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Conjugate and cut points in ideal fluid motion

Theodore D. Drivas, Gerard Misiotek, Bin Shi, and Tsuyoshi Yoneda

ABSTRACT. Two fluid configurations along a flow are conjugate if there is a one parameter family of geodesics
(fluid flows) joining them to infinitesimal order. Geometrically, they can be seen as a consequence of the (in-
finite dimensional) group of volume preserving diffeomorphisms having sufficiently strong positive curvatures
which ‘pull’ nearby flows together. Physically, they indicate a form of (transient) stability in the configuration
space of particle positions: a family of flows starting with the same configuration deviate initially and subse-
quently re-converge (resonate) with each other at some later moment in time. Here, we first establish existence
of conjugate points in an infinite family of Kolmogorov flows — a class of stationary solutions of the Euler
equations — on the rectangular flat torus of any aspect ratio. The analysis is facilitated by a general criterion for
identifying conjugate points in the group of volume preserving diffeomorphisms. Next, we show non-existence
of conjugate points along Arnold stable steady states on the annulus, disk and channel. Finally, we discuss
cut points, their relation to non-injectivity of the exponential map (impossibility of determining a flow from a
particle configuration at a given instant) and show that the closest cut point to the identity is either a conjugate
point or the midpoint of a time periodic Lagrangian fluid flow.

To Sasha, with admiration and respect.

1. Introduction

Hydrodynamics of ideal fluids is a beautiful example of an infinite-dimensional Riemannian geometry
where fluid motions in a fixed domain M are regarded as geodesics in the group of volume-preserving
diffeomorphisms Z,,(M) equipped with a right-invariant (weak) Riemannian metric defined by the fluid’s
kinetic energy. This observation was made in a pioneering paper of Arnold [2] who laid out the foundations
of a modern differential geometric framework. His work was soon followed by [12], [32]], [38] and numerous
others ranging from applications to classical problems of hydrodynamic stability, to extensive calculations of
the curvature of various diffeomorphism groups, to the search for conjugate points and the study of analytic
and geometric properties of the associated Riemannian exponential map. Since then the field has been under
intensive study and many of the subsequent results can be found in the recent monograph of Arnold and
Khesin [5].

Arnold was led to this geometric picture through efforts to understand turbulenceH The motivation
came from Kolmogorov’s famous 1958 seminar [4], where he proposed to systematically study the prob-
lem of long-time, high-Reynolds number fluid flows driven by forcing of strength commensurate with the
viscosity (inverse Reynolds number). In this slightly viscous regime, it is natural to try to understand the
structure of hydrodynamic attractors by means of the ideal (inviscid and incompressible) Euler equations.
In Arnold’s picture, guided by results in finite dimensions due to Smale, Anosov, Sinai among others, tur-
bulence could be rationalized if these attractors were chaotic. Chaotic attractors are often characterized
by extreme sensitivity to initial conditions (leading to practical impossibility of pathwise forecasting) and
structural stability (allowing robust statistical predictions). Averaged characteristics of turbulence observed
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in experiments, such as those underlying the celebrated Kolmogorov 1941 theory and its cousins, might then
be deduced from a deeper understanding of these attractors.

A canonical example of complex/chaotic behavior in a finite dimensional dynamical system is provided
by the geodesic flow on a negatively curved surface. There, neighboring geodesics diverge exponentially
and some may fill out the whole surface densely [1, [18]]. Inspired by this picture, Arnold’s initial hope
was to identify attracting manifolds in the configuration space of particle positions for the Navier-Stokes
dynamics which are covered by exponentially diverging orbits. The connection with and the appeal of
the geometric approach is now clear: since Euler flows are geodesics on the infinite dimensional group of
volume-preserving diffeomorphisms, curvature calculations can provide a means of identifying regions in
the configuration space where these attracting manifolds may live. Somewhat surprisingly, it turned out that
when the fluid domain M is the flat two-torus T? then sectional curvatures of Z,,(T?), though negative in
“most directions”, can take on either sign. However, we should point out here that the tangent vectors of the
two-planes of positive curvature which Arnold discovered are just autonomous incompressible velocities
and not stationary solutions of the Euler equations. Thus, while they do shed light on the geometry of
QM(TZ), these curvature calculations may not be directly relevant for the behavior of slightly viscous fluids
and their attractors.

The failure of the curvature to be non-positive led naturally to questions concerning geodesic deviation
involving Jacobi fields and existence of conjugate points along geodesics in the group. From a physics
point of view, conjugate points may represent a kind of “relative Lagrangian stability” or “resonance” in
the particle configurations along different orbits. Namely, a family of fluid flows all starting at the identity
diffeomorphism with slightly different initial velocities will diverge for a while at first but eventually will be
pulled together due to positive curvature around the “conjugate” point in configuration space. At this point,
all such flows will have their Lagrangian particles — think of markers of non-diffusive dye — in roughly the
same configuration. This is markedly different from the behavior on chaotic hyperbolic attractors, such as
geodesic motion on negatively curved manifolds.

The fact that sectional curvatures of the diffeomorphism group are mostly negative makes it easier to
identify fluid flows without conjugate points. Typical examples are the constant-pressure flows on domains
of nonpositive curvature, see [26]], as well as rotations of the unit disk in the plane [34]. On the other hand,
finding conjugate points along geodesics in diffeomorphism groups appears to be a harder task. While in
3D they seem to abound, see e.g., [13], [35], [40]], in 2D they have been found so far only along rotations
of the unit sphere in R3, see [26], certain zonal flows on the ellipsoid in R? [43]], partial results with the
Coriolis force on the sphere [44] and, in the case when the fluid domain is flat, on a single stationary flow
of the two-torus T?, see [27].

