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Abstract—More electric aircraft (MEA) has become the trend
of future advanced aircraft for its potential to be more efficient
and reliable. The optimal power management thus plays an
important role in MEA, especially when using the hybrid energy
storage systems (HESS). In this paper, we propose a novel adap-
tive online power management algorithm for MEA, which aims
to minimize the power fluctuation of the generators based on the
battery-supercapacitor HESS. The problem is firstly formulated
as a constrained stochastic programming problem. We then
present an online algorithm to approximately solve the problem
using the Lyapunov optimization method, which does not require
any statistics and future knowledge of the electricity demand.
We further propose the adaptive online power management
algorithm for MEA by incorporating an adaptive strategy with
the online algorithm. Trace-driven simulation results demonstrate
the effectiveness, efficiency, and adaptability of the proposed
power management algorithm for MEA.

Index Terms—Aircraft power systems, Power distribution,
Energy management, Lyapunov methods

I. INTRODUCTION

Since the 1940s, aircrafts have been using a combination
of three secondary energy sources: hydraulic, pneumatic, and
electric energy. This complex structure requires much efforts
to maintain a high energy efficiency and system reliability.
In response to these challenges, the more electric aircraft
(MEA) relying on more electrical power is proposed and
becomes a popular trend for future aircrafts, which brings
about significant benefits in reliability, maintainability, and
survivability [1]–[3]. MEA also attracts many recent research
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interests on MEA system control [4], MEA electrical power
system design [5], power system stability analysis [6], and also
energy management [7].

In MEA, energy storage systems (ESS) is an important
component which is able to support power supply, absorb
power load and thus adjust the power balance inside the
MEA power system. To make it work more effectively and
efficiently, energy management is considered to be necessary
for MEA. Several energy management methods have been
developed to reduce load shedding, which is common in
traditional control of aircraft’s power system, but may be
harmful to the stability of the system [8], [9]. New energy
management solutions are then found to reduce or even avoid
load shedding through the use of battery energy storage
systems (BESS) [10]–[12]. BESS is a kind of commonly
used ESS composed of pure batteries, which have long life
duration, good economy, large energy density, high energetic
efficiency, and low auto-discharging rate [13]. However, BESS
is not suitable for situations where load fluctuation is large,
because of its power density is small. In some phases of
MEA, such as the take-off, landing, and combat phases, the
load pulse is about dozens of times of the average power,
and it is thus very difficult for BESS to completely fulfill
these power peaks unless its capacity is sufficiently large. But
the increase in capacity also leads to the increase in weight,
which degrades the system’s overall efficiency. To address this
problem, different forms of ESS have been explored [7], [14]–
[16], among which the hybrid energy storage system (HESS),
consisting of batteries and supercapacitor (SC), has obvious
advantages over the others for MEAs. Since SC has very
high power density and discharges very fast [17], [18], it is
complementary for batteries of small power density but large
energy capacity.

On the other hand, power flows of HESS in the MEA
power system may cause undesired voltage variations in the
power bus. Some control strategies are thus proposed to
address this problem. In [19], the authors design a control
strategy according to different voltage states when the load
is suddenly added and unloaded in the MEA power system.
The work in [20] adopts fuzzy control methods to design
a three-level control strategy to achieve voltage stability of
MEA with HESS. In [7], the authors propose a decentralized
energy management strategy which splits the load power
automatically into low and high frequency components and
allocate them to HESS consisting of fuel cells and SC. Besides
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the power control, it is also possible to optimally schedule
the charging and discharging of HESS to achieve better
performance on power load absorption and power generation
smoothness. Unfortunately, few works are found on the aspect
of power optimization in MEA power management, which
is fairly common in some other power systems with similar
structure, such as the Microgrid [21]–[23] and electric vehicles
(EVs) [24], [25].

The work in [25] formulates a multi-objective optimization
to optimize the power split in order to prolong the battery
lifetime and to reduce the HESS power losses in EVs, and the
problem is numerically solved online using dynamic program-
ming. In [22], the authors propose an improved particle swarm
optimization (PSO) algorithm to solve optimization problem
which takes one-time investment and the operation cost in the
whole life cycle of HESS as the objective in an Microgrid
system. The paper [23] proposes a hierarchical control ar-
chitecture to optimize the power efficiency of the MicroGrid
where the higher-level power management controller solves
an optimization problem by using model predictive control
(MPC) controller to provide power references, while the low
level controller translates the power reference provided into
a voltage or current level. It can be seen that these power
management methods work to optimize the power flows inside
a power system with HESS to achieve different objectives,
such as power load smoothing, power loss minimization,
power efficiency maximization, and so on. The successful
applications of these methods in similar power systems en-
lighten us to explore new power optimization scheme in
MEA power system to incorporate HESS more effectively and
efficiently. However, the characteristics of MEA power system
also have some special requirements on the power optimization
method, which also causes much difficulties. The methods
well established in some other systems may not work well
for MEA. For example, the above-mentioned PSO and MPC
are not applicable, as some power loads in MEA occur as
nonlinear pulses, which cannot be predicted under any kind of
models. It is therefore meaningful but challenging to develop
power optimization for MEA power system.

