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Abstract—Non-intrusive load monitoring (NILM) is to estimate
individual appliance’s power consumption from aggregated smart
meter data, which is useful for optimized energy management
and provisioning of customized services. While deep learning
(DL) has achieved state-of-the-art NILM performance, it is still
constrained by the dependency on large amounts of data and
intensive computations on training. In this paper, we propose a
pre-training approach to address the generalization of DL models
for NILM. We develop a meta-learning based approach and an
ensemble learning based approach, which pre-train a base model
and then fine-tune it with few-short learning when applied to
an unknown dataset. The models are validated with two real-
world datasets and shown to achieve a superior transferability
performance compared with traditional DL and transfer learning
methods.

Index Terms—Non-intrusive load monitoring, ensemble learn-
ing, meta learning, transfer learning, pre-trained model.

I. INTRODUCTION

With extremely low latency, high data rate, and significant
improvement of quality of service (QoS), the 5G and beyond
wireless networks offer considerable benefits in many fields.
However, the tremendous energy usage, estimated to be 10
times more than the existing 4G networks, has raised great
concerns [1]. Inspired by the advances in green communi-
cations and networking (GCN), which aims to Send More
Information bits with Less Energy (SMILE), energy-efficient
techniques, such as BS switching [2]–[4], offline power alloca-
tion and online data scheduling, as well as sustainable energy
powered base stations (BSs) have been developed to reduce the
energy usage and boost network capacity [5]. GCN has a close
interaction with the power grid. On one hand, for retailers,
communication networks collect data and information from
the power grid components, which can be analyzed and used
to control the power system for real-time pricing, demand
response, and protection [6]. On the other hand, for consumers,
networks construct communication paths that integrate smart
meters, home appliances, and renewable energy sources for
Home Energy Management Systems (HEMS) [7], [8].

Among the HEMS applications, Non-Intrusive Load Moni-
toring (NILM) has been recognized as an essential component.
The goal is to estimate each individual appliance’s power
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consumption from the aggregated smart meter data; it is non-
intrusive since only the aggregated power consumption is
needed [9], [10]. The most crucial advantage of NILM is
its nonintrusive character. Comparing to intrusive approaches,
NILM can provide appliances energy usage information with-
out sub-meter installation, which is expensive, hard to upgrade,
and causes data privacy concerns [11]. With the NILM results,
homeowners can enjoy the benefits of optimizing energy assets
to achieve energy savings. It was reported in [12] that feed-
back on power usage stimulates energy savings ranging from
1.1% to over 20%. As residential consumers have increas-
ingly adopted more electric vehicles (EVs) and home solar
systems, instant information about their energy consumption
and generation will help to optimize their energy utilization.
Another benefit for consumers is equipment malefaction de-
tection. NILM provides feedback when an appliance, e.g.,
air-conditioner or refrigerator, consumes more energy than
expected with anomaly detection algorithms without the need
for sub-meter level data. For retailers, NILM can also help to
improve their energy management (power system scheduling
and planning). Provided with customer’s consumption behav-
ior from NILM, retailers can provide customized services,
such as offering energy-saving tips (i.e., informing consumers
to lower power consumption when the wholesale market prices
are high) and enabling different billing methods (static or
dynamic), to improve customer satisfaction [13].

Although NILM brings about great benefits, it faces many
challenges as well. The most successful approach to NILM,
so far, is deep learning (DL), which achieves the state-of-
the-art performance. However, it requires a large amount of
labeled data to train the DL model. For NILM, this requires
electrical submetering in the houses, which is to use addi-
tional electricity monitors to record the usage of individual
appliances in the house, and thus incurs additional costs.
Furthermore, as people are more concerned about their privacy,
the active power data used for training the NILM model is
hard to obtain. Moreover, as most data-driven models, the
DL approach requires extensive computation. It would be
desirable to eliminate the need to train a model every time it
is used for a new house. Therefore, for practical deployment
of NIML solutions, it is critical to develop DL models that
are generalizable, such that we can train the model with data
collected from a small number of submetered houses, and
then easily apply the trained model to other houses without
submetering. Such generalizable DL models are also useful to
deal with houses with different appliances, different residents’
usage behavior, and various aging degrees of circuits [14].

In this paper, we investigate the problem of pre-trained DL
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models for NILM, which is a promising means to address
the above problems. With this approach, a base DL model
is first trained with a larger dataset. When applied to a
new environment, the base model is first fine-tuned with a
small amount of new data, and then the fine-tuned model
is used for inference in the new environment. On one hand,
we do not need to train a new model from scratch for an
unknown house. On the other hand, pre-trained models are
able to quickly adapt to new tasks with few-shot learning,
as pre-trained parameters outperform random initialization for
deep neural networks [15]. Therefore, such models can not
only save considerable computation in training and reduce
the dependency on large amounts of data, but also achieve
excellent performance in real-time when it is allowed to use
new data to update the parameters.

In light of these, we propose a model-agnostic meta-learning
(MAML) based approach and an ensemble learning based
approach for the NILM problem in this paper. Our approaches
are inspired by two of the most successful Natural Language
Processing (NLP) pre-trained transformer models BERT [16]
and GPT-3 [17]. Ensemble learning (BERT) and meta-learning
(GPT-3) are the two effective solutions toward improving
the pre-training language model’s adaptability. We propose
these two approaches to deal with the transferability of the
NILM problem. Both methods obtain the pre-trained models
using one dataset, and then fine-tunes their parameters using a
small amount of new data when applied for inference with
another dataset. To the best of our knowledge, this is the
first work that applies meta-learning and ensemble learning
for generalizable models to the NILM problem. We develop
both models and evaluate their performance with two real-
world datasets, using one dataset to pre-train the models and
the other dataset to fine-tune the models and test their gener-
alization performance. Our experiments validate the superior
transferability of the proposed models for the NILM problem,
which both outperform the state-of-the-art DL based approach
and the transfer learning based approach [18]. We also find that
the proposed models are effective in overcoming the negative
transfer problem. The proposed models require greatly reduced
amount of data and computation for real-world deployment,
which lead to energy savings and is inline with the goals of
GCN.