Of particular interest among the stationary solutions of the Euler equations in 2D are the Kolmogorov
flows which correspond to eigenfunctions of the Stokes operator on M. They were proposed by Kolmogorov
as the ansatz for the forcing in the aforementioned setup to understand turbulence, see [4]. In this case,
there always exists a ‘laminar’ solution in the direction of the forcing, which is asymptotically stable at
low Reynolds numbers and becomes unstable at sufficiently high Reynolds numbers [25]E| Consequently,
this laminar solution, along with its unstable manifold, is embedded in a hydrodynamic attractor for all
Reynolds numbers, cf. [6]. This strongly suggestsﬂ that obtaining a clear picture of the geometry near
the corresponding geodesic in Z,,(M) will provide a window into the structure of a subset of the attractor

2The only exception is when the eigenfunction corresponds to the smallest eigenvalue on the domain. In this case, the laminar
solution is the unique stationary solution at all Reynolds number which, moreover, attracts all orbits at long times.

3In fact, (a minor modification of) the work of Chepyzhov, Vishik and Zelik [10] shows that the sequence of global attrac-
tors { A" },~o for 2D Navier-Stokes with forcing strength commensurate with the viscosity v converges to a so-called trajectory
attractor for the unforced Euler equations. See also the work of Glatt-Holtz, Sverak and Vicol [16] for an analogous statement
in a stochastically forced setting. This attractor is known to be supported on H' velocity fields whose corresponding vorticity is
bounded (the Yudovich space). It is not expected to be supported on velocity fields with Sobolev regularity s > n/2 + 1, which is
the setting in which the Euler equations can currently be understood geometrically. Thus, the precise connection with Z;(M) is
not yet clear and building a geometric theory for Yudovich solutions may be of crucial importance for advancing our understanding
of high-Reynolds number 2D turbulence.
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at ‘infinite Reynolds number’. In fact, possibly for that reason, Arnold proposed (see [3]) to search for
conjugate points within the Kolmogorov family. The existence of conjugate points would show that this
region of the attractor is not uniformly hyperbolic and indicate a form of Lagrangian stability, making the
long-time, small-viscosity dynamics more subtle than initially expected.

In this paper we focus on two-dimensional fluids. First, we revisit the criterion introduced in [27]] and
applied there to obtain the first example of a conjugate point in .@N(’]IQ). This criterion generalizes readily
to arbitrary Riemannian fluid domains, possibly with boundary. Using it we produce an infinite family of
Kolmogorov flows admitting conjugate points when the domain is a rectangular torus T2 with any aspect
ratio > 0. As the aspect ratio increases (elongating the domain in either direction) the family extends to
include (nearly) the entire class of Kolmogorov flows. It is tempting to conjecture that, with the exception of
unidirectional shear flows with the sinusoidal (or ‘cosinusoidal’) velocity profiles, every Kolmogorov flow
on T? gives rise to a stationary geodesic with conjugate points in the group .@H(Tg).

Next, we pursue the relation between Arnold’s nonlinear stability criterion and conjugate points in the
group Z,,(M). According to Arnold’s criterion, a stationary flow of an ideal fluid is Lyapunov stable if the
quadratic form given by the second variation of the kinetic energy restricted to coadjoint orbits in the algebra
of smooth divergence-free vector fields is positive or negative definite, see e.g., [2], [S], [[7]. Using strong
rigidity properties of [8] together with known conditions for non-conjugacy, we deduce that for a number
of simple domains including the disk, annulus and straight channel, no Arnold stable steady states possess
conjugate points. In light of these examples, we speculate that this should be true more generally.

Finally, we investigate the relation between cut points along fluid trajectories, defined and studied by
Shnirelman, and the conjugate points. Roughly, a cut point is the first point beyond which a given geodesic
no longer minimizes the energy functional among all paths connecting it to the identity. One distinction
between a cut point and a conjugate point is that the former does not require any information on growth
of nearby deviations (studied via the Jacobi fields) and therefore need not imply any “relative Lagrangian
stability” for an infinite family of fluid flows. A simple example of a cut point which is not a conjugate
point is a solid body rotation of the unit disk. To further illustrate their relation we also prove a geometric
property of the cut locus which is similar to that in finite dimensions.

2. The kinetic energy metric, its exponential map and geodesics

First, we briefly review the basic differential-geometric constructions of hydrodynamics and recall some
known results we will need in later sections. Let (M, g) be a compact two-dimensional Riemannian man-
ifold possibly with boundary, e.g., the flat two-torus T2, the sphere in R? with the round metric or a two-
dimensional bounded domain with smooth boundary. Let &, denote the completion in the Sobolev H*
topology of the group of all C*° diffeomorphisms of M preserving its Riemannian volume form p. If s > 2
then it is well known that &, is a submanifold of the smooth Hilbert manifold Z* of all H* diffeomorphisms
of M. Both spaces can be equipped with a (weak) Riemannian metric which at a point 7 is given by

<umm=ﬂwmmwm@w 0

for any VW € T,2°. This metric is invariant under the action of Z;; by right multiplications and cor-
responds to the fluid’s total kinetic energy. According to the “least action principle”, its geodesics are the
critical points that minimize the associated L? energy functional

1

T
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of a path v(t) in 9, between t = 0 and ¢ = T or, alternatively, the L? length functional

T
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if ~ is given the L? unit speed parametrization. The geodesic equations when right-translated to the Lie
algebra T. 7;; of divergence-free vector fields (i.e., the tangent space at the identity diffeomorphism e) take
on the familiar form of the Euler equations of an incompressible and inviscid fluid in M, namely

u +u-Vu = —gradp 4
divu=0 &)

where u = 4 o ! is the velocity field of the fluid and u-V denotes the covariant derivative of the metric g

in the direction of u. When boundaries are present then we require, in addition, that u|[0M. The pressure
gradient on the right hand side is determined uniquely by the incompressibility constraint as gradp =
Qe (u-Vu) where the formulas

Q. =grad A~'div=1d — P, (6)

define the usual L? orthogonal projections P and () at the identity e onto the subspace of gradient and
divergence-free vector fields in the Weyl-Helmholtz-Hodge decomposition on M.