Motivated by this, we propose an MEA power management
method based on Lyapunov optimization approach in this
paper, which smooths the output power of the main generators
by fully utilizing HESS to balance the power generation,
power storage, and power loads, especially the pulses, in
different flight phases of MEA. More importantly, it operates
in an online manner. We choose to smooth the output power
of the main generators, because it limits the maximum output
power, reduces the weight of the generators, and makes it
easier to control and stabilize the voltage of the power bus.
It also reduces the voltage and current stress on the devices,
and thus reduces fuel consumption, increases the stability of
MEA power system, provides better protection, and improves
overall energy efficiency [24], [26], [27].

We first formulate an stochastic optimization problem to
minimize the fluctuations of the output power of the generators
under several constraints. The problem is solved using a
Lyapunov optimization approach, which is effective at solving
stochastic optimization and stability problems [28], [29]. We

next introduce the energy storage virtual queues to transform
the problem to a queue stability problem. The online solutions
are also presented with the proof of several deterministic
performance bounds. The algorithm is online since it only
relies on the current system status and does not need any
future knowledge on load demand. We then propose the
adaptive online power management scheme for MEA by
further incorporating a control strategy with the online power
management, which is adaptive to load pulses. Finally, we
perform trace-driven simulations to show that the proposed
power management scheme can smooth the output power of
the generators and is adaptive to load pulses. We also evaluate
our proposed method under different HESS configurations to
demonstrate its adaptability and effectiveness.

The remainder of the paper is organized as follows. We
formulate the problem in Section II. We propose the online
solutions in Section III, and then the adaptive online energy
management scheme for MEA in Section IV. Section V
presents our simulation study and Section VI concludes this
paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
A typical MEA power system, as shown in Fig. 1, mainly

consists of the power bus, main generators, HESS, power loads
and MEA controller. This system model is adaptable to both
AC and DC power buses, according to the specific aircraft
system, in which the main generators produce electrical power
in the AC form. As a combination of battery and SC, HESS is
more suitable for MEA than any other combination of energy
storage devices, because it takes advantage of the high energy
density of battery and the high power density of SC. The power
loads include all the MEA electrical loads in both AC and DC
forms with power converters connected to the buses.

Here, power management is executed in the MEA controller,
which aims to minimize the fluctuation of the output power
from the main generators, so that the system is more sta-
ble, more reliable, and more efficient. The MEA controller
achieves this goal through adaptive power allocation between
the power loads and different power sources main , including
generators, battery, and SC, where the main generator pro-
vides the average power with slow dynamics, SC is mainly
responsible for pulse power absorption, and battery functions
as a power buffer to guarantee the balance of power. Power
transmission between the sources are also considered. Without
loss of generality, we consider the power management in MEA
as a time-slotted process in this paper. The time slot duration is
determined by the timescale of power generation and demand
processes in the MEA.

1) Energy Storage System Model: In MEA HESS, we
consider K energy storage devices (ESDs) in total, with K1

batteries and K2 SCs, and K = K1 + K2. Similar to some
previous works [30], we assume no power loss during charging
or discharging at all the ESDs, as well as a negligible leaking
rate, which is a reasonable assumption since the leaking loss
under the time scale in MEA power management (usually less
than one hour) is usually negligible [30].
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Fig. 1. The MEA power system.

Let Rk(t) and Dk(t) denote the recharging and discharging
power for ESD k in time slot t, respectively. Within any time
slot t, Rk(t) and Dk(t) are limited by their peak values,
respectively, as{

0 ≤ Rk(t) ≤ Rk,max, ∀k, t
0 ≤ Dk(t) ≤ Dk,max, ∀k, t. (1)

Since the charging and discharging operations cannot be
performed at the same time, then we have{

Rk(t) > 0⇒ Dk(t) = 0, ∀k, t
Dk(t) > 0⇒ Rk(t) = 0, ∀k, t. (2)

Let Ek(t) be the energy level of ESD k in time slot t. The
dynamics of Ek(t) over time can be described as

Ek(t+ 1) = Ek(t) + ηk,rRk(t)− ηk,dDk(t), ∀k, t, (3)

where ηk,r < 1 is the charging efficiency coefficient of ESD
k, and ηk,d > 1 is the discharging efficiency coefficient of
ESD k [31],Note that the time difference of t+1 and t is the
duration of one time slot, whose length is different according
to the applications. Because of the ESD efficiency, generally,
the actual stored energy through charging is less than Rk(t),
and the actual contributed energy through discharging is larger
than Dk(t).

