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Abstract. In this paper, we improve upon the parallelisation of the
Grover-based quantum claw-finding attack on the Computational Super-
singular Isogeny (CSSI) problem studied in [15] and optimised in [3].
The CSSI problem is the underlying hard problem behind the SIKE
cryptosystem [2]. We leverage specifics of the claw-finding problem, ex-
ploiting classical computation to surpass the limits on the performance
of parallelisation of Grover proved by Zalka [24] under the assumption
that the quantum oracle is a black box.

Our parallel attack improves on the previous attacks against SIKE [15]
under constraints such as the MAXDEPTH (maximum quantum circuit-
depth) and is particularly effective with respect to the MAXWIDTH
(maximum memory) constraint which recently motivated the upgrade of
the security level of SIKE p751 from NIST Level III to NIST level V [2].
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1 Introduction

Let x : {0,1}® — {0,1} be a boolean function such that |[x~'(1)] = 1.
Grover’s [11] algorithm finds the unique z, € {0,1}" such that y(z.) = 1 with
high probability in 0(2”/ 2) calls to a quantum circuit implementing y (the
quantum oracle). Zalka [24] proved that Grover’s quantum search offers poor
parallelism compared to naive classical exhaustive search (which offers almost
perfect parallelism) when the quantum oracle is treated as a black-box. Indeed,
if we possess 2° quantum computers, whilst the individual quantum circuit-size
and circuit-depth may be reduced by a factor of O(27%/2), the total number of
calls to the oracle over all 2° quantum computers is in O (2%/227/2).

Grover’s algorithm is explicitly stated as one of the leading methods of quantum
cryptanalysis in the SIKE key encapsulation method submitted to the NIST
standardisation of quantum-resistant public-key cryptosystems [20]. This scheme



is based upon the hardness of the computational supersingular isogeny (CSSI)
problem (see Definition 1), a problem whose origins lie in the work of [7]. The
impact of the Grover-based attack on specific instances of SIKE (parametrized
by a prime p) can be assessed via the estimation of the cost of the quantum oracle
for the isogeny search. A comparison of this attack with the performance of Tani’s
algorithm [22] (which can attack SIKE with a query complexity of O(p'/%)) was
studied by Jaques and Schanks [15], who showed that under realistic assumptions
concerning the underlying quantum data structure required to implement Tani’s
algorithm, both Grover’s algorithm and Tani’s algorithm have a cost of O(p'/4),
raising the question of which may offer better performance.

These two assumptions — the overhead of the quantum oracle and the parallelism
scaling of Grover’s algorithm are intrinsic to the NIST call for proposals [21]. The
authors therefore believe that the study of these assumptions are of importance,
as they are a cultural assumption. In this paper, we show how to improve the
parallelism of the Grover-based technique, extending the work of [3] and estimate
the full cost of the attack for instances of SIKE whose security is defined the
size of the prime p for instances where log(p) = 434,503,610, 751.

Contributions In this paper we make the following contributions

— We describe a parallelisation of Grover’s algorithm over 2% processors which
offers a total cost of O(2%/42P/4C') which should be compared to a black-box
parallelism, which offers O(2°/22P/4C'), where C contains polynomial factors.

— We show our method offers improvements over the state of the art under
MAXWIDTH=2% and MAXDEPTH=2% against the instances of SIKE
defined by log(p) = 434 and 751.

— We estimate the resources to implement the attack, including the quantum
circuit to compute a degree-2¢ isogeny path based upon methods of [14].

— We comment upon assumptions and cost models in quantum cryptanalysis.

2 Background

SIKE and the CSSI problem The Computational Supersingular Isogeny
problem is the underlying hard problem behind the SIKE key encapsulation
mechanism [2]. The security of SIKE instantiations are parameterised by a prime
of the form p = 2°37 — 1 such that 2° ~ 3/ and an elliptic curve E; defined over
)2, whilst the key-exchange transmission reveals a second elliptic curve curve Es
also defined over F,> and guarantees that there exists an isogeny (a morphism)
¢ : By — E> with a kernel of size 2¢ (the degree of the isogeny). Finding
this degree-2¢ isogeny ¢ : F3 — FEs is equivalent to breaking SIKE. A similar
hardness assumption was previously introduced in [7] by Charles, Goren and



Lauter without restriction on the degree of the isogeny. See [8] for its connection
with other hardness assumptions 3

Definition 1 (CSSI problem [14]). Let Ey, E5 be two supersingular elliptic
curves defined over Fp> such that there is a unique degree 2¢ isogeny ¢ : £y — Eo
(up to isomorphism) with e ~ log%. Given E1, Es,p and e, the Computational

SuperSingular Isogeny (CSSI) problem is to find the unique isogeny between Ey
and Es.

The problem implictly defines a Ramanujan graph where each node is an elliptic
curve and edges are degree 2 isogenies between these curves. For any two elliptic
curves E' and E” we have that £ = E” if and only if j(E') = j(E"), where
j(+) is the j-invariant (which is efficiently computable) of a given elliptic curve
— this allows us to assign each node in this graph a unique label. Note that in
a SIKE instance, there is a negligible probability that more than one isogeny
exists, while the CSSI problem offers the guarantee that the solution is unique.

Given the graph-based interpretation of this problem as discussed above, one
approach to solving this problem via both classical and quantum methods is the
meet-in-the-middle approach to claw-finding. In this scenario we allow e = e; +e5
and attempt to find a node that corresponds to a degree-2°! isogeny starting from
E; and a degree-2°? isogeny starting from Fs. If we can find such a node (an
elliptic curve identified by its j-invariant) then we can use these isogenies to
generate an isogeny of degree 2¢11¢2 = 2¢ from F; to Fs. Both classical [1, 9]
and quantum [15] approaches to this attack methodology have been studied.

