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Abstract: Flexibility and rigidity properties of steady (time-independent) solutions of
the Euler, Boussinesq and Magnetohydrostatic equations are investigated. Specifically,
certain Liouville-type theorems are establishedwhich show that suitable steady solutions
with no stagnation points occupying a two-dimensional periodic channel, or axisymmet-
ric solutions in (hollowed out) cylinder, must have certain structural symmetries. It is
additionally shown that such solutions can be deformed to occupy domains which are
themselves small perturbations of the base domain. As application of the general scheme,
Arnol’d stable solutions are shown to be structurally stable.

1. Introduction

In this paper, we address two fundamental questions pertaining to steady configurations
of fluid motion (modeled here as solutions to the two-dimensional Euler and Boussi-
nesq equations or the three-dimensional Euler equations or Magnetohydrostatic (MHS)
equations). Specifically,

• Rigidity: Given a domain D0 with symmetry, to what extent must steady fluid states
u0 conform to the symmetries of the domain?

• Flexibility: Given domains D0, D which are “close” in some sense, and a solution
u0 of a steady fluid equation in D0, can one find a steady solution u in D nearby u0?

To study the rigidity, we show that steady fluid configurations with no stagnation points
(non-vanishing velocity) confined to (topologically) annular regions have the following
special property: any quantity which is steadily transported (such as vorticity in two-
dimensions or temperature in theBoussinesqfluid) can be constructed as a ‘nice’ function
of the streamfunction. This fact is then exploited by recognizing that, as a consequence,
the streamfunction of such a flow must solve a certain nonlinear elliptic equation. As
such, Liouville theorems are used to constrain the possible behavior of all sufficiently
regular solutions. For the two-dimensional Euler equations on the periodic channel, this
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is the result of Hamel and Nadirashvili [18,19] that all steady flows without stagnation
points are shears. A similar statement can be made for a Boussinesq fluid with a certain
types of stratification profiles. For stationary three-dimensional axisymmetric Euler (e.g.
pipe flow), we show that non-degenerate solutions must be purely radial for a large class
of pressure profiles. That there should be a strong form of rigidity for stationary solutions
of 3d Euler was already envisioned by Harold Grad [15] who conjectured that all smooth
solutions (with a certain topological structure) must conform to a symmetry.

To study the flexibility, we modify an idea introduced by Wirosoetisno and Vanneste
[28]. To illustrate the general scheme we note that steady states u0 which are tangent
to the boundary can be constructed from a scalar stream function ψ0 : D0 → R which
solves

Lψ0 = N0(ψ0), in D0,

ψ0 = (const.) on ∂D0,

where L is some linear elliptic operator and N0 is some nonlinear function. We seek a
solution in a nearby domain D by imposing that the stream function ψ have the form

ψ = ψ0 ◦ γ−1, (1.1)

where γ : D0 → D is a diffeomorphism to be determined. We furthermore require that
ψ satisfies

Lψ = N (ψ), in D, (1.2)

for a function N = N0 + χ with χ conforming to the structure of the steady equations
to be determined. Note that by construction, we automatically haveψ = (const.) on ∂D
since ψ0 = (const.) on ∂D0 and γ : ∂D0 → ∂D. Thus, if such a diffeomorphism can
be found, ψ defines a stream function for a steady solution in D which is tangent to the
boundary.

Having fixed the form of ψ by (1.1), we regard (1.2) as an equation for the diffeo-
morphism γ . To solve it, we transform it into an equation in D0 by composing with
γ ,

Lγ ψ0 = N (ψ0), where Lγ f := L(
f ◦ γ−1) ◦ γ. (1.3)

Under certain conditions on the original domain D0 and the base steady state ψ0, the
equation (1.3) becomes a non-degenerate, nonlinear elliptic equation for the components
of the map γ which can be solved provided the deformations are sufficiently small.
This scheme to produce a γ has an infinite-dimensional degree of freedom which can
be removed by fixing the Jacobian of the diffeomorphism ρ = det∇γ . This steady
state will solve (1.2) potentially with a modified nonlinearity N which is completely
determined in the construction of the map γ with a given ρ.

Theorem 3.1 in § 3 is our main result in this direction. We illustrate its consequences
in the following three cases

• 2d Euler for domains close to the periodic channel (see Fig. 1) and Arnol’d stable
steady states on compact Riemannian manifolds.

• 2d Boussinesq for domains close to the periodic channel (see Fig. 1).
• 3d axisymmetric Euler for domains close to the cylinder (see Fig. 2).

We now describe these settings in greater detail and state our Theorems for each case
before proceeding to the proofs.
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Two-dimensional Euler Equations
Given a bounded domain D0 ⊂ R

2 with smooth boundary, a steady solution of 2d Euler
satisfies

u0 · ∇u0 = −∇ p0, in D0, (1.4)

∇ · u0 = 0, in D0, (1.5)

u0 · n̂ = 0, on ∂D0. (1.6)

As a consequence of incompressibility, the solutions u0 to the above can be constructed
froma stream functionψ0 via the formula u0 = ∇⊥ψ0 with∇⊥ = (−∂2, ∂1). Since u0 =
∇⊥ψ0, if the velocity is tangent to the boundary then ψ0 must be constant along ∂D0.
We consider here steady solutions with additional structure, namely that the vorticity ω0
is a Lipschitz function of the stream function ψ0 through ω0 = F0(ψ0). As it turns out
(see Lemma 2.1 below), all sufficiently regular flows in annular domains and without
stagnation points have vorticity satisfying this property for some F0. Together with
ω0 = ∇⊥ · u0 this means ψ0 satisfies

�ψ0 = F0(ψ0), in D0, (1.7)

ψ0 = (const.), on ∂D0. (1.8)

On the other hand, clearly any solution of the above for a Lipschitz F0 is the stream
function of a steady solution to 2d Euler which is tangent to the boundary.

When the domain D0 is a channel

D0 = {(y1, y2) | y1 ∈ T, y2 ∈ [0, 1]},
∂Dtop

0 = {y2 = 1}, ∂Dbot
0 = {y2 = 0}, (1.9)

solutions of the Euler equations exhibit a certain remarkable rigidity, Theorem 1.1 of
[18]:1

Theorem 1.1 (Rigidity of non-stagnant Euler flows). Let D0 be a periodic channel given
by (1.9) and suppose that u0 : D0 → R

2 be a C2(D0) solution of (1.4)–(1.6) with the
property that infD0 u0 > 0. Then u0 is a shear flow, namely u0(y1, y2) = (v(y2), 0) for
some scalar function v(y2).

Theorem 1.1 is an example of a Liouville theorem for solutions of the incompressible
Euler equations. It shows that any smooth steady solution of the Euler equations in the
channel which never vanishes must be a shear flow, isolating such configurations from
non-shear steady states. It should be emphasized that there are many examples of non-
trivial flows with stagnation points which are non-shear (e.g. cellular flows). In fact,
Lin and Zeng [22] shows that there exist Cat’s–eye vortices arbitrarily close to Couette
flow u0(y) = (y, 0) in the Hs , s < 3/2 topology. Similar results to Theorem 1.1 hold
when the domain is the annulus or the disk (under some additional conditions on the
solution) [19]. We remark that the very interesting recent work of Coti Zelati, Elgindi,
andWidmayer [7] shows that the assumption of non-degeneracy is not always necessary

1 We remark that Theorem 1.1, in effect, combines the results of [18,19]. In the former, they establish the
Theorem on an infinite strip for velocities with non-trivial inflow/outflow and in the latter they show solutions
in annular domains must be radial (i.e. solutions in periodic channels must be shears). See also the interesting
complementary work [13] which establishes that solutions with single-signed vorticity (possibly possessing
stagnation points) on R

2 must be radial.
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Fig. 1. Deformation of periodic channel D0 by γ

for such a Liouville theorem by establishing a similar rigidity of 2d Euler solutions near
Poiseuille flow u0(y) = (y2 − c, 0) for c ≥ 0 which stagnates at y = ±√

c.
In light of the rigidity result of [18], we show in Theorem 1.2 that we can perturb

away from any non-vanishing solution of the two-dimensional Euler equations in the
channel u0 to domains

D = {(x1, x2) | x1 ∈ T, b0(x1) ≤ x2 ≤ 1 + b1(x1)},
∂Dtop = {x2 = 1 + b1(x1)}, ∂Dbot = {x2 = b0(x1)}, (1.10)

for suitably small b0, b1 (see Fig. 1) and obtain a steady solution u in D:

u · ∇u = −∇ p, in D,

∇ · u = 0, in D,

u · n̂ = 0, on ∂D.

Theorem 1.2 (Flexibility of non-stagnant Euler flows). Let D0 be defined by (1.9) and
D be defined by (1.10). Suppose ψ0 : D0 → R with U0 := infD0 |∇ψ0| > 0 and ψ0 ∈
Ck,α(D0) for some α > 0, k ≥ 3 such that u0 = ∇⊥ψ0 satisfies (1.5)–(1.6). Then there
is an F0 ∈ Ck−2,α(R) such that ψ0 satisfies (1.7)–(1.8) and constants ε1, ε2 depending
only on U0, D0, F0 and ‖ψ0‖Ck,α such that if b0, b1 : R → R and ρ : D0 → R with∫

D0
ρ = Vol(D) satisfy

‖b0‖Ck,α(R) + ‖b1‖Ck,α(R) ≤ ε1,

‖1 − ρ‖Ck,α(D0)
≤ ε2,

there is a diffeomorphism γ : D0 → D with Jacobian det(∇γ ) = ρ, and a function
F : R → R close in Ck−2,α to F0 in so that ψ = ψ0 ◦ γ−1 ∈ Ck,α(D) and ψ satisfies
�ψ = F(ψ). Thus, u = ∇⊥ψ is an Euler solution in D nearby u0.

This theorem is a generalization of Theorem 1 of Wirosoetisno and Vanneste [28] to
include non-volume preserving maps γ and follows from a much more general theorem
which we prove, Theorem 3.1. The freedom of choosing the Jacobian of the map gives
an additional mechanism to reach nearby other steady states. When b0 and b1 are zero,
the perturbed domain is again a channel and the solution must be a shear flow, which
is a consequence of the Theorem of [18] discussed above. Nevertheless, due to the fact
that the Jacobian is an arbitrary function near unity, our procedure picks out different
solutions, allowing us to “slide" along the space of shear flows in the channel. Note
also that radial solutions on the annulus or the disk can also be deformed. In the case
of a simply connected domain such as the disk, the base state must have a stagnation
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point and Theorem 1.2 applies provided thatψ0 satisfies the non-degeneracy Hypothesis
(H2) below. We finally we make some remarks about the case where Hypothesis (H2)
is violated. In this case, if one has that the linearized operator �− F ′

0(ψ0) has a trivial
kernel, then a standard implicit function theorem argument produces ‘nearby’ stationary
states for ‘nearby’ vorticity profiles F . This condition is implied by Arnol’d stability
(see discussion below) and it holds also, for example, for Couette flowwhose vorticity is
constant so that F ′

0 = 0.On the other hand, this argument does not givemuch information
on the structure of the solution, whereas Theorem 1.2 and the other below allow one to
understand and control the geometry of the streamlines to a certain extent.

A different class of flows which display a remarkably general form of rigidity and
flexibility on any domains with a symmetry are so-called Arnol’d stable steady states.
Recall that a stationary state on a domain� ⊂ R

2 is called Arnol’d stable if the vorticity
of an Euler solution ω = F(ψ) satisfies either of the following two conditions

− λ1 < F ′(ψ) < 0, or 0 < F ′(ψ) < ∞ (1.11)

where λ1 := λ1(�) > 0 is the smallest eigenvalue of−� in�. See [2] or Theorem 4.3 of
[3]. The above two ranges are referred to type I and type II Arnol’d stability conditions.
These conditions ensure that the steady state is either a minimum or a maximum of the
energy (the action) for a fixed vorticity distribution and guarantee that such states are
orbitally stable in the topology of L2(�) of the vorticity.

To emphasize the generality of what follows, let (M, g) be a two-dimensional Rie-
mannian manifold with smooth boundary ∂M and let ξ be a Killing field for g. Suppose
that ξ is tangent to ∂M . Consider a solution ψ of

�gψ = F(ψ), in M, (1.12)

ψ = (const.), on ∂M, (1.13)

where�g is the Laplace–Beltrami operator on M . The velocity constructed from ψ by

ui = −√
det ggi jε jk gkl ∂ψ

∂xl
=: ∇⊥

g ψ

is automatically a solutionof theEuler equationon M withvorticityω= εi j√
det g

∂
∂xi (g jkuk)

= F(ψ). In the language of differential forms u = (∗gdψ)� where ∗g and � denote the
Hodge star and musical isomorphism associated to the metric g and d denotes the dif-
ferential. Since ξ is Killing for g, the commutator of the Lie derivative Lξ with the
Laplace–Beltrami operator vanishes [Lξ ,�g] = 0 (applied to tensors of any rank).
Moreover, since ξ is tangent to ∂�, on which ψ takes constant values, we have that
Lξψ = 0 on ∂�. Thus, differentiating (1.12)–(1.13) we obtain the equation

(
�g − F ′(ψ)

)
Lξψ = 0, in M,

Lξψ = 0, on ∂M.

Clearly if the operator�g − F ′(ψ) has a trivial kernel in H1
0 , thenLξψ = 0. A sufficient

condition to ensure this is that F ′(ψ) > −λ1 where λ1 is the first eigenvalue of −�g
on M . Both type I and type II Arnol’d stability conditions ensure this. Thus, we obtain

Proposition 1.1 (Rigidity of Arnol’d stable states). Let (M, g) be a compact two-
dimensional Riemannian manifold with smooth boundary ∂M and let ξ be a Killing
field for g. Suppose that ξ is tangent to ∂M. Let u : M → R

2 be a u = ∇⊥
g ψ ∈ C2(M)

Arnol’d stable state. Then Lξψ = 0.
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In some simple cases, Proposition 1.1 implies

• on the periodic channel with ξ = ey1 and ζ = ey2 , all Arnol’d stable stationary
solutions are shears u = v(y2)ey1 .• on the disk (or annulus), with ξ = eθ and ζ = er , all Arnol’d stable stationary
solutions are radial u = v(r)eθ .

• on a spherical cap2 with ξ = eλ and ζ = eφ , all Arnol’d stable stationary solutions
are zonal (functions of latitude) u = v(φ)eλ.

• on manifolds without boundary possessing two transverse Killing fields (e.g. the
two-torus or the sphere), there can be no Arnol’d stable steady states (see [29]).

We remark that in fact the statement for the periodic channel or annulus hold whether
or not the state is Arnol’d stable, see [18,19], provided that the flow has no stagnation
points.

Thus, Proposition 1.1 reveals a strong form of rigidity of Arnol’d stable steady states.
However, we also show that are also flexible in the sense that nearby stable steady states
exist on wrinkled domains (slight changes of the background metric) with wiggled
boundaries.

Specifically, consider a steady solution on M0 ⊂ R
2 satisfying the following hy-

potheses:

(H1) The vorticity ω0 = F0(ψ0) satisfies F ′
0(ψ0) > −λ1(M0).