We organize the remainder of this paper as fellows. Related
work is introduced in Section II. In Section III, we formulate
the NILM problem and introduces several solution approaches.
In Section IV, we present the two proposed methods. We
present the datasets and experiment setup in Section V, and our
experimental validation of the proposed models in Section VI.
Section VII concludes this paper.

II. RELATED WORKS

A. The NILM Problem and Existing Solutions

The wide deployment of smart meters has triggered great
interest in NILM, which is to estimate the power consumption
of a target appliance from the aggregate meter readings of the
entire house. Many algorithms have been developed to ad-
dress the NILM problem. For example, the Additive Factorial

Hidden Markov Model (AFHMM) and its variants have been
used in many existing schemes [19]–[23]. The Graph Signal
Processing (GSP) based method has also been shown to be
quite effective [24], [25]. Other traditional machine learning
approaches, such as Support Vector Machine (SVM) [26],
Decision Trees [27], the hybrid classification method [28], k-
nearest neighbors (k-NN) [29], and so forth, have been applied
to solve the NILM problem as well. Interested readers are
referred to the detailed reviews in [11], [30]. Note that such
works only focus on training and inference with the same
dataset, rather than the generalization problem.

Motivated by the success of deep learning in other fields,
there has been great interest in applying deep learning to
solve the NILM problem [31]. Convolutional Neural Networks
(CNNs) models have been adopted in [32]–[34] to extract
the temporal features from time series of aggregate electricity
consumption data. In [35], Long Short-Term Memory (LSTM)
or its equivalent Gated Recurrent Units (GRUs) models have
been leveraged to capture the long and short-term patterns
of state signatures of different appliances, which belong to
the class of Recurrent Neural Networks (RNNs). De-noising
auto-encoder has also been applied for noise reduction to better
estimate the appliance profile [36].

B. Pre-trained Models

Recent work has shown that by pre-training a deep neural
network on a large corpus of data, followed by fine-tuning
when applied to a specific task, the model’s performance on
the target task can be effectively improved. This approach
has been successfully applied in computer vision, speech
recognition, and especially in NLP.

A pre-trained hidden Markov model for large-vocabulary
speech recognition was proposed in [15]. The authors showed
that the pre-trained model was robust and achieved good
initialization of weights when training deep neural networks.
For computer vision, the authors in [37], [38] explored image
feature transferability of CNNs and found that the pre-trained
model could boost the generalization performance to new
image classification tasks. Recently, pre-trained models have
drawn considerable attention in NLP. For example, ELMo
(Embeddings from Language Models) [39] is a feature-based
NLP pre-training approach, which combines individual feature
extract LSTMs to improve the overall task performance.
The pre-trained transformer language model BERT [16] can
effectively handle multiple NLP tasks, after being fine-tuned
directly without the need for task-specific architectures. In
2020, OpenAI launched GPT-3, a gigantic deep neural network
with 175 billion parameters [17], to tackle task-agnostic NLP
problems without needing any gradient updates or fine-tuning.
Motivated by the success of pre-trained models in other fields,
we investigate how to apply it to solve the NILM problem in
this paper.

C. Pre-trained Models for NILM

There has been very few existing works on pre-trained
models for NILM. Most of the prior works trained and
tested their models using the dataset from the same house,
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by partitioning the same dataset into a training set and a
testing set. The generalization performance of the models
has not been verified. In [36], [40], the authors considered
transferability across houses included the same dataset, i.e.,
testing a model trained by one house and on an untrained
house, which both belonged to the same dataset. In [14],
[18], houses from different datasets were used, where a model
was pre-trained on a large dataset and then its transferability
and generalization performance was verified through another
domain. The difference between them was that the work [14]
tested its model without any parameter updating, which is
known as zero-shot learning. Usually transferring a model
between two different datasets could lead to poor performance.
In [18], the pre-trained model was fine-tuned by using data
from the other dataset (i.e., few-shot fine-tuning). The lim-
itation of [18] was that the fine-tuned model’s performance
was sometimes worse than the zero-shot models. This was
because the data used in fine-tuning was quite different from
that of the tested house, which led to negative transfer. The
generative adversarial networks (GANs) are used as the pre-
trained model in [41], [42]. By minimizing the statistical
distance between source and target domains in the feature
space, the authors in [41] overcame the drawback that the
shared parameters of the pre-trained model are sensitive to
the similarity between different domains. In [42], the joint
adaptation loss was further introduced by adapting both the
feature and the label distribution discrepancy, which improved
the performance of GANs.

Another approach of using pre-trained models for NILM is
to train a model on visual recognition tasks and the transfer the
image feature extractor to the appliance recognition task. To
bridge these two unrelated domains, i.e., computer vision and
NILM, the authors in [43] introduced the concept of a load
signature, i.e., the voltage-current (V-I) trajectory, to enable
transfer learning. Since the features extracted from the NILM
data is usually quite different from real-world images, it is
challenging to verify the model’s robustness to domain shits
(i.e., from real images to power consumption data).

III. PROBLEM STATEMENT AND APPROACHES

In this section, we first present the mathematical formulation
for the Non-Intrusive Load Monitoring (NILM) problem. We
will then introduce the conventional supervised machine learn-
ing (ML) and pre-training approaches (i.e., transfer learning
and meta-learning) to solve the problem.