Classically, one can either enumerate and sort a table of j-invariants or use the
van Oorschot-Weiner [23] (VW) parallel-collision finding approach to find the
unique claw we are searching for. Asymptotically (modulo polynomial factors)
these approaches require O(pl/ %) classical gates given unbounded memory.

In terms of quantum attacks, the best theorised approaches are either Grover’s
algorithm [11] or Tani’s algorithm [22] — cost estimates for these algorithms
under realistic assumptions concerning quantum memory and error-correction
were studied in [15]. In particular, the results of [15] reduce the asymptotic
complexity of solving the CSSI problem via Tani’s algorithm from O(p'/®) to
O(p'/*) — giving it an identical asymptotic complexity (modulo polynomial
factors) to that of using Grover’s algorithm to solve the CSSI problem.

Quantum search techniques An n-qubit (quantum bit) quantum state can
be expressed relative to the computational basis as {|z) : = € {0,1}"} by

[y = > a,lz), where o, € C and Y |a2| = 1. Crucially, we can perform
ze{0,1}" T

a measurement of this state which collapses |¢) into a the classical bitstring

x € {0,1}" with probability |a2|. Quantum states can be regarded as state

3 This section and details on SIKE can be expanded upon if the reviewers wish, but
for the 12-page submission the authors believe that this is sufficient information.



vectors so that [1)) € C2". Given this interpretation, the space of all possible
quantum algorithms (which do not include measurement) acting upon n-qubits
is the set {U € C2'x2" . yUt =UlU = I'} of unitary operators, where 1 is the
conjugate-transpose operator.

A simple quantum algorithm can therefore be thought of as a sequence of unitary
operations which increase the magnitude of o, (which encodes information we
wish to learn) followed by a measurement, which gives us a high probability of
obtaining this information. Quantum amplitude amplification [5], a generalisa-
tion of Grover’s algorithm [11] allows us to take a quantum algorithm that results
in useful information with probability a and increase this probability close to 1.
Crucially, quantum amplitude amplification gives an asymptotic advantage in
obtaining this information — if we simply repeated the initial quantum algo-
rithm we would require O(%) applications, measurements, whereas with quan-
tum amplitude amplification we would only require O(ﬁ) such applications,
but require a quantum oracle, which is simply a quantum circuit that recognises
the elements of x € {0,1}" we are interested in. Quantum circuits are them-
selves constructed out of primitive quantum gates — we fix the choice of the
Clifford+T [19] universal quantum gate set comprised of the Clifford gate set
and the T-gate, which is sufficient to exactly the quantum circuits we discuss.

Definition 2 (Success probability of a quantum algorithm). Let A be
any quantum algorithm acting upon n-qubits and x : {0,1}"™ — {0,1}. We say
that the success probability of A relative to x is the probability that measuring the
state A|0™) in the computational basis results in x € {0,1}™ such that x(z) = 1.

Note that A can have different success probabilities relative to different boolean
functions — a trivial example is the two constant boolean functions on n-bits.

Definition 3 (Quantum oracle). The quantum oracle O, defined by the
boolean function x : {0,1}" — {0,1} has the following action upon the set
of n-qubit computational basis states { |z) : x € {0,1}"}

o, |2} { &) if (@) =1 o

|z)  otherwise.

We note as a fact that quantum oracles can be implemented via the set of quan-
tum gates {X, A1(X), A2(X)} which respectively implement reversible versions
of the classical operations —, @ and A, which are sufficient to implement any
boolean function. These gates must be reversible owing the aforementioned uni-
tary property that gives us that any quantum algorithm excluding measurement
must possess an inverse. The A, (X) gate is a generalisation, acting on k+1 com-
putational basis states by A (X) |x1 ... xk) [xps1) — |21 .. 2k) |[Trp1 D g - xp)
so that X = Ag(X) and Ag(X) |z1) — |1 @ 1). These gates can be exactly syn-
thesised using the Clifford+T wniversal quantum gate set [19] and we use the
costs for the Ak(X) from [18]. We denote the cost of executing an arbitrary



quantum operation A by C4. As all operations in the statement of amplitude
amplification are serial (see Q(A, Oy, k) in Theorem 1), we can substitute either
quantum circuit-size or quantum circuit-depth of A to obtain the relevant cost.

Theorem 1 (Amplitude amplification — [5]). Let A be any quantum algo-
rithm (with inverse A") with a probability of success relative to x : {0,1}" —
{0,1} of a € [0,1]. Then given A, O, and k, there exists a quantum algorithm
Q(A, Oy, k) = (AOﬁ.ATOX)k.A, denoted by B(k) when there is no ambiguity,
with a probability of success relative to x : {0,1}" — {0,1} of

b(k)=sin? ((Qk +1) - arcsin \/(E) (2)
and which costs (where we assume Cy = C yt)
Cky =k (Co, +Co,) + (2k+1)-Ca (3)

where i : {0,1}" — {0, 1} is defined by n(x) =1 iff © # 1.

Grover’s algorithm is a simple application of quantum amplitude amplification
which leverages the quantum algorithm A = H®" (the Hadamard transform

on n-qubits). H®™ acts as H®"|0") +— 515 > |z), which creates the uni-
ze{0,1}"
form superposition. The probability of obtaining an element such that y(z) =1

