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Early-time behavior of quantum subharmonic generation

Yunjin Choi ,* Boerge Hemmerling , Shan-Wen Tsai, and Allen P. Mills, Jr.

Department of Physics and Astronomy, University of California Riverside, Riverside, California 92521, USA

(Received 4 February 2021; accepted 31 March 2021; published 28 April 2021)

A few years ago Avetissian et al. [Phys. Rev. Lett. 113, 023904 (2014); Phys. Rev. A 92, 023820 (2015)]

discovered that the exponential growth rate of the stimulated annihilation photons from a singlet positronium

Bose-Einstein condensate should be proportional to the square root of the positronium number density, not to

the number density itself. In order to elucidate this surprising result obtained via a field-theoretical analysis, we

point out that the basic physics involved is the same as that of resonant subharmonic transitions between two

quantum oscillators. Using this model, we show that nonlinearities of the type discovered by Avetissian et al.

are not unique to positronium and in fact will be encountered in a wide range of systems that can be modeled as

nonlinearly coupled quantum oscillators.
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I. INTRODUCTION

Creating laser radiation from γ rays by means of the stim-

ulated annihilation of a Bose-Einstein condensate (BEC) of

positronium is an open problem in the field of atomic physics,

and is generally considered a daunting challenge since the

required large number densities of condensed positronium

are not readily available in the laboratory. Ever since Dirac

[1] used a calculation of the stimulated [2] annihilation rate

to find the electron-positron annihilation cross section, and

for nearly a century since [3–10], researchers have assumed

that the exponential growth rate G of the number Nγ of

stimulated annihilation photons of a gas of ultracold singlet

positronium (Ps) atoms would be the stimulated annihilation

cross section σ = 2π (h̄/mec)2 = 0.936 × 10−20 cm2 times

the number density nPs of the Ps atoms times the speed of

light,

G =
1

Nγ

dNγ

dt
= nPsσc. (1)

Surprisingly, Avetissian et al. [11,12] recently discovered that

the growth rate of the stimulated emission of annihilation

photon pairs from a dense collection of BEC singlet Ps atoms

is in fact proportional to the square root of the Ps number

density,
√

nPs. An important implication of this discovery is

that the growth rate of the stimulated annihilation for a Ps

BEC should be comparatively large for the relatively small

values of nPs that could be experimentally available in the

near term. A complementary implication is that the γ -ray

gain per unit length of a high-density Ps BEC will not be

as large as naively thought before. Here we demonstrate that

this interesting nonlinear dependence on nPs is not an isolated

phenomenon peculiar to positronium, but may also occur for

other systems in which energy-conserving transitions can be
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modeled by the conversion of k initial quanta of a first os-

cillator Oa to l final state quanta of a second oscillator Ob.

The particular case of the stimulated annihilation of Ps is

represented by k = 1 and l = 2.

Avetissian et al. have extended this type of system to

include the generation of coherent photon-phonon radiation

in an exciton BEC [13], and have also studied the rate of

multiphoton excitation and harmonic generation in the QED

vacuum [14,15]. Examples of other processes that should

exhibit some type of early-time nonlinear gain behavior,

depending on the values of k and l , include parametric

subharmonic frequency generators [16–19], coupled asym-

metric quantum wells [20], subharmonic generators using

single atoms [21], nonlinearly coupled micromechanical res-

onators [22], quantum parametric oscillators with trapped ions

[23,24], and radiative decay of a metastable BEC of atoms

[25]. The most well-known case of harmonic generation is

photon up-conversion [26,27], the conversion of two photons

(k = 2) to a single photon of half the wavelength (l = 1). It

is to be noted that the peculiar early-time behavior we are

considering may not have been noticed in these systems if

the goal was simply to generate high-amplitude harmonics

or subharmonics. Careful experiments to examine the turn-on

behavior of these systems would be illuminating.

In what follows, we demonstrate that the stimulated emis-

sion of pairs of annihilation γ -ray photons with equal energies

and opposite momenta along one particular direction from a

Ps BEC can be simply modeled by two coupled quantum me-

chanical oscillators to yield the same dynamics as predicted by

Avetissian et al. Our result shows that the emission behavior

is reproduced and does not require a full treatment of the

momentum dependence of the Ps atoms, which is considered

in the full quantum field theory treatment.