A. The NILM Problem

Consider a house that contains J appliances that consume
electricity. The aggregated power consumption of the house,
as measured by a smart meter, is given by

x(t) =

J∑
j=1

yj(t) + e(t), (1)

where x(t) is the aggregated power consumption, yj(t) is
the jth appliance’s power consumption, and e(t) is the
measurement noise at time t. Given measurement of the

total power consumption over a time period T , i.e., x̃ =
(x(1), x(2), ..., x(T )), the goal of NILM is to estimate the in-
dividual appliance’s power consumption trace for the same pe-
riod T , i.e., ỹj = (yj(1), yj(2), ..., yj(T )), for j = 1, 2, ..., J .

Supervised ML has been applied to solve the NILM prob-
lem, as reviewed in Section II, which is to train a model
with observed pairs of (x̃, ỹj) (i.e., the labeled training set)
to estimate (i.e., learn) an approximate function fθ(·) over a
parameter set θ with a learning algorithm, which represents
the relationship between yj and x by

yj = fθ(x). (2)

Various learning models can be applied to solve the NILM
problem. For example, the conventional ML approach utilizes
a single learning algorithm to learn the function fθ(·). On
the other hand, transfer learning leverages a base learner to
learn the function, and then utilizes new data to adapt to
a new domain. Meta-learning, known as learning to learn,
incorporates several learning episodes to induce the learning
algorithm itself. In the remainder of this section, we describe
how to solve the NILM problem with these ML approaches
from an optimization perspective. We will use two separate
load monitoring datasets, i.e., a source dataset S and a
target dataset T , in the following discussions. Both datasets
contain the aggregated power consumption data as well as the
consumption data of individual appliances (as labels).

B. Conventional Machine Learning Approach

To solve the NILM problem with a conventional ML ap-
proach, only one dataset S is used. This dataset is split into
two parts, i.e., a training set Str and a testing set Sts. The
ML model is trained with the training set Str to determine its
parameters θ. The trained model is then tested on the separate
testing set Sts.

The goal of the training process is to minimize a loss
function L, give by

θ = argmin
θ

L
(
θ,Str

)
. (3)

The model parameters θ are usually updated with the gradient
descent (GD) method as follows.

θ ← θ − η · ∇θL
(
θ,Str

)
, (4)

where η is the learning step size, and ∇θL (θ,Str) is the
gradient of the loss function with respect to θ. When the model
is well trained, its performance will be evaluated using the
testing set Sts. Such a process is illustrated by the graphical
model given in Fig. 1.

The conventional supervised ML approach to the NILM
problem usually focuses only on a single dataset S. The model
parameters are optimized with respect to this dataset. Usually
the trained model does not generalize well to an untrained
dataset T (i.e., a new domain).

C. Transfer Learning Approach

In transfer learning, both a source dataset S and a target
dataset T are used. The goal is to adapt the pre-trained model
learned from the source dataset S to the target dataset T .
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Fig. 1: Conventional supervised ML approach: the model
parameters are updated based on a single task training dataset
Str and tested on a testing set Sts.
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Fig. 2: Transfer learning approach: the model parameters are
updated based on the training set Str, fine-tuned on set T tr,
and tested on set T ts.

The procedure is illustrated in Fig. 2. First, we create the
training dataset Str from S to pre-train the model. The pre-
training problem can be defined as

θ = argmin
θ

L
(
θ,Str

)
. (5)

With the gradient descent (GD) method, the model parameters
θ are updated using the training set Str as:

θ ← θ − η · ∇θL
(
θ,Str

)
. (6)

In the testing phase, the target dataset T is split into a fine-
tuning set T tr and a testing set T ts. We fine-tune the pre-
trained model using the fine-tuning set T tr for purpose of
domain adaptation, where the parameters are updated as

θ ← θ − η · ∇θL
(
θ, T tr

)
. (7)

Then the fine-tuned model is tested on the testing set T ts.
During the fine-tuning stage in transfer learning, most existing
works freeze the parameters in most of the layers, except the
last fully-connected layer. The fine-tuned model is obtained by
training the parameters of the last fully-connected layer using
the new task’s data T tr.

In our prior work [8], we developed an ensemble learning
model for load forecasting in urban power systems, which
includes multiple long short-term memory (LSTM) based first-
level learners and a Fully Connected Cascade (FCC) neural
network as the second-level learner. In this paper, we propose

θ
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parameter

fine-tune

ψ
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i

Str
i

T tr

T ts

update

update

Source set’s 
training data

Target set’s
testing data

Target set’s
fine-tuning data

Source set’s 
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Fig. 3: Meta learning approach: The model parameters are
updated based on two meta training datasets Str and Sval,
fine-tuned on set T tr, and tested on set T ts.

an ensemble learning based transfer learning approach to solve
the NILM problem. The proposed model will be presented in
Section IV.

D. Meta-learning Approach

Meta-learning, a.k.a. learning to learn, is inspired by hu-
man’s quickly learning new things with only a few examples.
By applying automatic learning algorithms to metadata, it
induces the learning algorithm itself. The goal is to enable
an intelligent agent (i.e., model) learn and adapt quickly from
few-shot of examples, and is able to keep adjusting as more
data are coming in [44].

In general, meta-learning can be seen as training a general
model that can generalize across different tasks or datasets.
Here, we define a single task or dataset as Si, which is sampled
from the source set S. We sample the source set S for N
times to obtain N tasks. Each task Si is split into a training
set Stri and a validation set Svali . In meta-training, the model
(meta-learner) shares the parameters θ, which will be updated
with each task’s loss. The average of parameters optimized by
each task (i.e., the base learners represented by parameters ψ)
will update the meta-learner at last. This way, the meta-learner
will fit all tasks at the same time, akin to cross-validation. The
target set T will be partitioned into a fine-tuning set T tr and a
testing set T ts. The pre-trained meta-learner will be fine-tuned
on T tr and tested on T ts.