is a = W, and Lemma 1 [4] (see Appendix B) shows that when k =

b < E . 2’". ] . .
L.arcsm WJ <7 oIk the probability of obtaining an element

n o )] xT'a
z € {0,1}" such that x(z) =1 is max {1 — %, w}

3 The cost of the isogeny oracle

To implement the claw-finding methodology in Section 2 with Grover’s algo-
rithm, we must construct a quantum circuit that accepts a secret z € {0, 1}
(which corresponds to our search-space), a classically known elliptic curve E}
defined over FF,2, and two classically known torsion points P,Q € Ey(F,z2). This
circuit, denoted by £y, , 1) computes an initial point R = P+[2]Q, then 2) com-
putes the end-curve E’ of a degree-2°* isogeny ¢ : 1 — E’ that is uniquely
specified by R and finally 3) outputs the j-invariant of E’. This process is in fact
part of the SIKE key-exchange mechanism and a detailed breakdown of the pro-
cedure based upon the O(e log, e) cost algorithm of [14] in terms of classical F 2
arithmetic (based upon a projective coordinate representation of elliptic curve
points) is provided in the SIKE specification [2]. Note that to solve the more
general CSSI problem (Definition 1), we need to consider the possibility of ker-
nels generated by points of the form P + [z]Q and [y]P + Q where z,y € [1,2°]



and 2 | y. Thus, the search space has size 3 - 2171, In our analysis of concrete
costs, we restrict ourselves to generators of the form P + [2]Q per the specifica-
tions of SIKE [2]. However, this design can be easily modified to apply to CSSI
instances with identical an asymptotic cost. For reasons of space we do not go
into details, but instead outline the procedure and cost analysis. Full details are
available upon request and can be included in the full paper if required.

We follow [2, Sec. 1.1.3] to convert F,2 arithmetic operations to F, arithmetic
— our basic unit of cost will be quantum circuits for F, (modular) arith-
metic. It is important to note that whilst quantum circuits for modular ad-
dition can be performed in-place (one of the registers is overwritten with the
output), modular multiplication and inversion is performed out of place. This
gives us the quantum primitives (where a,b € F,) Ugaala)|b) — |a)|a+ D),
Unuit |a) |b) |0“0g2 Py Ja) |a) |a - b) and Upnyert |a) ‘0“032 P1Y i |a) la™!) — all
of these operations require a number of ancilla qubits to implement efficiently.
These ancilla begin and end in a clean (|0...0)) state. Cost estimates for these
quantum circuits in the Clifford+T quantum gate set were kindly provided [12]
which we use in our experiments in Appendix C.2.

. Total Ops Depth # of qubits
SIKE function Add|Mult|Invert|Add|Mult |Invert Total Ancillas
xDBL 90 | 32 0 51 | 22 0 [32log(p) + 18|12log(p) + 18
4_iso_curve | 30 | 8 0 23 | 8 0 |23log(p)+9| 6log(p)+9
4_iso_eval | 68 | 28 0 28| 9 0 [70log(p) + 54|36 1log(p) + 54
xDBLADD | 168 | 64 0 |60 28 0 |76log(p) + 54|36 log(p) + 54
jInvariant |111| 44 1 |64 24 1 |44log(p) + 27|18 log(p) + 27

Table 1: # of quantum F,, operations for the classically defined SIKE functions.

The cost of step 2) dominates the entire computation, both in quantum memory
usage and gate-cost, hence we first compute the total number of qubits required
by 2) and 3). We then designed a quantum circuit corresponding to Algorithm 8
of [2] which takes the upper-bound on the amount of quantum memory available
and uses it in a greedy strategy to conserve quantum circuit-size, only uncom-
puting quantum registers to save space when the storage limit was hit. After the
initial point |R = P + [2]Q) was constructed, we uncomputed all ancilla qubits
leaving only the |z) |R) and then begun the algorithm for computing a degree
2¢ isogeny from R using the strategy of [14] which corresponds to step 2).

For simplicity, we assume e; is even, but the method is easily adapted if not.
We choose to create isogenies of degree-4 rather than degree-2 in the following
discussion for reasons of efficiency. The method of [14, Sec. 4.2.2] computes the
curve E' = E;/(R) which is the image of E; by the isogeny ¢ of kernel (R)
together with ¢ = ¢, /2_1 0...0 ¢ (as a composition of degree-4 isogenies).
Along the way, curves E! are create for i = 0,...,e1/2 — 1 where Ej = E; and
¢i : Ej — Ej,,. Intermediate isogenies ¢; are defined by the 4-torsion points



[4¢1/2-1=R; € E;[4] where R;y1 = ¢i(R;), Ry = R. A low memory quantum
implementation of this procedure costs a circuit-size O(e?). It consists in com-
puting the R; and [461/ 2-1=1 R, sequencially. Another strategy has a quantum
circuit-size of O(elog, €) and corresponds to the optimal classical strategy of [14,
Sec. 4.2.2]. Tt consists in computing all the [4°1/27'~/| R; in a different order. The
tree structure of Figure 1 illustrates this. The root is Ry, and each left move is a
multiplication by 4 while a left move is the computation of ¢; and its evaluation
on the current point. In Appendix A, we discuss the concrete issues encountered
to turn this classical procedure into a quantum circuit.

(a) Low storage strategy (b) Low compuation strategy

Fig. 1: Different strategies to traverse the isogeny tree

4 Parallelism and quantum search

One well-known strategy to parallelize Grover’s algorithm to search the space
{0,1}"™ with 2° parallel quantum computers is to use inner parallelism [16].
This consists in dividing the search-space into 2° paritions by assigning each
quantum computer to search a space of n — s bits with the first s bits unique
to each quantum computer. A well-known result by Zalka [24] proves that this
is essentially optimal when quantum oracle is treated as a black-box, giving us
that Grover’s algorithm does not exhibit the same benefits from parallelism as
classical search. Whilst this strategy reduces the individual total circuit-depth
and circuit-size by a factor of O(2732), the total quantum circuit-size over all of
the 2° quantum computers increases by a factor of O(22).

