combinations of (¢, 1, Vp):
N (32(15, 328s¢, 8377, 0p; 831ﬁ0)
1
= —;Vyp ® (Vyas¢ + (V;'(ﬁ - Vy)Vyo — V;_asfl - (Vyn - Vy)vywo)

(- Gt) R

T\ i + Y V0 ® (V. oy+
p? < (Byzvjqb 3y, Vin yP ® (Vxtho) oy

—Vy0 ® (Vi + (Vg V) Vytho — Vidon — (Vyn - V)V, 0)

+ <(Vy ® Vy)as¢ + (Vy ® vjd’)(vy ® VyWO) + (Vﬂ‘(ﬁ : V)Vy ® Vyio

- (Vy ® V;_)axn - (Vy ® Vy'7)(vy ® VywO) - (Vyn : V)Vy ® Vyl,/f0>:|~
(B.4)

‘We note the important point the nonlinearity involves third derivatives of ¢ only through
82d5¢. We now introduce stream function coordinates. Note the following formula for
V, in terms of derivative along and transverse to streamlines, i.e. dy = Vlwo -V and
dyy = Vo - V.

1 1
v, = —[VI//Oa + vh/foa,], vi= [VH&OB — Vwoa.].
YT Vol v ’ e Vo ‘

With this, we have

1

We arrive at

Lemma B.1. The following formulae hold

1 1
(Vxp)oy = ;Vywo + ; (Vyas(b + I:(as(b)a'//o - (awo¢)as:lvy1/f0>

1
|V o2
+L0(3%1, p; 33 ¥0),

1
(Ve ®Vep) oy = ¥y ® Vit 08)04, — D,$)05 |V, ® V30

- p2|wo|2[
1

+— (Vy ® V,)d5¢ +L£1(8°n, 3p; 8°Y0)
P

+ N1 (8%, 82056, 87 n, 3p; 3> ¥o),

where Lo, L1 and N are defined by (B.2), (B.3) and (B.4). Leta, =aoy,b, =boy
and

Li=a:V,®V,+b-V,, L,=a,:V,@V,+b, V,.
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Then we have

1 1
(Ly)oy = ;Lw/fo + ;Lyam

1
+ S
P Vol

+[0®)20,by = Guupisby |- vm)

+a: L1(0°n, 80; o) +a : N1 (829, 3850, 3°n, 3p; 8°vo)
+b - Lo®n, 8p; 3 Yo).

- W[(as¢)a¢0 - (8W0¢)as:|Ly1/f0

([@0r20, - @uprina,] v, 05,00

We now simplify these formulae in the setting where ¥ and i satisfy (3.4), (3.5).
Recall Lo :=ag : Vy ® Vy +bg - Vy, so that

L, —Lo=(ay —ap) : Vy ® Vy + (b, — bg) - Vy
=(a—agp)y :Vy®V,
+ (b —bo)y - Vy + ((ao)y —ao) : Vy @ Vy + ((bo)y — bo) - Vy.

We now denote the nonlinearities arising in expanding by

Rao (36, 817, 3%ag) := (ao)y —ao — (v — y) - Vao,
Rpy (36, 81, 8%bo) := (bo)y —bo — (¥ — y) - Vby.

Note that the dependences are a consequence of Taylor’s formula. Then

L, —Lo=(a—ap)y :Vy®Vy+(b—bpy)y -V,
+(y—y)-Vay: Vy®Vy +(y —y)-Vby -V,
+Ray (30, 31, 82ap) = Vy ® Vy + Ry (3¢, 1, 3%bg) - Vy
=(a—agp)y : Vy®Vy+(b—by)y -V,
+Vi¢-Vag: Vy, ® Vy+ Vg . Vb -V,
+Vn-Vay:Vy,®Vy,+Vn-Vby -V,
+ Ry (B¢, 817, 8%ap) : Vy @ Vy + Ry (36, 31, 82bo) - V.