We should point out that the Lagrangian formulation of fluid equations (as geodesic equations in a
Banach manifold) has a technical advantage over the Eulerian (as the system of nonlinear PDE). Since
the geodesic equations in Z;; are an ODE their solutions are obtained using Picard’s method of successive
approximations and as such they depend smoothly on initial data. Consequently, the right-invariant L?
metric possesses a smooth exponential map along with a Levi-Civita connection V and a curvature tensor
R which is a bounded multilinear operator on each tangent space to &,;. The L? exponential map is defined
in the standard way as the solution map of the geodesic equations: it maps lines through the origin in a
tangent space at a given fluid configuration (fluid velocities) onto geodesics in the diffeomorphism group
(fluid flows). More precisely, at the identity diffeomorphism, we set

exp, : Te D, — 7, exp.tug = y(t), teR @)

where 7(t) is the unique L? geodesic starting from e with velocity ug. As in finite dimensions exp, is a
local diffeomorphism near e by the inverse function theorem. Since M is two-dimensional it is defined
on the whole tangent space, essentially as a consequence of the classical result of Wolibner [47]. In fact,
Shnirelman [41] proved that exp, is a real analytic map provided that the fluid domain is an analytic man-
ifold. As a corollary he recovered the statement that Lagrangian trajectories are analytic functions of time
at fixed labels, which apparently was overlooked but implicit in the work of Lichtensteitﬂ [21], proved first
in the literature by Serfati [37]] and subsequently extended by various authors (see e.g. [9,[15]). He also
showed that streamlines of stationary Euler solutions are analytic curves, extending work of Nadirashvili
[31].

Roughly speaking, conjugate points are the singular values of the exponential map and conjugate vectors
are the corresponding elements of the tangent space. In general, in infinite dimensions one has to contend
with two different kinds of these points depending on whether the derivative of the exponential map fails
to be one-to-one (a monoconjugate point) or fails to be onto (an epiconjugate point). However, while both
species occur along fluid motions in 3D this is not so in 2D hydrodynamics because in this case the L?
exponential map is known to be a nonlinear Fredholm map of index zero, see [13]]. In particular, mono- and
epiconjugate points coincide and therefore display many of the same properties as their counterparts in the
finite dimensional Riemannian geometry - in the sequel we will refer to them simply as conjugate points.
The set of all conjugate points of the identity in &, is called the conjugate locus of e and the set of the
corresponding vectors in T, Z;; will be denoted by Ce.

The Fredholm property of the exponential map on Z,; has several important consequences. Below we
list some of them along with other results that we shall need in what follows.

(i) (The Index Theorem in 2D hydrodynamics) If v(s,t) (—e < s < €) is a variation with fixed ends
of an L? geodesic y(t) from the identity in 9, and V (t) = 0v/0s(0,1) is the associated variation

4A. Shnirelman, private communication.
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field then the first and the second variations of the energy functional read

t=T T
EONV) = Vel ) = [ (VT3 e ®)
0
and
T
") (V.V) = /0 (195 V(120 — (R (Vi 4)3. V) 12 ) dt ©

where R, is the L? curvature tensor along ~y. There is also a corresponding formula for £. The
integral in (9) induces on the space of vector fields on + that vanish at the endpoints, a symmetric
bilinear form called the index form. The maximum dimension of the subspace on which the index
form is negative definite is finite for any finite geodesic segment and equals the number of con-
jugate points to e along ~y counted with multiplicityEl, cf. [29]. Among immediate consequences
is that conjugate points along fluid flows in 2D hydrodynamics are isolated and that flows do not
minimize the L? length past their first conjugate point.

(ii) (Covering properties of exp,) The L? exponential map is a covering space map on the open con-
nected component U C &, of the identity e whose L? diameter is infinite, cf. [29]. While it is
not yet known whether this connected component is in fact the whole group, if resolved in the
affirmative, it could be considered as a hydrodynamical Hopf-Rinow theorem.

A related notion in classical Riemannian geometry is that of a cut point defined as the first point beyond
which a geodesic starting from a given point ceases to minimize the length functional (or the energy func-
tional) among all paths connecting the two points. As such, it always appears before or at the first conjugate
point. The set of all cut points of a given point is called its cut locus. In Chapter 4 of [5], Shnirelman intro-
duced this notion for the L? geodesics. He also called such a point a (first) local cut point if shorter paths can
be chosen arbitrarily close to the given geodesic in the manifold topology. He proved that any sufficiently
long geodesic in @ﬁ(M ) will contain a local cut point if dim M = 3. The argument uses generalized flows
of Brenier, see [40].