(H2) There is a constant cψ0 > 0 such that for all c ∈ im(ψ0) we have
∮

{ψ0=c}
d�

|∇ψ0| ≤ 1

cψ0

. (1.14)

Hypothesis (H1) is ensured for type I and II Arnol’d states by (1.11). Hypothesis
(H2) ensures that the period of rotation of fluid parcels along streamlines (left-hand-
side of (1.14)) is bounded and is automatically satisfied for any base flow without
stagnation points on annular domains and it holds on simply connected domains if there
is non-vanishing vorticity F0 �= 0 at the critical point. We call flows satisfying (H2)
non-degenerate. With these, our result is:

Theorem 1.3 (Structural stability of Arnol’d stable states). Let α ∈ (0, 1) and k ≥ 3.
Let (M0, g0) be a compact two-dimensional Riemannian submanifold of R

2 with Ck,α

boundary. Suppose ψ0 ∈ Ck,α(M0) is a non-degenerate, Arnol’d stable steady state
on (M0, g0) with vorticity profile F0 ∈ Ck−2,α(R). Then there are constants ε1, ε2, ε3
depending only on M0, F0, g0 and ‖ψ0‖Ck,α such that if (M, g) is a compact Riemannian
manifold and ρ : M0 → R with

∫
D0
ρ dvolg0 = Volg(D) and g : M0 → R

2 satisfy

‖∂M − ∂M0‖Ck,α ≤ ε1,

‖ρ − 1‖Ck,α(M0)
≤ ε2,

‖g − g0‖Ck,α(M0)
≤ ε3,

there is a diffeomorphism γ : M0 → M with Jacobian det(∇γ ) = ρ, and a function
F : R → R close in Ck−2,α to F0 so that ψ = ψ0 ◦ γ−1 ∈ Ck,α(M) and ψ satisfies
(1.12)–(1.13) on (M, g). Thus, u = ∇⊥

g ψ is a non-degenerate, Arnol’d stable steady
Euler solution on (M, g) nearby u0 whose vorticity ω = F(ψ).

2 On the cap of a sphere of radius R, we use spherical coordinates x = (R, λ, φ), where λ ∈ [−π, π ] is
longitude and φ ∈ [−π/2, π/2] is latitude, with the poles at φ = ±π/2.
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We remark that hypothesis necessary to run Theorem 1.3, Hypothesis (H1), is weaker
than Arnol’d stability since it allows the deformation of states of constant vorticity
F ′(ψ0) = 0. Theorem 1.3 shows that such steady states are non-isolated from other
stable stationary states, even fixing the domain and metric, since the Jacobian ρ can be
freely chosen. A very interesting open issue is whether any time-independent solution of
the two-dimensional Euler equation can be isolated fromother steady solutions.Note that
that the deformation scheme can be repeated to deformation between two “far apart"
domains provided along the path of steady states Hypothesis (H1) and (H2) remain
true. Finally, as discussed above, if one is not interested in controlling aspects of the
streamline geometry of the new steady states, then an implicit function argument can be
used to dispense with the non-degeneracy hypothesis (H2) and allow the construction
of solutions with nearby vorticity profiles F . See, for example, the work of Choffrut and
Sverák [8].

Two-dimensional Boussinesq equations
Given a domain D0 ⊂ R

2 with smooth boundary, steady states of the Boussinesq system
satisfy

u0 · ∇u0 = −∇ p0 + θ0e2, in D0,

u0 · ∇θ0 = 0, in D0,

∇ · u0 = 0, in D0, (1.15)

u0 · n̂ = 0, on ∂D0. (1.16)

Introducing the vorticity ω0 = ∇⊥ · u0, Eq. (1.15) can be written as

ω0u⊥
0 = ∇ P0 + θ0e2,

−P0 := p0 +
1

2
|u0|2. (1.17)

Letting u0 = ∇⊥ψ0, ω0 = �ψ0 and u⊥
0 = −∇ψ0 Eq. (1.17) reads

−�ψ0∇ψ0 = ∇ P0 + θ0e2.

TheGrad–Shafranov-like equation (analogous toEqs. (1.7)–(1.8) of 2dEuler) is obtained
by assuming that θ0, P0 can be constructed from the stream function, in the sense that

θ0(y1, y2) = �0(ψ0(y1, y2)), (1.18)

P0(y1, y2) = −y2�0(ψ0(y1, y2))− G0(ψ0(y1, y2)), (1.19)

for smooth functions G0,�0. This again turns out to be completely general provided
that u0 never vanishes, see Lemma 2.1. In this case, provided that G0,�0 are sufficiently
smooth the stream function must satisfy

�ψ0 − y2�
′
0(ψ0)− G ′

0(ψ0) = 0, in D0, (1.20)

ψ0 = (const.), on ∂D0. (1.21)

Given a solutionψ0 to (1.20)–(1.21), the function u0 = ∇⊥ψ0 solves (1.15)–(1.16) with
temperature θ0 determined by (1.18) and pressure P0 determined by (1.19).

As for 2d Euler, if D0 is a periodic channel the Boussinesq equations have a certain
rigidity. Specifically, all smooth steady states with nowhere vanishing velocity must be
shear flows and the temperature and pressures must satisfy the equations of state (1.18),
(1.19) for some Lipschitz functions �0 and G0:
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Theorem 1.4 (Rigidity of non-stagnant Boussinesq flows). Let D0 be a periodic channel
given by (1.9) and suppose that u0 : D0 → R

2 and θ0 : D0 → R be a C2(D0) solution of
(1.15)–(1.16) with infD0 u0 > 0. Then there exists Lipschitz functions �0,G0 : R → R

such that (1.18), (1.19) hold and if furthermore

�′
0(ψ0) ≤ 0,

then u0 is a shear flow, namely u0(x, y) = (v(y), 0) for some scalar function v(y).

We next establish the flexibility of Boussinesq solutions by proving the existence of
steady solutions on the channel to solutions on nearby domains. Fix D0 to be a channel
defined by (1.9) and fix functions ψ0,�0,G0 satisfying (1.20)–(1.21) on D0. Given a
function �, we then deform ψ0 to obtain a steady solution ψ to (1.20) defined on D
given by (1.10) (for suitably small b0, b1) with temperature profile� and some vorticity
profile G. As a result, u = ∇⊥ψ and θ = �(ψ) satisfy the steady Boussinesq equations
on D:

u · ∇u = −∇ p + θe2, in D,

u · ∇θ = 0, in D,

∇ · u = 0, in D,

u · n̂ = 0, on ∂D.

Specifically, we prove

Theorem 1.5 (Flexibility of non-stagnant Boussinesq flows). Let D0 be defined by (1.9)
and D be defined by (1.10). Supposeψ0 : [0, 1] → R is a shear withψ0 ∈ Ck,α(D0) for
some α > 0, k ≥ 3 satisfying (1.20)–(1.21) for a given G0,�0 ∈ Ck−1,α(R) having no
stagnation points U0 := infD0 |∇ψ0| > 0. Then there are constants ε1, ε2, ε3 depending
only on U0, D0,�0,G0 and ‖ψ0‖Ck,α such that if b0, b1 : R → R, � : R → R and
ρ : D0 → R with

∫
D0
ρ = Vol(D) satisfy

‖b0‖Ck,α(R) + ‖b1‖Ck,α(R) ≤ ε1,

‖1 − ρ‖Ck,α(D0)
≤ ε2,

‖�′
0 −�′‖Ck−2,α(R) ≤ ε3,

there is a diffeomorphism γ : D0 → D with Jacobian det(∇γ ) = ρ, and a function
G : R → R close to G0 so that ψ = ψ0 ◦ γ−1 ∈ Ck,α(D) and ψ satisfies

�ψ − x2�
′(ψ)− G ′(ψ) = 0 in D.

Thus, u = ∇⊥ψ and θ = �(ψ) defines a Boussinesq solution in D nearby u0 = ∇⊥ψ0,
θ0 = �0(ψ0).

Note that, in light of Theorem 1.4, if the base state ψ0 has no stagnation points and
�′

0 ≤ 0, all smooth steady states are shears and so the assumption that ψ0 is a shear is
automatic.
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Three-dimensional axisymmetric Euler
Let T0 ⊂ R

3 be a domain with smooth boundary. The three-dimensional steady Euler
equations (or, equivalently, the three-dimensional steadyMagnetohydrostatic equations)
read

ω0 × u0 = ∇ P0, in T0,

∇ · u0 = 0, in T0, (1.22)

u0 · n̂ = 0, on ∂T0, (1.23)

where ω0 = ∇ × u0 denotes the vorticity and P0 denotes the pressure.
The issue of existence of solutions to (1.22)–(1.23) is of fundamental importance to

the problem of magnetic confinement fusion. In particular, one strategy to achieve fusion
is to drive a plasma contained in an axisymmetric toroidal domain (tokamak) towards
an equilibrium configuration which is (ideally) stable and enjoys certain properties that
make it suitable for confining particles which, to first approximation, travel along its
magnetic field lineswell inside the domain.Once such a suitable steady state is identified,
the control of the plasma to remain near this state is a very important and challenging
engineering problem. However, as Grad remarked in [15], “Almost all stability analyses
are predicated on the existence of an equilibrium state that is then subject to perturbation.
But a more primitive reason than instability for lack of confinement is the absence of an
appropriate equilibrium state." Grad goes on to write that there are exactly four known
symmetries for which smooth toroidal plasma equilibria with nested magnetic surfaces
can exist. These are: two-dimensional, axial, helical and reflection symmetries.He asserts
in [16] that “no additional exceptions have arisen since 1967,when itwas conjectured that
toroidal existence... of smooth solutions with simple nested surfaces admits only these
. . . exceptions. . . . The proper formulation of the nonexistence statement is that, other
than stated symmetric exceptions, there are no families of solutions depending smoothly
on a parameter." We formalize this statement as a rigidity property of solutions of
three-dimensional Euler (Magnetohydrostatics):

Conjecture 1 (H. Grad [15,16]). Any non-isolated and non-vanishing (away from the
“magnetic axis") smooth unforced MHS equilibrium on a (topologically toroidal or
cylindrical) domain T ⊂ R

3 that has a pressure possessing nested level sets which
foliate T has either plane-reflection, axial or helical symmetry.

By an isolated stationary state, we mean that, in some suitably topology, there are
no nearby steady states aside from those which correspond to a trivial rescaling or
translation of the original. It is possible that no such object exists. The qualifier is
included to make precise Grad’s assertion that the conjecture apply to solutions which
appear in continuous“families".

Complementary to Grad’s conjecture, here we prove that solutions with symmetry
can also be severely restricted to conform to a stronger form of symmetry. Specifically,
we consider periodic-in-z solutions in the (hollowed out) axisymmetric cylinder (see
right half of Fig. 2)

T0 = D0 × T, D0 = {(r, z) ∈ [1/2, 1] × T}, (1.24)

which are axisymmetric in the sense thatu0 = u0(r, z).We remark that solutionswith this
symmetry on this domain are not suitable for the confinement of a plasma in a tokamak
and instead describe steady flow in a pipe. To find solutions with this symmetry, we
make the ansatz

u0 = 1

r
eθ × ∇ψ0 +

1

r
C0(ψ0)eθ (1.25)
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Fig. 2. Axisymmetric deformation of the cylinder (corrugated pipe)

for a function C0 : R → R and ψ0 = ψ0(r, z) is to be determined. In fact, by the
results in [5], any sufficiently smooth solution to (1.22)–(1.23) possessing symmetry
in the θ direction and curl(u0 × eθ ) = 0 and possessing a nowhere vanishing pressure
gradient is necessarily of the form (1.25). If we seek a solution with pressure of the form
P0 = �0(ψ0) for some profile function�0 : R → R, then (1.25) satisfies (1.22)–(1.23)
provided ψ0 satisfies

∂2

∂r2
ψ0 +

∂2

∂z2
ψ0 − 1

r

∂

∂r
ψ0 = −r2�′

0(ψ0) + C0C ′
0(ψ0), in D0, (1.26)

ψ0 = (const.), on ∂D0. (1.27)

The Eq. (1.26) is known in plasma physics as the Grad–Shafranov equation [14,24].3

Here we prove that all solutions whose pressure has a certain property must be radial.

Theorem 1.6 (Rigidity of axisymmetric pipe flows). Let D0 be given by (1.24). Suppose
�0,C0 : R → R are Lipchitz functions and that ψ0 : D0 → R is C2(D0) solution of
the Grad–Shafranov equation (1.26)–(1.27) with infD0 |∂rψ0| > 0. If furthermore �0
satisfies

�′
0(ψ0) ≥ 0, (1.28)

then ψ0 is radial, i.e. ψ0(r, z) = ψ0(r).

Physically, Theorem 1.6 says that in order to support some non-trivial structure in
pipe flow, the pressure cannot satisfy (1.28). It is conceivable that this has some bearing
for identifying good flow configurations from the point of view of drag reduction.

Liouville theorems constraining axisymmetric solutions of three-dimensional fluid
equations have appeared previously in the work of Shvydkoy for Euler on R

3 (§5 of
[25]) and by Koch–Nadirashvili–Seregin–Sverák [21] for ancient solutions of Navier-
Stokes onR

3. Establishing similar rigidity results for the full three-dimensional problem
outside of symmetry—which is necessary to address Grad’s conjecture—seems to be
out of reach of existing techniques.

3 In fact, (1.26) has been derived long before by Hicks in 1898 [20]. Consequently, in the fluid dynamics
community, the same equation is known as the Hicks equation and also as the Bragg–Hawthorne equation [4]
and the Squire–Long equation [23,26] due to independent re-derivations. One can derive versions of (1.26)
for other symmetries as well; see [5] for a generalization of (1.26) in this direction.
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We prove also the complementary flexibility result for periodic-in-z solutions. Specif-
ically, we construct solutions of

∂2

∂r2
ψ +

∂2

∂z2
ψ − 1

r

∂

∂r
ψ = −r2�′(ψ) + CC ′(ψ), in D

ψ = (const.), on ∂D. (1.29)

where the domain occupied by the fluid is given by

T = D × T, D = {(r, z) ∈ [b0(z), b1(z)] × T}. (1.30)

See the left half of Fig. 2 for a depiction of a possible domain.

Theorem 1.7 (Flexibility of axisymmetric pipe flows). Let D0 be given by (1.24) and
D defined by (1.30). Fix k ≥ 3, α ∈ (0, 1). Suppose ψ0 ∈ Ck,α(D0) is a solution to the
axisymmetric Grad–Shafranov equation (1.26)–(1.27) for some �0,C0 ∈ Ck−1,α(R),
having no stagnation points in the sense that U0 := inf |∇ψ0| > 0 in D0. Suppose that
additionally �0,C0 and ψ0 satisfy

�′
0(ψ0) >

1
r2
(C0C ′

0)
′(ψ0).

Then there are constants ε1, ε2, ε3 depending only on U0 and ‖ψ0‖Ck,α(D0)
, ‖�0‖Ck−1,α ,

and ‖C0‖Ck−1,α such that if b0, b1 : R → R, � : R → R and ρ : D0 → R with∫
D0
ρ = Vol(D) satisfy

‖b0‖Ck,α(R) + ‖b1‖Ck,α(R) ≤ ε1,

‖1 − ρ‖Ck,α(D0)
≤ ε2,

‖�′
0 −�′‖Ck−2,α(R) ≤ ε3,

there is a diffeomorphism γ : D0 → D and a function C ∈ Ck−1,α(R) so that ψ =
ψ0 ◦ γ−1 satisfies (1.29) in D with pressure � and swirl C. In particular,

u = 1

r
eθ × ∇ψ +

1

r
C(ψ)eθ

satisfies the Euler equation (1.22)–(1.23) with pressure P = �(ψ) in the domain
T = D × T.

We remark, for the deforming scheme, that it is not necessary to cut out the inner part
of the cylinder. Theorem 1.7 applies provided that (H2) on non-degeneracy is satisfied
by ψ0.