The results of [15] provide concrete estimates for the cost of solving the CSSI
problem using Grover’s algorithm under this assumption concerning parallelism.
Yet, Zalka’s results are only proven relative to treating the quantum oracle as a
black-box. In reality, there is a great deal of structure in many quantum oracles
which can be used to reduce the total cost of the quantum search procedure and
in this section, we demonstrate how the results of [3] can be transformed into a
parallel version which affords the same benefits in overhead reduction and offers
a quantum circuit-size over all quantum computers with a penalty of only O(2%)
at the cost of requiring 0(2%“’) classical resources. The strategy is essentially a
hybrid of [3, Th. 4.3], [6, Alg. 5], and [13, Prop. 1], which all involve classical



preprocessing. Note that the below strategy collapses to that of [3] when we use a
single quantum computer (ie. s = 0), giving a complexity of 0(2% -/ CY, log, p)
(where Cf, is the cost of a quantum circuit that computes a degree 2° isogeny-
path starting at a specific curve) whereas the Grover-based approach from [15]
has a complexity of 0(2% Cfe>-

Theorem 2 below proposes a different parallelism strategy to that offered by
simply using Grover’s algorithm. The entire process builds upon the idea of [3] of
exploiting preprocessing to create a list of j-invariants corresponding to isogenies
of degree 2°2 starting from Fs, but partitions these j-invariants amongst 2°
quantum computers by using a strategy similiar to that in [6]. This partitioning
of the sublists (or buckets) is performed according to their first s-bits and each
quantum computer is assigned a unique bucket. The quantum search process
leverages two quantum oracles to search for a degree-2°* isogeny — one for a
cheap test that any identifies any 2 € {0, 1} corresponding to an isogeny whose
j-invariant matches the first correct s-bits and one an expensive test that checks
whether these x € {0,1}°2 correspond to exactly the isogeny we are search for.
This draws upon the work of [17] and [6] which explore such strategies and how
to balance the cost of calling different quantum oracles.

Theorem 2 (Solving the CSSI problem via quantum search). Let the
CSSI problem be defined by the promise that there exists a degree-2¢ isogeny be-
tween two given elliptic curves By and Eo over Fp2. Then there exists a quantum
algorithm that solves the CSSI problem defined by these parameters with proba-
bility close to 1 which exploits 2° quantum computers, allowing s up to 0(2%6),
requiring an asymptotic quantum circuit-size per quantum computer of

0(271°2%/C;, log, p) (4)

and both classical computation and storage respectively on the orders of

0@ | D M) and  0(23 /Ty Togyp). (5)

log, p

where Cy, is the number of quantum gates required to implement quantum circuits
that evaluates a degree 2° isogeny-path starting at Ey and M(p) is the cost of
classical modular multiplication over IF),.

PrOOF: We first sketch the algorithm and choose the optimal parameters after
the algorithm is explained. For notation we assign each of the 2° quantum com-
puters a unique index S € {0,1}* (ie. Sp, S1,...,S2:-1). Explicit formulae for
the computational lower-bounds can be easily obtained (and are available in the
attached scripts) by use of Lemma 1 combined with the Chernoff bound.

1) We first compute and store the j-invariants of all degree-2¢? isogenies start-
ing from the curve Fs, sorting these as they are generated into 2° buckets
Lg,...,Lo:—1 such that the index of the bucket matches the first s bits of



all its members. Under the mild assumption that j-invariants and uniformly
randomly distributed, each bucket will therefore contain ~ 2°27¢ elements of
size 2[log, p] and by a simple application of the Chernoff-bound and the union
bound we have a bound on the size of these buckets. Formally, we have that for

all i € {0,1,...,2° — 1} it holds that |L;| € ((1 )22 (1 + 52)262*8) for
2027552
3
that buckets are outside of this range, the algorithm can be easily adapted by
combining smaller buckets by the mapping L;, L; — L; ; or by splitting larger
buckets by the mapping L; — Ljo, Lsj1. We make the assumption we have 2°
buckets all within the above bound and return to the choice of do later.

0 < § < 1 with probability at most 22 exp ( — ) In the anomalous case

By the assumption there exists a unique claw, there will be a single x, € {0, 1}
and a unique bucket Lg, such such that f., (z.) € Lg,. Each quantum computer
S will execute the quantum circuit for f.,, but exploits a different choice of
bucket Lg, hence we need to worry about the total cost with respect to all
quantum computers as we do not know which is the correct bucket, but we are
only concerned about the lower-bound for the success probability assuming we
have chosen the correct label S, and hence the correct bucket Lg, .

2) For each index S € {0, 1}* we define the e; +w + 1 qubit quantum algorithm
A (k) = Q(H®*, Oxs.e, k), where w is the number of ancilla qubits for imple-
ment the quantum evaluation £y, . The algorithm .Afl (k) is a simple application
of amplitude amplification (see Theorem 1) to boost the success probability of
the Hadamard transform on e; qubits relative to xs.e, : {0,1}°* — {0, 1} where

(6)

XS,e1 (CC) =

1 if the first s bits of f., () equal the index S
0 otherwise.

Under the assumption we can implement £, ~using e; +w qubits, we can easily
create the quantum bit oracle Oy, using one additional qubit via the serial
application of &, , a layer of at most s X gates, a single As(X) gate, another

layer of at most s X gates and the application of 5} . The X and A4(X) com-
el

ponents require only O(s) quantum gates, a cost dominated by that for £ .- We

therefore have that the total quantum cost of A? (k) is at most

C-Afl (k) = k- (20‘5}61 + C/\S(X) +2Cxes + Coﬁ) + (2k‘ + 1) - Cyeon. (7)

The success probability of AJ+(k) relative to xs.., : {0,1}* — {0,1} is
dependent upon \Xglel(lﬂ Applying the Chernoff-bound again gives us that

|X§*1761 (D)l e (17(51)261’57 (1+51)261’5> with probability > 1—2exp (— Qelgséf )

We could also adapt the algorithm to use a preprocessing step that involves

estimating w via quantum amplitude estimation [5] to the desired degree

of accuracy for each quantum computer (a feasible strategy given the parameters
involved) but we simply make the assumption that | Xg*l,el (1)] is bounded.



s

By choosing k, = LWJ, we therefore have that the success probability
of A? (k,) relative to xg., : {0,1}** — {0,1} is
e, () ©

al, (kq) = sin® ((2 { T J + 1) arcsin Ser

4 arcsin /275
which is in the approximate range of sin? (%\/1 + 51) ~ 1 when 6; < 1 and
whose lower-bound can be derived computationally as we know k,, a and 6.

