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Abstract—New primes were proposed for Supersingular
Isogeny Key Encapsulation (SIKE) in NIST standardization
process of Round 2 after further cryptanalysis research showed
that the security levels of the initial primes chosen were over-
estimated [1], [2]. In this paper, we develop a highly optimized
Fp Montgomery multiplication algorithm and architecture that
further utilizes the special form of SIKE prime compared to
previous implementations available in the literature. We then
implement SIKE for all Round 2 NIST security levels (SIKEp434
for NIST security level 1, SIKEp503 for NIST security level
2, SIKEp610 for NIST security level 3, and SIKEp751 for
NIST security level 5) on Xilinx Virtex 7 using the proposed
multiplier. Our best implementation (NIST security level 1)
runs 29% faster and occupies 30% less hardware resources in
comparison to the leading counterpart available in the literature
[3] and implementations for other security levels achieved
similar improvement.

Keywords: hardware architectures, isogeny-based cryptography,
Montgomery multiplication, post-quantum cryptography, SIKE.

I. INTRODUCTION

Post-quantum cryptography (PQC) centers on identifying

and understanding new mathematical techniques upon which

cryptography can be built that are both resistant against quan-

tum attacks and feasible to be implemented on today’s widely

used computerized devices. In a seminal paper [4], Peter Shor

showed that both RSA and ECC would be easily broken by

employing a quantum computer. The five main classes of

quantum-hard problems are as follows [5]: code-based cryp-

tography, lattice-based cryptography, hash-based cryptography,

multivariate cryptography, and isogeny-based cryptography.

The second round of the NIST PQC standardization process

features a greater emphasis on evaluating the performance

of candidates. NIST has anticipated that the second round

will conclude by June 2020 and the third round will begin

after. During the two final rounds, the PQC candidates will be

scrutinized for their security and performance.

When considering quantum-safe alternatives to ECC,

isogeny-based cryptography appears as an attractive replace-

ment. The security of isogeny-based cryptosystems such as

Supersingular Isogeny Key Encapsulation (SIKE) scheme is

based on the problem of computing isogenies between elliptic

curves. Improving the performance of isogeny-based cryptog-

raphy is critical to ensuring that it survives into subsequent

rounds of standardization. Notably, the supersingular isogeny

key encapsulation (SIKE) [2] scheme features the smallest

public key sizes [6], [7] of known quantum-safe public key

exchange algorithms. Although isogeny-based cryptography is

among the newest PQC candidates, SIKE offers a conservative

security analysis, no possibility of decryption errors, and

similar computations to well-established ECC. Small public

key sizes are extremely advantageous in many different sce-

narios as it reduces the communication overhead and stor-

age necessary for secure communications. As an example,

low communication overhead is critical to establishing and

maintaining secure communications over long distances or

in high interference environments. The smallest set of SIKE

parameters with key compression features keys of only 196

bytes, which is only around three times larger than 57-byte

NIST X448 or 67-byte NIST P-521 public keys. SIKE offers

all recommended security levels named SIKEp434, SIKEp503,

SIKEp610, and SIKEp751 for NIST level-1, -2, -3, -5, respec-

tively. Unfortunately, the main drawback of SIKE is that it is

a few orders of magnitude slower than ECC or other PQC

schemes. However, recently researchers were able to improve

the computation time of SIKE by over an order of magnitude

[8], [9], reducing the total time to under 20 milliseconds while

adding protection against active attacks. In this work, we show

that there is still room for improvement of intensive lower

level computations. This paper is another step forward in this

direction which reduces the computation time to less than

10 milliseconds and cuts the occupied number of hardware

resources considerably when implemented in FPGA. The goal

of this paper is to develop efficient and high-performance

hardware architectures for SIKE. The contributions of this

paper is itemized in the following:

Our contributions:

• We develop a highly optimized Montgomery multiplica-

tion algorithm and architecture that further utilizes the

special form of SIKE prime. We experimented various

configurations for our high-radix design to find the best

choice for area-time trade-offs.



Table I. SIKE primes for post-quantum cryptography based on

NIST Round 2 standardization process [2]

Security
Prime Form

Public Key Shared Key

Level Size (Bytes) Size (Bits)

NIST level 1 p434 = 22163137 − 1 330 128

NIST level 2 p503 = 22503159 − 1 378 192

NIST level 3 p610 = 23053192 − 1 462 192

NIST level 5 p751 = 23723239 − 1 564 256

• We implement SIKE for NIST Round 2 primes;

SIKEp434, SIKEp503, SIKEp610, and SIKEp751 with

the developed Montgomery multiplier architecture.