2. Rigidity: Liouville Theorems

To establish the claimed Liouville theorems, we first show that functions which satisfy
steady transport by a velocity u0 = ∇⊥ψ0 with no stagnation points can be constructed
from the streamfunctionψ0 via a ‘nice’ equationof state. This is the content ofLemma2.1
below.

Lemma 2.1. Fix k ≥ 3 and let D0 be diffeomorphic to the annulus and ψ0 : D0 → R

satisfy
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• ψ0 ∈ Ck(D0),
• ψ0|∂Dbot

0
= c0 and ψ0|∂Dtop

0
= c1 for constants c0 �= c1.

• |∇ψ0| �= 0 in D0.

Suppose that θ ∈ Ck−2(D0) satisfies

∇⊥ψ0 · ∇θ = 0, in D0.

Then, there exists a (k − 2)–times continuously differentiable function� : R → R such
that

θ(x, y) = �(ψ0(x, y)), in D0.

Proof of Lemma 2.1. Our Lemma 2.1 essentially appears as Lemma 2.4 of [19] in the
case when D0 is the channel. We summarize the argument here for the sake of com-
pleteness. Given p ∈ D0 and let ξp = ξp(t) denote the integral curve of ∇⊥ψ starting
at p at “time" t = 0, namely

d

dt
ξp(t) = ∇⊥ψ0(ξp(t)), ξp(0) = p, t ∈ R.

By Lemma 2.2 of [19], ξp(t) is uniquely defined for all t ∈ R and is periodic in t and
moreover the curve ξp(R) passes through each x ∈ [0, 2π). Identifying the periodic
channel with the annulus, this means that the curve ξp(R) surrounds the inner disc.
Given q ∈ D0 we also let σq denote the integral curve of ∇ψ ,

d

dt
σq(t) = ∇ψ0(σq(t)), σq(0) = q, t ∈ R.

Wenowfix any point q = (q1, 0) at the bottom of the channel {y = 0}. As a consequence
of the fact that the vector field ∇ψ0 points normal to the boundary, it is shown in [19]
that there is a tq < ∞ so that σq(t) lies at the top of the channel, σq(tq) = (q2, 1).
Writing g(t) = ψ(σq(t)), we have g′(t) = |∇ψ0(σq(t))|2 > 0 so it follows that g is
invertible with Ck−2 inverse. We define � by

�(τ) = θ(σq(g
−1(τ ))).

Then � is Ck−2 and �(ψ0(σq(s))) = θ(σq(s)) for any s. Finally, fix now any point
p ∈ D0. For large enough t , there is an s so that ξp(t) = σq(s). Since ∇⊥ψ0 · ∇θ = 0,
we have θ(p) = θ(ξp(t)) = θ(σq(s)). This completes the proof since then we have

θ(p) = θ(σq(s)) = �(ψ0(σq(s))) = �(ψ0(p)).

��
We will need the following result which ensures that the stream function takes dif-

ferent values at the top and bottom, and ranges between these values in the interior:

Lemma 2.2 (Lemma 2.6 of [18], Lemma 2.1 of [19]). Let D0 be diffeomorphic to the
annulus and let ψ0 ∈ C3(D0) with |∇ψ0| �= 0 on D0 satisfy

ψ0|∂Dbot
0

= c0, ψ0|∂Dtop
0

= c1,

for some c0, c1 ∈ R. Then c0 �= c1 and

min{c0, c1} < ψ0 < max{c0, c1}, on D0 \ ∂D0.
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The proof of this result can be found in the cited references. There, (2.2) is established
when D0 is periodic channel (1.9), but an inspection of the proof shows that the result
holds more generally.

Finally, we prove the corresponding Liouville theorem which modestly generalizes
Theorem 1.6 of [18] to accommodate the additional terms arising in the settings of the
Boussinesq and axisymmetric Euler equations.

Theorem 2.1 (Liouville Theorem). Let D0 = T × [1/2, 1] and let f = f (y), g =
g(y, ψ), h = h(ψ) be Lipschitz functions. Let ψ ∈ C2(D0) be a solution to

�ψ + f (y)∂yψ + g(y, ψ) + h(ψ) = 0, in D0,

where ψ is periodic in x ∈ T with boundary conditions

ψ(x, 1/2) = 0, ψ(x, 1) = c > 0.

Suppose that one of the following conditions holds

• gy, fy ≥ 0, and 0 < ψ < c in D0,

• gy, fy ≥ 0, and ψy ≥ 0 on D0.

Then ψ is independent of x, namely ψ := ψ(y).

Proof of Theorem 2.1. The proof is nearly identical to the one in [18] with minor exten-
sion to accommodate f and g. For the sake of completeness we include a proof here.
Fix ξ ∈ R

2 with ξ = (ξ1, ξ2) with ξ2 > 0. For τ ∈ (0, 1/ξ2), set

D0
τ = T × (1/2, 1 − τξ2),

and

wτ (x) = ψ(x + τξ)− ψ(x), x ∈ D0
τ
. (2.1)

Then the main ingredient for the proof of Theorem 2.1 is the following lemma

Lemma 2.3. For wτ defined by (2.1) we have

wτ > 0 in D0
τ
, for all τ ∈ (1/2, 1/ξ2).

We first prove Theorem 2.1 assuming the result of this lemma.
Note that ψ ≥ 0 on D0, since ψy ≥ 0 on D0 by assumption and the boundary values

are ψ |y=1/2 = 0 and ψ |y=1 = c > 0. Taking ξ2 → 0 in the inequality wτ > 0 shows
that

ψ(x + τξ1, y) ≥ ψ(x, y). (2.2)

This holds for any ξ1 ∈ R and we claim that this implies that we actually have equality
in (2.2). Indeed, suppose that there are x, τ, ξ1, y so that ψ(x + τξ1, y) > ψ(x, y).
Applying (2.2) we have

ψ(x, y) = ψ(x − τξ1 + τξ1, y) ≥ ψ(x + τξ1, y) > ψ(x, y),

a contradiction. This completes the proof. ��
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Proof of Lemma 2.3. Set

τ∗ = inf{τ ∈ (1/2, 1/ξ2) such that wτ
′
> 0 in D0τ ′ whenever τ ′ ∈ (τ, 1/ξ2)}.

By the maximum principle for narrow domains [11] we have τ∗ < 1/ξ2. We are going
to prove that τ∗ = 1/2. Suppose that instead τ∗ > 1/2. Then wτ

∗ ≥ 0 in D0
τ∗ and there

are sequences τ k ∈ (1/2, τ∗] and (xk, yk) ∈ D0 so that

(xk, yk) ∈ D0
τk
, and wτk (xk, yk) ≤ 0.

Define

ψk(x, y) = ψ(x + xk, y), for (x, y) ∈ D0.

The functions ψk are uniformly bounded in C2,α(D0
τ∗), and so we can extract a conver-

gent subsequence with ψk → � ∈ C2(D0
τ∗
). Taking k → ∞ we see that 0 ≤ � ≤ c.

We now show that these inequalities are strict. Taking k → ∞ in the equation for ψ and
differentiating in y we see that

��y + f (y)∂y�y +
(

fy(y) + g�(y, �) + h�(�)
)
�y = −gy(y, �) ≤ 0,

by assumption. Sincewe also have�y ≥ 0 on the boundary, it follows from themaximum
principle for non-negative functions that �y > 0 in the interior as well, and so

0 < � < c. (2.3)

Next, the points yk are bounded and sowe can extract a convergent subsequence yk → ỹ.
We have

�(τ∗ξ2, ỹ + τ∗ξ2) = �(0, ỹ), (2.4)

because wτ∗ ≥ 0 in D0
τ∗ and wτk (xk, yk) ≤ 0. If (0, ỹ) ∈ ∂D0

τ∗ then either ỹ = 0 or
ỹ = 1 − τ∗ξ2. But by (2.4) and (2.3) neither of these are possible. The only possibility
left is (0, ỹ) ∈ D0

τ∗ . Set

W (x) = �(x + τ∗ξ)−�(x),

then writing�τ∗(x) = �(x +τ∗ξ)we see that in Dτ∗
0 , since f, g are Lipschitz inψ there

is an L∞ function c = c(x, y) so that

�W + f (y)∂y W + c(x, y)W

= (
f (y)− f (y + τ∗ξ2)

)
∂y�τ∗ + g(y, �τ∗)− g(y + ξ2τ∗, �τ∗) ≤ 0

because ξ2 ≥ 0 and that ∂y� ≥ 0 (which is only needed f is nonzero) and that f, g are
increasing in y. Also we have W ≥ 0 in D0, W ≥ 0 on ∂D0. By the maximum principle
for non-negative functions this implies that W ≡ 0 and in particular W = 0 on ∂D0. As
we have shown that this is impossible, we conclude τ∗ = 1

2 . ��
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2.1. Proof of Theorem 1.1. We assume ψ0 ∈ C3(D0). Note that, since the vorticity
satisfies

u0 · ∇ω0 = 0

and |u0| �= 0 and ω0 ∈ C1(D0), Lemma 2.1 implies that there exists a C1(R) function
F0 such that ω0 = F0(ψ0). Consequently, the stream function ψ0 satisfies the elliptic
equation

�ψ0 = F0(ψ0) in D0,

ψ |
∂Dtop

0
= c1, ψ |

∂Dtop
0

= c2,

for some constants c1 and c2 with c1 �= c2 by Lemma 2.2. Without loss of generality, we
may take c1 = 0 and c2 > 0 by shifting ψ0 �→ ψ0 − c1, sending ψ0 �→ −ψ0 if c2 < 0,
and replacing F0(ψ0) with ±F0(±ψ0 + c1). Moreover, by Lemma 2.2 we have

0 < ψ0 < c2 in D0.

Applying Theorem 2.1 with b = 0, f = 0 and g = −F0 gives the result.

2.2. Proof of Theorem 1.4. We argue as in the proof of Theorem 1.1, but we apply
Theorem 2.1 with f = 0, g(y, ψ) = y�′

0(ψ) and h(ψ) = −G0(ψ).

2.3. Proof of Theorem 1.6. Assuming (1.28), the proof follows as in Theorem 1.1, but
now f = − 1

r , g(y, ψ) = r2�′
0(ψ) and h(ψ) = C0C ′

0(ψ).

3. Flexibility: Deforming Domains

We prove here a more general theorem, which covers the specific settings of Theo-
rems 1.2, 1.5 and 1.7.We now outline the general setup. Consider two bounded domains
D0, D ⊂ R

2 given by the zero level sets of functions B0, B : R
2 → R:

∂D0 = {B0 = 0}, ∂D = {B = 0}. (3.1)

It is convenient to denote points in D0 by y = (y1, y2) and points in D by x = (x1, x2).
We will consider the problem of solving a certain elliptic equation on D by deforming
a solution of a ‘nearby’ elliptic equation on D0.
Elliptic equation on D0: Consider a second-order elliptic operator on D0 of the form

L0 =
2∑

i, j=1

ai j
0 (y)

∂

∂yi

∂

∂y j
+

2∑

i=1

bi
0(y)

∂

∂yi
, (3.2)

where ai j
0 , bi

0 are smooth functions defined on R
2 and where the matrix ai j

0 satisfies

ai j
0 zi z j ≥ M |z|2, ∀z ∈ R

2 (3.3)
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for some M > 0. We assume that we have a solution ψ0 to the following nonlinear
equation

L0ψ0 = F0(ψ0) + G0(y, ψ0), in D0,

ψ0 = (const.), on ∂D0, (3.4)

with functions F0 : R → R and G0 : D0 × R → R.

Elliptic equation on D: Given coefficients ai j , bi defined on R
2, we set

L =
2∑

i, j=1

ai j (x)
∂

∂xi

∂

∂x j
+

2∑

i=1

bi (x)
∂

∂xi
,

which is assumed to be elliptic as in (3.3). Consider the following equation for ψ

Lψ = F(ψ) + G(x, ψ), in D,

ψ = (const.), on ∂D, (3.5)

with functions F : R → R and G : D × R → R.

Problem Let D and D0 by two nearby domains (in the sense that B and B0 are close)
Let F0, G0 and a solution ψ0 to (3.4) on D0 be given. Let G be a given function close
to G0. Find a diffeomorphism γ : D0 → D and a function F close to F0 so that the
function

ψ = ψ0 ◦ γ−1 (3.6)

is a solution to (3.5).
The important observation of [28] is that if we write γ = id+∇η+∇⊥φ for functions

η, φ, then plugging (3.6) into (3.5) leads to an Dirichlet problem for ∂sφ := ∇⊥ψ0 ·∇φ.
The function η is free in the problem but if one wants to fix the value of the Jacobian
determinant ρ := det∇γ , η can be determined by solving a Neumann problem. We
formalize this in the following Proposition.

Proposition 3.1 (Elliptic system for diffeomorphism). Fix two domains D0, D ⊆ R
2

as in (3.1) and a solution to (3.4) ψ0 : D0 → R. Let F0,G0 and G be given. Let
ρ : D0 → R be a given continuous function such that

∫
D0
ρ = Vol(D). Suppose that

η, φ : D0 → R satisfy

�η = ρ − 1 +Nη,

(L0 −�)∂sφ = (F − F0)(ψ0) + Lφ +Nφ, (3.7)

for some F = F(ψ0), where L0 is as in (3.2), � := F ′
0(ψ0) + (∂ψG0)(y, ψ0), where

∂sφ = ∇⊥ψ0 · ∇φ, and where

Lφ = Lφ(δa, δb, δF, ∂δG, ∂a0, ∂b0, ∂
3η, ∂ρ, ∂2∂sφ, ∂ψ0φ; ∂3ψ0)

is defined by (B.7) consists of terms which are linear in φ and η (and their derivatives),
multiplied by small factors, where

Nη = Nη(∂
2η, ∂2φ)

Nφ = Nφ(∂
2a0, ∂

2b0, ∂
2φ, ∂2η, ∂ρ, ∂2∂sφ; ∂3ψ0)

are nonlinearities with Nη is defined by (B.1) and Nφ by (B.8), and where δa = a − a0
and similarly for δb, δF, δG. If γ = id + ∇⊥φ + ∇η is a diffeomorphism γ : D0 → D
with det∇γ = ρ, then the function ψ = ψ0 ◦ γ−1 is a solution of (3.5) in D.
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This Proposition is proved in § B (see Lemma B.2). With this in hand, we address
the above problem by constructing solutions with one (infinite dimensional) degree of
freedom fixed by choosing the Jacobian of the map. This requires three hypotheses on
ψ0 and the quantities in (3.5).

We need one hypothesis on the invertibility of the operator appearing in Propo-
sition 3.1 so the ∂sψ can be recovered from Eq. (3.7) at the linear level. We view
L0 : H1

0 ∩ H2 → L2 and require:
Hypothesis 1 (H1): Let � = F ′

0(ψ0) + (∂ψG0)(y, ψ0). The problem

(L0 −�) u = 0 in D0,

u = 0 on ∂D0,

admits only the trivial solution in H1
0 (D0).

It is easy to see that Hypothesis (H1) is guaranteed if� avoids the discrete spectrum
of −L0, an open condition. In light of this, a stronger but easier to verify hypothesis that
implies (H1) is
Hypothesis 1′ (H1′): The operator (L0 −�) is positive definite, i.e. for all f ∈ H1

0 (D0)

there is a constant C > 0 such that 〈(L0 −�) f, f 〉L2(D0)
≥ C‖ f ‖2

H1(D0)
.