In particular, the first oscillator Oa may represent a BEC of

singlet Ps atoms. Oa then has a natural frequency 2ω0 with

2h̄ω0 ≈ 2mec2 being the energy of a singlet Ps atom. The

initial occupation number Na of Oa is very large, Na � 1, and

is equal to the expectation value of the number operator in
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the Ps BEC. Oa is coupled to a final state oscillator Ob with

l = 2, which is initially in its ground state. The occupation

number Nb of Ob is the number of annihilation photons cor-

responding to a particular pair of opposite momenta modes of

the annihilation photon field. There is no need in this model

to have physically separate oscillators for the two annihilation

photons with frequencies ω0. The second oscillator is coupled

to the first subharmonic of the first oscillator. In the case of

Ps two-photon annihilation, the excitation rate of the driven

subharmonic quantum oscillator is proportional to
√

Na. We

now outline the mathematical proof of this assertion and ex-

amine the generalization of this model to higher-order coupled

oscillators.

II. GENERALIZED COUPLED HARMONIC OSCILLATORS

We consider a harmonic generation process in which the

occupation number Na of a first highly excited oscillator Oa

decreases by k while increasing the occupation number Nb of

a second oscillator Ob by l . To work out the dynamics of this

system, we introduce the Hamiltonian of this system in second

quantized form,

Ĥ = εaâ†â + εbb̂†b̂ + g(âk b̂†l + â†k b̂l ), (2)

where we employ units for which h̄ = 1 with k and l being

integers. The bosonic operators â and b̂ are the annihilation

operators of Oa and Ob, respectively. The operators have nor-

malized commutation relations, [â, â†] = 1, [b̂, b̂†] = 1. The

Hamiltonian represents generalized down-conversion for k <

l , up-conversion for k > l , and ordinary resonant energy trans-

fer for k = l . In the case of positronium, where k = 1 and

l = 2, the coupling constant in Eq. (2) is the singlet positro-

nium annihilation rate, g = α5
0mec2/2h̄ ≈ 8 × 109 s−1, where

α0 is the fine-structure constant.

We begin with an initial state at time t = 0,

|�(0)〉 = |α〉a|β〉b, (3)

in which the fundamental mode oscillator Oa is prepared

in a coherent state |α〉a, where â|α〉a = α|α〉a and |α〉a =
e−|α|2/2 eαâ† |0〉a. In view of the largeness of the initial occupa-

tion number, it is convenient to employ coherent states which

are optimally suited to taking semiclassical limits. However,

we would get the same results if we had started with a Fock

state, which is an eigenstate of the number operator. Again

for the specific case of Ps, at high densities nPs > 1020 cm−3

collisions will quickly drive an initial Fock state into a coher-

ent state [28]. In any case, the initial occupation number of

Oa may be approximated as Na = 〈α|n̂a|α〉a = 〈α|â†â|α〉a =
|α|2. The second oscillator Ob is prepared in a number state

|β〉b, where the initially prepared average number of bosons

of Ob is Nb(0) = β.

To investigate the dynamics of the bosonic decay process,

we use the Heisenberg representation, where the time evo-

lution of an operator L̂ is given by the equation ∂L̂/∂t =
i[Ĥ, L̂]. We are interested in the time dependence of the ex-

pectation value Nb of the occupation number operator of Ob,

n̂b = b̂†b̂, for which the time derivative is given by

dn̂b

dt
= i[Ĥ, b̂†b̂] = −2glŷ, (4)

where we have introduced the Hermitian operators x̂ and ŷ,

x̂ =
1

2
(â†k b̂l + âk b̂†l ), (5)

ŷ =
1

2i
(â†k b̂l − âk b̂†l ), (6)

from the definition of â†k b̂l = x̂ + iŷ for simplicity. To solve

the differential equation (4), we use the following derivatives:

dŷ

dt
= δε x̂ + g[âk b̂†l , â†k b̂l ], (7)

dx̂

dt
= −δε ŷ, (8)

where we define the resonance detuning δε = εak − εbl of

the transition from k bosons of Oa to l bosons of Ob. By

combining the two equations (7) and (8), we investigate the

characteristics of the dynamics of the number operator n̂b of

Ob for specific cases of l and k.