3) For each quantum computer S, we let BZ (k) = Q(A? (k,), OfEQ,kb) where
O? s defined by s, : {0,1}¢* — {0, 1}

Xeo
1 if fe1 ($) €Ls

e = 9

Xs.e () {O otherwise. )

The quantum oracle Oiez can easily be constructed by a similar process as for
Os.e, where we apply the serial application of £y, , at most (|Ls|+ 1)2[log, p]
X gates and |Ls| Agfiog, p1 (X) gates to compute the membership test and one
application of 6’21 to uncompute. Explicitly, the membership test will use X gates

to ensure that the space where the j-invariant is written is encoded to 12108271
if fe,() € Ls and the Agfiog, »7(X) gates XOR 1 onto the output space of the
quantum bit oracle if we have that fe, (z) € Lg. The cost of BS (k) is therefore

0552(;%) =k (ZngEI =+ |L5|CA2“022 »1(X) =+ (‘Ls| + 1)20X®2(1ogp1 + Coﬁ>
(10)
+ (2k’ + 1)C_Aesl (ko)

By the fact AS* (k,) results in an z € {0,1}°* such that ys, ., (z) = 1 with prob-
ability a- (k) andsby the unique claw assumption, we have AZ- (k,) succeeds
agy (ka)

with probability x

e A 2°17% with respect to xs, e, : {0,1}°* — {0, 1}.
w el

i N R : :
We therefore make a choice of k, = Larcsin WJ which gives us that the

success probability of BS (k;) relative to xs. ¢, : {0,1}** — {0,1} is

aff (ko)
X5 e, (D]

™

4 arcsin v2—(e1—5)

b5+ (ky) = sin? ((2 { J +1) arcsin (11)

which is approximately in the range of sin? (g,/ %igi ), hence when § < 1 we

have a good probability of success. Again, given the parameters eq, s and d;, an
explicit lower-bound can be computationally provided, which must be multiplied

through by the Chernoff-bound factor 1 — 2 exp ( - 261_55%) as discussed in 2).

3
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Quantum cost of the search procedure The full cost can be computed
directly via the cost equations, but ignoring inexpensive gate contributions we
have that the total cost per quantum computer will be

s ye1—s es—s Tos
Clgs )~ 2327 (22 cAZ[logm(X)+212220fel) (12)

whilst the individual depth per quantum computer is at most approximately

T _ el

—2
4

—s s T s
7 (14 02027 Crypr i) +27282C5,, ). (13)

TrC'fCl

Optimisation of Equation (12) gives us that e> ~ 2 s+log, ( o = ), hence
2[logg p]

substitution of this choice of e5 and rewriting e; = e — e in Equation (12) gives
us an approximate cost per individual quantum computer of

—3gnE
Csz*(kb) A 22 \/47T30f51 C/\ﬂlogz p1(X)> (14)

so that we have an asymptotic depth of 0(2_%52% Cy , log, p) per quantum
\ T e-se

computer and a total quantum circuit-size of O(2122  /C; , log, p). This gives
e—35s

us the same reduction of the overhead costs as in [3], but exhibits advantageous
scaling with respect to parallelism compared to a Grover-based approach assum-
ing the quantum oracle is a black-box, where we have that individual circuit-size
and circuit-depth scales with O(272) but total circuit-size scales with O(2%2).

Classical cost of the search procedure We require the computation of 2¢2
j-invariants, which can be performed relatively efficiently using the backtracking
methods described in Section 3.2 of [1] and costs & 65 - 3-2°2~! F» multiplica-
tions. We also require at most 22 -2[log, p| classical bits of storage to store these
j-invariants in their buckets. We therefore have that whilst the quantum part of
the computation scales favourably compared to Grover’s algorithm, this comes
at the cost of classical precomputation and storage which scale with 0(235). O

5 Conclusions

We have studied the cost of solving the CSSI problem using the claw-finding
paradigm in conjunction with Grover’s algorithm under both realistic assump-
tions concerning the cost of the quantum oracle and both constraints upon the
maximum allowable quantum circuit-depth and classical/quantum circuit-width.
We have directly impacted upon the tables in the SIKE specification [2] gener-
ated using the methods from [15] which take into account the aforementioned
constraints.

11



We have not impacted upon the optimal parameters for using Grover’s algorithm
to attack the CSSI problem via claw-finding [3] in the case where we have no
constraints upon our resources. However, this is neither a realistic scenario or
an acceptable benchmark for current trends in cryptanalysis. The NIST post-
quantum standardisation process [20] imposes a restriction upon the maximum
quantum circuit-depth [21] whilst both studies on the cryptanalysis of SIKE [1, 9,
15] and the SIKE design specification [2] pay particular attention to the scenario
where we are working with a constraint upon the classical circuit-width and/or
quantum circuit-width. Indeed, if there were no such constraints then a simple
classical meet-in-the-middle approach would easily beat Grover’s algorithm as
we discussed in Section 2.

SIKE p434 SIKE p751
Computation | Precomp Params Computation | Precomp Params
Attack G D W| G Wle/es s/t Attack G D W| G Wle/es s/t
Grover [15, 2][175| 79 | 96 | - | - - - Grover [15, 2][256|160| 96 | - | - - -
Tani [15, 2] [160| 78 | 96 | - - - - Tani [15, 2] [240[159| 96 | - - - -
VW [15, 2] |142] 56 | 96 | - - - - VW [15, 2] [263]178] 96 | - - - -
Theorem 3 |141| 80 | 60 [106| 96 |131/86| 50/0 Theorem 3 |222|173| 58 [105| 96 [291/85| 48/0
Theorem 3 |160| 72 | 96 |106| 96 |131/86|50/36 Theorem 3 |240|155| 96 |105| 96 |291/85|48/37

Table 2: Classical/quantum MAXWIDTH = 2% with conservative costs.