This holds in the case of the 2d Euler equation if the base state is Arnol’d stable or
if it is a shear flow without stagnation points (see Lemma 4.1).

The next two hypotheses are needed in order to recover φ from ∂sφ once the latter
is obtained by solving Eq. (3.7) using (H1). Since ∂s = ∇⊥ψ0 · ∇, in order to recover
φ, we must be able to integrate along streamlines of ψ0 which requires a certain non-
degeneracy of the base state. On a multiply connected domain diffeomorphic to the
annulus, the base state must have no stagnation points (points at which ∇ψ0 = 0). On a
simply connected domain diffeomorphic to a disc, there must be exactly one stagnation
point. This is quantified by the following hypothesis on the “travel-time" μ of a parcel
moving at speed |∇ψ | to make a complete revolution on a streamline:
Hypothesis 2 (H2): Let I = im(ψ0). There exists a constant C > 0 so that

μ(c) =
∮

{ψ0=c}
d�

|∇ψ0| ≤ C for all c ∈ I

where � is the arc-length parameter. Note if ψ0 ∈ Ck,α(D0) then μ ∈ Ck−1,α(I ).
Finally, we need an additional hypothesis that allows us to recover φ once we solve

Eq. (3.7) for ∂sφ. Specifically, at the linear level, φ needs to be chosen to satisfy (L0 −
�)∂sφ = F + N , for a given function N and for F to be determined. An obvious
necessary condition for solvability is that (L0 −�)−1

hbc(F + N ) should have integral zero
along streamlines. We must therefore be able to choose F to satisfy this condition while
maintaining that F = F(ψ0) is a function only of the stream function in order for the
resulting ψ to solve the correct equation.
Hypothesis 3 (H3): Fix k ≥ 2, α ∈ (0, 1) and let I = im(ψ0). Let Kψ0 : Ck−2,α(I ) →
Ck,α(I ) be

(Kψ0u)(c) := 1

μ(c)

∮

{ψ0=c}
(L0 −�)−1

hbc[u ◦ ψ0] d�

|∇ψ0| , c ∈ I.

For any g ∈ Ck,α(I ) such that g(ψ0(∂D0)) = 0, there exists a u ∈ Ck−2,α(I ) such that
Kψ0u = g. Moreover, ‖u‖Ck−2,α(I ) � ‖g‖Ck,α(I ).
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It turns out that (H3) is a consequence of (H1′) and (H2). To prepare for the proof,
we define the streamline projector Pψ0 which maps functions on D0 to functions which
are constant on level sets of the streamfunction ψ0,

(Pψ0 f )(c) := 1

μ(c)

∮

{ψ0=c}
f ds, for all c ∈ I

where ds = d�/|∇ψ0|. This operation is well defined on functions which can be in-
tegrated on curves (e.g. functions that are in H1(D0)) by Hypothesis (H2). With this
notation we have Kψ0u := Pψ0(L0 −�)−1

hbc[u].Note that if f, g are such that Pψ0 f = 0
and Pψ0g = g then

∫

D0

f g =
∫

I

(∮

{ψ0=c}
f gds

)
dc =

∫

I
g

(∮

{ψ0=c}
f ds

)
dc = 0. (3.8)

Here we use the fact that ψ0 satisfies (H2) and therefore has streamlines which foliate
D0 so we can use action-angle coordinates to compute the integral (3.8). For further
discussion see § E herein or the textbook [1]. It follows that Pψ0 is orthogonal in L2(D0),
i.e. for any h ∈ C(D0) we have

‖h‖2L2 =
∫

D0

(
|Pψ0h|2 + 2(Pψ0h)(Qψ0h) + |Qψ0h|2

)
= ‖Pψ0h‖2L2 + ‖Qψ0h‖2L2

where Qψ0 = 1 − Pψ0 . In light of these properties, Pψ0 is a projection on L2.
The motivation for Lemma 3.1 in a Hilbert space H is that if P is a projection

(P2 = P and P∗ = P) and A is bounded positive operator then the compression P AP
is positive in P H since

〈P APx, x〉H = 〈APx, Px〉H ≥ C〈Px, Px〉H .

The fact that A is bounded is used only to make sure that P H is included in the domain
of A.

Lemma 3.1. Fix k ≥ 2 and suppose Hypotheses (H1′) and (H2) hold. Then (H3) holds.

The proof is deferred to §A.We remark that, invertibility ofL0−� alone (Hypothesis
(H1)) cannot be expected to imply Hypothesis (H3) itself as is easily demonstrated in
finite dimensions. Positive definiteness is a crucial point in our argument. We finally
note that if we further know that (L0 −�)g(ψ0) is itself a function of ψ0, which is the
case when the base solution and the operator L0 enjoy some mutual symmetry, we can
find the solution of Hypothesis (H3) explicitly

Lemma 3.2. Suppose for any f ∈ Ck,α(I ), the function (L0 −�) f (ψ0) depends only
on the value of the stream function, (L0 −�) f (ψ0) = h(ψ0) for some h ∈ Ck−2,α(I ) .
Then (H3) holds with u = (L0 −�)g.

Our main theorem on deforming solutions of elliptic equations is a quantitative ver-
sion of the implicit function theorem. As stated above, this generalizes the setup and re-
sults ofWirosoetisno andVanneste [28]. It is also similar in spirit to the result of Choffrut
and Sverák [8] which, on annular domains, establishes a one-to-one correspondence be-
tween vorticity distribution functions and steady states of two-dimensional Euler nearby
a solution satisfying a version of (H1) (see also [9]). In our theorem, F := F(ψ) (which
plays the role of the vorticity distribution function for 2d Euler) is not chosen ahead
of time but rather accommodates the deformation of the other parameters (boundary,
coefficients, Jacobian) so as the resulting streamfunction remain a solution. We prove
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Theorem 3.1 (Deforming solutions of elliptic equations). Let α ∈ (0, 1) and k ≥ 2.
Fix two domains D0, D ⊆ R

2 with Ck,α boundaries given by (3.1) and a solution ψ0 :
D0 → R to (3.4) on D0 with ψ0 ∈ Ck,α(D0) and F0 ∈ Ck−1,α(R). Suppose in addition
that (H1), (H2) and (H3) are satisfied. Let ρ : D0 → R such that ρ ∈ Ck−1,α(D0) and∫

D0
ρ = Vol(D). Suppose that for sufficiently small ε > 0, |Vol(D)− Vol(D0)| � ε as

well as

‖B − B0‖Ck,α ≤ ε, ‖ρ − 1‖Ck−1,α ≤ ε

‖a − a0‖Ck,α ≤ ε, ‖b − b0‖Ck,α ≤ ε,

‖G − G0‖Ck−2,α ≤ ε.

Then, for ε sufficiently small, there exists a diffeomorphism γ : D0 → D such that
det∇γ = ρ and a function F : R → R satisfying ‖F − F0‖Ck−2,α � ε such that the
function ψ = ψ0 ◦ γ−1 satisfies the Eq. (3.5) in D. The diffeomorphism γ is of the form
γ = id + ∇η + ∇⊥φ and η, φ satisfy the estimates

‖∂sη‖Ck,α + ‖∂sφ‖Ck,α + ‖η‖Ck,α + ‖φ‖Ck,α

≤ Ck,α
(‖ρ − 1‖Ck−1,α + ‖a − a0‖Ck,α + ‖b − b0‖Ck,α

+‖G − G0‖Ck−2,α + ‖B − B0‖Ck,α

)
(3.9)

for constants Ck,α depending on k, α, D0, the ellipticity constant M and ‖a0‖Ck,α ,

‖b0‖Ck,α .

Theorem 3.1 is used in [6] to construct approximate solutions to the Magnetohydro-
static equations on wobbled tori which are nearly quasisymmetric. As in [27], one may
think about these deformations arising dynamically from a slow adiabatic deformation
of the boundary, though we do not establish this point here. We remark also that (H1)
may not be strictly needed for the Theorem 3.1 provided kernel of L0 − � is very
well understood. This is demonstrated in a slightly different context by the recent work
[7] for Kolmogorov flow u0 = (sin(y), 0) which is a shear with stagnation points so
that Lemma 4.1 does not apply and the corresponding operator �− F ′

0(ψ0) has a non-
trivial kernel (consisting of linear combinations of {sin(y), cos(y), sin(x), cos(x)}). To
deal with this degeneracy, extra degrees of freedom are introduced in the contraction
scheme.

We note that we can iterate the above theorem to impose a nonlinear constraint on
ρ. Specifically, given a function X = X (y, φ, η,∇φ,∇η,∇∂sφ,∇∂sη) with X |φ,η=0
sufficiently close to one, we can solve for the diffeomorphism γ so that ρ = X , at the
expense of slightly modifying the domain. Fixing notation, we consider

X : D0 × R × R × R
2 × R

2 × R
2 × R

2, X = X (y, q1, q2, p1, p2, p3, p4)

(3.10)

and write

X0(y) = X |(q,p)=(0,0) DX0(y) = (∇q X,∇p X)|(q,p)=(0,0) (3.11)

with q = (q1, q2), p = (p1, p2, p3, p4).
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Theorem 3.2 (Deforming with an imposed nonlinear constraint). Let α ∈ (0, 1) and
k ≥ 2. Fix two domains D0, D ⊆ R

2 with Ck,α boundaries given by (3.1) and a solution
ψ0 : D0 → R to (3.4) on D0 with ψ0 ∈ Ck,α(D0) and F0 ∈ Ck−2,α(R). Let X be as in
(3.10) and satisfy X ∈ Ck,α .

Suppose that for sufficiently small ε, εX > 0, |Vol(D)− Vol(D0)| ≤ ε and that

‖B − B0‖Ck,α ≤ ε, ‖a − a0‖Ck,α ≤ ε,

‖b − b0‖Ck,α ≤ ε, ‖G − G0‖Ck−2,α ≤ ε,

and with notation as in (3.11),

‖X0 − 1‖Ck,α + ‖DX0‖Ck−1,α ≤ εX . (3.12)

Then there exists a σ > 0 and a diffeomorphism γ : D0 → Dσ where Dσ = σD is a
dilation-by-σ of the domain D satisfying

det∇γ =: ρ = X (y, η, φ, ∂sφ, ∂sη,∇∂sη,∇∂sφ), (3.13)

with the dilation factor σ > 0 given by σ 2 := VolD/
∫

D0
ρ.Moreover, there is a function

F : R → R satisfying ‖F − F0‖Ck−2,α � ε such that ψ = ψ0 ◦ γ−1 is a solution to the
(3.5) in Dσ .

We do not apply Theorem 3.2 in the present paper.We record it here since it exploits a
freedom in the construction andmay be useful to build solutionswith additional desirable
properties (such as quasisymmetry in the context of plasma confinement fusion, see [6]).

4. Applications to Fluid Systems

4.1. Proof of Theorem 1.2. In the case of two-dimensional Euler equations on the chan-
nel, we apply Theorem 3.1with ai j

0 = ai j ≡ δi j , bi
0 = bi ≡ 0, c0 = c = 0, G = G0 = 0

and F0 = F0, the vorticity of the base state. As a result of Theorem 1.1, our base state
u0 = (v0(y), 0) is a shear where v0(y) = −ψ ′

0(y) never vanishes. As a consequence,
it satisfies (1.7) with F0(ψ) = ψ ′′

0 (ψ
−1
0 (ψ)). We now show that all the hypotheses are

met.
We first claim that in this setting Hypothesis (H1′) is a consequence of the nonde-

generacy of the base shear flow. This follows immediately from the following Lemma
(see e.g. [17])

Lemma 4.1. Let� the periodic channel and let u0 = (v0(y2), 0) be a shear flow steady
Euler solution and suppose inf� |v0| > 0. For all u such that u|∂� = 0, the following
holds

∫

�

u
(
�− F ′

0(ψ0)
)

u dy1dy2 = −
∫

�

|v0(y2)|2
∣
∣∣∣∇

(
u

|v0(y2)|
)∣

∣∣∣

2

dy1dy2.

Proof. Note that F ′
0(ψ0(y2)) = (v′′

0/v0)(y2). The result follows from direct computa-
tion. ��

Hypothesis (H2) follows by our assumption that there are no stagnation points.
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4.2. Proof of Theorem 1.3. In the case of two-dimensional Euler equations on (M0, g0)
we apply Theorem 3.1 L0 = �g0 and L = �g . The coefficients can be computed
directly in terms of the metrics and it is clear that the hypotheses on the closeness of a0
and a (resp b0 and b) hold when g0 is close to g. Note also that under our hypotheses,
Lξψ = 0 according to Theorem 1.1.

Hypothesis (H1′) follows by the assumption of Arnol’d stability.
Hypothesis (H2) follows by our assumption on the base states that they are non-

degenerate.
Persistence of stability follows because Arnol’d stability conditions are open and our

perturbation is small.

Remark (Hypothesis (H3). on Domains with Symmetry) We remark that if the domain
admits a symmetry direction tangent to the boundary (so that all Arnol’d stable solutions
enjoy the same symmetry according to Proposition 1.1), we may apply Lemma 3.2 to
write explicitly the solution in Hypothesis (H3). Specifically, we apply the Lemma with
L0 = �g and � = F ′, and appeal to the following result

Lemma 4.2. Let �g be the Laplace–Beltrami operator on (M, g). Suppose ξ is a non-
vanishing Killing field for g which is tangent to ∂M. Assume for ψ ∈ Ck,α(M) satisfies
(H2) and that Lξψ = 0. Then for any function f ∈ Ck,α(R), we have�g f (ψ) = G(ψ)
for some function G ∈ Ck−2,α(R).

Proof. First, by assumption the integral curves of ξ foliate M . SinceLξψ = 0, we know
thatψ is constant on integral curves of ξ . Moreover, since (H2) guarantees that |∇gψ | >
0 except at one point (if the domain is simply connected, and nowhere otherwise),
ψ takes different values on different integral curves of ξ . Since ξ is a Killing field,
Lξ�g f (ψ) = �g( f ′(ψ)Lξψ) = 0 and therefore Lξ�g f (ψ) is constant on integral
curves of ξ and thus a function of ψ . ��

Therefore, Lemmas 3.2 and 4.2 show that Hypothesis (H3) holds with an explicit u
in the symmetric setting.

4.3. Proof of Theorem 1.5. In the case of two-dimensional Boussinesq equations on
the channel, we have ai j

0 = ai j ≡ δi j , bi
0 = bi ≡ 0, c0 = c = 0, G0 = y�′

0(ψ0),
G = y�′(ψ), and F0 = G ′

0. Then L0 = � and � = G ′
0(ψ0) + y2�′

0(ψ0).
Hypothesis (H1′) is verified for the following reason. Since ψ0 is a shear ψ0 =

ψ0(y2).Given this,weknow that�ψ0 = ψ ′′
0 (y2) so thatG0(c)+y2�0(c) = ψ ′′

0 (ψ
−1
0 (c)).

Thus

� = G ′
0(ψ0) + y2�

′
0(ψ0) = v′′

0 (y2)

v0(y2)

where v0 = ψ ′
0. Thus Lemma 4.1 is applicable and the hypothesis follows.

Hypothesis (H2) follows by our assumption that there are no stagnation points.
The result of the deformationdefines a stream functionψ for theBoussinesq equations

with velocity u = ∇⊥ψ and temperature profile θ = �(ψ) (note � is recovered from
�′ up to a constant, which can be absorbed into the pressure).
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4.4. Proof of Theorem 1.7. Hypothesis (H1) is verified when

im
(
(C0C ′

0)
′(ψ0)− r2P ′

0(ψ0)
)
/∈ Spec

(
−� +

1

r
∂r

)
.