In this paper, we will adopt Model-Agnostic Meta-Learning
(MAML) [44], which is an optimization scheme, to solve
the NILM problem. Detailed implementation of the proposed
model will be described in the next section.

IV. PROPOSED APPROACHES

In this section, we present two approaches to the NILM
problem, focusing on the generalization of the models. The
first model is a meta-learning based approach, i.e., MAML,
that relies on fine-tuning. The second model, termed Ensemble,
is based on ensemble learning and is a feature-based approach.
Both models adopt the sequence-to-point (s2p) methodol-
ogy [32], which will be explained in the following.



IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, DOI: 10.1109/TGCN.2021.3087702, IN PRESS 5

input

output

sliding windowWx(t)

yj(t)

Fig. 4: One training sample instance consisting of the aggre-
gated power consumption and appliance j’s power consump-
tion data. The sliding window size is W = 5 in this example.

A. Sequence-to-point Method

Traditional NILM solutions are sequence-to-sequence
(seq2seq) learning, where a machine learning model maps an
input sequence (i.e., the aggregate power consumption time
series) to an output sequence (i.e., the power consumption
time series of the target appliance). This method does not work
well for NILM, where the extremely long sequences requires
more memory and may cause the vanishing gradient problem
in the training process. Although using a sliding window of
size W could help to address the limitations, each yi(t) will
be predicted W times, leading to larger errors at the edge [32].

Both our proposed methods utilize the s2p methodology
instead [32]. S2p is motivated by the observation that an
appliance’s state at the center of the window is related to the
aggregated power consumption samples before and after that
point [18]. Therefore, a better prediction can be obtained for
the center of the window using a full window of input data. In
the example shown in Fig. 4, one training sample instance’s
input consists of the aggregate power consumption samples
in a sliding window of size W . The learning model uses
this window of input to predict the appliance’s consumption
at the midpoint of the window. In [45], the authors found
that the s2p model outperformed 11 other power consumption
disaggregation algorithms.

The s2p architecture used in this paper is shown in Fig. 5(a),
which consists of five convolutional layers followed by several
dense layers. We also incorporate the dropout technique to deal
with the overfitting problem [46]. Mean-square Error (MSE)
is used as the default loss function for training the model.

B. MAML-based Approach

The first proposed solution is a fine-tuning method that is
based on Model-Agnostic Meta-Learning (MAML), which is
illustrated in the upper part of Fig. 6. First, the pre-training
set is sampled to obtain meta-learning’s training and validation
sets, which are used to pre-train the base learner (i.e., the s2p
model given in Fig. 5(a)). When applied to a new dataset, a
small new fine-tuning set will be used to fine-tune the pre-
trained model to achieve good transferability.

Gradient-based meta-learning is regarded as an effective
approach for few-shot learning. MAML is most widely used
to adapt pre-trained models to new tasks by only using a
few samples. It aims to find a good initialization of model
parameters suitable for varying tasks (i.e., different datasets).
For few-shot learning problems, only a small amount of data
is fed into a pre-trained model for several gradient updates in

the fine-tuning phase. In meta-training, MAML introduces two
loops of training (i.e., the inner and outer loops). In the inner-
loop, a base learner is trained with Stri by a base learning
algorithm. In the outer-loop, a meta-algorithm updates the
base learning algorithm to improve the model learned by the
inner loop when dealing with new data Svali , indicating the
generalization performance of a model [47]. This is shown in
the graphical model in Fig. 3 for task i. In the pre-training
stage (i.e., meta-training), the base learner’s parameters ψ are
first initialized by θ, which is trained with the training set Stri
(in the inner-loop). The validation set Svali will be used to
update the meta learner’s parameters θ (in the outer-loop). In
the meta-testing stage, the pre-trained model is updated with
additional gradient update steps using new data T tr (i.e., fine-
tuning). Instead of freezing the parameters of some layers, all
the parameters θ of the pre-trained model will be updated in
the fine-tuning procedure. Finally, the well-trained model will
be used for inference with new data T ts.

Formally, the problem that MAML solves in the meat-
training stage is defined as follows

min
θ

∑
Task i

L
(
θ − α∇θL

(
θ,Stri

)
,Stsi ), (8)

where θ are the initialized parameters of the meta-leaner and
base-leaner. The loss function of the inner-loop is defined as

L
(
θ,Stri

)
= E

 ∑
x,y∼Str

i

‖fθ(x)− y‖22

 , (9)

where fθ(·) represents the inference model. In the inner-loop
of the meta-training procedure, the base-learner’s parameters
are updated by

ψi = θ − α∇θL
(
θ,Stri

)
, (10)

where α is the inner-loop’s learning rate. In the outer-loop,
the loss function is defined as

L
(
ψi,Svali

)
= E

 ∑
x,y∼Stval

i

‖fψi(x)− y‖22

 . (11)

MAML solves problem (8) by using stochastic gradient
descent (SGD), which involves a gradient through a gradient
(i.e., need to compute the Hessian matrix). To speed-up the
training process, we do not calculate the Hessian matrix, but
use its first-order approximation (i.e., the Jacobian matrix).
The simplified MAML algorithm is presented in Algorithm 1.

C. Ensemble Learning based Approach

Our feature-based approach is motivated by ensemble learn-
ing [48], which aims to tackle the challenge of generalization
i.e., to boost the performance of the pre-trained model on any
unknown dataset. Ensemble methods, i.e., stacking, have been
shown to be effective for time series forecasting problems [8].
Usually, data is partitioned by a clustering algorithm, and each
cluster is used to train a first-level learner. Then another neural
network is used as a second-level learner to fuse the outcomes
from the first-level learners for improved forecasting results.
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(a) The s2p architecture used in the MAML based model.
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padding same

Dense

kernel <3960××512>
bias <512>

activation relu

units 1024

Reshape Dropout Flatten Dropout

Concatenate

Dense

kernel <1536××128>
bias <1>

activation relu

units 1

output

Dense

kernel <128××128>
bias <1>

activation relu

units 1

Dense

kernel <128××1>
bias <1>

units 1

(b) The architecture of the ensemble learning feature based pre-training model.