• We evaluate time and area performance of the proposed

hardware architecture benchmarked on an FPGA and

compare with counterparts.

The organization of the paper is as follows. In Section II,

we give a literature review of SIKE. In Section III, we

discuss the algorithm and architecture of our highly optimized

Montgomery multiplication. In Section IV, we propose our

SIKE architecture and compare our results with counterparts

available in the literature. Finally, in Section V, we give our

final thoughts and discuss future work.

II. PRELIMINARIES: SIKE PROTOCOL

In this section, we provide an overview of the SIKE

protocol. SIKE mainly requires two operations: Isogeny and

Shake256. The latter is part of the NIST standardized hashing

algorithm SHA-3 [10]. Isogeny operations are done over

Montgomery curve [11], [12] using the efficient projective

isogeny formulas [2] for better performance.

A. SIKE Operations

A prime p is chosen of the form 2eA3eB − 1 where

2eA ≈ 3eB (Check Table I for standardized primes). For

public parameters, we have a starting curve E0, two points

PA and QA of order 2eA and two points PB and QB of order

3eB (standardized parameters are in SIKE specs [2]). Each

pair of points with the same order must be chosen such that

there is Weil pairing so that P + [s]Q also has an order of �e

(the order of P and Q) for any s < �e.

Key Generation: In key generation, Bob chooses a random

secret key sB ∈ [0, 3eB ) and computes the isogenous elliptic

curve EBusing the isogeny φB with kernel 〈PB + [sB ]QB〉.
The elliptic curve EB along with φB(PA) and φB(QA) make

up Bob’s public key pkB .

Key Encapsulation: In key encapsulation, Alice chooses a

secret message m ∈ [0, 2ss_size) (where ss_size is the shared

key size in Table I) and hashes {m, pkB} using Shake256

to generate her secret key r of size 2eA bits. She can then

compute her emphemeral public key {EA,φA(PB),φA(QB)}
using the isogeny φA : E0 → EB

∼= E0/ 〈PA + [r]QA〉.
She also generates a key to encrypt the message m by

first computing the elliptic curve EAB under the isogeny
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Figure 1. Breakdown of isogeny computations [9]

φAB : EB → EAB
∼= EB/ 〈φB(PA) + [r]φB(QA)〉. Then

she computes the j-invariant j(EAB) and hashes it with

Shake256 to the same size of the message. She encrypts the

message m by XORing it with the key to generate c. She

shares the ciphertext ct = {pkA, c} publicly and, finally,

generates the shared secret ssA of size ss_size by hashing

{m, ct} with Shake256.

Key Decapsulation: In key decapsulation, Bob

first computes the key used to encrypt c by first

computing the elliptic curve EBA under the isogeny

φBA : EA → EBA
∼= EA/ 〈φA(PB) + [sB ]φA(QA)〉

using Alice’s public key pkA. If he receives Alice’s correct

ciphertext, EBA should be isomorphic to EAB , a.k.a. equal

j-invariant. Therefore, he can compute the key by hashing

the j-invariant j(EBA) with Shake256. The message m′ can

then be recovered by XORing c with the key. He can recover

Alice’s secret key r′ by hashing {m′, pkB} and then generate

Alice’s public key pk′A = {E′
A, φ

′
A(PB), φ

′
A(QB)} under the

isogeny φ′
A = E0 → E′

A
∼= E0/ 〈PA + [r′]QA〉. He checks

that Alice’s public key he computed is equal to Alice’s actual

public key. If they are equal, he outputs the correct shared

secret ssB by hashing {m, pkA, c}.

Isogeny Computations: The pyramid in Fig. 1 shows the

breakdown of isogeny computations. To compute the Isogeny

E/ 〈P + [s]Q〉, the kernel point R = P + [s]Q needs to

be computed first using a three point ladder algorithm. The

fastest algorithm is in [13] which requires one point addition

and one point doubling per bit of the scalar s. For the

large degree isogeny computation E/ 〈R〉, we break it down

into point multiplications and small isogeny evaluations and

computations following a specific strategy. When the kernel is

of order 3eB , we perform point tripling and 3-isogenies. When

the kernel is of order 2eA , we perform point quadrupling and

4-isogenies as their formulas are more efficient than point

doubling and 2-isogenies. Note that for SIKEp610, since eA
is odd, one 2-isogeny is performed at the beginning. The

elliptic curve group operations are built using Fp2 arithmetic

which in turn is built using Fp arithmetic.