Since −� + 1
r ∂r is a positive operator Hypothesis (H1′) is verified when

(C0C ′
0)

′(ψ0)− r2P ′
0(ψ0) < 0.

Hypothesis (H2) follows by our assumption that there are no stagnation points.
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Appendix A. Proof of Lemma 3.1

We aim to solve Kψ0 [u] = g for a g := g(ψ0) with g(∂D0) = 0. To avoid technical
difficulties of defining the trace of a function which is just in L2, we solve this equation
assuming g ∈ H1 for an u ∈ H−1. Define the spaces

S(k) = { f ∈ Hk(D0) | Qψ0 f = 0},
S(k)0 = { f ∈ Hk(D0) | Qψ0 f = 0, f |∂D0 = 0}.

Note that for k ≥ 1 the operator Pψ0 : (Hk ∩ H1
0 )(D0) → S(k)0 is a continuous operator

(which follows from (E.2)) and that therefore S(k)0 is a closed subspace of Hk ∩ H1
0 . We

also remark that for all f ∈ Sk , we know that ∇⊥ψ0 ·∇ f = 0 and therefore by (a minor
extension of) Lemma 2.1, there exists a function F ∈ Hk(I ) such that f = F ◦ ψ0.

Recall now that for u ∈ S(k) and with this notation we have Kψ0u := Pψ0(L0 −
�)−1

hbc[u].For k ≥ 1, this operator Kψ0 : S(k−2) → S(k)0 is continuous since (L0−�)−1
hbc :

Hk−2(D0) → (Hk ∩ H1
0 )(D0) is continuous by Hypothesis (H1′) together with the fact

that Pψ0 is continuous. We remark that for f ∈ S(−1), we have (L0 −�)−1
hbc[ f ] ∈ H1.

Define now

SK := {Kψ0 f | f ∈ S(−1)} ⊆ S(1)0 .

We aim to show that SK = S(1)0 , that is, Kψ0 : S(−1) → S(1)0 is onto. Since Kψ0 :
S(k−2) → S(k)0 is continuous, SK is a closed subspace of S(1)0 in the H1(D0) topology.4

4 By the continuity of Kψ0 , it suffices to prove that if Kψ0 [ f n ] → g in H1 with f n ∈ H−1, then f n

converges in H−1. By (A.2) we have

c0‖ f n − f m‖2
H−1 ≤ 〈 f n − f m , Kψ0 [ f n − f m ]〉L2 ≤ C‖ f n − f m‖H−1‖Kψ0 [ f n − f m ]‖H1 ,

which can be justified by an approximation. From this, we conclude that the sequence { f n}n≥0 is Cauchy in
H−1.
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Thus, S(1)0 = SK ⊕ S⊥
K where

S⊥
K := { f ∈ S(1)0 | 〈 f, g〉S(1) = 0 for all g ∈ SK }, (A.1)

where the S(1) topology is equivalent to the H1 topology and will be defined shortly.
Note that for any h ∈ S⊥

K ⊂ S(1), the function Kψ0h ∈ SK , it follows from (A.1) that
〈h, Kψ0h〉S(1) = 0. Thus, to conclude that S⊥

K = {0}, we show that Kψ0 has a trivial

kernel in S(1)0 . This is accomplished by designing a topology on S(1) which is equivalent
to the H1 topology and showing that for all h ∈ S(1), there is a constant c > 0 depending
only on ψ0 such that

〈h, Kψ0h〉S(1) ≥ c‖h‖2L2(D0)
, ∀h ∈ S(1)0 .

We now design the topology. First, we equip S(0) with the L2(D0) topology:

〈 f, g〉S(0) =
∫

D0

f g.

Note that, using orthogonality of the projection (3.8), by Hypothesis (H1′) we have

〈h, Kψ0h〉S(0) := 〈h,Pψ0(L0 −�)−1
hbch〉S(0) = 〈h, (L0 −�)−1

hbch〉L2 ≥ c0‖h‖2
Ḣ−1 ≥ 0

(A.2)

for some c0 > 0 where ‖h‖Ḣ−1 = ‖∇g‖L2 where �g = h and g = 0 at the boundary.
Now let ∂ψ0 = ∇ψ0

|∇ψ0|2 · ∇. Recalling for any h ∈ Sk there exists H ∈ Hk(I ) such

that h = H ◦ ψ0, we note that ∂ψ0h = H ′(ψ0). Now let

〈 f, g〉S(1) = 〈∂ψ0 f, ∂ψ0g〉S(0) + M〈 f, g〉S(0) .

for some large constant M to be specified shortly. This topology is obviously equivalent

to that of H1 on S1. To see this, denoting x̂ = x/|x |, we can write ∇ = ∇̂⊥ψ0∇̂⊥ψ0 ·
∇ + ∇̂ψ0 ∇̂ψ0 ·∇ and notice that on any f ∈ S1,∇ f = ∇ψ0∂ψ0 f . Now note that, since
h = 0 and Pψ0(L0 −�)−1

hbch = 0 on the boundary, we have

〈h,Pψ0(L0 −�)−1
hbch〉S(1)

= 〈∂ψ0h, ∂ψ0Pψ0(L0 −�)−1
hbch〉S(0) + M〈h,Pψ0(L0 −�)−1

hbch〉S(0)

= −〈∂2ψ0
h,Pψ0(L0 −�)−1

hbch〉S(0) + M〈h, (L0 −�)−1
hbch〉S(0)

= 〈∂ψ0h, ∂ψ0(L0 −�)−1
hbch〉S(0) + M〈h, (L0 −�)−1

hbch〉S(0) .

In the above we repeatedly used that Pψ0 is an orthogonal projection on L2 so that
〈 f,Pψ0g〉S(0) = 〈Pψ0 f, g〉S(0) . Thus, when paired with functions only of ψ0 such as h
or ∂2ψ0

h, the projector is the identity. Introducing f = (L0 −�)−1
hbch, we have

〈∂ψ0h, ∂ψ0(L0 −�)−1
hbch〉S(0) = 〈∂ψ0(L0 −�) f, ∂ψ0 f 〉S(0) = −〈(L0 −�) f, ∂2ψ0

f 〉S(0)

since (L0 −�) f = h which is zero at the boundary. Now, by (c.f. §7.2, pg 390 of [10])
we have

〈(L0 −�) f, ∂2ψ0
f 〉S(0) ≥ β‖ f ‖2H2 − γ ‖ f ‖2L2 ,
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for some constants β, γ > 0. Moreover, by our hypotheses, we have for some constant
c > 0 that

c‖ f ‖2H1 ≤ 〈(L0 −�) f, f 〉S(0) .

Combining the above bounds we obtain

〈h,Pψ0(L0 −�)−1
hbch〉S(1) ≥ β‖ f ‖2H2 − γ ‖ f ‖2L2 + cM‖ f ‖2H1 .

It follows that by choosing M sufficiently large that for some c1 > 0 depending only on
ψ0 we have

〈h,Pψ0(L0 −�)−1
hbch〉S(1) ≥ c1‖ f ‖2H2

and we deduce 〈h,Pψ0(L0 −�)−1
hbch〉S(1) is coercive.

Thus we have established that for all g ∈ S(1)0 , there exists a unique u ∈ S(−1) such
that

Kψ0 [u] = g.

Now we want to show that for k ≥ 1, if g ∈ S(k)0 , then u ∈ S(k−2). Let g ∈ S(2)0 . We

know there is a solution u ∈ S(−1)
0 . We wish to show that actually u ∈ S(0)0 . To see this,

we formally differentiate:

∂ψ0 Kψ0 [u] = ∂ψ0g.

The following formal apriori calculation can be made rigorous by an approximation
argument. We compute the commutator of derivative with Kψ0 :

[∂ψ0 , Kψ0 ] f = ∂ψ0 Kψ0 [ f ] − Kψ0 [∂ψ0 f ]
= ∂ψ0Pψ0 (L0 −�)−1

hbc f − Pψ0 (L0 −�)−1
hbc∂ψ0 f

= Pψ0∂ψ0 (L0 −�)−1
hbc f − Pψ0 (L0 −�)−1

hbc∂ψ0 f + [Pψ0 , ∂ψ0 ](L0 −�)−1
hbc f

= Pψ0 [∂ψ0 , (L0 −�)−1
hbc] f + [Pψ0 , ∂ψ0 ](L0 −�)−1

hbc f.

Now note that by Lemma E.2 we have

[Pψ0 , ∂ψ0 ]g = −Pψ0

[(
μ′

μ2 +
�ψ0 − 2κ|∇ψ0|

|∇ψ0|2
)

g
]
.

Thus, commutator of derivative with streamline projector is of zero order:

‖[Pψ0 , ∂ψ0 ]g‖L2 ≤ C‖g‖L2 .

Also the commutator of derivative and the inverse operator is zero smoothing of degree
-2. Specifically, note that with f = (L0 −�)−1

hbcg we have

[∂ψ0 , (L0 −�)−1
hbc]g = ∂ψ0 f − (L0 −�)−1

hbc∂ψ0(L0 −�) f

= (L0 −�)−1
hbc[∂ψ0 , L0 −�] f.

The commutator [∂ψ0 , L0 −�] is a differential operator of order 2. Thus we obtain
‖[∂ψ0 , (L0 −�)−1

hbc]g‖L2 ≤ C‖(L0 −�)−1
hbcg‖L2 ,
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and we obtain the estimate

‖[∂ψ0 , Kψ0 ] f ‖L2 ≤ C‖(L0 −�)−1
hbc f ‖L2 .

Moreover, [∂ψ0 , Kψ0 ] f is zero on the boundary. Then if u ∈ S(−1) and g ∈ S(2)0

Kψ0 [∂ψ0u] = [∂ψ0 , Kψ0 ]u + ∂ψ0g ∈ S(1)0 .

It follows that ∂ψ0u ∈ S(−1) and thus u ∈ S(0). Higher regularity follows by similar
arguments.

Appendix B. Proof of Proposition 3.1

Let D0, D be two nearby domains and let γ : D0 → D be a diffeomorphism. Denote
points in D by (x1, x2) and points in D0 by (y1, y2). Decompose the diffeomorphism

γ = id + (α, β) = id + ∇⊥φ + ∇η.
where ∇⊥ = (−∂2, ∂1). Let ρ = det∇γ and 0 < |ρ| < ∞. Write ψ = ψ0 ◦ γ−1. More
explicitly

x1 = y1 + α(y1, y2), x2 = y2 + β(y1, y2).

and

α(y1, y2) = −∂y2φ + ∂y1η, β(y1, y2) = ∂y1φ + ∂y2η.

We have so ∇yψ0 = ∇γ · (∇xψ) ◦ γ, and

(∇xψ) ◦ γ = (∇γ )−1 · ∇yψ0, ∇γ = I +

(
∂y1α ∂y1β

∂y2α ∂y2β

)
.

Jacobian of Transformation: Note that, with ρ = det∇γ we find

ρ = 1 + ∂y1α + ∂y2β + (∂y1α∂y2β − ∂y2α∂y1β) = 1 +�η − Nη(∂
2η, ∂2φ)

where

Nη := ∂y1α∂y2β − ∂y2α∂y1β = −∇α · ∇⊥β. (B.1)

Inverse Gradient: A useful expression for the inverse gradient of the transformation is

(∇γ )−1 = 1

ρ

(
I +

(
∂y2β −∂y1β−∂y2α ∂y1α

))
= 1

ρ

(
I +

(
∂y2∂y1φ + ∂2y2η −∂2y1φ − ∂y1∂y2η

∂2y2φ − ∂y1∂y2η −∂y2∂y1φ + ∂2y1η

))

= 1

ρ

(
I +

(
∂y2∂y1φ −∂2y1φ
∂2y2φ −∂y2∂y1φ

)
+

(
∂2y2η −∂y1∂y2η

−∂y1∂y2η ∂2y1η

))

= 1

ρ

(
I −

(
∂y1∇⊥

y φ

∂y2∇⊥
y φ

)
+

(−∂y2∇⊥
y η

∂y1∇⊥
y η

))
.
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Derivatives of ψ := ψ0 ◦ γ−1: In the above, ∂y1∇⊥
y φ and similar terms are understood

as row vectors forming the matrices. Thus

(∇xψ) ◦ γ = 1

ρ

(
∇yψ0 + ∇y∂sφ + (∇⊥

y φ · ∇y)∇yψ0

)
− 1

ρ

(
∇⊥

y ∂sη + (∇yη · ∇y)∇yψ0

)
,

where we introduced the notation for streamline derivatives ∂s = ∇⊥ψ0 · ∇y . In the
future, we will bin terms involving η in

L0(∂
2η, ρ; ∂2ψ0) := − 1

ρ

(
∇⊥

y ∂sη + (∇yη · ∇y)∇yψ0

)
. (B.2)

Note we track only the highest number derivatives in the notation on the left. We now
obtain a formula for the Hessian in terms of ψ0 and the diffeomorphism. First note that

(∇x ⊗ ∇xψ) ◦ γ = (∇yγ )
−1∇y

(
(∇xψ) ◦ γ

)
.

The right-hand-side of the above is calculated as

∇y

(
(∇xψ) ◦ γ

)
= ρ∇yρ

−1 ⊗ (∇xψ) ◦ γ

+
1

ρ

(
∇y ⊗ ∇yψ0 + (∇y ⊗ ∇y)∂sφ + (∇y ⊗ ∇⊥

y φ)(∇y ⊗ ∇yψ0)

+ (∇⊥
y φ · ∇)∇y ⊗ ∇yψ0 − (∇y ⊗ ∇⊥

y )∂sη

− (∇y ⊗ ∇yη)(∇y ⊗ ∇yψ0)− (∇yη · ∇)∇y ⊗ ∇yψ0

)
.

Thus we obtain

(∇x ⊗ ∇xψ) ◦ γ = 1

ρ2
∇y ⊗ ∇yψ0 +

1

ρ2

(
(∇y ⊗ ∇y)∂sφ − (∇yφ · ∇⊥)∇y ⊗ ∇yψ0

)

+ L1(∂
3η, ∂ρ; ∂3ψ0) +N1(∂

2φ, ∂2∂sφ, ∂
3η, ∂ρ; ∂3ψ0),

where we have grouped the terms linear in η and ∇ρ

L1(∂
3η, ∂ρ; ∂3ψ0)

:= − 1

ρ2

(
∇yρ ⊗ (∇xψ0) ◦ γ + (∇y ⊗ ∇⊥

y )∂sη + (∇yη · ∇)∇y ⊗ ∇yψ0

)
, (B.3)
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as well as all terms which are quadratic in combinations of (φ, η,∇ρ):

N1(∂
2φ, ∂2∂sφ, ∂

3η, ∂ρ; ∂3ψ0)

:= − 1

ρ2
∇yρ ⊗

(
∇y∂sφ + (∇⊥

y φ · ∇y)∇yψ0 − ∇⊥
y ∂sη − (∇yη · ∇y)∇yψ0

)

+
1

ρ2

(
−

(
∂y1∇⊥

y φ

∂y2∇⊥
y φ

)
+

(−∂y2∇⊥
y η

∂y1∇⊥
y η

)) [
− ∇yρ ⊗ (∇xψ0) ◦ γ+

− ∇yρ ⊗
(
∇y∂sφ + (∇⊥

y φ · ∇y)∇yψ0 − ∇⊥
y ∂sη − (∇yη · ∇y)∇yψ0

)

+

(
(∇y ⊗ ∇y)∂sφ + (∇y ⊗ ∇⊥

y φ)(∇y ⊗ ∇yψ0) + (∇⊥
y φ · ∇)∇y ⊗ ∇yψ0

− (∇y ⊗ ∇⊥
y )∂sη − (∇y ⊗ ∇yη)(∇y ⊗ ∇yψ0)− (∇yη · ∇)∇y ⊗ ∇yψ0

)]
.