SIKE p434 SIKE p751
Computation | Precomp Params Computation | Precomp Params
Attack G D W| G Wle/es s/t Attack | G D W | G W |e/ex s/t
Grover |191[103| 96 | - - - -/78 Grover |272|186| 96 | - - - -/76
Grover [3] 17798 | 95 | 55 | 39 [109/29] -/79 Grover [3] [257[180| 95 | 57 | 42 [269/31| -/76
Theorem 3|147[110| 56 |111| 96 |131/86| 37/- Theorem 3[228 (193 | 55 |111| 96 |291/85| -/35
Theorem 3| 167| 90 | 96 |111| 96 | 91/86 |37/40 Theorem 3|248|173| 95 |111| 96 |291/85]40/35

Table 3: Classical/quantum MAXWIDTH = 2 with realistic costs.

The issue of how we can exploit problem-specific structure to bypass assumptions
concerning black-box properties is an interesting area, as are the assumptions
that we make with regards to choosing cryptographic parameters. Whilst our
approach scales badly with regard to classical circuit-size and storage, this form
of parallelism appears to be extremely effective for small s and can be applied
in conjunction with the naive approach of partitioning the search-space by sim-
ply fixing bits. Open problems include an extensive analysis of the trade-offs we
can make with this method, an examination of how we might reduce the clas-
sical costs or freely trade storage for circuit-size by regenerating j-invariants as
required, investigating new ways for the expensive quantum oracle to leverage
precomputation and the extension of these methods to similar problems.
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A Reversible traversal of the isogeny tree

As we are working with out-of-place multiplication and we cannot delete in-
formation as we could classically (though a measurement-based uncomputation
strategy [10] could improve our work). The low storage strategy given in figure 1
(a) requiring a maximum storage cost of e;/2 + 1 Fj2 points and one isogeny
curve. This is achieved by traversing down the left-hand side of the tree by
repeated doublings, stopping halfway down, uncomputing all but the last com-
puted point, then continuing left down to the bottom of the tree from the one
remaining point. Once a leaf is reached, the isogeny curve is computed, which
allows us to move the point at the top of the tree one point right. The curve is
then removed and the points created by the traversal of the left-hand side are
removed by the same process used to compute them. This process is repeated re-
cursively all the way down the right-hand side of the tree storing only the points
Ry, Ry, ..., R,, and the final curve computation. By only computing halway down
and reversing, we never store more than e;/2 + 1 points.

The second strategy, figure 1 (b), was constructed to reduce the computational
cost of the circuit. In this strategy, we determined the doubling cleanup should
be done at each branch (i.e. classical store point), storing only this branch point
before continuing down until the base point is computed. The base point is then
used to construct a degree 4 isogeny curve which then evaluates a single point
so the process can continue. Even though doublings are cheaper in Table 1, two
doublings are required to reach the next lower level and thus also two points
must be stored if no additional cleanup is done. Once a basepoint is reached, a
curve is constructed and the closest point needing to be evaluated is evaluated.
The curve is unconstructed, but the basepoint is left, to evaluate future points
as necessary.
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While doublings are reversed as soon as a storage point is reached in this strategy,
isogeny evaluations are not reversed until the entire path has been computed
down to a basepoint. Once a base point is reached by an isogeny evaluation,
the sub-strategy to the left is reversed and cleaned up, only leaving behind the
base points (for future isogeny curve constructions). This strategy continues
and storage is cleared until traversing down the right-hand side of the graph
begins. As we have stored all base points up to this point, storing all right-hand
side points also would increase storage costs greatly. As the right-hand side is
traversed using isogeny evaluations, these points are computed until a storage
point is reached and then a round of cleanup is performed. This substrategy is
computed as before until the entire tree is computed. This strategy ends while
storing all n base points and any storage points down the right hand size, plus
the final curve construction.

Using this construction, we determined the lowest computational cost comes
when the strategy tree resembles the classical strategy tree with a cost ration of
2.5 to 1. Once this is completed, a j-invariant is computed on the final curve.
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B Error in quantum search

The following is simply a generalisation of the methods from [4] and simplifies
the analysis, allowing us to easily derive computational lower-bounds with our
scripts to confirm that the success probability is approximately 1.

Lemma 1 (Error-analysis and amplitude amplification). Let A be an
arbitrary quantum algorithm that uses no measurements whose success probability
is a € (a—,ay) relative to the function x : {0,1}" — {0, 1}.

Then Zf arcsin \/ay

arcsin /a_

+ 2arcsin \/a; < 2 then the quantum amplitude amplification
procedure Q(A, Oy, k) where k = {m — %J succeeds with probability at

least cos? (arcsin Vax + (2k 4 1) (arcsin /a3 — arcsin \/af))
PROOF: In the following, 0 = arcsin /a, 0_ = arcsin \/a_ and 0, = arcsin \/a.
Let k = 10— Land k= [k] = {&J. By the choice of & we have that
‘(21% +1)0, — (2K +1)04] < 64 (15)
and furthermore we know that for 6_ <60 <6,
(26 + 1), — (2K + 1)6] < (2K +1) (04 — 0-). (16)

Noting that (2]% + 1)9a = 7 and applying the triangle inequality then gives us

g* (2k+1)0)| <6, + (2k+1) (64 —6-) (17)

which by the condition Z—j + 260, < 2 ensures that as the LHS of Equation
(17) is upper-bounded by 7, hence taking sine of both sides, using the fact that

sin(—z) = —sin(x) and squaring gives us that
sin? (5 — (26 +1)0)) <sin® (04 + (26 +1)(0:—0-)).  (18)

r _

Finally, multiplying through by —1 and the identities sin(§ — ) = cos(x) and
sin(x) = 1 — cos?(z) give us that

sin? ((2k + 1)9)) > cos? <9+ + (2k+1) (04 — 9,)>. (19)