Let Ek,max be the maximum capacity of ESD k, and
thus we have Ek(t) ≤ Ek,max for all t. Further, for deep
discharging protection, a minimum capacity Ek,min ≥ 0 is
required for all time slots. Therefore, Ek(t) is bounded as

Ek,min ≤ Ek(t) ≤ Ek,max, ∀k, t. (4)

In each time slot t, Rk(t) and Dk(t) are determined under
constraint (4).

2) Power Generation and Balance: Here we mainly discuss
the MEA flight conditions where the emergency generators
(EMY) and Auxiliary Power Units (APU) do not provide
power output. Thus, we consider a generator unit with N main
generators. For generator i, i ∈ {1, 2, ..., N}, we have

PG
i,min ≤ PG

i (t) ≤ PG
i,max, ∀i, t, (5)

where PG
i (t) is the output power, PG

i,min and PG
i,max are

the corresponding minimum and maximum power generation,
respectively.

In order to balance the power supply and demand, we have
N∑
i=1

PG
i (t) +

K∑
k=1

(Dk(t)−Rk(t)) = PL(t), ∀t, (6)

where PL(t) is the total MEA load demand.

B. Problem Formulation
As mentioned in Section I, frequent fluctuations of generator

output power may increase the fuel consumption and cause
instability of the MEA electrical power system [26]. Thus, we
formulate a problem to minimize the fluctuations of generator
output power as follows.

minimize: lim
t→∞

1

t

t−1∑
τ=0

E

{
n∑

i=1

∣∣PG
i (τ) − PG

i (τ − 1)
∣∣}

s.t: (1), (2), (3), (4), (5), (6).

(7)

There are two implicit integer variables, taken as 0 or 1,
in constraint (2) to represent the charging or the discharge
operation, and they cannot be 1 at the same time. Therefore,
the problem (7) is actually as a Stochastic Mixed Integer Lin-
ear Programming problem. Traditional Dynamic Programming
approaches can be used to solve the problem, but require
all possible combinations of the stored energy levels and the
system states to obtain the optimal solution [33]. However,
in (7), the power demand is random, and the solution also
depends on the evolution of energy storage state. Therefore, we
apply the Lyapunov optimization method to solve this problem
by introducing virtual queues.

1) Virtual Queue: We first define a virtual queue Xk(t) to
track the charging level of each ESD k as follows.

Xk(t+ 1) = Xk(t) + ηk,rRk(t)− ηk,dDk(t), ∀k, t. (8)

By (8), Xk(t) accumulates the total charging/discharging
amount. Comparing (8) and (3), it can be seen that the virtual
queue Xk(t) and the power level Ek(t) update according
to the same manner. We further relate them by initializing
Xk(0) = Ek(0) − βk,where βk is a shifting parameter, and
we have

βk = ηk,dDk,max + Ek,min − V

n∑
i=1

PG
i,min, ∀k, (9)

where V is a constant for the tradeoff between the algorithm
performance and the ESDs constraints, which is limited by 0 <

V ≤ Vmax = min
k

{
Ek,max−Ek,min−ηk,dDk,max−ηk,rRk,max∑N

i=1(P
G
i,max−PG

i,min)

}
.

V needs to be carefully selected to satisfy constraint (4).
Actually, Xk(t) is simply a shifted time series of Ek(t). Unlike
the actual Ek(t), Xk(t) may be positive or negative because
of its virtuality, however, the values of Xk(t) are all positive
here because the capacity of ESD k is much larger than it’s
charging or discharging amount in a time slot (usually several
seconds).

Authorized licensed use limited to: Auburn University. Downloaded on April 17,2020 at 00:23:36 UTC from IEEE Xplore.  Restrictions apply. 



2332-7782 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TTE.2020.2988153, IEEE
Transactions on Transportation Electrification

IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, VOL.XXX, NO.XXX, MONTH YEAR 4

Then, we can further derive the State-of-Charge (SOC) of
the ESDs in time slot t as

SOCk(t) =
Xk(t) + βk

Ek,cap
, ∀k, t, (10)

where Ek,cap is the capacity of ESD k.
2) Problem Reformulation: By introducing energy storage

virtual queues, we can transform the original problem (7)
into a queue stability problem, which leads to a system
stability design from the perspective of control theory. The
constraint (4) on ESDs is then transformed to the stability
of the virtual queues, indicated by the boundness of the
Lyapunov drift (defined in (13)). The stochastic programming
problem (7) can be thus reformulated as

minimize: lim
t→∞

1

t

t−1∑
τ=0

E

{
n∑

i=1

∣∣PG
i (τ)− PG

i (τ − 1)
∣∣}

s.t: (1), (2), (5), (6)
stability of all virtual queues Xk(t).

(11)

We then apply Lyapunov optimization to design an adaptive
control policy. It transforms problem (11) into several sub-
problems, which can be solved in every time t, and guarantees
the stability of the system.