Shnirelman also points out that a precise relation between cut points and conjugate points in geometric
hydrodynamics remains unclear. In fact, even in finite dimensions the structure of the cut locus is highly
complicated and nontrivial to describe. In infinite dimensions the difficulties are further compounded. For
example, the known classical proofs of the characterization of a cut point as either the first conjugate point or
the meeting point of distinct minimizing geodesics rely on local compactness and do not carry over directly
to the setting of diffeomorphism groups. Nevertheless, something interesting can be said about these notions
in the 2D case.

(iii) (Non-injectivity of exp, near conjugate points) The L? exponential map is never one-to-one in any
neighbourhood of its conjugate point, cf. [28]. This statement can be viewed as a hydrodynamical
analogue of the classical theorem of Morse and Littauer. It has the following interpretation for
2D fluid motions: in every H* neighborhood of a conjugate point there will be fluid configurations
which can be reached from the initial configuration e by at least two distinct fluid flows in the same
amount of time.

Remark 1. In fact, we can say more. As a simple application of the covering properties (ii) and non-
injectivity of the exp map (iii) we can show that if 7 is the first conjugate point to e on a geodesic ()
in U then there are infinitely many geodesics from e which in any H® neighbourhood of 7 meet another
geodesic in the same amount of time. To prove this one can assume that n = exp,vg is the image in U/ of a
regular conjugate vector in Ce, that is, one that has a neighbourhood in 7, 7;; whose intersection with each
ray from the origin (if nonempty) contains precisely one conjugate vector of the same multiplicity as vy.
For example, all conjugate vectors of multiplicity one are of this type. Using the Index theorem (i) one can
show that the set of all regular conjugate vectors of exp, is a smooth codimension 1 submanifold of T, 7,

5The multiplicity of a conjugate point is the dimension of the kernel of the differential of exp, at that point.
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FIGURE 1. At least two distinct geodesics oy, o2 intersecting near a conjugate point; cf.
Remark |1}

which forms an open and dense subset of the full conjugate locus C., see [23]]. It then follows that we can
pick a sequence vg 5, in C. converging to vg in the H* norm and applying (ii) and (iii) for each n we find
that the L? exponential map cannot be injective near any of the conjugate points 7,, = exp,vo, along the
corresponding geodesics 7, (t) in D

A different result concerning the cut locus and closed geodesics in Z; will be proved in Section@below.
One final fact concerning the L? geodesics in 9, (or equivalently, fluid motions in M) is

(iv) (Absence of self-intersecting geodesics) The result of Ebin [[11] shows that geodesics in @j (M)
cannot have self-intersections at least when the underlying manifold M is the flat 2-torus T? or a
simply connected planar domain with smooth boundary. It also holds for domains that admit at
least one Killing field. It is not known if this property has any global implications for the geometry
of the right-invariant L* metric on 5.

3. A sufficient condition for existence of conjugate points

There are two principal methods for computing conjugate points along geodesics. The first looks for
nontrivial solutions of the associated Jacobi equation that vanish at two distinct points. The second, more
geometric, relies on constructing a one-parameter family of geodesics which come together at two end points
to infinitesimal order. In fact, either method can be used to define a (mono-) conjugate point but neither is
easily applicable in the case of diffeomorphism groups. While they can be used to good effect in certain
special situations, the former typically gets bogged down quickly in complicated calculations and the latter
requires some prior insight into the geometry of the neighbourhood of the geodesic.

We may settle for less and look for a way of detecting conjugate points without trying to precisely locate
them along a given geodesic. Classical Riemannian geometry developed methods to control the metric and
its geodesics by means of suitable curvature bounds. However, standard techniques such as those based
on Rauch’s Comparison theorems are only of limited use in hydrodynamics. For example, it is known that
for any underlying manifold the L? curvature of the group of volume-preserving diffeomorphisms 9, can
assume positive as well as negative signs. In fact, given any u € T, 7, the minimum value of the sectional
curvature on the two-planes containing u is always strictly negative, unless u is a Killing field, in which
case it is zero, cf. [19]; Thm 5.1. In light of this fact we turn elsewhere for help in establishing existence
of conjugate points. One useful sufficient condition can be extracted from the method devised in [27] to
produce the first example of a conjugate point in @j(Tg). This condition was recently revisited and applied

in [43] to zonal flows on an ellipsoid in R®. More precisely, we have
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Theorem 1. Let M be a compact two-dimensional Riemannian manifold. Let ug be a stationary solution of
the Euler equations (4). Suppose that there is v € T 9, with ||v|| 2 = 1 such that

mioY = <[u0,v]-vuO 4 UO'V[UO’ULU>L2 > 0. (10)

Then the geodesic in @ﬁ from the identity e in the direction uy has a conjugate point. Moreover, this
conjugate point must occur at a time t < t, := w+/2/me"".

Remark 2. In fact, as will be seen in the proof below, we have
me®’ = (Re(v,ug)ug, v) 2 — HPe(uo-Vv)H%Q (11

where R, is the L? curvature tensor of 9, at the identity e and P is the projector onto divergence-free
vector fields. Observe that positivity of me"" translates into a strict lower bound on the sectional curvature
away from zero. It is worth recalling the example of a paraboloid of revolution in R? which has strictly
positive sectional curvature but with no uniform lower bound and consequently geodesics emanating from

the vertex have no conjugate points.

PROOF. Let (t) be the one-parameter subgroup in 9,, generated by ug and hence also a critical point of
the energy functional £ with respect to any variation of v with fixed end points. The basic idea is to produce
a vector field along v and using the group structure and some submanifold geometry show that the second
variation of £ evaluated on this vector field is strictly negative.