The result follows as sin® ((Qk + 1)9)) is the probability of success of for the

amplitude amplification procedure Q(A, Oy, k) where k = Lﬁj. We note that
the above upper-bound is not optimal, but provides an easy to check initial
condition and allows us to consider general success probabilities of algorithms,
rather than as a parameter of |y ~!(1)| and .A]0"). O

16



C Concrete estimates

C.1 Estimates using a conservative quantum oracle cost

In this section we examine the effect of our parallelism strategy using the con-
servative estimates for isogeny-circuits and [F,,» multiplications from [15]. These
give the cost of the quantum circuit that computes a degree-2¢ isogeny a cost of
elog, e isogeny operations and the cost of these curve operations a conservative
estimate of 4log, plog, log, p operations. Each quantum computer is assumed
to use only e; + 2logy p qubits and to assign classical costs, we also give each
classical curve operation a cost of 4log, plog, log, p as we could always perform
these individual curve operations on a small scale quantum computer if the algo-
rithm exploits quantum properties. We exclude the cost of the parallel hardware
to generate the table and the classical depth as this is a precomputation and
could theoretically be aided by repurposing the hardware used to support the
quantum error-correction as suggested in [15]. Scripts to produce these tables are
provided in the supplementary material. The authors would like the reviewers
to consider these conservative costs — we believe they are fair extension of [15].

As the MAXWIDTH constraint demonstrates how far we can reduce the depth
of the quantum computation and we hit the bound for classical storage before
we hit the bound for quantum storage, we allow for each quantum computer to
employ a standard Grover parallelism strategy with black-box scaling of quantum
circuit-depth being reduced by O(Q_t/ %) whilst total quantum circuit-size grows
with O(2t/ 2) if the search-space of each original quantum computer is further
split amongst 2! quantum computers. This does not affect the classical costs.

SIKE p434 SIKE p751
Computation | Precomp Params Computation | Precomp Params
Attack G D W| G W/ e/es s/t Attack G D W| G W|e/e s/t
Grover [15, 2]| 158 96 | 63 | - | - - - Grover [15, 2]|320| 96 | 224 | - | - - -
Tani [15, 2] |143| 95 | 62 | - - - - Tani [15, 2] |304] 95 | 224 | - - - -
VW [15,2] [155|95 | 70 | - - - - VW [15, 2] [236] 96 | 151 | - - - -
Theorem 3 |[140| 96 | 51 | 96 | 86 [141/76|43/0 Theorem 3 [247| 95 | 158 | 247 | 238 [149/227|147/0

Table 4: Constrained classical/quantum MAXDEPTH = 2%.

SIKE p434 SIKE p751
Computation | Precomp Params Computation | Precomp Params
Attack G D W| G Wle/es s/t Attack G D W| G Wle/es s/t
Grover [15, 2]|175| 79 | 96 | - - - - Grover [15, 2]|256|160| 96 | - - - -
Tani [15, 2] [160| 78 | 96 - - - - Tani [15, 2] [240]159| 96 - - - -
VW [15, 2] [142] 56 | 96 | - - - - VW [15, 2] [263[178| 96 | - - - -
Theorem 3 |141| 80 | 60 |106| 96 [131/86| 50/0 Theorem 3 |222|173| 58 [105| 96 [291/85| 48/0
Theorem 3 |160| 72 | 96 |106| 96 |131/86|50/36 Theorem 3 |240|155| 96 |105| 96 |291/85|48/37

Table 5: Constrained classical/quantum MAXWIDTH = 2%.
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MAXDEPTH With respect to a maximum quantum circuit-depth, we have
that the performance of Algorithm 3 requires interpretation — the cost of the
classical storage dominates, hence it can be argued that our algorithm does not
offer a superior Depth x Width metric. This is an issue that requires further study
— whilst each call to the expensive oracle requires access to the buckets of j-
invariants, classical storage access patterns are clearly very different to accessing
data through a quantum circuit, where we must pay the cost for operating in
superposition by applying a deterministic circuit on all bits that might possibly
be changed. If the elements of the individual buckets are sorted, subdivided
into smaller storage devices and potentially stored in an efficient data structure
such as a trie, then at most one of these substorage devices will be active at
anytime, thereby reducing the total access-pattern cost. Nevertheless, classical
storage costs are expected to far cheaper than quantum hardware and there is
a balancing of costs that can be achieved here with respect to any real-world
implementation. We leave an examination of this issue for future work.

MAXWIDTH As can be seen from the above tables, at least with respect to the
conservative assumptions as stated above, Theorem 2 gives superior performance
in the MAXWIDTH constrained scenario (a key assumption with respect to
the security of SIKE p751 [1, 2]) both in the Gate Metric and Depthx Width
metric for SIKE p434 and SIKE p751, offering both the best Gate cost, the best
DepthxWidth cost and an option giving it the same Gate and Width cost as
Tani’s algorithm whilst offering a superior Depth.

C.2 Estimates using a realistic cost analysis for the quantum oracle

In this section we assign the quantum oracle a realistic cost, as analysed in
Section 3 to generate the quantum circuit-size, quantum circuit-depth in terms
of F,, multiplications, additions and inversions as well as the quantum circuit-
width. It is first worth noting that the conservative estimates with regards to
our estimations and query-optimal parameters.