C. Lyapunov Optimization

We define the Lyapunov function for system state X(t) =
{X1(t), . . . , XK(t)} as

L(X(t)) =
1

2

K∑
k=1

[Xk(t)]
2, (12)

which indicates the level of the stored power in the entire
system at time t. L(X(t)) actually represents the total energy
included in the system. For positive Xk(t), L(X(t)) being
small means that the power storage of all ESDs are low, while
L(X(t)) being large means that at least some ESDs have high
level of power storage. We further define the conditional one
time slot Lyapunov drift as

Δ(X(t)) = E{L(X(t+ 1))− L(X(t))|X(t)}. (13)

The Lyapunov drift indicates the change of the system power
storage in one time slot, so it is always bounded in practical
systems. The following lemma provides this basic property of
the Lyapunov drift.

Lemma 1. The Lyapunov drift satisfies the following inequal-
ity for all time:

Δ(X(t))≤B +

K∑
k=1

E{Xk(t)(ηk,rRk(t)− ηk,dDk(t))|Xk(t)},
(14)

where B= 1
2

∑K
k=1(max{(ηk,rRk,max)

2, (ηk,dDk,max)
2}).

Proof: From the the virtual queues dynamics (8) and the
Lyapunov function (12), we can obtain

Δ(X(t)) =
1

2
E

{
K∑

k=1

[(Xk(t+ 1))2 − (Xk(t))
2]

}

= E

{
K∑

k=1

[
1

2
(ηk,rRk(t)− ηk,dDk(t))

2

+Xk(t)(ηk,rRk(t)− ηk,dDk(t))|Xk(t)]

}

≤ E

{
K∑

k=1

[
1

2
max{(ηk,rRk,max)

2, (ηk,dDk,max)
2}

+Xk(t)(ηk,rRk(t)− ηk,dDk(t))|Xk(t)]

}
,

and (14) directly follows.
Here, we can minimize the drift Δ(X(t)) to achieve a

better system performance on stability. However, our original
objective is the minimization of the fluctuations of gener-
ator output power. Therefore, we add a penalty term to
the drift to construct the drift-plus-penalty as Δ(X(t)) +
V E

{∑n
i=1

∣∣PG
i (t)− PG

i (t− 1)
∣∣ |X(t)

}
, where V is the con-

stant defined in (9), used here as a weight to balance Δ(X(t))
and E

{∑n
i=1

∣∣PG
i (t)− PG

i (t− 1)
∣∣ |X(t)

}
. It thus includes

both the system stability and the fluctuations of generator
output power. However, minimization of the drift-plus-penalty
is a challenging optimization problem, which is difficult to
solve [28]. Fortunately, we can quickly obtain the upper bound
of the drift-plus-penalty from Lemma 1.

Δ(X(t)) + V E

{
n∑

i=1

∣∣PG
i (t)− PG

i (t− 1)
∣∣ |X(t)

}

≤ B +
K∑

k=1

Xk(t)(ηk,rRk(t)− ηk,dDk(t))|Xk(t)

+ V E

{
n∑

i=1

∣∣PG
i (t)− PG

i (t− 1)
∣∣ |X(t)

}
(15)

Then, we can minimize the upper bound to obtain a solution
very close to the optimum. Thus, we derive the following
optimization problem.

minimize: B +
K∑

k=1

Xk(t)(ηk,rRk(t)− ηk,dDk(t))

+ V

n∑
i=1

∣∣PG
i (t)− PG

i (t− 1)
∣∣

s.t: (1), (2), (5), (6),

(16)

which can be solved based on the current observation, so
that the conditional probability on Xk(t) is removed. The
constraint on the virtual queues Xk(t) in (11) is combined
in the objective function of (16). This way, Problem (11)
for the entire time period is decomposed into a series of
sub-problems (16), one for each time slot t, which can be
solved in an online manner. We then show the boundedness
of virtual queues Xk(t) and actual queues Ek(t), and present
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the relationship between the solutions to (16) and the original
problem (7).

III. ONLINE SOLUTIONS

Based on the Lyapunov drift-plus-penalty method, we suc-
cessfully transform Problem (7) to Problem (16) to be solved
online in each time slot. Before discussing the online solutions,
we first present the following constraint of Xk(t) on the
charging power Rk(t) and discharging power Dk(t).

Lemma 2. For any initial value Xk(0), the charging power
Rk(t) and discharging power Dk(t) satisfy:

1) If Xk(t) > V
∑N

i=1 P
G
i,max, ESD k cannot be charged,

i.e., Rk(t) = 0;
2) If Xk(t) < V

∑N
i=1 P

G
i,min, ESD k cannot be discharged,

i.e., Dk(t) = 0.