Thus we have

(Ly = Lo)Yo = ((358)dyga0 — (Byy®)dsa0) : Vy ® Vyiho

e
1
~ NeE ((058)dyobo — (g )0sbo) - Vyiro

+ Lo (8a, 8b, dag, dbg, 3n, v; 9*40)
+ Na(3%ag, 9%bo, 3¢, In, v; 9%90),
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where

Lo (8a, 8b, dag, dbo, 1, v 82¥0)
= (a —ag)y : Vy @ Vyyrg + (b — bo)y, - Vyiro
+Vn-Vay: Vy, ® Vyo+ V- Vb - Vi,
Na(0%ag, 3%bo. 3¢, 917, v 0*0)

i= Ry (3¢, I, 0%a0) = Vy ® Vyiho + Ry (06, 3n, 8°bo) - Vyho.
Additionally we find

(Ly - LO)as¢

= L3(8a, 8b, dag, dbo, 3n, v, 3205¢) + N3(3%ag, 8°bg, 3¢, 9., y, 02056).
where
L3(8a, 8b, dag, dbg, 91, v, 0%05¢)
=(a —ao)y : Vy ® Vy05¢ + (b — bg)y - Vy0s¢
N3(8%ag, 3%bg, ¢, 01, v, 8> 35)
= V1¢ - Vay: Vy ® Vydsp + V¢ - Vby - Vydso
+ V- Vag : Vy ® Vydsh + Vi - Vg - Vyds¢h
+Ray (3, 31, 82ap) : Vy ® Vydsp + Ry (36, 31, 82bo) - Vyds¢p

Thus we have

p* (L) oy = Loy + Lodsd — VUl ((059)dyya0 — (dyy@)dsap) : Vy ® Yyt

|vw |2 (89¢)81/f0b0 - (81/f0¢)8¥b0) : Vywo

(
|Vw |2 [(8 ¢)81/f0 - (8W0¢)85]L0w0

|Vw 2 [(8 $)dya — (31//0(15)3sa] :Vy @ Vyig

+— [ (8,0)0yb— (@ 8b]-V
|wo|2[( \$)dyeb — 0, $)dsb | - Vo
+Ls(8a, 8b, dag, dbo, 3%, v, 3*d5¢; 3 Yo)

+Ns(8%ag, 8%bo. 3%, 8%, dp, 8%3,¢: Vo)
where the linear and nonlinear terms are

4
Ls=>Li. Ns=Y N. (B.5)
i=0 i
Rearranging this, we have

p*(LY) oy = Lo + (Lo — A1)3s + A28y
+ Ls(8a, 8b, dag, by, 1, dp, 320s¢; 3> ¥o)
+Ns(9%ag, 9%bo, 32, 8%, dp, 3*ds¢p; 9> o)
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dyg Lovo dsLovo
 Viol? IViol? *
use the equations that ¥y and ¥ satisfy. Recall

where A; = and A =

To get the desired equation for d;¢p we must

Ly =FW)+G(x,¥), Loy = Fo(¥o) + Go(y, Yo),
Then we have
(Lyr)oy — F(Yo) + G(y, o) =0,

Thus upon substitution we obtain

(Lo + AN)ds¢p = Loo — p*(LY) o y + Aadyyp + L5 +Ns
= Fo(Yo) — F (o) + Go(y, Yo) — G(¥, ¥o)
+ A20y¢ + Ls +Ns.

Introducing the notation
R (3. 9, 87G) := Go(y, ¥o) = Gy, ¥o) = (¥ = ») - (VyG) oy,

we further express the nonlinear G terms as follows

1
Go(y, ¥o) — G(y, %) = W(W)(a%a)(y, Vo) — (3yy®) (3G (v, wo>)
— V- (VyG)(y, ¥0) + (G — Go)(y, ¥o) + Rg.  (B.6)
Together, we obtain
(Lo — A)ds¢p = Aadyyd + (F — Fo) (o) + Ly (8a, 8b, dag, dbo, 8°n, dp, 32ds¢; 9°90)
+N(02ag, 3%bo, 3¢, 3%, dp, 3%0s¢; 3> Vo)

where we have defined

Ly = Ls, (B.7)
Ny = Ns + (B.6) (B.8)

where L5 and N5 are defined in (B.5) and where

(31//0 Loyo — 9y, G(y, I/fo)), Ar:

1
= rgop (WLovo =G0 d0) ).

1
1=
Vol

Note that we separate out (F — Fp) () since we will use F to fix d;¢ as mean-zero on
streamlines during the construction. We note now that

dyoLovo = |V¥ol* Fy(¥o) + 3y, G + Vo> Gy (y. o), 8sLovo = 3G,
where G|, denotes differentiation with respect to its 1o argument. Thus, introducing

A = Fy(o) + Gy (v, Yo, (B.9)

we obtain
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Lemma B.2. If g solves (3.4) and v = Yo o y solves (3.5) then ds¢ satisfies
An=p—1+N,(®°n, 0°9),
(Lo — A)ds¢p = (F — Fo) (o) + Ly (8a, 8b, §F, 38G, dag, dbo, 3”1,

ap, 205, dyyd; Vo)
+ Ny (8%ag, 9%bo, 9%, 8%, dp, 8%0s¢; 9°Yo),

where A is given by (B.9), Ly (defined by (B.7)) are all the collected terms which are
linear in ¢ and n (and their derivatives), but all multiplied by small factors, N, is defined
by (B.1) and Ny collects the nonlinear terms above (defined by (B.8)) .