A. Case l = 1

This case shows up-conversion such that k bosons of Oa

combine to generate a single boson of Ob having k times

higher energy. We then have the following differential equa-

tions:

dŷ

dt
= δε x̂ + gn̂k−1

a (k2n̂b − n̂a). (9)

For our case of a heavily populated initial state with mean

field α, we approximate the operators â, â† by c numbers

α, α∗ to decouple the two fields â and b̂. The solution for

the average number of generated bosons, Nb(t ) = 〈n̂b(t )〉,
can be obtained with the initial conditions 〈ŷ(0)〉 = 0 and

〈dŷ/dt〉|t=0 = −gNk
a :

Nb(t ) =
2g2Nk

a

C1

(1 − cos(
√

C1t )) + β, (10)

where we define C1 = δ2
ε + 2kg2Nk−1

a and are assuming Na �
1. We see that for short times the occupation number of Ob

is proportional to the mean occupation number of Oa to the

power k times (
√

C1t )2. This is precisely what we ordinarily

see for the coherent generation of the kth harmonic of a

fundamental oscillator, no matter what the value of k may be

so long as l = 1.

B. Case l = 2

For any l = 2, regardless of the specific value of k, we

encounter a generalized version of the type of nonlinearity

discovered by Avetissian et al. [11,12]. We rewrite the Eq. (7)

as follows:

dŷ

dt
= δε x̂ + g

{

[âk, â†k]
(

n̂2
b − n̂b

)

− 2(1 + 2n̂b)â†k âk
}

. (11)

When we introduce the semiclassical approximation for large

Na, we get the solution for Nb by combining Eqs. (4), (8),

and (11):

d2ŷ

dt2
= −δ2

ε ŷ + 16g2Nk
a ŷ = C2ŷ, (12)
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where C2 = 16g2Nk
a − δ2

ε . The generalized solution for ŷ is

ŷ = Âe−
√

C2t + B̂e
√

C2t . (13)

To find the coefficient operators Â and B̂, we use the initial

conditions of x̂ and ŷ such as 〈ŷ(0)〉 = 0 and 〈x̂(0)〉 = 0. We

also have
〈

dŷ

dt

〉

t=0

= −2gNk
a (1 + 2β ). (14)

The expectation values of the coefficient operators are thus

〈Â〉 = −〈B̂〉 = gNk
a (1 + 2β )/

√
C2. When we substitute the

solution of ŷ into Eq. (4) we find

Nb(t ) =
4g2Nk

a (1 + 2β )

16g2Nk
a − δ2

ε

(e
√

C2t + e−
√

C2t − 2) + β. (15)

This result gives the expectation value of the number of gen-

erated bosons as a function of time when the outgoing boson

state is initially prepared in a Fock state. If the initial state of

Ob is prepared in any arbitrary state, we can simply replace

β → 〈β|n̂b|β〉b.

Note that the initial boson number β appears in front of the

exponential functions, and hence it does not affect the expo-

nential growth rate. However, the output intensity is linearly

dependent on the number of bosons in the initial state, a direct

consequence of the presence of the commutator in Eq. (7).

We thus expect that in the simple case of zero detuning δε = 0

the output intensity at any given time will be proportional to

1 + 2β.

An interesting result comes from the appearance of k only

in the power of the initially prepared particle number of Oa. In

our calculation, we have simplified the real process involving

a Ps BEC by ignoring the momentum dependence of the

bosons in Eq. (2). If we consider the process including the

phase-space integration as in Ref. [11] we would find that for

the case of zero detuning, δε = 0, the exponential growth rate

satisfies G ∝
√

nk
a from the definition of Eq. (1). Moreover,

when we consider the outgoing bosonic pairs in the different

modes, we can check that the outgoing pairs are not coherent

with one another and so the different modes are independently

growing.

For this case with k = 1, Eq. (15) above models subhar-

monic generation or down-conversion in which one boson

with higher energy is converted into a pair of bosons. This

equation which, in the case of a Ps BEC, concerns only a

single mode of the final boson state, also exhibits precisely

the same time dependence as Eq. (15) of Ref. [11]. The

exponential growth rate results from the positronium atoms

forming a BEC. At higher and higher densities, nPs > 1021

cm−3, the condensate fraction will decrease first due to spin

exchanging two-body collisions, then due to the formation of

positronium molecules via three-body collisions, and finally

due to the formation of an electron-positron plasma for nPs >

1022 cm−3 [29,30]. At the highest densities the process will

be the generation of a pair of bosons from two independent

fermions with a gain linearly proportional to the density [31].

For k = 2, l = 2, which is the generation of one pair of bosons

from another pair of bosons, the gain scales as Na as one would

expect.