Fig. 5: The architecture of the proposed pre-training neural network models.
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Fig. 6: The proposed methods: (i) Upper: the MAML-based approach; (ii) Lower: the ensemble learning-based approach.

The architecture of the proposed ensemble learning based
model, termed Ensemble, is illustrated in the lower part of
Fig. 6. Since the data from each house naturally form a cluster,
the clustering algorithm is not needed here. The data from
each house is used to train a first-level learner (i.e., a pre-
trained model). As in the MAML based approach, a similar
architecture of five convolutional layers followed by dense

layers is adopted for the pre-trained models, as shown in
Fig. 5(b). Similarly, dropout is incorporated to mitigate over-
fitting [46]. The ensemble model then integrates the outcomes
(except for the last layer) from the pre-trained learners with
a concatenate module followed by several dense layers to
provide the final prediction. The fusion process in fine-tuning
is to select a proper combination of the feature extractors
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Algorithm 1: First-order MAML [44]

1 Require α: inner-loop step size;
2 Require β: outer-loop step size;
3 Require A: inner-loop epochs;
4 Require B: outer-loop epochs;
5 Require Dataset S;
6 for a = 1 : B do
7 Sample the source set S for N times to obtain{

Stri ,Svali

}N
i=1

;
8 for i = 1 : N do
9 for a = 1 : A do

10 Evaluate ∇θL(θ,Stri );
11 Implement gradient descent:

ψi = θ − α∇θL(θ,Stri );
12 end
13 Calculate gradient: ∇ψL(ψi,Svali );
14 end
15 Update θ ← θ − β∑N

i=1∇ψL(ψi,Svali );
16 end

(pre-trained learners) to deal with unknown data. Due to the
diversity of the feature extractors, each for a suitable case,
as well as a well-designed fusion model, the ensemble model
is suitable for adapting the pre-trained models to unknown
datasets.

As shown in the lower part of Fig. 6, our ensemble model
has two phases of training, i.e., pre-training and fine-tuning.
In the pre-training phase, we split the original pre-training
set S into several subsets, each consisting of the data from a
different house. Each subset will be used to train an s2p model.
In the fine-tuning phase, we first freeze each base learner’s
parameters. Then we concatenate all the parameters from every
base model except the last dense layer as feature extractors.
Three layers of a fully-connected deep neural network is
then used to combine these feature extractors (i.e., pre-trained
learners), as shown in Fig. 5(b). The parameters of the dense
layers are trained with the fine-tuning set T tr.

V. DATASET AND EXPERIMENT SETUP

We evaluate the performance of the two proposed methods
with extensive experiments using open-source NILM datasets.
They are compared with several baseline schemes, e.g., tra-
ditional transfer learning, to validate their advantages. The
datasets used in the evaluation and the experiment configu-
rations are presented in this section.

A. Datasets

We use two real-world datasets, REFIT [49] and UK-
DALE [50], to evaluate the performance of the proposed en-
ergy disaggregation methods. Both datasets are from England
and provide house-level aggregate energy consumption and
individual appliances’ power consumption data measured by
sensors deployed in the houses, while the households were
conducting their usual domestic activities when the data was

TABLE I: Appliances and Houses in the REFIT Dataset

Meta-training dataset (pre-training): the REFIT dataset [49]

Training and validation dataset

Appliances Houses Time period Samples (M)

Kettle 9, 12, 20 2013-12-07 to 2015-07-08 17.20

Microwave 10, 12, 17, 19 2013-11-20 to 2015-06-30 29.80

Washing Machine 2, 7, 9, 16, 17 2013-09-17 to 2015-07-08 19.92

Dish Washer 7, 9, 13, 16 2013-09-26 to 2015-07-08 23.38

Fridge 2, 5, 9, 12 2013-09-17 to 2015-07-08 31.33

TABLE II: Appliances and Houses in the UK-DALE Dataset

Meta-testing dataset: the UKDALE dataset [50]

Training (fine-tuning) dataset

Appliances House Time period Samples (M)

Kettle, Microwave, Fridge, 2013-5-20 to
Dish Washer, Washing Machine 2 2013-5-29 0.108

Testing dataset

Appliances House Time period Samples (M)

Kettle, Microwave, Fridge, 2013-5-30 to
Dish Washer, Washing Machine 2 2013-10-10 1.592

Validation dataset

Appliances House Time period Samples (M)

Kettle, Microwave, Fridge, 2012-11-9 to
Dish Washer, Washing Machine 1 2012-11-18 0.102

collected. The features of the two datasets are summarized in
Tables I and II, respectively.

In particular, the REFIT dataset consists of data from 21
houses, while the UK-DALE dataset has data from five houses.
The data in the REFIT dataset was recorded every 8 seconds,
to mimic the data collected by the SMETS2 smart meter
standard2 [49]. Each house was equipped with nine appliance
monitors and one current transformer sensor. The time duration
of the REFIT dataset was from September 2013 to July 2015.
We use a cleansed version of the REFIT dataset, where the
missing values in each house (i.e., the NaN values) have been
either zeroed or forward filled. In the UK-DALE dataset,
each house’s aggregated power consumption was recorded
every 1 or 6 seconds, and each individual appliance was
measured every 6 seconds. The 6-second dataset is used in our
experiment. It should be noticed that the UK-DALE dataset
has been preprocessed; but we use the original dataset as it
is. In order to be consistent with the data in REFIT, the UK-
DALE data are down-sampled to 8 seconds.