Lemma 2 provides two thresholds for Xk(t). At each time
slot t, if Xk(t) is higher than the upper threshold, the charging
amount for ESD k is zero, so Xk(t+1) cannot be increased at
t+ 1. Similarly, if Xk(t) is smaller than the lower threshold,
the discharging amount for the ESD k is zero, and Xk(t+1)
cannot be decreased during slot t+1. Therefore, ESDs could
work more effectively and efficiently. We further present the
bounds of Xk(t) and Ek(t) for the online solutions to (16).

Lemma 3. Let g(t) = PL(t) − ∑N
i=1 P

G
i (t − 1), charg-

ing/discharging for ESD k in time slot t is restricted by:
1) If g(t) > 0, ESD k cannot be charged, i.e., Rk(t) = 0;
2) If g(t) < 0, ESD k cannot be discharged, i.e., Dk(t) = 0.

Lemma 3 indicates that when the load demand at time t is
beyond the total power output of t− 1, ESDs are not allowed
to increase the load burden, and the decision variables in the
problem (16) are P G

i (t) and Dk(t); when the load demand
is less than the total power output, the MEA power system
needs no power from the ESDs, and the decision variables in
the problem (16) are turned into P G

i (t) and Rk(t). In this way,
the problem (16) is solved as a linear programming problem.
This is actually conforming to the optimal solutions in most
cases. However, we use Lemma 3 to avoid the worst case and
also simplify the algorithm design.

Theorem 1. Given the initial energy storage level Xk(0) =
Ek(0) − βk, the virtual queue Xk(t) is bounded within
[Ek,min − βk, Ek,max − βk] for all k and t.

Proof: Assuming that the inequalities hold true for time
t, we then demonstrate that the inequalities still hold true for
time t+ 1, i.e., Ek,min − βk ≤ Xk(t+ 1) ≤ Ek,max − βk.

We first prove the upper bound Xk(t+ 1) ≤ Ek,max − βk.
Consider the following two cases.

Case 1: V
∑N

i=1 P
G
i,max < Xk(t) ≤ Ek,max − βk. From

Lemma 2, we have Rk(t) = 0 for Xk(t) > V
∑N

i=1 P
G
i,max,

and from (8), we have Xk(t + 1) = Xk(t) − ηk,dDk(t) ≤
Xk(t) ≤ Ek,max − βk.

Case 2: Xk(t) ≤ V
∑N

i=1 P
G
i,max. From (8), the largest

value of Xk(t+ 1) is thus V
∑N

i=1 P
G
i,max + ηk,rRk,max. So

for any 0 ≤ V ≤ Vmax, we have

Ek,max − βk − (V

N∑
i=1

PG
i,max + ηk,rRk,max)

≥ Ek,max − ηk,dDk,max − Ek,min − ηk,rRk,max

−min
k

{
Ek,max − Ek,min − ηk,dDk,max − ηk,rRk,max∑N

i=1(P
G
i,max − PG

i,min)

}

·
N∑
i=1

(PG
i,max − PG

i,min) ≥ 0.

Therefore, Xk(t + 1) ≤ Ek,max − βk hold true for both
cases. We then prove the lower bound. Supposing that Xk(t) ≥
Ek,min−βk is true, we also consider the following two cases.

Case 1: Ek,min − βk ≤ Xk(t) < V
∑N

i=1 P
G
i,min. From

Lemma 2, we have Dk(t) = 0 for Xk(t) < V
∑N

i=1 P
G
i,min.

Then from (8), we have Xk(t + 1) = Xk(t) + ηk,rRk(t) ≥
Xk(t) ≥ Ek,min − βk.

Case 2: Xk(t) ≥ V
∑N

i=1 P
G
i,min. From (8), we have Xk(t+

1) = Xk(t)−ηk,dDk(t)+ηk,rRk(t) ≥ Xk(t)−ηk,dDk,max ≥
Ek,min − βk.

So Xk(t+1) ≥ Ek,min−βk also holds true for both cases.
Therefore, we have Ek,min−βk ≤ Xk(t+1) ≤ Ek,max−βk

hold true for time slot t+ 1.
By Theorem 1, we can quickly acquire the following

Theorem 2 (proof is omitted for the limit of space) on the
boundedness of the actual energy queses Ek(t), and further
propose Theorem 3 about the online solutions.

Theorem 2. Given the initial energy storage level Ek(0) =
Xk(0)+βk, the actual energy queue Ek(t) is bounded within
[Ek,min, Ek,max] for all k and t.

Theorem 3. The average variation of the generator output
power under the online solutions to Problem (16), denoted by
f∗, is bounded as f ∗ ≤ fopt+B/V , where fopt is the optimal
solution to Problem (7).