Table II. Optimal modular adder parameters

Prime a± b a± b∓ p

SIKEp434 L = 23, H = 3 L = 21, H = 3

SIKEp503 L = 20, H = 3 L = 26, H = 3

SIKEp610 L = 27, H = 3 L = 20, H = 3

SIKEp751 L = 25, H = 3 L = 20, H = 3

Algorithm 1: Optimized Montgomery Multiplication

for SIKE Primes

Input : p = 2eA · 3eB − 1 < 2K , R = 2K , w, s,

K = w · s, sA = �2eA/w	, a, b < 2p− 1
Output: MontMult(a, b)

1 T ← 0
2 for i ← 0 to s− 1 do
3 (C, S) ← T [0] + a[i] · b[0]
4 m ← S
5 for j ← 1 to sA − 1 do
6 (C, S) ← T [j] + a[i] · b[j] + C
7 T [j − 1] ← S

8 U [sA] ← m+m · p[sA]
9 for j ← sA + 1 to s− 1 do

10 U [j] ← m · p[j]
11 for j ← sA to s− 1 do
12 (C, S) ← T [j] + U [j] + a[i] · b[j] + C
13 T [j − 1] ← S

14 if p < 2K − 2 then
15 (C, S) ← C
16 T [s− 1] ← S
17 else
18 (C, S) ← T [s] + C
19 T [s− 1] ← S
20 T [s] ← C

21 return T

PE Initial

sA-Mult

sB-Red0

sB-Red

sB-Mult

PE Final

III. PROPOSED EFFICIENT LOWER LEVEL ARITHMETIC

OPERATIONS

In this section, we are going to discuss our low level

arithmetic operations. For the modular adder, we reused the

modular adder in the leading hardware candidate of SIKE

[3], which utilizes the adder in [14], with more efficient

parameters. The parameter L indicates length of carry chain

before going to the next level compaction while the parameter

H indicates the maximum level of compaction. It is near

impossible to obtain the optimal parameters for the adder

as place and route greatly changes for different parameters.

However, going beyond H = 3 will add a significant routing

delay and roughly L =
√
p is a good starting point to test.

We tested all L around
√
p for H = 1, 2, 3 for a± b first and

then for a± b∓ p. Table II shows optimal parameters for the

modular adder we are using.

For the modular multiplication (a×b mod p), Montgomery

multiplication is a fast modular multiplication algorithm that

transforms the expensive division by p into a cheap division by

power of 2 which is a simple shift right in software or hard-

ware. Word-by-word Montgomery multiplication algorithms

were proposed in [15], [16]. Some hardware implementations

can be found in [3], [17], [18], [19], [20], [21], [22].

Finely Integrated Operand Scanning (FIOS) Montgomery

multiplication algorithm is a word-by-word algorithm first

proposed in [15]. The original implementation was suitable

for software. In [17], the FIOS algorithm was re-purposed

for hardware implementation suitable for SIKE primes. We

had two issues using that implementation directly in SIKE.

The first issue is that it was not fully interleaved (a.k.a

unused blocks in the multiplier unit can’t be used before the

multiplication is complete). Since SIKE has a lot of modular

multiplication computation that can be parallelized, the extra

cycles from non-interleaving slows down SIKE. The issue can

be easily resolved by pushing each chunk of the multiplicand

(b for example) into the corresponding processing element as

soon as it is needed instead of pushing all the chunks in one

go. This technique will have no impact on the total number

of cycles. The second issue is that when plugged in SIKE, the

operating frequency is around 200MHz. This frequency makes

the implementation non-competitive.

A. Proposed Montgomery Multiplication Algorithm

We further optimized the Montgomery multiplication algo-

rithm in [17] to minimize the number of operations in the

critical path and the total number of operations used specifi-

cally for SIKE primes. Our optimized algorithm is provided in

Algorithm 1. The algorithm performs the following s (number

of words) times: an initial step, s− 1 multiplication-reduction

steps and a final step.