Appendix C. Proof of Theorem 3.1

C.1. Perturbative assumptions. We will make the following assumptions that ensure
that various quantities we will encounter can be treated perturbatively.

e The density p satisfies
llo — 1||ck~a(DU) < €. (C.1H

e The boundary 9D is given by {B = 0} and 9 Dy is given by { By = 0} where B, By
are smooth functions defined in a neighborhood of d Dy and

|B — Bollcke < €2. (C.2)
e The operators Lo, L are close in the sense that the coefficients satisfy
la = aollctaqpy) + 1D = Bollctaqpy) < €3. (C3)
e The nonlinearities/forcings are close in the sense that
IG = Gollci2a(py) < €s- (C4)

The size of the parameters €1, €3, €3, €4 will be set in Lemma C.5 and depends on Dy,
the base solution v, and the operator Ly.

C.2 Boundary conditions. Suppose Dy is given as the interior of a Jordan curve By in
RZ,

3D = {p € R? | By(p) = 0}.

For convenience we will assume, without loss of generality, that By is given so that
[VBg| = land Vo - VBy > 0. Suppose that D is given as the interior of a Jordan curve
B,

dD = {p € R*| B(p) = 0}.

If y : Dyp — D is of the form y = id + («, ), then using that Bylyp, = O, the
requirement that y : d Dy — 9D can be written as

0=Bo V|3Do = Bpo V|8Do +(B)o V|8D0
= ad1Bolap, + Bd2Bolap, + Bi(, B)lap, (C.5)
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where the remainder By is
Bi(a, B, x,y) = Booy — Bo —adiBo — pd2Bo+ (B) oy (C.6)

which will be small, O («?, 82, §B), provided «, B, 8 B are small and that By € C2, say.
It is convent to write «, 8 in terms of a gradient and skew gradient of ¢, 1,

(@, B) = V> + V.
In this case,
ad By + BBy = VB - V¢ + VB - V.

Since |V Bg| = 1, to follows that V By is the outward-facing unit normal vector field, 7 to

Dy and V= B is the unit tangential vector field forming a right-handed basis with V By.
€L

Since 1 is constant on d By we in fact have V=B = %. Using this, we re-write

(C.5) as the condition

1
—a ¢+a nz_Bl((p’ 77)7 on aDO
Vil -7
We will choose 7 so that 9,7 is constant on the boundary and so that d;¢ has zero average
along streamlines, i.e. f o d5¢ ds = 0 where ds = d{/|Vy| and ¢ is the arc-length
parameter. We will construct 7, ¢ so that they satisfy

Bi(¢,m)dt
dan = _top, Bi1(#. m dt on 9Dy, (C.7)

length (0 Do)
Bi(¢,n)del
M) on 3 Dy. (C.8)

¢ = [Vl (‘Bl G length(d Do)

This choice is made so that the integral of the right-hand side of (C.8) along streamlines
is zero.

C.3 Governing equations for n and ds¢. By Proposition 3.1, if det Vy = p, we have

An=p—1+N,, in Dy,

faD Bl(¢7 ﬁ)dﬂ
dn=—"" "~ 9Dy, c9
nl length(@Dg) 070 €9

where By is defined as in (C.6), and where N, is a homogeneous quadratic polynomial
depending on 3°7, 3¢ defined in (B.1). The equation for d;¢ takes the form

(Lo — A)ds¢p = (F — Fo) + Lg + Ny, in Dy, (C.10)

-¢.3DO Bl(¢v 77) de

ds¢ = Vol <_Bl(¢» n) + length(d Do)

) ondDy, (C.11)

where Ly is the elliptic operator defined in (3.4) and Ly are terms which are linear
in derivatives of ¢ and n and p multiplied by small factors and Ny are quadratically
nonlinear terms in derivatives of ¢ and n and p. In this formulation, the function F is
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unknown and will need to be chosen to be consistent with the fact that § d;¢d¢ = 0. This
point will be explained in detail in the next section. We emphasize that £ and N do not
involve arbitrary third derivatives of 7, ¢ and it is only 3237, 8%9,¢ that enter, which
will be important in what follows. The following estimates are immediate consequences
of the definitions of the terms on the right-hand sides of (C.9)—(C.10) in which can be
found in (B.1), (B.7) and (B.8). Note that these quantities involve three derivatives of g
but we are assuming Fy € C k=Le g0 by standard elliptic estimates |||l cx+1.« is finite.