To this end, recall that on the full diffeomorphism group 2° the L? inner product also induces a
smooth Levi-Civita connection V whose sectional curvature on any 2-plane in 7,2° is completely deter-
mined by that of the underlying Riemannian manifold and given explicitly as the integral over M of its
pointwise sectional curvature R*. Furthermore, since @/j is a smooth submanifold of 2°, the sectional
curvatures of the two groups are related by the L? analogues of the classical Gauss-Codazzi equations. The
derivation is routine as in the finite dimensional case. Specifically, for any right invariant vector fields V'
and W on &, the connections V and V = PV are related by the Weyl-Helmholtz projection P and their
difference is the second fundamental form II of Z;;, namely

(vVW)n = (va)n + Hn(Va W): ne 95 (12)

where (VyW), = (v-Vw)onwith V. =von W = wonand v,w € T.Z;. In particular, we find
that II. (v, w) = Q(v-Vw) is just the polarization of the pressure gradient term (see (6) above). Inserting
formula (with w = wg) into the expression for the curvature tensor R, of 2° and taking the L? product
with v we obtain

<Re(v7u0)u07 U>L2 - <7§,3(U, UO)UO7U>L2 + <IIe(u07 uO)aIIE(va)>L2 - <II€(u07 U),IIe(U,U0)>L2
= (R (v,u0)u0,v) > + (Qe(uo-Vuo), Qe(v-Vv)) 5 — || Qe(uo-Vv) ‘i? (13)

since the second fundamental form II is symmetric in its entries and takes values in the L? orthogonal
complement of Te.@; in T, 9°%.
The remainder of the argument rests on establishing the following two statements.

(1) (index estimate for non-conjugacy) Given any T > 0, if ~y(¢) has no points conjugate to e in the
segment [0, T'] then the index form £”(+) is nonnegative on any vector field on -~y that vanishes at
the two end points.

(2) (negativity of index form) There exist t. > 0 and a vector field V' (¢) along ~(¢) such that V'(¢)
vanishes at ¢ = 0 and ¢t = ¢, and " (v)(V,V) < 0.

Regarding (1) recall that d exp, (tug) is a bounded Fredholm operator of index zero and so the assump-
tion on conjugate points implies that it is in fact an isomorphism of the Banach spaces Ty, 1.7, ~ Tc %},
and 17, Z,, for each 0 < ¢ < T Therefore, given any vector field Z (t) vanishing at the end points of the
segment ([0, T']) one can construct a variation family vs(t) = exp,sZ(t) of 7(t) for sufficiently small
values of the parameter s whose infinitesimal variation field is precisely the given vector field Z(t). A direct
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calculation shows that the energy functional satisfies £(v,) > £(7y) for all sufficiently small s. The calcula-
tion relies on an L? version of the Gauss Lemma which follows in turn from the first variation formula (8)
as in the classical Riemannian case. For further details we refer to [27].

Of more interest to us is the second statement (2). Given v in T, .@/j satisfying the condition in with
me = me®” > 0, we set t, = m1/2/m, and using right translations in 9, (given by compositions with
diffeomorphisms) define a vector field V' (¢) = f(t)v o y(t) where f(t) is a smooth nonzero function with
f(0) = f(t.) = 0. Differentiating V'(¢) along the geodesic, integrating by parts and using right invariance
of the L? metric we find

IV4VIIZ2 = F20llZe + ] Pe(uo- V)72 (14)
Substituting into (9) and employing the Gauss-Codazzi equation together with the fact that P, and
Q. are L? orthogonal projections we obtain

te
V)= [ (7l + PP Vo) s = (Relo. w)uo. o))

te
= / (leH,UH%Z - f2<RM (’U,UO)'LLU, U>L2 - f2<U0'VU0,U'VU>L2 + fQHUOVUH%?)dt
0

since wy is a stationary Euler solution, so that P,(ug-Vug) = 0. Next, expressing the curvature term with
the help of the covariant derivative of the Riemannian metric on M we have
<RM (v, up)ug, v> <V{,”V§ffouo — VM Mug — VM g, U>L2 (15)

L2 = [uo,v]
where, for simplicity, we have used the alternative notation VX v = u-Vv. Finally, recalling ||v||;2 = 1 and

manipulating the terms on the right hand side we find

te le
")V, V) Z/ (f/QHU”Zm _f2<[u0717]'vu()+UO'V[U070]7U>L2>dt:/ (f? — mef?)dt.
0 0
The proof is completed by taking f(¢) = sinty/m./2. For more details we refer once again to [27]; cf.
Lemmas 2 and 3. n

4. Existence of conjugate points along Kolmogorov flows

In this section, we establish one of our main results which concerns the plethora of conjugate points in
2;5(T2%) where T3, = [0,27/a) x [0, 27) for @ € R is the flat, rectangular torus. Our main theorem will
follow as an application of the machinery of §3| As discussed in the Introduction, we focus here on finding
conjugate points within the family of Kolmogorov flows - a problem for investigation proposed by Arnold
(Problem 1970-6; [3]). Kolmogorov flows are the eigenfunctions of the Stokes operator A = — P, A on Ti:
for some A > 0 a non-trivial vy must satisfy

A?))\ = )\U)\. (16)

Note that v is an eigenfunction of with eigenvalue A if and only if ) is an eigenvalue of the (negative)
Laplacian with a (mean-zero) eigenfunction ¢,. Indeed, for an eigenfunction of the Laplacian it is easy
to see that the velocity field vy = V¢, where V- = (—0s,0,) is eigenfunction of the Stokes operator.
On the other hand, if vy is an eigenfunction of A, then since it is divergence-free we may write vy =
V-+gy, with fT% gn = 0. Then, since v satisfies together with the fact that [A, P.] = 0 we obtain
V4 (Agy + Agy) = 0. Taking the curl, we find A(Agqy + Agy) = 0 which implies —Agy = Agy since gy is
mean zero. Consequently, the spectrum is

o(A) = {(cm)2 +m?: n,meN, (n,m)# (0,0)}. (17)