The initial step begins by adding the first result chunk

T [0] with a[i] × p[0]. The least significant word S is used

to compute the quotient m and the carry C is propagated to

the first multiplication-reduction step. Because of the special

form of SIKE primes where p[0] is all 1s for any word

w < eA, p′ = −p−1 mod 2w = 1. This leads to m = S · p′
mod 2w = S. Finally, a second carry Cr is propagated to the

first multiplication-reduction step. (Cr, S) = S + m · p[0] =
m+m · p[0] = (m, 0) =⇒ Cr = m. Our first change here is

to keep the carries separate instead of merging them together

by adding them.

Each of the multiplication-reduction steps consists of addi-

tion of current result chunk T [j], two parallel multiplications

(a[i] · b[j] and m · p[j]), and the carry from the previous step.

The least significant word is stored in the previous result chunk

T [j − 1] and the carry is propagated to the next step. Our

approach was to split the multiplication-reductions steps into

two parts. In the first part where 1 ≤ j < sA = �2eA/w	
(sA-Mult), we notice that all the bits of p[j] are 1. The

reduction operation m × p[j] can be skipped completely as

(Cr, S) = Cr + m × p[j] = (m, 0). Therefore, T [j − 1] is

independent of the reduction operation and we are always

propagating m to the next step. In the second part where

sA ≤ j < s (sB-Mult and sB-Red), all operations of
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Figure 2. Proposed Montgomery multiplication architecture.

the multiplication-reduction step are performed. In the first

reduction operation (sB-Red0), we add the carry Cr = m
to the reduction operation m× p[sA] which will be added to

the first multiplication operation in sB-Mult and merged with

the carry C in subsequent steps. This means that in subsequent

reduction operations only m×p[j] is performed without adding

Cr. Note that the carry C is 1 bit larger (w+1 bits total) after

the merging.

In the final step, the carry C of the last multiplication-

reduction step is pushed into the final result chunk T [s−1]. If

the radix R = 2K = 2s·w is chosen such that p < 2K−2, then

C < 2w can fit in the result chunk. Otherwise, if p = 2K−1,

then an additional 1-bit register T [s] is used to process the

extra bit of C.

The changes made to the algorithm cut sA − 1 multiplica-

tions and sA − 2 additions. Furthermore, sB-Red operations

can be computed ahead of time which will reduce the critical

path delay in our architecture.

B. Proposed Architecture for Montgomery Multiplication

Fig. 2 shows our proposed architecture. Our design can

perform two multiplications in parallel and each block in

our design is pipelined and performs one operation in the

algorithm. The first block PE initial computes the first multipli-

cation carry C and the quotient m, which is also the reduction

carry Cr for Montgomery multiplication with SIKE primes.

m is pushed to the reduction path (sA-Red→ sB-Red0→
sB-Red) where the reduction operations in the algorithm

are performed. The first multiplication carry C is pushed to



Table III. Breakdown of our proposed Montgomery multiplication architecture compared to previous design (Dual Multiplier).

Block
Total

Operation
Critical Arithmetic Total Arithmetic

Blocks Path Operations Operations

El Khatib et al. [17] twice
PE initial 1 T [0] + a[i] · b[0] Mw + A2w Mw + A2w Mw + A2w

Mult-Red s − 1 T [i] + a[i] · b[j] + m · p[j] + C Mw + 2A2w 2Mw + 3A2w (2s − 2)Mw + (3s − 3)A2w

PE final 1 C 0 0 0

Full design - - Mw + 2A2w - (2s − 1)Mw + (3s − 2)A2w

Proposed Design
PE initial 1 T [0] + a[i] · b[0] Mw + A2w Mw + A2w Mw + A2w

sA-Red sA − 2 C 0 0 0

sA-Mult sA − 1 T [i] + a[i] · b[j] + C Mw + A2w Mw + 2A2w (sA − 1)Mw + (2sA − 2)A2w

sB -Red0 1 m + m · p[j] Mw + A2w Mw + A2w Mw + A2w

sB -Red sB − 1 m · p[j] Mw Mw (sB − 1)Mw

sB -Mult sB T [i] + U [j] + a[i] · b[j] + C Mw + A2w Mw + 3A2w (sB)Mw + (3sB)A2w

PE final 1 C 0 0 0

Full design - - Mw + A2w - (s + sB)MW + (2s + sB)A2w

Note: sB = s − sA

the multiplication path (sA-Mult→ sB-Mult) where the

multiplication operations in the algorithm are performed and

the result chunks are collected. Finally, PE final receives

the final carry from the multiplication path and is used to

process the final result chunk. Inside the main path (PE

initial→Multiplication path→PE final), carry C is propagated

forward while S is propagated backward as S is stored in

previous result chunk T [j − 1] in the algorithm.