Lemma C.1. If the bounds in § C.1 hold, then we have
1Ll ck—2a(pgy < Cra (0 = llck-1a(p,)
+ Il cre gy + 1951l cro (pg) +€||3s¢||ck71,a(po)),
Ny Il k2.0 (py) < Ck,a(”,o — Hlck-1.a(py)
+ (Inllcrepyy + 1950l cre(py) + ||3s¢||ckva(D0))2),

||Nn||ck—2,a(DO) = Ck,a(”ﬂ”c’fﬂ(Do) + ||¢||ck,a(DO))2,
1Billci-raany = Cra(Inllcteqoy + 18 llckany)-

where € = max{ey, €2, €3, €4}.
We also need Lipschitz bounds for the operators Ly, Ny, N,,. Given functions ¢1,
N1, ¢1, N2 we write u; = (¢, 1), uz = (¢2, n2) and let Lt ,fop, Nf’ fori = 1, 2 denote

the operators L4, Ny, N, defined in Proposition 3.1 evaluated at (¢;, ;). The following
estimates are then straightforward consequences of the definitions.

Lemma C.2. [f the bounds in § C.1 hold, then we have
||L(lb — L(Zbuckfla(Do) < Cra(llm — m2ll cko(pyy + 1191 — dsm2ll ke (py)
+€lldsp1 — ds@all cha(py))-
INg = Nl ck-2e(pg) < Cra(lm = mllcrapy) + 1311 = dsmallcrapy)
+ 11951 — Dyl cher (b))

12 2
IN, = Nillck-2(pgy < Croa (11 = m2ll cha(pyy + 91 = D2l char ()

C.4 Recovering ¢ from ds¢. In the construction, a solution ® is obtained by solving
(C.10)—(C.11) for “d3¢ = V1 - Vy". Consistent with ® = 9,¢, we will construct
a solution @ with the property that its integral on each streamline is zero. This is done
further in the proof and requires the use of (H3). To verify that it is indeed the “streamline
derivative" and to recover the periodic function ¢, we appeal to the following lemma.

Lemma C.3. Suppose ® € C*¢ satisfies
f ®=0 forall ce€im(yy).
{Yo=c}

Then ® = 05¢ for a unique function ¢ = ¢ (Yo, 0) which is a zero-mean, periodic
function on streamlines of Vo, i.e. ¢ (Yo, 0) = ¢ (Yo, 27) and 95;//0 ¢ = 0. Moreover, ¢

enjoys the bound
IPllk,e < CllOs@lk,as (C.12)

where the constant C depends on C*% norms of .
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Proof. First note that all that enters in the formulation of the problem is ds¢ and not ¢
itself and so we are free to modify ¢ by adding an arbitrary function of 1. To be more
precise, let £ be the arc-length along curves {yy = ¢} and introduce the notation

de
s = .
IVl

We the fix the freedom in defining ¢ by enforcing that, on each streamline,

7{ pds =0, Ve eim(y).
{Yo=c}

Assuming that this holds, we have ||¢|lx.o < C|056||x.«» a fact that we use repeatedly in
what follows. To be more precise, we introduce an “angular coordinate" along streamlines
as

2
O(x) = ———— ds, = d
(X) I‘L(I//O(x)) '/l:‘-"()(\//())”‘ ’ M(C) £¢O=C} ’

where p is the travel time of a particle along a streamline and where, for each x € Dy the
line integral is taken counterclockwise from an arbitrary point xo(o) on the streamline
to the point x. This point xo () can be obtain by flowing an arbitrary point p € Dy
by the vector field V¢ which is orthogonal to streamlines. This segment is denoted
by I'xy(yo),x- Then 6(x) is a 2r—periodic parametrization of the streamline with value

PYo(x).
Now, given a ® which is mean zero on streamlines, note that for an arbitrary 6y €
[0, 2]

9
® (Yo, 0) = (Yo, bo) + (o) | Pdo’.

0o

Integrating this expression along the streamline in so we vy =const.

]
$() = d(Wo(3). 6()), ¢<wo,9):u<wo>A(f9 @de’) 6.

0

One can check that VX1 - VO = p~!. Thus, for the quantity defined above we have
that

= 3.