The above discussion shows that we can indeed seed one

of the modes of a Ps BEC represented by setting β = 1 cor-

responding to a single external on-resonance γ photon. In

practice the seeded mode might be difficult to detect exper-

imentally since it will only be three times more intense than

the plethora of spontaneous modes that have β = 0. On the

other hand, it could be practical to seed one Ps BEC with

the large spontaneous output from a nearby collimated Ps

BEC to produce a powerful directional beam of photons [11].

However, even if the Ps density were greater than 1020 cm−3

such that the naive stimulated annihilation gain of Eq. (1)

would appear to be greater than the prediction of Eq. (15),

the remarkable fact is that this channel, which is linear in Na,

is not present.

C. Case l � 3

The situation for l � 3 models the generation of several

lower-energy bosons starting from k bosons. In this case, Eq.

(7) contains higher powers of b̂, and the differential equations

would likely have to be solved numerically even with the

semiclassical approximation. However, we may introduce the

Schrödinger picture to understand the growth rate of harmonic

generation for arbitrary l . The time-dependent quantum state

is written as

|�(t )〉 = e−iĤt |�(0)〉.

To simplify the calculation, we take the initial state of Ob

to be the vacuum state, β = 0. As before, we consider the

initially prepared bosons to have a large population so that

the mean-field approximation applies. The expectation value

of the boson number operator n̂b(t ) is then given by

Nb(t ) 

(l − 1)!

l

[

t2C̄

2!
+

t4

4!

{

C̄2Dl − C̄δ2
ε

}

]

, (16)

where we consider the small time approximation gt � 1, and

define the two coefficients,

C̄ = 2l3g2Nk
a , (17)

Dl =
(2l )! − 2(l!)2

l! l3
. (18)

Note that Nk
a in Eq. (17) is from the approximation

∏k−1
i=0 (Na − i) 
 Nk

a for large initial boson number Na. For

l = 2, we have seen that C̄ = C2 and D = 1, so Eq. (16)

becomes the expansion of 1
2
(cosh(t

√
C2) − 1) which is the

same as the small time approximation of Eq. (15) for the case

of zero detuning, δε = 0. However, if either time increases

sufficiently or for large l , Nb does not behave as the cosh

function of Na and only a numerical solution is possible. This

result shows that the expectation value of the number operator

initially grows as approximately g2t2Nk
a .

We have already seen that, for conversion of any number

k of input quanta to a single output quantum (l = 1), the

number of output quanta is proportional to the kth power

of the number of input quanta times 1
2
C1t2, as expected for

ordinary frequency doubling, tripling, etc. It is conversion to a

number l > 1 of output quanta where we encounter exponen-

tial growth of the output with a rate proportional to the number
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FIG. 1. The time dependence of the expectation values of the

occupation number, Nb(t ), with Nb(0) = 0, are shown for different

values of k with l = 2 when the two different initial values (a)

Na = 10 (small Na) and (b) Na = 69 (large Na) are given. The plots

show the normalized scale, Nb/Na, and compare the analytic approxi-

mations from Eq. (15) (star-marked green curves) with the numerical

results (blue curves without star markers).

of input quanta to the power k/2,
√

Nk
a , including the case of

the coupled oscillator model for the stimulated emission of a

Ps BEC when k = 1 and l = 2.

In Fig. 1 we compare the expectation values of the oc-

cupation number Nb as a function of time, predicted by the

analytic approximations [Eq. (15)], and the numerical results

from the Schrödinger picture for both small and large values

of Na. Both of the plots show that Nb begins by increasing

exponentially, but the numerical result shows it converges

to 2Na/k after the oscillations have damped out. As Na in-

creases, the gap between two curves (the star-marked and

plain curves) becomes narrower, while the two curves start to

separate earlier. When Na increases, C̄ in Eq. (16) increases,

the fluctuation frequency becomes bigger, and the analytic

approximation works only for smaller t .

III. CONCLUSION

We have presented a quantum analysis of the early-time

behavior of sub- and superharmonic stimulated emission by

modeling the conversion of k initial quanta of an oscillator

Oa, to l final quanta of Ob. We have shown that the number

of final quanta, l , determines the growth behavior of the ex-

pectation value of the number of generated bosons, while the

number of initial quanta, k, determines the power of the initial

bosonic number in the equation for the growth rate. We have

demonstrated that the result of Avetissian et al. is modeled

by the case k = 1 and l = 2. The fact that our results are

applicable to any physical system which can be represented as

a pair of coupled oscillators thus helps to place the Avetissian

et al. discovery into context in the broader field which it has

founded.
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