a1 and a2, the first operands for the dual multiplier, are

pushed serially in odd and even cycles, respectively, into PE

initial and then propagated to the next block in the multipli-

cation path. The second operands for the dual multiplier, b1
and b2, are pushed directly to their respective block. However,

to achieve interleaving and increase throughput, b1 and b2 are

pushed in the first s cycles with one cycle delay for the next

word. On odd cycles, the odd blocks (1, 3, 5, . . .) compute

chunks for the first pair of operands (a1and b1) while the

even blocks (2, 4, 6, . . .) compute chunks for the second pair of

operands (a2 and b2). On even cycles, the blocks switch places

where now the odd blocks work on the second pair of operands

and the even blocks work on the first pair of operands. A reset

is required to the register S that stores the result chunks during

the first s cycles. The final result is collected word-by-word

over s cycles after 2s cycles have passed since the start of the

multiplier.

In the reduction path, sA-Red is completely eliminated

in our algorithm and therefore m is simply propagated to

sB-Red0 after a certain delay. To shorten the critical path,

sB-Red blocks are processed one cycle in advance before the

result is pushed into their corresponding sA-Mult block.

Table III gives a breakdown of the total number of blocks

required as well as the critical path and the number of

arithmetic operations used in comparison to [17] (used twice

for dual-multiplication). The critical path is shortened by one

addition and the design requires sA − 1 less multiplications

and sA − 2 less additions.

Table IV. DSP breakdown of our proposed Montgomery

multiplication architecture (Dual Multiplier)

Block DSP 1 DSP 2 Total DSPs

PE initial T [0] + a[i] × b[0] - 1

sA-Red - - -
sA-Mult a[i] × b[j] DSP1 + T [i] + C 2(sA − 1)

sB -Red0 m + m · p[j] - 1

sB -Red m · p[j] - sB − 1

sB -Mult U [j] + a[i] × b[j] DSP1 + T [i] + C 2sB

PE final - - 0

Full design - - 2s + sB − 1

Table V. Montgomery multiplication DSP and timing analysis

Reference
# Freq Latency (cc) Latency (ns)

DSP (MHz) Mult. Interleave Mult. Interleave

SIKEp434

Liu et al. [23]∗ 36 236 66 54 280 229

This work 65 294.0 81 52 276 177
SIKEp503

Koziel et al. [3] 88 171.2 70 49 409 286

Liu et al. [23]∗ 64 213 66 54 310 254

This work 75 294.0 93 60 316 204

SIKEp610

Liu et al. [23]∗ 81 191 66 54 346 283

This work 90 294.0 111 72 378 245

SIKEp751

Koziel et al. [3] 128 167.4 100 69 597 412

Liu et al. [23]∗ 144 161 66 54 410 335

This work 113 294.0 138 90 469 306
∗ LUT usage is 5-6× more than our design.

C. Implementation and Results

The FPGA we are using in our SIKE implementation is

the Xilinx Virtex-7. The DSP unit in this series of FPGA can

perform fast multiply-and-add (a× b+ c) or 3-input addition

(a+ b+ c). Chaining the DSPs allow for complex arithmetic
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Figure 3. Proposed Hardware Architecture for SIKE protocol.

operations with a small additional delay per DSP. Furthermore,

DSPs support dual input for one of the multiplicand (a×b1+c
or a × b2 + c) by exploiting the pre-adder. This allows us to

design a dual multiplier while fully utilizing the DSP unit.

Table IV shows how to utilize a maximum of 2 DSPs per

block. In [17], the reduction and multiplication operations are

not separated and therefore require 3 chained DSPs to compute

them and more DSPs for a dual-multiplier design. Thus, our

design requires less number of DSPs in the critical path and

less total DSPs.

A few additional optimizations can be exploited by the DSP.

The registers to store the second operands b0 and b1 are used

directly in the DSP. The DSP can select whether to add 0 or

one of the operands in the addition step. This is used to replace

the reset signal of the registers that hold the result chunks S.

Another optimization that can be utilized is to store a and b
going to the multiplication of each block in the DSP’s register.