Proof: From Theorems 1 and 2, the virtual queue Xk(t)
and the actual energy queue Ek(t) are all bounded. Take
expectation on (3) and sum it over the period [0, t − 1], we
have

E{Ek(t)} − E{Ek(0)} =
t−1∑
τ=0

[ηk,rE{Rk(τ)}

− ηk,dE{Dk(τ)}], ∀k.
Since Ek,min ≤ Ek(t) ≤ Ek,max, we divide both sides of the
equation by t, and let t go to infinity, to have

ηk,r lim
1

t

t−1∑
τ=0

E{Rk(τ)} = ηk,d lim
1

t

t−1∑
τ=0

E{Dk(τ)}, ∀k.
(17)

Now, we consider a relaxed problem of (7) by replacing
constraint (3) by (17).

minimize: lim
t→∞

1

t

t−1∑
τ=0

E

{
n∑

i=1

∣∣PG
i (τ) − PG

i (τ − 1)
∣∣}

s.t: (1), (2), (3), (5), (6), (17).

(18)
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Since constraint (3) is relaxed by (17), the optimal solu-
tions to (7) are also feasible for (18), but the solutions
to (18) do not depend on the energy levels of the ESDs. Let
Â(t) = {P̂G

i (t), R̂k(t), D̂k(t)} denote the optimal solutions
to (18) and f̂ denote the corresponding optimal objective
value, which is less than or equal to f opt. Therefore, the
optimal solution Â(t) satisfies E{ηk,rR̂k(t)− ηk,dD̂k(t)} = 0

and f̂ = E{∑n
i=1

∣∣∣ ˆPG
i (τ)− ˆPG

i (τ − 1)
∣∣∣}.

Since Problem (16) originally minimizes the right-hand-side
of the drift-and-penalty (15), we have

Δ(X(t)) + V E

{
n∑

i=1

∣∣PG
i (τ) − PG

i (τ − 1)
∣∣ |X(t)

}

≤ B +
K∑

k=1

E{Xk(t)(ηk,rR̂k(t)− ηk,dD̂k(t))|Xk(t)}

+ V E

{
n∑

i=1

∣∣∣P̂G
i (τ) − P̂G

i (τ − 1)
∣∣∣ |X(t)

}

≤ B + V · fopt,

which holds because E{ηk,rR̂k(t)− ηk,dD̂k(t)} = 0 and f̂ <
fopt. Taking expectation and summing up from 0 to T − 1,
we obtain

T−1∑
t=0

V E

{
n∑

i=1

∣∣PG
i (τ)− PG

i (τ − 1)
∣∣}

≤ T · B + T · V · fopt + E{L(X(0))} − E{L(X(T ))}
≤ T · B + T · V · fopt + E{L(X(0))}.

Dividing both sides by V T and letting T go to infinity, we
have

lim
T→∞

1

T

T−1∑
t=0

V E

{
n∑

i=1

∣∣PG
i (τ) − PG

i (τ − 1)
∣∣} ≤ fopt +

B

V
,

assuming the initial system state is finite.
From Theorem 3, the optimal objective value of (16) is away

from that of (7) by O(1/V ), and thus, a larger V leads to a
better performance of the proposed algorithm, i.e., a smaller
optimality gap. However, from Lemma 2, V is limited by
Vmax to ensure that constraints (4) are satisfied. Through the
definition of Vmax, it can achieve a better performance if more
ESS capacity is configured. In addition, all the constraints are
deterministic, the proposed method thus provides an online
power management approach for MEA, considering both the
variation of generator output power and system stability.

IV. ADAPTIVE ONLINE POWER MANAGEMENT FOR MEA

Based on the theoretical results, we further propose the
adaptive online power management for MEA in this section.

A. Online Power Management Algorithm
According to the online solutions in Section III, we present

the online power management algorithm (OPMA) for MEA
controller in Algorithm 1, which only requires the current
observation of system state, without the knowledge of the

Algorithm 1: Online Power Management Algorithm
(OPMA) for the MEA Controller

1 Initialize: the output power P G
i (t) of the generators,

the virtual queues Xk(t), and SOCk(t) for all i and
k;

2 while t ≤ T do
3 Read the current system state: Xk(t), SOCk(t),

PG
i (t− 1), PL(t);

4 Obtain the optimal solution A(t) by solving
Problem (16) with Lemmas 2 and 3;

5 Update the virtual queues Xk(t) according to (8)
and calculate SOCk(t), for all k;

6 t← t+ 1;
7 end while

statistical load information. First, the MEA controller initial-
izes the output power PG

i (t) of all generators and all virtual
queues Xk(t) and SOCk(t).1 In each time slot t, the MEA
controller observes the current virtual queues Xk(t), state-of-
charge SOCk(t), and output power P G

i (t−1) of the generators
of the previous time slot t − 1 and the total MEA load
PL(t), for all i and k. Then, the MEA controller derives
the optimal solution A(t) by solving Problem (16) under the
restrictions in Lemma 2 and Lemma 3. The MEA controller
then obtains the current output power P G

i (t) of the generators,
the charging amount Rk(t), and discharging amount Dk(t)
for HESS. Finally, the MEA controller up dates the virtual
queues Xk(t) according to (8) and calculates the state-of-
charge SOCk(t). Besides, the proposed algorithm needs to
repeat T times loop for the whole operation from Step 3 to 6
until the last time slot. In Step 4, the optimal solution A(t)
is calculated by solving linear programming problem using an
LP solver with complexityO(n log(n)) [34]. For Algorithm 1,
T is a constant, so the running time of our algorithm can be
obtained, which is recorded as T (O(n log(n))).