We apply standard score normalization in data before all the
models are trained and tested. The value of each appliance’s
mean and standard deviation can be found in [18]. In our
experiments, the REFIT dataset is used for pre-training, while
the UK-DALE dataset is used for fine-tuning and testing, to
test the models’ generalization performance.

B. Hyper-parameters and Neural Network Training

Detailed information of the hyper-parameters of the pro-
posed models are summarized in Table III. All the models are
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TABLE III: Hyper-parameters of the Proposed Models

MAML

Window size 99
Batch size 2000
SGD (inner-loop step size) 0.001
Adam (outer-loop step size) 0.001
Meta-training inner-loop epochs 1
Max meta-training outer-loop epochs 50
Max meta-testing’s training epochs 10

Ensemble

Window size 99
Batch size 2000
Adam 0.001
Maximum pre-training epochs 50
Maximum fine-tuning epochs 10

implemented with TensorFlow 2.2.0 and trained on NVIDIA
RTX 2070 Mobile with the Ubuntu 18.04 operating system.
The window size W is set to be 99, 299, and 499. We
find that the difference in performance between the different
window sizes is small. So we select the smallest value W
for computational efficiency. For the meta-learning model
(i.e., MAML), the inner-loop of meta-training has a step size
α = 0.001 using the SGD optimizer [51]. We implement one
gradient update in the inner-loop. The outer-loop is solved
using the Adam optimizer [52], which is implemented with
50 gradient updates. During meta-testing, all layers of the
trained model are fine-tuned with the Adam optimizer with
ten gradient updates. For the Ensemble model, the Adam
optimizer is used for all the pre-trained base models.

VI. EXPERIMENT RESULTS AND DISCUSSIONS

A. Experiment Methodology

In this section, we evaluate the two proposed approaches
and compare them with several baseline power disaggregation
algorithms. We choose five appliances in the experiments,
including kettle, fridge, washing machine, dishwasher, and
microwave. Each model for the appliances is trained indi-
vidually, which means, for every appliance, a distinct dataset
(con-training both meta-training and meta-testing sets) is con-
structed and used.

As mentioned in Section III, to test the transferability of
the models, two different datasets are used for pre-training and
fine-tuning, respectively. In our experiments, we use REFIT as
pre-training dataset. This is because REFIT is a relatively large
dataset, which is expected to be able to equip the trained model
with better generalization ability. UK-DALE is used as the
testing dataset, where the house 2 data is used to fine-tune and
test the model, and the house 1 data is used as the validation
set. The detailed dataset split information is provided in Table I
and Table II.

Two stages of learning are conducted. Take the fridge’s
model as an example. For MAML, during the meta-training
process, data of houses 2, 5, 9, and 12 in REFIT are first used
to pre-train the model (as shown in Fig. 5(a)). The zero-shot
results are obtained by directly applying the pre-trained model
for inference for house 2 in UK-DALE. The few-shot results
are obtained by using a few house 2 data in UK-DALE to

fine-tune the model and then using the fine-tuned model for
inference for house 2 in UK-DALE. For Ensemble (i.e., the
feature-based pre-train method), data of houses 2, 5, 9, and
12 in REFIT are used to pre-train multiple base models (as
shown in Fig. 5(b)). During the fine-tuning process, we will
first examine each model’s performance without any parameter
updates using the meta-testing’s test data to obtain the zero-
shot results. The best pre-trained model, which scores the
highest performance on house 2 in UK-DALE, will be fine-
tuned with new data in the same way as MAML to obtain the
few-short results.

The following three baseline schemes are used in our
comparison study:
• Sequence-to-point (s2p): this is the model shown in

Fig. 5(a) that is trained from scratch using only meta-
testing’s fine-tuning dataset (see Table II). This is re-
garded as the bottom-line benchmark.

• Transfer learning for NILM (TL) [18]: this is the tradi-
tional transfer learning approach that uses s2p as the base
model. It is trained with REFIT and tested on UK-DALE,
with and without fine-tuning.

• Pre-trained sequence-to-point (pre-s2p) model uses the
REFIT dataset to train the base model, which is similar
to TL [18]. The difference between pre-s2p and TL [18]
is that data from different houses is used to build several
models in pre-s2p, while TL [18] utilized the entire
dataset to build only one model. We only choose the
base model with the best zero-shot MAE performance
for fine-tuning.

Note that the authors in [18], [45] compared the s2p scheme
with other traditional machine leaning methods, and found s2p
achieved the best performance. Therefore, we choose s2p as
a baseline scheme in this section.

Two performance metrics are used in the evaluations, which
is the mean absolute error (MAE) and the signal aggregate
error (SAE). These two metrics are defined as fellows.

MAE =
1

T

T∑
t=1

|ŷj(t)− yj(t)| (12)

SAE =
1

rj
|r̂j − rj | , (13)

where ŷj(t) and yj(t) are the estimated power consumption
of appliance j and the ground truth, respectively; T is the
duration of the time period; and r̂j and rj are the predicted
total energy consumption and the ground truth of appliance j,
respectively. MAE is used to measure the difference between
the predict appliance power usage at every time instance and
the ground truth of the appliance. SAE shows the relative error
of the total energy consumption of the appliance [18].