The definitions of 8 and u as functions on Do we obtain the estimate (C.12). O

C.5. The iteration to solve the nonlinear elliptic system. We use the following iteration.
Given ", ¢" € Ck=1-%(Dy) with 31", 8;¢" € CK~1%(Dy) and iy " = 0, set

NI = Ny (", ¢,
with N, defined in (B.1), which satisfies the following bound

2
”NZ”C"*M(DO) = Ck,a(||¢”||ck,a(DO) + ||’7n||ck,a(D0)) .
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By Lemma D.2 the following problem has a unique solution n**! € Ck=1.«
A"t =p— 1+, in Dy, (C.13)

dun™t! = k" = (,0 -1 +j\f") on dDy. (C.14)
Dy 1

n+1

Moreover, the iterate """ enjoys the following estimate

1 1
"™ | cro(py) < Ck,a(”p = Ulck-20(py) + ||NZ||C’<*2,“(D0) +i"T )

We note that (C.14) does not agree with (C.7) but instead has been chosen to ensure that
the Neumann problem is solvable. In the upcoming Lemma C.7 we show that provided
n", ¢" converge, the limit n will satisfy (C.7) as a consequence of the assumption that
Vol(D) = fDo 0.

In order to get an estimate for [|d;1"*! || cke(p,) We commute the Egs. (C.13)—(C.14)
with d;. Applying d; to (C.13), using

(3, Al= =2V AYp-V—-VQRViyy: VRV,

we note that the right-hand side involves highest-order derivatives falling on d;n and
lower-order terms. By the estimates for the Neumann problem from Lemma D.2 and
using that d;n = 0 on the boundary since 9y is a tangential derivative, we have

190"l e gy < Crarlln™ !l ek gy + Choar (185 (0 = Dll cha(py) + 15Nl o2 () )-
With *! defined, we now set

Ng — N¢(nn+1’ (pn)’

B! = Bi(f™*!, ¢"),

with Ny defined in (C.10) and B; defined in (C.6). Using that [|¢"[[ck-1.a(p,) =
195¢™ | ck—1.0( ) from Lemma C.3, we have that

ING | ck-20(pg) < Croalllo = Ulckacng + U™ llckapg) + 1950 ll chapy)
+[| 959" ||ck.a(DO))2

+H0" Ml cra(pyy + 1357 ke (py) + €11050" | okt (pg) )

with € = max{eq, €2, €3, €4}. We note that it is crucial that the estimate for the nonlinear-
ity Ng only requires a bound for [| 3,1+ || che(py) and not the full norm || il Ck+La(Dy)

since we could only get a bound for this term by differentiating the equation for n*!
in all directions and this would require a bound for [|¢"*! | ch+1.0(p,) 1nstead of just

[| 850" ! | ck.e(py)- The boundary operator satisfies the estimate

1
1B} ety = Cra (I et + 18Bllckapy) )-
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We now envoke hypothesis (H3) and define F” by the requirement that the right-hand
side of (3.7) has zero average along streamlines with ¢, n replaced by ¢", n". Consider
the problem

(Lo—MNu=g in Dy
U =up on d Dy.
Letting G be the Green’s function for the Dirichlet problem for Ly — A, we have

u(x) = / G(x,x)g(x")dx' +¢. 9,G(x, xup(x"de.
Dy dDg

We define
(Lo — Mg :=/ G(x,x")g(x"dx',
Do

so that f = (Lo — A)Eblcg means (Lo — A)f = g and f = 0 on dDy. If the Egs.
(C.10)—(C.11) are to hold then since fwozc ds¢ = 0 we must ensure that

Ky [F" — Fy]l = —f (Lo — M)l L0 + N3 1ds +y§ f 9, G (x, x")0;¢ (x")dlds,
Yo Yo /Do
(C.15)

with Ky, defined in the statement of (H3). Notice that the right-hand-side is a function
only v, and the boundary conditions for ds¢ are chosen exactly so that the contribution
on the boundary of the final term in (C.15) is zero. Thus, with g" (o) defined as the right-
hand-side of equation (C.15), we see that g" (¥o(dDg)) = 0. Moreover, g € che(n)
with I = im(yg), which follows from Lemma E.2 Appendix E. These verify that we
are in the setting of (H3) and so by assumption there is an F" = F" () € Ck=2a(])
which ensures that (C.15) holds. Moreover,

IF" = Follow=2ary S 1K yalLly + Nallero S Lo = Al (L5 + N3 )t
S 1LG + Nllck2.a(py)- (C.16)

The second inequality above follows from Lemma C.15.
By Lemma D.1 the following problem has a unique solution ®"*! e Ck«,

(Lo — M)®"™! = (F" — Fo)(yo) + Lfj + N, in Dy,
(C.17)
faD Bl(¢n9 77") de
q)l’l+l — |V —B n’ n 0 8D .
| wo|< 18" )+ @D on 3Dy
(C.18)