B. Adaptive Online Power Management
OPMA is able to smooth the fluctuation of the power output

of main generators in most flight phases. However, nonlinear
large power load pulses are the real challenges to power
management in MEA. Usually, SCs are expected to absorb
instantaneous power peaks. Our solution is to use batteries to
charge SCs when SC’s SOC is low. But the weight of HESS
has to be considered as well. It is thus important to make full
use of the ESDs according to their characteristics to optimize
the total weight of ESDs as much as possible.

Motivated by this, we design a control strategy to discharge
the SCs to absorb large load pulses and then recharge the SCs
by batteries, while the OPMA does not control batteries to
charge SCs. This is especially important in some fighter planes
using weapons of high power density, such as lasers, which
has very large power demands, e.g., nearly ten times of the
average power [19]. Also, this may occur in some emergency

1Note that the solutions are not sensitive to the variations in initial
conditions, see [28].
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Fig. 2. The Flow Chart of AOPM.

situations. Actually, batteries are used here as energy buffers
between the main generators and SCs, which balance the
capacity of load smoothing and the weight of HESS. The
control strategy is summarized in Strategy 1 below. Note
that the parameter α is set as the charging alert of the SC,
which triggers the charging from batteries to SCs. A bigger α
indicates more frequent battery dischargings as the trigger is
easier to be reached, while smaller α increases the time of the
SC being a low level of SOC such that the sudden power peaks
may not be fully absorbed. So α needs to be carefully selected,
considering the tradeoff between less battery chargings and
more power storage in SC.

Strategy 1. Set parameter α, and determine the value of SOC
of every SC k, denoted as SOCk(t). If any SOCk(t) is less
than α, all batteries discharge.

Combining Strategy 1 and OPMA, we propose the adaptive
online power management for MEA (AOPM), which is sum-
marized in Fig. 2. AOPM can be used to smooth the power
output of the main generators in different flight phases in an
adaptive online manner.

V. SIMULATION STUDIES

A. System Descriptions
In order to demonstrate the effectiveness of the proposed

OPMA and AOPM for MEA, we simulate the MEA power
system according to the structure in Fig. 1. The maximum and
minimum output power for the main generator are assumed to
be 1000 kW and 50 kW, respectively [2]. The capacity of
the battery is set to 100 kWh. The maximum energy storage
for the battery is 80 kWh and the minimum is 20 kWh. The

0 200 400 600 800 1000
Time slot (s)

0

500

1000

1500

Lo
ad

 (k
W

)

Fig. 3. The MEA load with large instantaneous power pulses.

corresponding SOC range is [0.2, 0.8], and the charging and
discharging efficiency coefficients are 0.9 and 1.1. Similarly,
the capacity of the SC is set to 10 kWh. The maximum and
minimum levels for the SC are 9 kWh and 1 kWh, respectively,
and the corresponding SOC range is [0.1, 0.9]. The charging
and discharging efficiency coefficients are 0.98 and 1.02.
The maximum charging/discharging power is 200 kW for the
battery, and 3500 kW for the SC [26], [35].

As previously discussed, the most challenging power man-
agement for MEA happens when the system needs to support
large output power, especially the instantaneous large power
pulses. Therefore, we mainly focus on the simulations to
evaluate the capability of the proposed AOPM to stabilize the
power fluctuations of the generators in cases when several
power pulses of the loads occur. The load curve shown in
Fig. 3 is taken from a real flight trace of a fighter aircraft. The
time interval is set to 1s. The control parameter is V = Vmax,
unless otherwise stated. The initial SOC of HESS are both
0.5, and the initial generator output power is 220 kW. In the
realization of our proposed power management methods, we
use the MATLAB LP solver to solve Problem (16).

B. Performance of OPMA

We first present the average generator output power, SOC
of battery, and SOC of SC under OPMA in Fig. 4. Comparing
Fig. 4(a) with Fig. 3, we can see that the power pulse occurs at
t = 526s has been absorbed, and the power peaks at t = 195s
and t = 798s are greatly weakened but still exist in the power
output of the generator. The SC is mainly responsible for the
power peak absorption. The first and the third power peak
are too large for the SC to absorb. Also, in OPMA, battery
does not charge the SC, so no energy buffer is constructed
between the SC and the power generator such that the SC is
only charged by the power generator, leading to a low SOC
state throughout the entire process, especially after the first
power peak. Therefore, the power generator is pushed to very
high power peaks twice. For other power demands, OPMA
works very well. In this situation, SC cannot fully absorb these
peaks unless the initial SOC of the SC or the capacity of the
SC is large enough. However, the initial value of the SC’s SOC
is uncertain in real situation. And in order to avoid burdening
the weight of the aircraft, the capacity of SC should also be
as small as possible. Therefore, Strategy 1 is thus proposed to
deal with such situations.
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Fig. 4. Simulated power curves obtained with the proposed OPMA algorithm
for MEA.