There are results about non-existence of conjugate points in this family. For example, the unidirectional
Kolmogorov flows, i.e. k1, ks € Z

cos(kyax + kaoy) or sin(kiox + koy) (18)
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do not possess conjugate points. These flows are characterized within the Kolmogorov class by having
straight streamlines (in contrast with a typical member of the family which has cellular structure, see Figure
[Bh). In this case, Arnold [2] proved that the sectional curvature was non-positive, see also Lukatski [24].
The result when either kq or ks is trivial follows from prior work on plane parallel flows [26].

In the following theorem, we compute the quantity m,. (cf. equation (10)) in a particular direction for
a large class of Kolmogorov flows corresponding to eigenfunctions ¢y = — cos(nax) cos(my). We find it
to be positive for infinitely many n, m implying that sectional curvatures in this direction are positive and
strong enough to ensure existence of conjugate points by Theorem [I] We have

Theorem 2 (Conjugate points in @;(Ti)). Each Kolmogorov flow defined by the stream function
Y(x,y) = — cos(nax) cos(my) (19)
for any n,m € Z such that
either 3+ 11m? 4+ 6m* + (3 —2m*)n%a® <0 or 3+ 110 +6nt + (3 —2n*)m?a™2 <0 (20)
possesses a conjugate point.

Remark 3. As &« — oo or @ — 0, the condition becomes n # 0 and |m| > 2 and m # 0 and |n| >
2 respectively. Therefore the range where conjugate points can be found extends to (nearly) the entire
admissible range of (n,m) with the notable exception of points (n,m) = (n,+1) and (n,m) = (£1,m)
respectively. The ranges in is visualized in Figure [2]in two cases.

FIGURE 2. Contour plots of m.""(«) restricted to positive values (smaller values in blue

and larger in red). On left: filled in regions represent those for which (n,m) € Z? satisfy
the constraints (20). On right: filled regions contain (n,m) € Z? satisfing with a = 3.

PROOF. Theorem [2] follows from the general method described in In particular, with the steady state
ug = V1) where 1 is given by with € R, we define the test stream function

d(x,y) = —2cos(nax + y) cos(my), (21)
and v = V1 ¢. See Fig. for a visualization of the streamfunction plot of the steady state and the test field.

Remark 4. Some heuristic discussion of the choice of the test field might be helpful. Roughly, to
identify a point on a geodesic as a conjugate point one looks for a shorter path connecting it to the identity.
Now, the test field chosen above is nothing but a shearing of the original steady state (19). Shearing of a
coherent structure is a mechanism that reduces its energy, see [45]. Thus, this test field slightly perturbs the
steady state towards a geodesic with lesser “action” (energy) while at the same time maintaining enough
structure of the steady flow without destabilizing it. There is some action required to perturb to this state
but over time this nearby geodesic of lesser action will “catch up” to the original until a resonance, i.e., our
conjugate point, occurs.
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FIGURE 3. Contour plot of streamfunction 1) of [27] given by withn = 6 and m = 2
is on the left. On the right, the corresponding test streamfunction ¢ given by is shown.

With this choice, a lengthy but straightforward calculation yields

w00 () n2a?\ 3+ 11m? + 6m* + (3 — 2m?)n2a?
o) = — .
c ]2 (m2 + n2a2)(1 + m? + n2a?)

m (22)

The first condition follows directly from the requirement that m.°"(«) > 0. The second condition in
comes from using the test stream function
o(x,y) = —2 cos(nax) cos(my + ax), (23)

and v = V+¢, which yields

o (a) = (o) 3+ 1n? + 6nt 4 (3= 2nP)mia”? o4
c 872 (m2 +n2a2)(1 +m2 +n2a2)
Applying Theorem [I]we deduce the existence of conjugate points. 0

Theorem 2| provides an infinite family of stationary Euler states on the flat two-torus with arbitrary
aspect ratio which possess conjugate points. Recall also from the above discussion that Kolmogorov flows
having very special unidirectional structure possess no conjugate points. We suspect that these flows are
exceptional and that all other Kolmogorov flows possess conjugate points.

Question 1. Do all Kolmogorov flows on T? which are not unidirectional possess conjugate points?

We add that it may be of interest to investigate Kolmogorov flows on more general domains (for ex-
ample, the disk), which we also expect to generally possess conjugate points. In fact, there is interesting
numerical work when the domain is the unit square which suggests the existence of cut points along the first
eigenfunction of the Stokes operator [22].

5. Non-existence of conjugate points along Arnold stable flows

In this section we describe a class of steady states called Arnold stable flows. Recall that any stationary
solution of the Euler equations is a critical point of the kinetic energy. The second variation of £ on tangent
spaces to the coadjoint orbit O,,, consisting of vector fields w that are isovortical to uy was computed by
Arnold [2] to obtain a criterion for Lyapunov stability of steady fluid flows in the mixed “energy-enstrophy”
norm” ||v||z2 + |lcurlv|| ;2 under sufficiently small perturbations of the velocity field. Specifically, it is
found that such flows can be constructed from solutions of the problem

AYp=F@) i, (25)
1 = (const.) on OM, (26)
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when F' enjoys certain properties described below and where A is the Laplace-Beltrami operator of the
Riemannian metric g on M. First note that the velocity is u = V11 is automatically a solution of the Euler
equation on M with vorticity w = F'(1). The properties of F' which ensure nonlinear stability are either

— M <F'@)<0 or 0<F(¢)<oo Q7

where A\; > 0 is the smallest eigenvalue of —A in M, see [2] or [5]; Thm. 4.3. Here we provide a simple
argument that this stability forbids conjugate points in some settings.