(B.4)

We note the important point the nonlinearity involves third derivatives of φ only through
∂2∂sφ. We now introduce stream function coordinates. Note the following formula for
∇y in terms of derivative along and transverse to streamlines, i.e. ∂s = ∇⊥ψ0 · ∇ and
∂ψ0 = ∇ψ0 · ∇,

∇y = 1

|∇ψ0|2
[
∇ψ0∂ψ0 + ∇⊥ψ0∂s

]
, ∇⊥

y = 1

|∇ψ0|2
[
∇⊥ψ0∂ψ0 − ∇ψ0∂s

]
.

With this, we have

∇yφ · ∇⊥ = 1

|∇ψ0|2
(
(∂sφ)∂ψ0 − (∂ψ0φ)∂s

)
.

We arrive at

Lemma B.1. The following formulae hold

(∇xψ) ◦ γ = 1

ρ
∇yψ0 +

1

ρ

(
∇y∂sφ +

1

|∇ψ0|2
[
(∂sφ)∂ψ0 − (∂ψ0φ)∂s

]
∇yψ0

)

+ L0(∂
3η, ρ; ∂3ψ0),

(∇x ⊗ ∇xψ) ◦ γ = 1

ρ2
∇y ⊗ ∇yψ0 − 1

ρ2|∇ψ0|2
[
(∂sφ)∂ψ0 − (∂ψ0φ)∂s

]
∇y ⊗ ∇yψ0

+
1

ρ2
(∇y ⊗ ∇y)∂sφ + L1(∂

3η, ∂ρ; ∂3ψ0)

+N1(∂
2φ, ∂2∂sφ, ∂

3η, ∂ρ; ∂3ψ0),

where L0, L1 and N1 are defined by (B.2), (B.3) and (B.4). Let aγ = a ◦ γ , bγ = b ◦ γ
and

L := a : ∇x ⊗ ∇x + b · ∇x , Lγ = aγ : ∇y ⊗ ∇y + bγ · ∇y .
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Then we have

(Lψ) ◦ γ = 1

ρ2
Lγ ψ0 +

1

ρ2
Lγ ∂sφ − 1

ρ2|∇ψ0|2
[
(∂sφ)∂ψ0 − (∂ψ0φ)∂s

]
Lγ ψ0

+
1

ρ2|∇ψ0|2
([
(∂sφ)∂ψ0aγ − (∂ψ0φ)∂saγ

]
: ∇y ⊗ ∇yψ0

+
[
(∂sφ)∂ψ0bγ − (∂ψ0φ)∂sbγ

]
· ∇yψ0

)

+ a : L1(∂
3η, ∂ρ; ∂3ψ0) + a : N1(∂

2φ, ∂2∂sφ, ∂
3η, ∂ρ; ∂3ψ0)

+ b · L0(∂
3η, ∂ρ; ∂3ψ0).

We now simplify these formulae in the setting where ψ0 and ψ satisfy (3.4), (3.5).
Recall L0 := a0 : ∇y ⊗ ∇y + b0 · ∇y, so that

Lγ − L0 = (aγ − a0) : ∇y ⊗ ∇y + (bγ − b0) · ∇y

= (a − a0)γ : ∇y ⊗ ∇y

+ (b − b0)γ · ∇y + ((a0)γ − a0) : ∇y ⊗ ∇y + ((b0)γ − b0) · ∇y .

We now denote the nonlinearities arising in expanding by

Ra0(∂φ, ∂η, ∂
2a0) := (a0)γ − a0 − (γ − y) · ∇a0,

Rb0(∂φ, ∂η, ∂
2b0) := (b0)γ − b0 − (γ − y) · ∇b0.

Note that the dependences are a consequence of Taylor’s formula. Then

Lγ − L0 = (a − a0)γ : ∇y ⊗ ∇y + (b − b0)γ · ∇y

+ (γ − y) · ∇a0 : ∇y ⊗ ∇y + (γ − y) · ∇b0 · ∇y

+ Ra0(∂φ, ∂η, ∂
2a0) : ∇y ⊗ ∇y + Rb0(∂φ, ∂η, ∂

2b0) · ∇y

= (a − a0)γ : ∇y ⊗ ∇y + (b − b0)γ · ∇y

+ ∇⊥φ · ∇a0 : ∇y ⊗ ∇y + ∇⊥φ · ∇b0 · ∇y

+ ∇η · ∇a0 : ∇y ⊗ ∇y + ∇η · ∇b0 · ∇y

+ Ra0(∂φ, ∂η, ∂
2a0) : ∇y ⊗ ∇y + Rb0(∂φ, ∂η, ∂

2b0) · ∇y .

Thus we have

(Lγ − L0)ψ0 = − 1

|∇ψ0|2
(
(∂sφ)∂ψ0a0 − (∂ψ0φ)∂sa0

) : ∇y ⊗ ∇yψ0

− 1

|∇ψ0|2
(
(∂sφ)∂ψ0b0 − (∂ψ0φ)∂sb0

) · ∇yψ0

+ L2(δa, δb, ∂a0, ∂b0, ∂η, γ ; ∂2ψ0)

+N2(∂
2a0, ∂

2b0, ∂φ, ∂η, γ ; ∂2ψ0),
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where

L2(δa, δb, ∂a0, ∂b0, ∂η, γ ; ∂2ψ0)

:= (a − a0)γ : ∇y ⊗ ∇yψ0 + (b − b0)γ · ∇yψ0

+ ∇η · ∇a0 : ∇y ⊗ ∇yψ0 + ∇η · ∇b0 · ∇yψ0,

N2(∂
2a0, ∂

2b0, ∂φ, ∂η, γ ; ∂2ψ0)

:= Ra0(∂φ, ∂η, ∂
2a0) : ∇y ⊗ ∇yψ0 + Rb0(∂φ, ∂η, ∂

2b0) · ∇yψ0.

Additionally we find

(Lγ − L0)∂sφ

= L3(δa, δb, ∂a0, ∂b0, ∂η, γ, ∂
2∂sφ) +N3(∂

2a0, ∂
2b0, ∂φ, ∂η, γ, ∂

2∂sφ).

where

L3(δa, δb, ∂a0, ∂b0, ∂η, γ, ∂
2∂sφ)

:= (a − a0)γ : ∇y ⊗ ∇y∂sφ + (b − b0)γ · ∇y∂sφ

N3(∂
2a0, ∂

2b0, ∂φ, ∂η, γ, ∂
2∂sφ)

:= ∇⊥φ · ∇a0 : ∇y ⊗ ∇y∂sφ + ∇⊥φ · ∇b0 · ∇y∂sφ

+ ∇η · ∇a0 : ∇y ⊗ ∇y∂sφ + ∇η · ∇b0 · ∇y∂sφ

+ Ra0(∂φ, ∂η, ∂
2a0) : ∇y ⊗ ∇y∂sφ + Rb0(∂φ, ∂η, ∂

2b0) · ∇y∂sφ.

Thus we have

ρ2(Lψ) ◦ γ = L0ψ0 + L0∂sφ − 1

|∇ψ0|2
(
(∂sφ)∂ψ0a0 − (∂ψ0φ)∂sa0

) : ∇y ⊗ ∇yψ0

− 1

|∇ψ0|2
(
(∂sφ)∂ψ0b0 − (∂ψ0φ)∂sb0

) · ∇yψ0

− 1

|∇ψ0|2
[
(∂sφ)∂ψ0 − (∂ψ0φ)∂s

]
L0ψ0

+
1

|∇ψ0|2
[
(∂sφ)∂ψ0a − (∂ψ0φ)∂sa

]
: ∇y ⊗ ∇yψ0

+
1

|∇ψ0|2
[
(∂sφ)∂ψ0b − (∂ψ0φ)∂sb

]
· ∇yψ0

+ L5(δa, δb, ∂a0, ∂b0, ∂
3η, γ, ∂2∂sφ; ∂3ψ0)

+N5(∂
2a0, ∂

2b0, ∂
2φ, ∂2η, ∂ρ, ∂2∂sφ; ∂3ψ0)

where the linear and nonlinear terms are

L5 =
4∑

i=0

Li , N5 =
4∑

i=1

Ni . (B.5)

Rearranging this, we have

ρ2(Lψ) ◦ γ = L0ψ0 + (L0 − λ1)∂sφ + λ2∂ψ0φ

+ L5(δa, δb, ∂a0, ∂b0, ∂
3η, ∂ρ, ∂2∂sφ; ∂3ψ0)

+N5(∂
2a0, ∂

2b0, ∂
2φ, ∂2η, ∂ρ, ∂2∂sφ; ∂3ψ0)
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where λ1 := ∂ψ0 L0ψ0

|∇ψ0|2 and λ2 := ∂s L0ψ0
|∇ψ0|2 . To get the desired equation for ∂sφ we must

use the equations that ψ0 and ψ satisfy. Recall

Lψ = F(ψ) + G(x, ψ), L0ψ = F0(ψ0) + G0(y, ψ0),

Then we have

(Lψ) ◦ γ − F(ψ0) + G(γ, ψ0) = 0,

Thus upon substitution we obtain

(L0 +�)∂sφ = L0ψ0 − ρ2(Lψ) ◦ γ +�2∂ψ0φ + L5 +N5

= F0(ψ0)− F(ψ0) + G0(y, ψ0)− G(γ, ψ0)

+�2∂ψ0φ + L5 +N5.

Introducing the notation

RG(∂φ, ∂η, ∂
2
Y G) := G0(y, ψ0)− G(γ, ψ0)− (γ − y) · (∇yG) ◦ γ,

we further express the nonlinear G terms as follows

G0(y, ψ0)− G(γ, ψ0) = 1

|∇ψ0|2
(
(∂sφ)(∂ψ0G)(γ, ψ0)− (∂ψ0φ)(∂s G)(γ, ψ0)

)

− ∇η · (∇yG)(γ, ψ0) + (G − G0)(γ, ψ0) + RG . (B.6)

Together, we obtain

(L0 −�)∂sφ = �2∂ψ0φ + (F − F0)(ψ0) + Lφ(δa, δb, ∂a0, ∂b0, ∂
3η, ∂ρ, ∂2∂sφ; ∂3ψ0)

+N(∂2a0, ∂
2b0, ∂

2φ, ∂2η, ∂ρ, ∂2∂sφ; ∂3ψ0)

where we have defined

Lφ = L5, (B.7)

Nφ = N5 + (B.6) (B.8)

where L5 and N5 are defined in (B.5) and where

�1 := 1

|∇ψ0|2
(
∂ψ0 L0ψ0 − ∂ψ0G(y, ψ0)

)
, �2 := 1

|∇ψ0|2
(
∂s L0ψ0 − ∂s G(y, ψ0)

)
.

Note that we separate out (F − F0)(ψ0) since we will use F to fix ∂sφ as mean-zero on
streamlines during the construction. We note now that

∂ψ0 L0ψ0 = |∇ψ0|2F ′
0(ψ0) + ∂ψ0G + |∇ψ0|2G ′

0(y, ψ0), ∂s L0ψ0 = ∂s G0,

where G ′
0 denotes differentiation with respect to its ψ0 argument. Thus, introducing

� := F ′
0(ψ0) + G ′

0(y, ψ0), (B.9)

we obtain
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Lemma B.2. If ψ0 solves (3.4) and ψ = ψ0 ◦ γ solves (3.5) then ∂sφ satisfies

�η = ρ − 1 +Nη(∂
2η, ∂2φ),

(L0 −�)∂sφ = (F − F0)(ψ0) + Lφ(δa, δb, δF, ∂δG, ∂a0, ∂b0, ∂
3η,

∂ρ, ∂2∂sφ, ∂ψ0φ; ∂3ψ0)

+Nφ(∂
2a0, ∂

2b0, ∂
2φ, ∂2η, ∂ρ, ∂2∂sφ; ∂3ψ0),

where � is given by (B.9), Lφ (defined by (B.7)) are all the collected terms which are
linear in φ and η (and their derivatives), but all multiplied by small factors,Nη is defined
by (B.1) and Nφ collects the nonlinear terms above (defined by (B.8)) .

Appendix C. Proof of Theorem 3.1

C.1. Perturbative assumptions. We will make the following assumptions that ensure
that various quantities we will encounter can be treated perturbatively.

• The density ρ satisfies

‖ρ − 1‖Ck,α(D0)
≤ ε1. (C.1)

• The boundary ∂D is given by {B = 0} and ∂D0 is given by {B0 = 0} where B, B0
are smooth functions defined in a neighborhood of ∂D0 and

‖B − B0‖Ck,α ≤ ε2. (C.2)

• The operators L0, L are close in the sense that the coefficients satisfy

‖a − a0‖Ck,α(D0)
+ ‖b − b0‖Ck,α(D0)

≤ ε3. (C.3)

• The nonlinearities/forcings are close in the sense that

‖G − G0‖Ck−2,α(D0)
≤ ε4. (C.4)

The size of the parameters ε1, ε2, ε3, ε4 will be set in Lemma C.5 and depends on D0,
the base solution ψ0, and the operator L0.

C.2 Boundary conditions. Suppose D0 is given as the interior of a Jordan curve B0 in
R
2,

∂D0 = {p ∈ R
2 | B0(p) = 0}.

For convenience we will assume, without loss of generality, that B0 is given so that
|∇B0| = 1 and∇ψ0 ·∇B0 > 0. Suppose that D is given as the interior of a Jordan curve
B,

∂D = {p ∈ R
2 | B(p) = 0}.

If γ : D0 → D is of the form γ = id + (α, β), then using that B0|∂D0 = 0, the
requirement that γ : ∂D0 → ∂D can be written as

0 = B ◦ γ |∂D0 = B0 ◦ γ |∂D0 + (δB) ◦ γ |∂D0

= α∂1B0|∂D0 + β∂2B0|∂D0 + B1(α, β)|∂D0 (C.5)
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where the remainder B1 is

B1(α, β, x, y) = B0 ◦ γ − B0 − α∂1B0 − β∂2B0 + (δB) ◦ γ (C.6)

which will be small, O(α2, β2, δB), provided α, β, δB are small and that B0 ∈ C2, say.
It is convent to write α, β in terms of a gradient and skew gradient of φ, η,

(α, β) = ∇⊥ψ + ∇η.
In this case,

α∂1B0 + β∂2B0 = ∇⊥ B0 · ∇φ + ∇B0 · ∇η.
Since |∇B0| = 1, to follows that∇B0 is the outward-facing unit normal vector field, n̂ to
D0 and ∇⊥ B0 is the unit tangential vector field forming a right-handed basis with ∇B0.

Since ψ0 is constant on ∂B0 we in fact have ∇⊥ B0 = ∇⊥ψ0
|∇ψ0| . Using this, we re-write

(C.5) as the condition

1

|∇ψ0|∂sφ + ∂nη = −B1(φ, η), on ∂D0.

Wewill choose η so that ∂nη is constant on the boundary and so that ∂sφ has zero average
along streamlines, i.e.