By our choice for F” and the above discussion, the solution ®"*! has zero average along
streamlines and so by Lemma C.3 it follows that ®"*! = 3;¢"*! for a unique function
¢™*! with zero average along streamlines. From (C.17)—(C.18) and (C.16) we have

1 1
959" lcke(py) + ll¢"* ek (D)

= Ck,a(”LgHCk*M(DO) + ||Ng||ck*2-“(Do) + ||Bl11||ck.a(apo))~

In summary, using Lemma C.1, we have shown
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Lemma C.4. Suppose that (H1)—(H3) and the assumptions (C.1), (C.2), (C.3) and (C.4)
hold. Let ¢", 0" € CK(Dy) with d;¢", 90" € CK(Dy) be given functions. With
I\ N(’;,, By defined as above, and with F" defined implicitly by (C.15), the prob-

lems (C.13)~(C.14) and (C.17)~(C.18) have a unique solution n**', ¢"*' satisfying
991//0 ¢"+1 dt¢ = 0, and we have the estimates

13 Ml ek + 17" i cta < Choa (1350 = Dll gk + 10 = Ll ck—20
+ (051" | e + 110" | o) 185" | o (C.19)
135¢™ ok + 16" ok < e (10 = Ul + U351l ot + 10" ) 185" Nl ot
+ (1850 Ml et + 10"l o)
+€]150" | e + 1B Nl o 9 g -

1B} ek apy) = Cra (I lera + 16" lcta )- (C.20)

C.6. Uniform estimates for the iterates. We now set n° = ¢° = 0. Given 7%, ¢*, using
Lemma C.4 let n**! satisfy (C.13)—(C.14) and let ®*! = §,¢**! satisfy (C.17)—~(C.18).
In this section we prove that the sequences (ne, ¢£), (0 ne, s ¢£) are uniformly bounded
in C5%(Dy).

Lemma C.5. There €g = €o(Dg, k, 0, 0) > 0 so that if the assumptions (C.1)—(C.3)
hold with €1 + €3 + €3 < €0 /2, if the sequence d:l, nz is defined as above, then

1357 [l ke (pgy + 1858 Nl cha(pgy + 1M | ey + 16 Lk (pgy =< 1-
Proof. Let Cy o be as in (C.19)—(C.20) and set
€0 = min(1, 1/(4(Cra + CZ ).

Lete = €1 + €2 + €3 and set M = 4Cy o€. We claim that if € < €(/2 then the iterates
¢, nt satisfy

¢ ¢ ¢ ¢
In° lckapgy + 107 I cka(pgy + 1050 lcka (py) + 105@” [ cka(pyy =M =< 1.

This certainly holds for ¢ = 0. If it holds for £ = 0, ..., m — 1 then by (C.19)—(C.20)
we have

||77m||ck,a(DO) + ||¢m||ck,a(1)0) + ||3s77m||ck,a(1)0)
+H950™ | cka(py) < Choa(M? + €M +€) < M,

since Cr o M? < M, CxgeM < yM? < 1M and Cy g€ < M if € < €/2. The result
follows. O



558 P. Constantin, T. D. Drivas, D. Ginsberg

C.7. Cauchy estimates for the iterates.

Lemma C.6. There is €| = €y(Do, k,a,0) > 0 with the following property. If the
assumptions (C.1)—(C.3) hold with €1 + €3 + €3 < 66/2, then with the sequence {¢>e, ne}

defined as in the previous lemma, if we set
N M N M
Dy.m = 19sn™ — 950 [l ck-1.0(pyy + 10s@™ — 950™ | ch-1.(py)
N M N M
+n" —n ||ckfl,a(DO) + o™ —n ||ck711a(1)0)»

then Dy y < %DN_LM_LInparticular; withd, = ||3_gn1||Ck71,a(D0)+||3s¢l||Ck71,a(D0)+
'l ekt (pg) + 16" | k=10 (D) We have that

Dy gy < 21-min(N.M) g

Proof. This is proved in nearly the same way as the previous lemma, but relies on
Lemma C.2 in place of Lemma C.1. O

C.8. Convergence of the boundary term.
Lemma C.7. Let Dy, D be domains in R? and suppose that for some function p,
Area(D) = / pdy.
Do

Suppose that 0D = {B(x) = 0} for some function B defined in a tubular neighborhood
of 0D and has non-vanishing gradients there. Let y be a diffeomorphism of the form
y =id + V1¢ + Vi) where

9 p, B1(@, ) dL
m—), on 0Dy,

3¢ = |V (—Bl (@, m + length(d Do)

with By defined as in (C.6). and where 9,1 is constant on 0 Dy. Then in fact

oy Br@

a =
il length(d Do)

, on d Dy,

and as a consequence, y : 9Dy — 0D.
Proof. Recall that, by the definition of the map y, we have
1
Boylapy = 7 —0s¢+dn+ Bi(¢,n), on  9Do.
Vol

By the above assumptions, this implies that, for some constant c,

B °V|8D0 =c.