B. Results and Discussions

The evaluation results (i.e., MAE and SAE) are presented
in Table IV, where zero-shot means the pre-trained models are
tested on the testing set directly, and few-shot means the pre-
trained models’ parameters are updated with the fine-tuning set
and then the fine-tuned models are tested on the testing set.
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There are no zero-shot results for s2p and Ensemble, since
s2p is trained from scratch using the fine-tuning data and
Ensemble requires fine-tuning data to combine the individual
pre-s2p models. We use 10K fine-tuning sample instances’ for
updating the model parameters, which is collected on the first
day of the fine-tuning set. The results of the transfer learning
method (TL) proposed in [18] are presented as well. We found
that with TL, the pre-trained model with fine-tuning performs
even worse than the one without fine-tuning. We include
both TL results with or without fine-tuning in the table. The
parentheses following each pre-s2p model indicate the specific
house in dataset REFIT used to pre-train the model. Only the
pre-s2p model that achieves the best MAE performance for
zero-shot of learning will be further updated with fine-tuning.

As can be seen from Table IV, both proposed pre-trained
methods, i.e., MAML and Ensemble, outperform the tradi-
tional machine learning and transfer learning methods for all
the tested appliances with respect to MAE and SAE. Next, we
analyze the results in more detail in the following.

1) From Zero-shot to Few-shot: By updating the parameters
(i.e., from zero-shot to few-shot fine-tuning), the transfer
learning method used in [18] got an even worse result, with
an −598.71% average improvement in MAE. This is because
the TL method uses weak-relevant data in fine-tuning, which
is the data from house 1 in UK-DALE. We try to diversify
the data used for pre-training as in [18]. However, there is no
guarantee that the data for fine-tuning comes from a similar
distribution. Thus, we further improve fine-tuning by using
only a small amount of data of house 2 (with no overlap
with the unknown testing data). However, in some cases (e.g.,
pre-s2p model 1 of appliance kettle), negative transfer still
happens, where the few-shot MAE (7.518) is slightly larger
than the zero-shot MAE (6.124). Moreover, the improvements
achieved by the pre-s2p models for other appliances are all
insignificant. If we regard the pre-trained model’s parameters
as the neural network’s starting point in the search space, the
weight initialization of traditional transfer learning used for
NILM is not optimal. Consequently, the DNNs get stuck in
local minima with sub-optimal solutions.

The two proposed methods overcome this problem. On one
hand, MAML achieves 53.41%, 25.67%, 21.61%, 40.24%,
and 39.05% improvements in MAE for the kettle, dishwasher,
washing machine, fridge, and microwave, respectively. On
the other hand, Ensemble achieves 32.59%, 37.20%, 44.68%,
41.20% and 41.22% improvements in MAE compared to all
the pre-trained models it uses.

2) With or Without Pre-training: We also compare the pre-
trained models with the one trained from scratch (i.e., s2p).
From the table, we can see that the best pre-trained model
always outperforms s2p when using the same 10k new data
samples. The improvement in MAE are 83.92%, 35.23%,
45.91%, 42.58%, and 75.60%, respectively, for different appli-
ances. The improvement in SAE are 83.92%, 35.23%, 45.91%,
42.58%, and 75.60%, respectively, for the appliances.

We next investigate how much fine-tuning data is needed
to achieve a good performance on the NILM task. We further
expand the results for appliance kettle in house 2 in UK-DALE

TABLE IV: Performance When Transferred to UK-DALE

Kettle Zero-shot Few-shot

Model MAE SAE MAE SAE

s2p - - 21.287 0.367
TL [18] 6.260 0.060 16.879 0.043

pre-s2p model 1 (house 9) 6.124 0.155 7.518 0.140
pre-s2p model 2 (house 12) 9.539 0.248 - -
pre-s2p model 3 (house 20) 32.889 0.816 - -

MAML (proposed) 12.485 0.198 5.817 0.043
Ensemble (proposed) - - 3.424 0.008

Dish washer Zero-shot Few-shot

Model MAE SAE MAE SAE

s2p - - 20.552 0.096
TL [18] 16.490 0.130 41.106 0.516

pre-s2p model 1 (house 5) 18.776 0.028 - -
pre-s2p model 2 (house 7) 18.633 0.243 - -
pre-s2p model 3 (house 9) 28.516 0.523 - -
pre-s2p model 4 (house 13) 16.191 0.346 15.130 0.243
pre-s2p model 5 (house 16) 40.922 0.958 - -

MAML (proposed) 17.882 0.361 13.292 0.254
Ensemble (proposed) - - 13.746 0.033

Washing machine Zero-shot Few-shot

Model MAE SAE MAE SAE

s2p - - 9.574 0.733
TL [18] 14.840 0.500 22.941 0.899

pre-s2p model 1 (house 2) 9.629 0.679 - -
pre-s2p model 2 (house 7) 8.356 0.626 7.751 0.431
pre-s2p model 3 (house 9) 9.631 0.785 - -
pre-s2p model 4 (house 16) 11.070 0.767 - -
pre-s2p model 5 (house 17) 8.613 0.600 - -

MAML (proposed) 9.332 0.648 7.315 0.487
Ensemble (proposed) - - 5.179 0.288

Fridge Zero-shot Few-shot

Model MAE SAE MAE SAE

s2p - - 28.842 0.109
TL [18] 17.000 0.090 33.078 0.266

pre-s2p model 1 (house 2) 27.793 0.191 - -
pre-s2p model 2 (house 5) 30.245 0.165 - -
pre-s2p model 3 (house 9) 26.497 0.085 26.210 0.116
pre-s2p model 4 (house 12) 30.787 0.417 - -

MAML (proposed) 27.714 0.280 16.562 0.068
Ensemble (proposed) - - 16.887 0.088

Microwave Zero-shot Few-shot

Model MAE SAE MAE SAE

s2p - - 13.174 1.194
TL [18] 4.770 0.080 10.973 0.019

pre-s2p model 1 (house 10) 4.767 0.345 4.498 0.259
pre-s2p model 2 (house 12) 7.739 0.755 - -
pre-s2p model 3 (house 17) 6.849 0.112 - -
pre-s2p model 4 (house 19) 5.275 0.093 - -