Theorem 3. Let M C R2 be the periodic channel, the annulus or the disk with the Euclidean metric. Then
no Arnold stable flow on M has a conjugate point.

PROOF. The proof combines some known results. We first recall the following rigidity result:

Lemma 1 (Prop 1.1 of [8]). Let (M, g) be a compact two-dimensional Riemannian manifold with smooth
boundary OM. Suppose that there exists a Killing field K for g which is tangent to OM. Let uw = V1) €
C?(M) be an Arnol’d stable state. Then L) = 0 where Ly is the Lie derivative along K.

Lemma |1|immediately implies that on the channel with K = e,, all Arnold stable states are shears
u = v(x2)e,, and on the disk (or annulus) with K = ey all Arnold stable states are radial u = v(r)ey.
With these results in hand, we can now appeal to the following two results

Lemma 2 (Corollary 6.1 or [26]). If (M, g) has nonpositive sectional curvature then there are no conjugate
points along any pressure constant geodesic in @,‘j(M ).

Lemma 3 (Proposition 6.1 of [33]). If (M, g) is flat then every u = v(r)eqy defines a nonpositive L?
curvature operator along the corresponding geodesic in Qj(M ).

Since plane-parallel (shear) flows on the channel are pressure constant and the channel with the Eu-
clidean metric has zero curvature, Lemma 2 applies. Lemma 3] directly applies to radial flows on the disk or
annulus with the flat Euclidean metric. Since positive curvature is a necessary condition for conjugate points,
these flows must therefore be free of conjugate points. These two observations conclude the proof. O

We would like to give some physical intuition behind the lack of conjugate points. Consider a steady
state which is not isochronal, that is the travel time of particles around streamlines is not everywhere con-
stant. Two nearby tracer particles in a ‘shearing’ region will separate and a material curve connecting them
will be ever elongated with length proportional to the time elapsed. On the disk or annulus, this curve would
become indefinitely wound over time. This stretching represents a strong form of Lagrangian instability,
and is an enemy for having conjugate points. Intuitively, Arnold stable flows cannot have conjugate points
because their velocity (in fact, vorticity) field is structurally stable to nearby perturbations under the Eu-
ler dynamics so that shearing regions remain. As such, the stretching mechanism discussed above should
persist. Theorem |3| establishes this for some simple geometries and strongly makes use of the structural
rigidity of Arnold flows on those domains. We believe that this is a more general property of Arnold stable
solutionﬂ at least on flat manifolds, and ask more generally:

Question 2. Let (M, g) be a compact two-dimensional Riemannian manifold with smooth boundary O M.
Can any Arnold stable solutions on M have conjugate points?

%In 3D hydrodynamics both cut and conjugate points are plentiful. On the one hand (local) cut points exist on any sufficiently
long geodesic [40]. On the other hand conjugate points cluster or even densely fill out finite geodesic segments [13], [35]]. This is
in sharp contrast with 2D hydrodynamics and it is tempting to relate this phenomenon to the failure of Arnold’s stability criterion
due to indefiniteness of the quadratic form [36]. In fact, it can be show that (with v € T.Z;;(M) and ||v||3> = 1) we have

me®? = —2Ey (w) + ([ad,, ad}]uo, uo) , »

where w = ad}uo, which may prove useful in investigating this issue.
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6. Cut points, isochronal flows, and closed geodesics

Closed geodesics are those whose initial and final points and tangent vectors coincide. In geometric
hydrodynamics they correspond to flows which have periodic-in-time Lagrangian flowmap. A special class
of these which correspond to stationary Euler solutions goes by the name of isochronal flows. It is easy to
see that an isochronal Euler flow on a simply connected domain must possess a stream function with a single
elliptic stagnation point whose level sets foliate the domain by (topological) circles. All orbits of particle
trajectories are thus periodic in time and the isochronality condition means that the period of rotation 7'(c)

for c in the range of v defined by
d/s
T(c):= §£ —_—, (28)
© (w=c} IV

is independent of ¢, the streamline traversed.

Example 1. An example of an isochronal flow is given by rotating the unit sphere S? about the z-axis in R3.
As described in Section [3] we can embed this flow in a one-parameter family of rotations g, (¢). Differenti-
ating with respect to the parameter s we obtain a Jacobi field along the geodesic in @,‘j(SQ) corresponding to
the original rotation which vanishes at ¢ = 0 and ¢ = 2, see [26]. Thus, we find an example of an isochronal
flow where the first conjugate point coincides with the cut point. However, as in finite dimensions, we expect
such situations to be rather exceptional.

Example 2. Another interesting explicit set of examples corresponds to elliptical vortices with constant
vorticity, see [30]. Consider an elliptical domain with major axis ¢ > 0 and minor axis b > (. Let the
stream function of the velocity be given by v (z,y) = 3((z/a)?* + (y/b)?). This defines a non-penetrating
Euler solution with u = V1 of constant vorticity w = At = (a? + b%)/a’b%. A short computation shows
that the travel time 7'(c) = 2mab is independent of c¢. Observe that any isochronal stationary flow on a
simply connected planar domain possesses a cut point: two minimizing L? geodesics connecting two states
are obtained simply by rotating left or right (switching overall direction of the velocity).