This says that y maps d Dy to the level set {B = c}. We wish to conclude that ¢ = 0
based on the fact that the area of y (Dy) is the same as D = {B = 0}. Note that the area
enclosed by the level set, { B = c}, has the property that

d Area({B = c}) ?g a
— ATrea =Cyj) = —_—.
dc {B=c} |V B|




Flexibility and Rigidity in Steady Fluid Motion 559

By our assumptions that |V B| is non-vanishing in a neighborhood of the zero set, then
the level sets are Jordan curves in a neighborhood of 0 and the area enclosed must change
in accord with the above formula. Thus, the unique value of ¢ such that

Area({B = c}) = Area({B = 0})

is ¢ = 0 and we are done. m]

C.9. Proof of Theorem 3.1. By Lemmas C.5 and C.6 it follows that the iterates (¢, ¢%)
form a Cauchy sequence in Ck22(py) and so they converge to functions (1, ¢) €
C**2.%(Dy) with a corresponding statement for dg ne, 8S¢E. We thenset y =id+ Vn +
VL. It remains to show that y (Do) = D, and by Lemma C.7 and (C.7)—(C.8) it follows
that y |3 p, = 9D as required. The estimate (3.9) follows from the proof of Lemma C.5.

C.10. Proof of Theorem 3.2. We define a sequence of diffeomorphisms {y "} as follows.
Given a domain Dy _ and a diffeomorphism y¥~! : Dy — Dy_ of the form y ¥~ =
id+ VpN=l 4 VEpN =1 define p" by

oV () =X, N VL vV veN T vV Ve T

fDO oM
Vol Dy
01%, VolDy = fDo pN. By Theorem 3.1 there is a diffeomorphism yN : Dy — Dy
with det Vy N = p" and where y" is of the form y = id + Vy¥ + V1oV so that
UV = g o y" satisfies (3.5), and we have the estimates

and define oV > 0 by al%, = so that with Dy = oy Dy, we have VolDy =

135n™ [ ct—tac + 135d™ k1o + 10N k0 + NN (]t
< Cra(llp" = Ul cr1a +¢). (C.21)

Taylor expanding pV = X(y,nV=1, ¢V, vpN=1 vopN—1 vapN=1 vaeN—1)
around (1, ¢) = (0, 0) and using the bound (3.12) we have

o™ = k1o < Cex (1850 M ciora + 1956™ ™l gt
+HinV M ck-ra + 16" i ch-ra)
+C (1857 Ml crora + 1050 Ml crora + 10N crora
o rora)’, (C.22)

provided [|9;7nV 1| ck=1a + 185N Tl ket H 0N T | chmta + [N T -1 < 1, 52y, We
now prove that the sequence y " is uniformly bounded provided ey is taken sufficiently
small. Let C o be the constant in (3.9) and take ¢x so small that 4Ck,aC,’{!an <1, and
suppose that

185N | c—ra + 118050 | k-t + 1™ | cmria + @7 [l k-1 < 2Ck .08 < 1.
By (C.22), we then have
N+1 N+1 N+1 N+1
1050 lor-te + 105" Tl cr-tie + I okt + 197 | ch-1,0

< Cra(Choex 2e) 4 4 8) < 2C; o C ye6x + Crae < 2Ckas,

and it follows that the sequence {yV }X—o is uniformly bounded in C k+le Using a
similar argument it is straightforward to see that this sequence is also a Cauchy sequence
in C**1® and so yN — y e C**1@ which by construction satisfies (3.13).
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Appendix D. Elliptic Estimates

In this appendix, we collect some well-posedness results from elliptic theory for the
Dirichlet and Neumann problems. The first is concerning the Dirichlet problem can be
found in e.g. Theorem 6.6 of [12] when k£ = 0 and Problem 6.2 of [12] when k > 1:

LemmaD.1. Fix k > 2 and o € (0,1) and f € CK2%(Dy), g € CK*(@Dy). Let
a', b, ¢ be smooth coefficients and set

L= Xz: a'’9;0; +22:b"a,-.
i,j=1 i=1
Suppose that the only solution to
(L+c)v=0, wveH(Do)
is v = 0. Then the Dirichlet problem

(L+c)u=f, in Dy,
u=g, onadDy,

has a unique solution u € C**(Dy), and there is a constant Co = Co(Do, ||blk—2.a)
with

lulli,e < Co(ll fllk—2.0 +18lk.a)-

For the Neumann problem, compatibility is also required.