∮
ψ0
∂sφ ds = 0 where ds = d�/|∇ψ0| and � is the arc-length

parameter. We will construct η, φ so that they satisfy

∂nη = −
∮
∂D0

B1(φ, η) d�

length(∂D0)
on ∂D0, (C.7)

∂sφ = |∇ψ0|
(

−B1(φ, η) +

∮
∂D0

B1(φ, η) d�

length(∂D0)

)

on ∂D0. (C.8)

This choice is made so that the integral of the right-hand side of (C.8) along streamlines
is zero.

C.3 Governing equations for η and ∂sφ. By Proposition 3.1, if det∇γ = ρ, we have

�η = ρ − 1 +Nη, in D0,

∂nη = −
∮
∂D0

B1(φ, η) d�

length(∂D0)
on ∂D0, (C.9)

where B1 is defined as in (C.6), and where Nη is a homogeneous quadratic polynomial
depending on ∂2η, ∂2φ defined in (B.1). The equation for ∂sφ takes the form

(
L0 −�

)
∂sφ = (F − F0) + Lφ +Nφ, in D0, (C.10)

∂sφ = |∇ψ0|
(

−B1(φ, η) +

∮
∂D0

B1(φ, η) d�

length(∂D0)

)

on ∂D0, (C.11)

where L0 is the elliptic operator defined in (3.4) and Lφ are terms which are linear
in derivatives of φ and η and ρ multiplied by small factors and Nφ are quadratically
nonlinear terms in derivatives of φ and η and ρ. In this formulation, the function F is
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unknown andwill need to be chosen to be consistent with the fact that
∮
∂sφd� = 0. This

point will be explained in detail in the next section. We emphasize that L and N do not
involve arbitrary third derivatives of η, φ and it is only ∂2∂sη, ∂

2∂sφ that enter, which
will be important in what follows. The following estimates are immediate consequences
of the definitions of the terms on the right-hand sides of (C.9)–(C.10) in which can be
found in (B.1), (B.7) and (B.8). Note that these quantities involve three derivatives ofψ0
but we are assuming F0 ∈ Ck−1,α so by standard elliptic estimates ‖ψ0‖Ck+1,α is finite.

Lemma C.1. If the bounds in § C.1 hold, then we have

‖Lφ‖Ck−2,α(D0)
≤ Ck,α

(‖ρ − 1‖Ck−1,α(D0)

+ ‖η‖Ck,α(D0)
+ ‖∂sη‖Ck,α(D0)

+ ε‖∂sφ‖Ck−1,α(D0)

)
,

‖Nφ‖Ck−2,α(D0)
≤ Ck,α

(‖ρ − 1‖Ck−1,α(D0)

+ (‖η‖Ck,α(D0)
+ ‖∂sη‖Ck,α(D0)

+ ‖∂sφ‖Ck,α(D0)
)2

)
,

‖Nη‖Ck−2,α(D0)
≤ Ck,α

(‖η‖Ck,α(D0)
+ ‖φ‖Ck,α(D0)

)2,

‖B1‖Ck−1,α(∂D0)
≤ Ck,α

(
‖η‖Ck,α(D0)

+ ‖φ‖Ck,α(D0)

)
,

where ε = max{ε1, ε2, ε3, ε4}.
We also need Lipschitz bounds for the operators Lφ,Nφ,Nη. Given functions φ1,

η1, φ1, η2 we write u1 = (φ1, η1), u2 = (φ2, η2) and letLi
φ,N

i
φ,N

i
η for i = 1, 2 denote

the operatorsLφ,Nφ,Nη defined in Proposition 3.1 evaluated at (φi , ηi ). The following
estimates are then straightforward consequences of the definitions.

Lemma C.2. If the bounds in § C.1 hold, then we have

‖L1
φ − L2

φ‖Ck−2,α(D0)
≤ Ck,α

(‖η1 − η2‖Ck,α(D0)
+ ‖∂sη1 − ∂sη2‖Ck,α(D0)

+ ε‖∂sφ1 − ∂sφ2‖Ck,α(D0)

)
,

‖N1
φ − N2

φ‖Ck−2,α(D0)
≤ Ck,α

(‖η1 − η2‖Ck,α(D0)
+ ‖∂sη1 − ∂sη2‖Ck,α(D0)

+ ‖∂sφ1 − ∂sφ2‖Ck,α(D0)
)2,

‖N1
η − N2

η‖Ck−2,α(D0)
≤ Ck,α

(‖η1 − η2‖Ck,α(D0)
+ ‖φ1 − φ2‖Ck,α(D0)

)2.

C.4 Recovering φ from ∂sφ. In the construction, a solution � is obtained by solving
(C.10)–(C.11) for “∂sφ = ∇⊥ψ0 · ∇ψ". Consistent with � = ∂sφ, we will construct
a solution � with the property that its integral on each streamline is zero. This is done
further in the proof and requires the use of (H3). To verify that it is indeed the “streamline
derivative" and to recover the periodic function φ, we appeal to the following lemma.

Lemma C.3. Suppose � ∈ Ck,α satisfies
∮

{ψ0=c}
� = 0 for all c ∈ im(ψ0).

Then � = ∂sφ for a unique function φ = φ(ψ0, θ) which is a zero-mean, periodic
function on streamlines of ψ0, i.e. φ(ψ0, 0) = φ(ψ0, 2π) and

∮
ψ0
φ = 0. Moreover, φ

enjoys the bound

‖φ‖k,α ≤ C‖∂sφ‖k,α, (C.12)

where the constant C depends on Ck,α norms of ψ0.
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Proof. First note that all that enters in the formulation of the problem is ∂sφ and not φ
itself and so we are free to modify φ by adding an arbitrary function of ψ0. To be more
precise, let � be the arc-length along curves {ψ = c} and introduce the notation

ds = d�

|∇ψ0| .

We the fix the freedom in defining φ by enforcing that, on each streamline,
∮

{ψ0=c}
φ ds = 0, ∀c ∈ im(ψ0).

Assuming that this holds, we have ‖φ‖k,α ≤ C‖∂sφ‖k,α , a fact that we use repeatedly in
what follows.Tobemoreprecise,we introduce an “angular coordinate" along streamlines
as

θ(x) = 2π

μ(ψ0(x))

∫

 x0(ψ0),x

ds, μ(c) =
∮

{ψ0=c}
ds

whereμ is the travel time of a particle along a streamline and where, for each x ∈ D0 the
line integral is taken counterclockwise from an arbitrary point x0(ψ0) on the streamline
to the point x . This point x0(ψ0) can be obtain by flowing an arbitrary point p ∈ D0
by the vector field ∇ψ0 which is orthogonal to streamlines. This segment is denoted
by  x0(ψ0),x . Then θ(x) is a 2π–periodic parametrization of the streamline with value
ψ0(x).

Now, given a � which is mean zero on streamlines, note that for an arbitrary θ0 ∈
[0, 2π ]

φ(ψ0, θ) = φ(ψ0, θ0) + μ(ψ0)

∫ θ

θ0

� dθ ′.

Integrating this expression along the streamline in s0 we ψ0 =const.

φ(y) = φ(ψ0(y), θ(y)), φ(ψ0, θ) = μ(ψ0)

∫

T

(∫ θ

θ0

� dθ ′
)
dθ0.

One can check that ∇⊥ψ0 · ∇θ = μ−1. Thus, for the quantity defined above we have
that

� = ∂sφ.

The definitions of θ and μ as functions on D0 we obtain the estimate (C.12). ��

C.5. The iteration to solve the nonlinear elliptic system. We use the following iteration.
Given ηn, φn ∈ Ck−1,α(D0) with ∂sη

n, ∂sφ
n ∈ Ck−1,α(D0) and

∮
ψ0
φn = 0, set

Nn
η := Nη(η

n, φn),

with Nη defined in (B.1), which satisfies the following bound

‖Nn
η‖Ck−2,α(D0)

≤ Ck,α
(‖φn‖Ck,α(D0)

+ ‖ηn‖Ck,α(D0)

)2
.
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By Lemma D.2 the following problem has a unique solution ηn+1 ∈ Ck−1,α ,

�ηn+1 = ρ − 1 +Nn
η, in D0, (C.13)

∂nη
n+1 = κn+1 ≡

∫

D0

(
ρ − 1 +Nn

η

)
on ∂D0. (C.14)

Moreover, the iterate ηn+1 enjoys the following estimate

‖ηn+1‖Ck,α(D0)
≤ Ck,α

(‖ρ − 1‖Ck−2,α(D0)
+ ‖Nn

η‖Ck−2,α(D0)
+ κn+1).

We note that (C.14) does not agree with (C.7) but instead has been chosen to ensure that
the Neumann problem is solvable. In the upcoming Lemma C.7 we show that provided
ηn, φn converge, the limit η will satisfy (C.7) as a consequence of the assumption that
Vol(D) = ∫

D0
ρ.

In order to get an estimate for ‖∂sη
n+1‖Ck,α(D0)

we commute the Eqs. (C.13)–(C.14)
with ∂s . Applying ∂s to (C.13), using

[∂s,�] = −2∇⊥�ψ0 · ∇ − ∇ ⊗ ∇⊥ψ0 : ∇ ⊗ ∇,
we note that the right-hand side involves highest-order derivatives falling on ∂sη and
lower-order terms. By the estimates for the Neumann problem from Lemma D.2 and
using that ∂sη = 0 on the boundary since ∂s is a tangential derivative, we have

‖∂sη
n+1‖Ck,α(D0)

≤ Ck,α‖ηn+1‖Ck,α(D0)
+ Ck,α

(‖∂s(ρ − 1)‖Ck,α(D0)
+ ‖∂sN

n
η‖Ck−2,α(D0)

)
.

With ηn+1 defined, we now set

Nn
φ = Nφ(η

n+1, φn),

Bn
1 = B1(η

n+1, φn),

with Nφ defined in (C.10) and B1 defined in (C.6). Using that ‖φn‖Ck−1,α(D0)
≤

‖∂sφ
n‖Ck−1,α(D0)

from Lemma C.3, we have that

‖Nn
φ‖Ck−2,α(D0)

≤ Ck,α
(‖ρ − 1‖Ck,α(D0)

+ (‖ηn+1‖Ck,α(D0)
+ ‖∂sη

n+1‖Ck,α(D0)

+‖∂sφ
n‖Ck,α(D0)

)2

+‖ηn+1‖Ck,α(D0)
+ ‖∂sη

n+1‖Ck,α(D0)
+ ε‖∂sφ

n‖Ck−1,α(D0)

)
,

with ε = max{ε1, ε2, ε3, ε4}. We note that it is crucial that the estimate for the nonlinear-
ityNn

φ only requires a bound for ‖∂sη
n+1‖Ck,α(D0)

and not the full norm ‖ηn+1‖Ck+1,α(D0)

since we could only get a bound for this term by differentiating the equation for ηn+1

in all directions and this would require a bound for ‖φn+1‖Ck+1,α(D0)
instead of just

‖∂sφ
n+1‖Ck,α(D0)

. The boundary operator satisfies the estimate

‖Bn
1 ‖Ck,α(D0)

≤ Ck,α

(
‖ηn+1‖Ck,α(D0)

+ ‖δB‖Ck,α(D0)

)
.
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We now envoke hypothesis (H3) and define Fn by the requirement that the right-hand
side of (3.7) has zero average along streamlines with φ, η replaced by φn, ηn . Consider
the problem

(L0 −�)u = g in D0

u = ub on ∂D0.

Letting G be the Green’s function for the Dirichlet problem for L0 −�, we have

u(x) =
∫

D0

G(x, x ′)g(x ′)dx ′ +
∮

∂D0

∂nG(x, x ′)ub(x
′)d�.

We define

(L0 −�)−1
hbcg :=

∫

D0

G(x, x ′)g(x ′)dx ′,

so that f = (L0 − �)−1
hbcg means (L0 − �) f = g and f = 0 on ∂D0. If the Eqs.

(C.10)–(C.11) are to hold then since
∮
ψ0=c ∂sφ = 0 we must ensure that

Kψ0 [Fn − F0] = −
∮

ψ0

(L0 −�)−1
hbc[Ln

φ +Nn
φ]ds +

∮

ψ0

∮

∂D0

∂nG(x, x ′)∂sφ(x
′)d�ds,

(C.15)

with Kψ0 defined in the statement of (H3). Notice that the right-hand-side is a function
onlyψ0, and the boundary conditions for ∂sφ are chosen exactly so that the contribution
on the boundary of the final term in (C.15) is zero. Thus, with gn(ψ0) defined as the right-
hand-side of equation (C.15), we see that gn(ψ0(∂D0)) = 0. Moreover, g ∈ Ck,α(I )
with I = im(ψ0), which follows from Lemma E.2 Appendix E. These verify that we
are in the setting of (H3) and so by assumption there is an Fn = Fn(ψ0) ∈ Ck−2,α(I )
which ensures that (C.15) holds. Moreover,

‖Fn − F0‖Ck−2,α(I ) � ‖Kψ0 [Ln
φ +Nn

φ]‖Ck,α � ‖(L0 −�)−1
hbc

(
Ln
φ +Nn

φ

)
‖Ck,α

� ‖Ln
φ +Nn

φ‖Ck−2,α(D0)
. (C.16)

The second inequality above follows from Lemma C.15.
By Lemma D.1 the following problem has a unique solution �n+1 ∈ Ck,α ,

(L0 −�)�n+1 = (Fn − F0)(ψ0) + Ln
φ +Nn

φ, in D0,

(C.17)

�n+1 = |∇ψ0|
(

−B1(φ
n, ηn) +

∮
∂D0

B1(φ
n, ηn) d�

length(∂D0)

)

on ∂D0.

(C.18)

By our choice for Fn and the above discussion, the solution�n+1 has zero average along
streamlines and so by Lemma C.3 it follows that �n+1 = ∂sφ

n+1 for a unique function
φn+1 with zero average along streamlines. From (C.17)–(C.18) and (C.16) we have

‖∂sφ
n+1‖Ck,α(D0)

+ ‖φn+1‖Ck,α(D0)

≤ Ck,α
(‖Ln

φ‖Ck−2,α(D0)
+ ‖Nn

φ‖Ck−2,α(D0)
+ ‖Bn

1 ‖Ck,α(∂D0)

)
.

In summary, using Lemma C.1, we have shown
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Lemma C.4. Suppose that (H1)–(H3) and the assumptions (C.1), (C.2), (C.3) and (C.4)
hold. Let φn, ηn ∈ Ck,α(D0) with ∂sφ

n, ∂sη
n ∈ Ck,α(D0) be given functions. With

Nn
η,N

n
φ, Bn

1 defined as above, and with Fn defined implicitly by (C.15), the prob-

lems (C.13)–(C.14) and (C.17)–(C.18) have a unique solution ηn+1, φn+1 satisfying∮
ψ0
φn+1 d� = 0, and we have the estimates

‖∂sη
n+1‖Ck,α + ‖ηn+1‖Ck,α ≤ Ck,α

(‖∂s(ρ − 1)‖Ck,α + ‖ρ − 1‖Ck−2,α

+ (‖∂sη
n‖Ck,α + ‖ηn‖Ck,α )‖∂sφ

n‖Ck,α , (C.19)

‖∂sφ
n+1‖Ck,α + ‖φn+1‖Ck,α ≤ Ck,α

(‖ρ − 1‖Ck,α + (‖∂sη
n+1‖Ck,α + ‖ηn+1‖Ck,α )‖∂sφ

n‖Ck−1,α

+ (‖∂sη
n+1‖Ck,α + ‖ηn+1‖Ck,α )

+ ε‖∂sφ
n‖Ck,α + ‖Bn

1 ‖Ck,α(∂D0)
,

‖Bn
1 ‖Ck,α(∂D0)

≤ Ck,α

(
‖ηn‖Ck,α + ‖φn‖Ck,α

)
. (C.20)

C.6. Uniform estimates for the iterates. We now set η0 = φ0 = 0. Given η�, φ�, using
Lemma C.4 let η�+1 satisfy (C.13)–(C.14) and let��+1 = ∂sφ

�+1 satisfy (C.17)–(C.18).
In this section we prove that the sequences (η�, φ�), (∂sη

�, ∂sφ
�) are uniformly bounded

in Ck,α(D0).