As a special case of more general results of Preston [33]] (Proposition 6.1), the area-preserving dif-
feomorphism group at the radial member (occupying the disk or annulus) of the family of elliptical vortices
above has non-positive curvatureﬂ This precludes the existence of conjugate points thus yielding an example
of an isochronal flow possessing a cut point while being free of conjugate points.

Interestingly, as soon as a simply connected planar domain is not radially symmetric, Theorem 3.3 (see
also Proposition 3.1) of [33] implies that the sectional curvatures along any stationary state with isolated
stagnation points cannot be all non-positive. In particular, given a stationary state « = V- on such a
simply connected planar domain M, the sectional curvature is found to be positive in the direction w = u.
An explicit computation gives

(Re(uy w)u,w) ., = || Pe(tp u-Vu) ||, (29)

which vanishes if and only if u satisfies u-V|u|?, making |u| constant on streamlines (in particular, along
the boundary). It then follows that the domain is a disk or annulus. See also Theorem 1.9 of Hamel and
Nadirashvili [17].

In light of our focus, it is natural to ask whether conjugate points can be found in these directions. A
simple calculation for = V- and w = 1)u shows that

mi® = || Pe(p wVau)||32 — || Pe(u-V (¥u))||72 = 0 (30)

since u-V = 0. Thus, we cannot apply Theorem|I]to conclude that w = tu is a conjugate vector. We also
cannot conclude from the above that there do not exist conjugate points in this direction. We therefore ask

"In fact, the curvature is identically zero. This follows from the fact that the solid body rotation on the disk has velocity which
is an isometry of the Euclidean space, so that the sectional curvatures must be non-negative [26]]. Combining these two facts gives
the claim.
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Question 3. Are vortices with constant strengths on elliptical domains free of conjugate points?

If the answer is in the affirmative then we will have identified a family of steady states that have cut
points that are not conjugate points and which do not correspond to isometries of the underlying manifold
M. One may wonder more generally if all isochronal flows on two-dimensional compact manifolds with
boundary are free of conjugate points in Z;;.

The example of a rigid rotation of S? in Example |1|shows that the conjugate and the cut loci of the
identity e in @i intersectlf' while the example of the unit disk in Example M shows that the two geometric no-
tions are essentially different and may therefore be describing different, though related, phenomena in fluid
motion. This point is further amplified in the statement of the next theorem whose proof is a modification
of an old argument of Klingenberg [20]].

Theorem 4. Let ) € U be a fluid configuration which lies on the cut locus of e whose L? distance to e is
the smallest among all such points for which there are (at least) two distinct vectors of minimal L* norm in
the fibre exp_ ' (n). If ) is not monoconjugate to e along any L? geodesic then it is a midpoint of a closed
geodesic based at e.

PROOF. Let v1 and vy be two distinct vectors in exp_ ! (n) of the smallest norm, say ||v1]|z2 = ||Jv2|z2 = 1
and let v1(t) = exp,tvy and Y2(t) = exp.tvs be the corresponding (minimal) geodesics joining e to 7
in Qj(M ). This implies that  must be the first cut point of e along each geodesic (by any reasonable
definition).

We claim that 47 (1) = —42(1). Observe that since 7 is not monoconjugate to e along either geodesic
there exist disjoint open sets V1 and Vs in T, 7, containing 1 (0) and 42(0), respectively, such that exp, |y,
and exp,|y, are diffeomorphisms onto some open neighbourhoods W, and W5 of 1. This follows from
the inverse function theorem and the fact that exp, is a Fredholm map of index zero, which implies that its
derivative d exp, (v;) is a continuous linear bijection and hence an isomorphism of Banach spaces T 7;; and
Texp,v; @j foreach: =1, 2.

71

Y2
€

FIGURE 4. Illustration to the proof of Theorem Grey dashed lines are perpendicular to
the vectors 1 (1) and ~2(1).

Now, suppose that 41 (1) # —42(1). Then we can pick a vector X in T;, %, such that (X, 41 (1)) 2 < 0
and (X, %2(1))z2 < 0 and let n(s) be the L? geodesic with (0) = 7 and 17(0) = X. It follows that for a
sufficiently small s > 0 the point 7)(s) = exp, s X must belong to WW; N W; so that

wi,s = expelyy, (n(5)) # expely,, (n(s)) = was

8There are examples of compact Riemannian manifolds whose conjugate and cut loci are disjoint, cf. [46].



14 THEODORE D. DRIVAS, GERARD MISIOLEK, BIN SHI, AND TSUYOSHI YONEDA

in T, Z,,. Therefore, we can define two one-parameter families of L? geodesics 71 (s,t) = exp,tw; s and
Y2(s,t) = exp,tws s from e to 7)(s) such that v, (0,t) = 1 (t) and 2(0,t) = ~2(t). From the first variation
formula for the L? length functional (alternatively, one could work with the energy functional) we obtain

d . 1 [, dm . t=1 b dy .
=] ) = H%(O)Hm{ 00Oy~ [ (FE0.0.Vsiin0)
= (X, %1(1))r2 <0
and similarly d%‘ _,L(72(s)) < 0so that (for sufficiently small s > 0) we have e.g.,
L(n(s)) < L(va(s)) < L) = L(72)

which implies that there must be a cut point along 2 (s) that lies somewhere between e and 7(s). However,
since £(72(s)) < L(71) this contradicts the fact that 7 is a point which realizes the L? distance from e to its
cut locus.

Finally, the theorem follows from the fact that there are no self-intersecting L? geodesics in @5(M )s
see (iv) above and also [42].
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