LemmaD.2. Fixk > 2 and a € (0,1), and f € C*2%(Dy), g € C*1*(3Dg)

satisfying
f= / g
Dy dDg

Then the Neumann problem

Au = f, in Do,
op,u =g, ondDy,

has a unique solution u € C*%(Dgy) and there is a constant C, = C1(Dg) with

lulee < Crllfllk-2,0 + 18lk—1,a)-
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Appendix E. Streamline Geometry

In this appendix, we prove some formulae which are useful for our deformation scheme
which uses streamline coordinates. First, we state some relations between the curvature
and vorticity of along a given streamline.

Lemma E.1. Let i = V)|V | and T = VY4 )|V |. The following formulae hold
T.VRVY -t = |V, (E.1)
A-VQVY A=Ay — |V, (E.2)
where k := T - Vi - T is the curvature of the streamline.

Proof. We being by noticing that
AYy=uVRVYy=n-VRVy -n+7-VR VY - 1.
Next, a direct calculation gives
IVYy|IVa=VQRVYy —n-VVy -mn®@n—n-VVYy - T)nQ T,

sothat |Viy|T-Vin-7 =17V ® Vi - T yielding (E.1) as claimed. Combining with the
above we obtain (E.2). |

Before stating the next required lemma, we briefly review action-angle coordinates.
For an in depth discussion, see Arnol’d [1], pg 297. The streamfunction ¥ plays the role
of a Hamiltonian for tracer dynamics since # = V1. We assume that the level sets
{/ = c} are simply connected Jordan curves, so that all the integral curves of u (solutions
of X = u o X) are periodic orbits. This system allows for a canonical transformation to
action-angle variables, (x, y) > (J, #) which satisfy the following criteria

) Y(x,y) =¥/ (x,y)) forall (x, y) € 2 and some function W
2) fWI:C} do =1,
(3) ViJ.ve =1.

Introduce the frequency = ' = W/(J). The phase flow satisfies

dJ do

— =0, —=punb

dr a M
The first is simply because the system travels along paths of fixed J. The latter follows
from

d dfdx dody

g + = VY VO = W () 0y — J0;) = n~ N(VET Vo) = L
dr dx dr  dy dr Y () (Jx yx) oo ( )=pu

The period for each orbit {iy = c} is the travel time u := u(c) given by

o-f
o= =c) IVY|’

and the line element for each orbit satisfies

A6 = /32 + 32 = |Vy|dr = w Y|V It = [VJ|d6.

We now give the rule for differentiating functions integrated over streamlines.



562 P. Constantin, T. D. Drivas, D. Ginsberg

Lemma E.2. For f € CL(Q) we have

d de _f VY -Vf—f(w—2k|Vy]) de
de Jiy=ey " IVY| Jiy=a) V|2 V|’

where k = T - Vi - T is the curvature of the streamline and w := AY.

Proof of Lemma E.2. First we show that for g € C'(Q), we have

1
Vyr|de = —(Vg-V Ay )de.
047 7%,:6} vy (Ve Vo reny)

To establish this, set F := gV+y and dI = (idr, ydr). Then F - dIl = g|Vy|de. By
Green’s theorem,

f F~dl=// vi-Fdxdy=// [Vg -V + gAyldxdy.
{=c} {y=c} (Y=c}

Then, for two values ¢y < ¢ in the range of i, we have

f F~dl—f F-dé:// [Vg - VY + gAy]ldxdy
{y=ci1} {y=co} {co<yr=<cc}

= // [Vg - V¢ + gAy]dodJ,
{co<y=<cc}

de Jiy=)

where we made a change of variables to action angle coordinates (the Jacobian is unity).

Finally,
// hdédJ = /f hp(y)dody = // hdtdyr = // |thdﬁdw,

for any integrable i. The result follows from taking the coincidence limit ¢; — c¢o of
the difference quotients. The lemma then follows by applying the formula with g =
f/IV|2. This gives

d ¥ de_y{ vw-Vf+f(Aw—2V¢-V®Vw-vw)d€
de Jiy=c) VY] (Y=c} V|3 .
To work this into the stated form we appeal to Lemma E.1. O
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