SIKE pa34
Computation | Precomp Params

Attack G D W| G W/ e/e s/t
Grover [15]  (conservative costs)|132[122| 10 | - - 1109/108| -
Grover [3] (conservative costs)| 126|116 | 10 | 37 | 22 | 205/15 | -
Grover (realistic costs) [152|142| 18 | - - 1109/108| -
Grover [3] (realistic costs) |138|137| 18 | 55 | 40 | 187/30 | -

Table 6: Optimal parameters with no constraints for the naive Grover attack
and it’s extension [3] with our cost analysis of the quantum oracle.

We concern ourselves with only the classical circuit-size and storage requirements
for the generation of the buckets of j-invariants, by the same discussion as in Ap-
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pendix C.1 and use the estimation that we require 65-32°2~! F,, multiplications.
We again count the cost of building this table.

The hardware area for IF,, multiplication is obtained from synthesizing a fairly op-
timized and parallelized hardware architecture for multiplier described in VHDL
and implemented in ASIC based on 65-nm technology and is converted to gate
equivalence (GE). Similar multiplier architecture has been used in hardware de-
sign of SIKE protocol [2]. Using this, we have that the GE for for p434 is 157,014
NAND gates and p751 is 277,704 NAND gates. The cost of the quantum circuits
for modular arithmetic have been provided by [12].

SIKE p434 SIKE p751
Computation | Precomp Params Computation | Precomp| Params
Attack | G D W | G W| ejfea s/t Attack | G D W | G We/ex s/t
Grover [197]96 | 110| - | - | 63/62 |-/92 Grover [359| 96 | 271 | - - - |-/253
Grover [3] [179] 96 | 99 | 54 | 39 |106/29 | -/82 Grover [3] 340 96 | 262 | 56 | 41 [102/30|-/244
Theorem 3|152| 96 | 73 137|121 |105/112|-/55 Theorem 3| - - - - - - -

Table 7: Constrained classical/quantum MAXDEPTH = 2%.

SIKE p434 SIKE p751
Computation | Precomp Params Computation | Precomp Params
Attack G D W| G Wile/ex s/t Attack | G D W | G W |e/ex s/t
Grover |191(103| 96 | - - - -/78 Grover |272[186( 96 | - | - - -/76
Grover [3]|177]98 | 95 | 55 | 39 [109/29] -/79 Grover [3] [257[180| 95 | 57 | 42 [269/31| -/76
Theorem 3| 147 [110| 56 |111| 96 [131/86] 37/- Theorem 3[228 (193 | 55 |111| 96 |291/85| -/35
Theorem 3|167| 90 | 96 |111| 96 | 91/86 |37/40 Theorem 3|248|173| 95 |111| 96 |291/85]40/35

Table 8: Constrained classical/quantum MAXWIDTH = 2.

As can be seen again, our technique offers a method to exploit classical compu-
tation and storage to provide superior parallelism. In the MAXDEPTH scenario
this type of parallelism is limited, but still effective and can augment traditional
approaches to realising parallelism with Grover’s algorithm. We have have supe-
rior performance for our algorithm to all other current approaches for Grover’s
algorithm applied to cryptanalysis of SIKE when the MAXWIDTH constraint
is enforced.

We note that in experiments the quantum circuit-size for the algorithm scales
slightly better than the suggested O(2°/4), as the cost of the circuit which com-
putes the isogeny is reduced as s increases. This is a minor observative, but
worth noting.

D Adaptations of Theorem 2 to constraints

In this section we note some features and adaptations that can be be made to
the naive implementation of the algorithm as described in Theorem 2.
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One precomputation — many attacks The SIKE specification [2] gives
us that one of the curves will always be Ey/F,2 : y* = 2* + 6z + z, hence
choosing to precompute the buckets of j-invariants of all degree-2°2 isogenies
starting from this curve will work for any particular key-exchange instance. The
precomputation may be started before network-traffic originating from a real
world use of SIKE-p is captured, so long as p is known. We note this applies to
purely classical MITM attacks based upon precomputing tables [1, 9] as well.

Sequential parallelism If we adhere to both the MAXDEPTH constraint
and the MAXWIDTH constraint then we are limited in the parallelism we can
employ to avoid the MAXDEPTH constraint in the naive implementation of
the algorithm described in Theorem 2 and must be content with an algorithm
with a success probably far lower than 1. If instead MAXDEPTH is interpreted
as the maximum allowable quantum circuit-depth of any individual quantum
computer used in cryptanalysis? then another strategy allows us to construct
a hybrid quantum-classical search process with a success probability of close
to one. This strategy is essentially is to execute only 2F of the 2° quantum
computers at one time, which allows us to inherently bound the quantum circuit-
width. Such a strategy clearly has no impact upon either the quantum Gate or
Depthx Width metrics, but does have an impact upon both the total running
time of the computation and the classical costs.

If the classical storage requirements are bounded, then a naive strategy is to
simply recompute all 2°2 j-invariants at each stage, keeping only the ~ 2¢2=5%k .
invariants that correspond to the 2k quantum computers we are about to execute
in the next layer of computation.

The naive sequential parallelism strategy therefore helps control how the classical
storage costs scale as we require O(2¢2 5T+ 41082 Jog, p) = O(25/2F log, p) stor-
age at any one time, compared to O(23/2%)log, p if we had unbounded storage.
As we execute 2F quantum computers at a time, there are 2°7% such interleaved
layers of quantum computation combined with classical processing, leading to an
increase of the classical circuit-size by a factor of 2°~%. There is the possibility
that this additional classical gate complexity can be reduced by an efficient data
structure that keeps track of which bitstrings in the domain {0,1}°2 correspond
to j-invariants which have been exploited by a previous bucket (thereby allowing
us to avoid recomputing previously processed j-invariants), but we leave this for
future investigations. Without using such a strategy, we must be content with
an algorithm that may have succeed with probability < 1.

In the case that classical costs dominate, we can parallelise from the starting
curve, in the case that quantum costs dominate we can parallelise from the end
curve.

4 an assumption rising from there being no restriction on classical circuit-depth
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