Lemma C.5. There ε0 = ε0(D0, k, α, θ) > 0 so that if the assumptions (C.1)–(C.3)
hold with ε1 + ε2 + ε3 ≤ ε0/2, if the sequence φ�, η� is defined as above, then

‖∂sη
�‖Ck,α(D0)

+ ‖∂sφ
�‖Ck,α(D0)

+ ‖η�‖Ck,α(D0)
+ ‖φ�‖Ck,α(D0)

≤ 1.

Proof. Let Ck,α be as in (C.19)–(C.20) and set

ε0 = min(1, 1/(4(Ck,α + C2
k,α))).

Let ε = ε1 + ε2 + ε3 and set M = 4Ck,αε. We claim that if ε ≤ ε0/2 then the iterates
φ�, η� satisfy

‖η�‖Ck,α(D0)
+ ‖φ�‖Ck,α(D0)

+ ‖∂sη
�‖Ck,α(D0)

+ ‖∂sφ
�‖Ck,α(D0)

≤ M ≤ 1.

This certainly holds for � = 0. If it holds for � = 0, . . . ,m − 1 then by (C.19)–(C.20)
we have

‖ηm‖Ck,α(D0)
+ ‖φm‖Ck,α(D0)

+ ‖∂sη
m‖Ck,α(D0)

+‖∂sφ
m‖Ck,α(D0)

≤ Ck,α(M
2 + εM + ε) ≤ M,

since Ck,αM2 ≤ 1
2 M,Ck,αεM ≤ 1

4 M2 ≤ 1
4 M and Ck,αε ≤ 1

4 M if ε ≤ ε0/2. The result
follows. ��
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C.7. Cauchy estimates for the iterates.

Lemma C.6. There is ε′
0 = ε′

0(D0, k, α, θ) > 0 with the following property. If the
assumptions (C.1)–(C.3) hold with ε1 + ε2 + ε3 ≤ ε′

0/2, then with the sequence {φ�, η�}
defined as in the previous lemma, if we set

DN ,M = ‖∂sη
N − ∂sη

M‖Ck−1,α(D0)
+ ‖∂sφ

N − ∂sφ
M‖Ck−1,α(D0)

+ ‖ηN − ηM‖Ck−1,α(D0)
+ ‖φN − ηM‖Ck−1,α(D0)

,

then DN ,M ≤ 1
2 DN−1,M−1. In particular, with d1 = ‖∂sη

1‖Ck−1,α(D0)
+‖∂sφ

1‖Ck−1,α(D0)
+

‖η1‖Ck−1,α(D0)
+ ‖φ1‖Ck−1,α(D0)

, we have that

DN ,M ≤ 21−min(N ,M)d1.

Proof. This is proved in nearly the same way as the previous lemma, but relies on
Lemma C.2 in place of Lemma C.1. ��

C.8. Convergence of the boundary term.

Lemma C.7. Let D0, D be domains in R
2 and suppose that for some function ρ,

Area(D) =
∫

D0

ρ dy.

Suppose that ∂D = {B(x) = 0} for some function B defined in a tubular neighborhood
of ∂D and has non-vanishing gradients there. Let γ be a diffeomorphism of the form
γ = id + ∇⊥φ + ∇η where

∂sφ = |∇ψ0|
(

−B1(φ, η) +

∮
∂D0

B1(φ, η) d�

length(∂D0)

)

, on ∂D0,

with B1 defined as in (C.6). and where ∂nη is constant on ∂D0. Then in fact

∂nη = −
∮
∂D0

B1(φ, η) d�

length(∂D0)
, on ∂D0,

and as a consequence, γ : ∂D0 → ∂D.

Proof. Recall that, by the definition of the map γ , we have

B ◦ γ |∂D0 = 1

|∇ψ0|∂sφ + ∂nη + B1(φ, η), on ∂D0.

By the above assumptions, this implies that, for some constant c,

B ◦ γ |∂D0 = c.

This says that γ maps ∂D0 to the level set {B = c}. We wish to conclude that c = 0
based on the fact that the area of γ (D0) is the same as D = {B = 0}. Note that the area
enclosed by the level set, {B = c}, has the property that

d

dc
Area({B = c}) =

∮

{B=c}
d�

|∇B| .
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By our assumptions that |∇B| is non-vanishing in a neighborhood of the zero set, then
the level sets are Jordan curves in a neighborhood of 0 and the area enclosedmust change
in accord with the above formula. Thus, the unique value of c such that

Area({B = c}) = Area({B = 0})
is c = 0 and we are done. ��

C.9. Proof of Theorem 3.1. By Lemmas C.5 and C.6 it follows that the iterates (η�, φ�)
form a Cauchy sequence in Ck+2,α(D0) and so they converge to functions (η, φ) ∈
Ck+2,α(D0) with a corresponding statement for ∂sη

�, ∂sφ
�. We then set γ = id + ∇η +

∇⊥φ. It remains to show that γ (D0) = D, and by Lemma C.7 and (C.7)–(C.8) it follows
that γ |∂D0 = ∂D as required. The estimate (3.9) follows from the proof of Lemma C.5.

C.10. Proof of Theorem 3.2. We define a sequence of diffeomorphisms {γ N } as follows.
Given a domain DN−1 and a diffeomorphism γ N−1 : D0 → DN−1 of the form γ N−1 =
id + ∇ηN−1 + ∇⊥φN−1, define ρN by

ρN (y) = X (y, ηN−1, φN−1,∇ηN−1,∇φN−1,∇∂sη
N−1,∇∂sφ

N−1)

and define σ N > 0 by σ 2
N =

∫
D0
ρN

V ol D0
so that with DN = σN D0, we have V ol DN =

σ 2
N V ol D0 = ∫

D0
ρN . By Theorem 3.1 there is a diffeomorphism γ N : D0 → DN

with det∇γ N = ρN and where γ N is of the form γ N = id + ∇ηN + ∇⊥φN so that
ψN = ψ0 ◦ γ N satisfies (3.5), and we have the estimates

‖∂sη
N ‖Ck−1,α + ‖∂sφ

N ‖Ck−1,α + ‖ηN ‖Ck−1,α + ‖φN ‖Ck−1,α

≤ Ck,α
(‖ρN − 1‖Ck−1,α + ε

)
. (C.21)

Taylor expanding ρN = X (y, ηN−1, φN−1,∇ηN−1,∇φN−1,∇∂sη
N−1,∇∂sφ

N−1)

around (η, φ) = (0, 0) and using the bound (3.12) we have

‖ρN − 1‖Ck−1,α ≤ CεX
(‖∂sη

N−1‖Ck−1,α + ‖∂sφ
N−1‖Ck−1,α

+‖ηN−1‖Ck−1,α + ‖φN−1‖Ck−1,α

)

+C
(‖∂sη

N−1‖Ck−1,α + ‖∂sφ
N−1‖Ck−1,α + ‖ηN−1‖Ck−1,α

+‖φN−1‖Ck−1,α

)2
, (C.22)

provided ‖∂sη
N−1‖Ck−1,α+‖∂sφ

N−1‖Ck−1,α+‖ηN−1‖Ck−1,α+‖φN−1‖Ck−1,α ≤ 1, say.We
now prove that the sequence γ N is uniformly bounded provided εX is taken sufficiently
small. Let Ck,α be the constant in (3.9) and take εX so small that 4Ck,αC ′

k,αεX ≤ 1, and
suppose that

‖∂sη
N ‖Ck−1,α + ‖∂sφ

N ‖Ck−1,α + ‖ηN ‖Ck−1,α + ‖φN ‖Ck−1,α ≤ 2Ck,αε ≤ 1.

By (C.22), we then have

‖∂sη
N+1‖Ck−1,α + ‖∂sφ

N+1‖Ck−1,α + ‖ηN+1‖Ck−1,α + ‖φN+1‖Ck−1,α

≤ Ck,α
(
C ′

k,αεX (2ε)
k+1+α + ε

) ≤ 2Ck,αC ′
k,αεεX + Ck,αε ≤ 2Ck,αε,

and it follows that the sequence {γ N }∞N=0 is uniformly bounded in Ck+1,α . Using a
similar argument it is straightforward to see that this sequence is also a Cauchy sequence
in Ck+1,α and so γ N → γ ∈ Ck+1,α which by construction satisfies (3.13).
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Appendix D. Elliptic Estimates

In this appendix, we collect some well-posedness results from elliptic theory for the
Dirichlet and Neumann problems. The first is concerning the Dirichlet problem can be
found in e.g. Theorem 6.6 of [12] when k = 0 and Problem 6.2 of [12] when k ≥ 1:

Lemma D.1. Fix k ≥ 2 and α ∈ (0, 1) and f ∈ Ck−2,α(D0), g ∈ Ck,α(∂D0). Let
ai j , bi , c be smooth coefficients and set

L =
2∑

i, j=1

ai j∂i∂ j +
2∑

i=1

bi∂i .

Suppose that the only solution to

(L + c)v = 0, v ∈ H1
0 (D0)

is v = 0. Then the Dirichlet problem

(L + c)u = f, in D0,

u = g, on ∂D0,

has a unique solution u ∈ Ck,α(D0), and there is a constant C0 = C0(D0, ‖b‖k−2,α)

with

‖u‖k,α ≤ C0
(‖ f ‖k−2,α + |g|k,α

)
.

For the Neumann problem, compatibility is also required.

Lemma D.2. Fix k ≥ 2 and α ∈ (0, 1), and f ∈ Ck−2,α(D0), g ∈ Ck−1,α(∂D0)

satisfying

∫

D0

f =
∫

∂D0

g.

Then the Neumann problem

�u = f, in D0,

∂nu = g, on ∂D0,

has a unique solution u ∈ Ck,α(D0) and there is a constant C1 = C1(D0) with

‖u‖k,α ≤ C1
(‖ f ‖k−2,α + |g|k−1,α

)
.
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Appendix E. Streamline Geometry

In this appendix, we prove some formulae which are useful for our deformation scheme
which uses streamline coordinates. First, we state some relations between the curvature
and vorticity of along a given streamline.

Lemma E.1. Let n̂ = ∇ψ/|∇ψ | and τ̂ = ∇⊥ψ/|∇ψ |. The following formulae hold

τ̂ · ∇ ⊗ ∇ψ · τ̂ = |∇ψ |κ, (E.1)

n̂ · ∇ ⊗ ∇ψ · n̂ = �ψ − |∇ψ |κ, (E.2)

where κ := τ̂ · ∇n̂ · τ̂ is the curvature of the streamline.

Proof. We being by noticing that

�ψ = tr∇ ⊗ ∇ψ = n̂ · ∇ ⊗ ∇ψ · n̂ + τ̂ · ∇ ⊗ ∇ψ · τ̂ .
Next, a direct calculation gives

|∇ψ |∇n̂ = ∇ ⊗ ∇ψ − (n̂ · ∇ ⊗ ∇ψ · n̂)n̂ ⊗ n̂ − (n̂ · ∇ ⊗ ∇ψ · τ̂ )n̂ ⊗ τ̂ ,

so that |∇ψ |τ̂ · ∇n̂ · τ̂ = τ̂ · ∇ ⊗ ∇ψ · τ̂ yielding (E.1) as claimed. Combining with the
above we obtain (E.2). ��

Before stating the next required lemma, we briefly review action-angle coordinates.
For an in depth discussion, see Arnol’d [1], pg 297. The streamfunction ψ plays the role
of a Hamiltonian for tracer dynamics since u = ∇⊥ψ . We assume that the level sets
{ψ = c} are simply connected Jordan curves, so that all the integral curves of u (solutions
of Ẋ = u ◦ X ) are periodic orbits. This system allows for a canonical transformation to
action-angle variables, (x, y) �→ (J, θ) which satisfy the following criteria

(1) ψ(x, y) = �(J (x, y)) for all (x, y) ∈ � and some function �
(2)

∫
{ψ=c} dθ = 1,

(3) ∇⊥ J · ∇θ = 1.

Introduce the frequency μ−1 = � ′(J ). The phase flow satisfies

dJ

dt
= 0,

dθ

dt
= μ−1.

The first is simply because the system travels along paths of fixed J . The latter follows
from

dθ

dt
= dθ

dx

dx

dt
+
dθ

dy

dy

dt
= ∇⊥ψ · ∇θ = � ′(J )(Jxθy − Jyθx ) = μ−1(∇⊥ J · ∇θ) = μ−1.

The period for each orbit {ψ = c} is the travel time μ := μ(c) given by

μ(c) =
∮

{ψ=c}
d�

|∇ψ | ,

and the line element for each orbit satisfies

d� =
√

ẋ2 + ẏ2 = |∇ψ |dt = μ−1|∇ J |dt = |∇ J |dθ.
We now give the rule for differentiating functions integrated over streamlines.



562 P. Constantin, T. D. Drivas, D. Ginsberg

Lemma E.2. For f ∈ C1(�) we have

d

dc

∮

{ψ=c}
f

d�

|∇ψ | =
∮

{ψ=c}
∇ψ · ∇ f − f (ω − 2κ|∇ψ |)

|∇ψ |2
d�

|∇ψ | ,

where κ = τ̂ · ∇n̂ · τ̂ is the curvature of the streamline and ω := �ψ .

Proof of Lemma E.2. First we show that for g ∈ C1(�), we have

d

dc

∮

{ψ=c}
g|∇ψ |d� =

∮

{ψ=c}
1

|∇ψ |
(
∇g · ∇ψ + g�ψ

)
d�.

To establish this, set F := g∇⊥ψ and dl = (ẋdt, ẏdt). Then F · dl = g|∇ψ |d�. By
Green’s theorem,

∮

{ψ=c}
F · dl =

∫∫

{ψ=c}
∇⊥ · Fdxdy =

∫∫

{ψ=c}
[∇g · ∇ψ + g�ψ]dxdy.

Then, for two values c0 ≤ c1 in the range of ψ , we have
∮

{ψ=c1}
F · dl −

∮

{ψ=c0}
F · d� =

∫∫

{c0≤ψ≤cc}
[∇g · ∇ψ + g�ψ]dxdy

=
∫∫

{c0≤ψ≤cc}
[∇g · ∇ψ + g�ψ]dθdJ,

where we made a change of variables to action angle coordinates (the Jacobian is unity).
Finally,

∫∫
hdθdJ =

∫∫
hμ(ψ)dθdψ =

∫∫
hdtdψ =

∫∫
h

|∇ψ |d�dψ,

for any integrable h. The result follows from taking the coincidence limit c1 → c0 of
the difference quotients. The lemma then follows by applying the formula with g =
f/|∇ψ |2. This gives

d

dc

∮

{ψ=c}
f

|∇ψ |d� =
∮

{ψ=c}

∇ψ · ∇ f + f
(
�ψ − 2̂∇ψ · ∇ ⊗ ∇ψ · ∇̂ψ

)

|∇ψ |3 d�.

To work this into the stated form we appeal to Lemma E.1. ��
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