C. Performance of AOPM

Now we evaluate AOPM for the same power load in Fig. 3.
We plot the average generator output power, SOC of battery,
and SOC of SC under OPMA and AOPM under different α in
Fig. 5. The parameter α triggers the charging from batteries to
SCs. A larger α indicates more frequent battery discharging as
the trigger is more easily reached, while smaller α increases
the time duration of the SC being a lower level of SOC such
that the sudden power peaks may not be fully absorbed. We
can see that when α = 0.5, the capacity of the SC has reached
the lower bound before the end of the load power peaks.
When α = 0.9, the battery is working (either charging or
discharging) all the time, which is bad for battery life. This is
also unnecessary because the generator has to charge the SC
sometimes. Therefore, 0.8 is a more appropriate value in case
of the situation with higher and longer load power peaks.

Now we compare the performance of AOPM and OPMA
with α set as 0.8. We can see that comparing with OPMA,
the power output from the generator under AOPM is quite
smooth with no power peaks. This is because batteries are
controlled to charge SCs so that the HESS is able to absorb
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Fig. 5. Simulated power curves obtained with the proposed OPMA and
AOPM algorithms under different αs.

large power pulses of the load. With AOPM, it is clear from
Fig. 5(b) and 5(c) that, after each power pulse of the load,
the SC discharges deeply and then the batteries charge the SC
until its SOC goes up and back to α = 0.8. For example,
the battery remains discharging utill t = 51s, during which
the SC keeps charging. At t = 51s, SC’s SOC reaches
0.8, at which point the battery no longer discharges. Since
the power supplied by the generator is more than the power
demand, the SC remains in the state of charging and the battery
keeps unchanged. The results in Fig. 4 illustrate that AOPM
performs better than OPMA in smoothing the power leaks of
the load, which verifies the effectiveness of Strategy 1. This
also provides the possibility to reduce the main generator’s
capacity configuration, by reducing the required capability of
the generator for the overload correspondingly.

D. Comparisons between Different HESS Configurations
We now change the configurations of battery and SC in

the system, and compare different HESS combinations. In
previous evaluations, the capacity of battery and SC are set
to 100 kWh and 10 kWh, respectively. From Fig. 5(c), we
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Fig. 6. Simulated power curves with different HESS configurations.

notice that the lowest point of the SC is 0.35, which is much
higher than its lower limit 0.1, but the highest point is close to
the upper limit 0.9. Therefore we can reduce the capacity of
the battery to approach the HESS’s operating limit. Based on
the load in Fig. 3, the capacity of the battery can be reduced
to 29 kWh, but it can still smooth the power output of the
generator under AOPM. On the other hand, we try to smooth
the power output under pure BESS without SC, with the same
charging/discharging power of 200 kW. In this case, without
the capability of instantaneous power output, the capacity of
the battery has to be increased from 100 to 490 kWh. Besides,
the parameter α is set to 0.8 here.

We list the major parameters of the two configurations in
Table I and plot the corresponding power curves with AOPM
in Fig. 6. From the table and figures, it can be seen that,
the power output of the generator can still be smoothed using
AOPM under these two capacity configurations, and the new
HESS configuration makes full use of the SCs. Also, the pure
BESS scheme is not applicable, because it adds large extra
weights, about 300kg to 1000kg. [35] The specific powers
are between 120 and 140 Wh/kg for the batteries, and 5 and
15 Wh/kg for the SCs [26]. Therefore, we concludes that

TABLE I
RESULTS UNDER DIFFERENT ENERGY STORAGE MODELS

Energy storage model BESS HESS

Battery specific power (kW) 980 58

Battery specific energy (kWh) 490 29

Supercapacitor specific power (kW) − 3500

Supercapacitor specific energy (kWh) − 10

HESS consisting of both SCs and batteries is necessary for
the MEA, and AOPM can fully utilize the HESS with very
high efficiency.

VI. CONCLUSIONS

In this paper, we first developed an MEA power manage-
ment model based on HESS aiming to minimize the generator
output power fluctuation. The battery-SC HESS were used as a
temporary energy buffer to cope with the load peaks, leading to
a smooth output of generator. We then developed the Lyapunov
optimization method and transformed the ESS management
problem into a queue stability problem by introducing energy
storage virtual queues. By integrating a control strategy with
the Lyapunov optimization method, we proposed the adaptive
online power management for MEA, which was able to deal
with the load pulses. The feasibility and adaptivity of the
proposed method were validated with trace-driven simulations.
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