MAML (proposed) 5.275 0.093 3.215 0.120
Ensemble (proposed) - - 3.490 0.018

with sample size increased from 0 to 100k. The new MAE
results are shown in Fig. 7. The pre-s2p model is pre-trained
with house 9 data in REFIT. As can be seen, except for transfer
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Fig. 8: Validation error (NMSE) of appliance kettle using 10k
samples for domain adaptation in fine-tuning.

learning (pre-s2p), all other methods, including the model
trained from scratch (s2p), achieve improved performance
when more samples are used in fine-tuning. The pre-s2p model
again suffers from the negative transfer problem, no matter
how many samples are used to fine-tune its parameters. The
MAEs of the two proposed methods (MAML and Ensemble)
are initially (i.e., zero-shot) lower than that of s2p, and quickly
reduces to stable values when 10K samples are used in fine-
tuning. We also find the ensemble model outperforms MAML
with a slightly smaller MAE. The s2p model needs at least 50k
new samples to achieve the same MAE as MAML and at least
100K new samples to achieve the same MAE as Ensemble.

Fig. 8 presents an ablation study of validation error for
appliance kettle using house 1’s data in UK-DALE with dif-
ferent gradient steps for few-shot learning. We observe that all
methods continue to improve (with a decreasing Normalized
Mean Square Error (NMSE)) as there are more gradient steps,
and the NMSEs converge to stable values after 8 gradient
updates. The NMSE of the model trained from scratch (i.e.,
s2p) drops dramatically and is the highest among the four
schemes. The two proposed methods both achieve smaller
errors than the transfer learning model (i.e., pre-s2p).

TABLE V: Execution Time and Model Size of the Proposed
Models for Kettle

Model Model size Training time Fine-tuning time
(MB) (Min) (Min)

MAML 16.3 953.72 0.68
Ensemble 49.0 1173.06 2.01

3) Feature-based vs. Fine-tuning-based: We also plot the
predicted power consumption values along with the ground
truth for the five appliances, as well as the aggregated
power consumption in house 2 in UK-DALE, including kettle,
dishwasher, microwave oven, washing machine, and fridge,
obtained with the four methods for a specific time period in
Fig. 9. For each appliance, we include a zoomed-in plot of the
curves as well as a plot for the entire time period. Since the
same legend is used in all the plots, we only show the legend
in Fig. 9(b) to make the plots more readable. The aggregated
consumption is in the shade of light gray and the ground truth
of the target appliance is in the shade of dark gray. It can be
seen that the s2p model fails to predict the appliance’s power
consumption at some time instances, i.e., the appliance’s state
is off but it is predicted as on. This is quite obvious in Fig. 9(e)
from 200 to 250, and from 320 to 350. The transfer learning
model (pre-s2p) tends to overestimate the appliance’s power
consumption (e.g., see Fig. 9(c)) or underestimate it (e.g., see
Fig. 9(g)). The two proposed methods’ predictions match the
ground truth much more closely than the other two schemes.

For the two proposed methods, it can be seen from Table IV
that they achieve similar MAE performance for dishwasher,
fridge, and microwave. For kettle and washing machine, En-
semble outperforms MAML in MAE with an improvement
ratio of 41.13% and 29.20%, respectively. Ensemble also
outperforms MAML by achieving a smaller SAE for the kettle,
dish washer, washing machine, and microwave. While both
methods achieve good prediction performance, the Ensemble
results are slightly better than that of MAML. This may due to
the fact that MAML is a fine-tuning based approach; training
all its parameters using a small amount of fine-tuning data
may result in the overfitting problem [53].

4) Computational Complexity and Execution Time: In Ta-
ble V, we present the execution time and model size of the
proposed models. The pre-training time of the Ensemble model
given in the table is the accumulative time consumed by
individual models. The results show that the Ensemble model
requires more training time and larger model size than MAML.
Training the base models in parallel on multiple GPUs will
greatly improve the time efficiency of the pre-training process
of the Ensemble model. Due to limited computing resources,
we did not use this method in our experiments.

5) Limitation and Future Work: Due to limited datasets,
the pre-training dataset and testing dataset are from the same
country. The generalization of the pre-trained models across
different countries needs to be further studied, as differences
in appliances and usage behavior between different regions
may be larger. Furthermore, we only investigate the trans-
ferability of the pre-trained models predicting the same type
of appliance between different regions. Transferability among
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Fig. 9: Comparison of predicted appliance power consumption obtained by Ensemble, MAML, sequence-to-point (s2p), and
transfer learning (pre-s2p) models with ground truth for five appliances (i.e., kettle, microwave, fridge, washing machine, and
dishwasher) with the house 2 meta testing set.
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different types of appliances would be an interesting problem
to study. Finally, deep learning models are vulnerable to
designed adversarial training samples. Attackers may fool the
training process by introducing tainted data in the fine-tuning
data. It is essential to improve the security and robustness of
the pre-trained deep learning model.

VII. CONCLUSIONS

In this paper, we developed two types of pre-trained models
based on CNNs for solving the NILM problem with a focus
on generalization. The Ensemble model uses a neural network
to connect several trained base models, and few-shot learning
fine-tuning to adapt to a new task. The MAML approach
initializes the pre-trained model with good weights, and can
quickly adapt to a new task with a few gradient updates.
The proposed pre-trained models can effectively solve the
NILM problem. Compared to transfer learning, our models
require fewer data for adaptation, and can quickly adapt to new
NILM tasks. In addition, our proposed methods outperform
transfer learning with respect to prediction accuracy and can
effectively avoid negative transfer. The proposed schemes are
validated with two open-source datasets and comparison with
the baseline schemes.
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