This will add one extra cycle but greatly shorten the critical

path. The start control signals and the even control signal for

b1 and b2 are stored one cycle in advance in the DSP’s control

registers for improved performance. The registers used to store

C and S are stored in the fabric outside the DSP as this will

give the best performance.

Table V shows number of DSPs used and timing results

of our implementations for each of the SIKE primes. Our

design requires less DSP, has a higher frequency, but require

more clock cycles in comparison to [3]. However, the higher

frequency dominates the increased cycle count and the overall

total time to perform an operation is lower. In [23], a huge

part of the computation is moved from DSP to fabric. Their

LUT usage for SIKEp434 is 6724 in comparison to our LUT

usage of 1,157. In addition, the design is not very scalable

as SIKEp751 uses more DSP and 5× LUT in comparison to

our design. We reserve further comment until the design is

plugged in SIKE.

IV. FPGA IMPLEMENTATIONS OF SIKE

The implementation is performed in Xilinx Vivado 2019.2

for Xilinx Virtex-7 FPGA xc7vx690tffg1157-3 to be able to

fairly compare our proposed scheme with the ones available

in the literature. This FPGA includes 108,300 Slices (each

with four LUTs and eight flip-flops), 3,600 DSP blocks and

1,470 36kb BlockRAMs. Each DSP slice contains a pre-adder,

a 25×18 multiplier, an adder, and an accumulator. Our design

is based on the design in the leading literature [3] with a

modified ALU based on Section III.

A. Proposed SIKE Architecture

The architecture for SIKE used in our design is illustrated

in Fig. 3 which is composed of field arithmetic logic unit

(ALU), main SIKE controller/ROM, program and strategy

controller/ROM, memory unit, message buffer to hold Alice’s

message and ciphertext and Bob’s message, secret key buffer

to hold Alice’s secret key and Bob’s secret key, and hash unit

based on Keccak-1088.

The ALU is the main core and performs operations in Fp

while interacting with the memory unit. Fp2 arithmetic is

done using Fp architectures. For instance, a Fp2 multiplication

requires three Fp multiplications, two Fp additions and three

Fp subtractions, whereas a Fp2 squaring requires only two Fp

multiplications, two Fp additions and one Fp subtraction. The

ALU consists of a Multiplication unit and adder/subtractor

unit. The adder/subtractor unit computes modular addition

and subtraction ( mod 2p) as well as modular reduction (

mod p) over the specified primes for SIKE. The multiplication

unit consists of n Dual-Multipliers based on the design pro-

posed in Section III. Since the multiplication unit is the critical

resource, we use as many Dual-Multipliers as is allowed for

parallelization while trying to minimize Time-Area cost.

The memory unit is implemented using BlockRAM re-

sources from the FPGA device. The memory unit, secret key

buffer, message buffer, and the hash unit can share data with

each other and can be accessed directly 64-bit at a time. The

SIKE controller/ROM includes main routines (fixed sequence

of instructions) for key generation, key encapsulation, and key

decapsulation. On the other hand, The strategy and program

controller/ROM includes hand-optimized routines for all the

operations required for computing an isogeny (three-point

ladder and large-degree isogeny). The ROM units, similar

to the memory unit, are implemented using the BlockRam

resources. Our design requires 32 BlockRAMs for SIKEp434.

The sizes for various component of the SIKE architecture

are different based on the required security level. For the

whole operation, first we pre-load public parameters into the

Memory unit. Secret keys are generated in the host CPU.

Following the SIKE protocol discussed in Section II-A, key

encapsulation and decapsulation are performed and ssA and

ssB are generated.

B. Implementation Results and Comparison

The proposed SIKE architectures for all NIST security

levels were implemented and tested using Xilinx Vivado



Table VI. Area and Timing results of SIKE implementation in Xilinx Virtex-7

Area Time Area×Time

Reference # Mults # FFs # LUTs # Slices # DSPs # BRAMs Freq Latency Total AT×10−3

(MHz) (cc × 106) time (ms)

SIKEp434
Massolino et al. [24] (Fast) - - - 7,408 162 38.0 152.2 - 24.3 180

Koziel et al. [3] 6 23,819 21,059 8,121 240 26.5 168.4 1.91 11.3 92

This work 6 18,271 12,818 5,527 195 32.0 249.6 2.19 8.8 48

SIKEp503
Koziel et al. [9]∗ 6 30,031 24,499 10,298 192 27 177 5.97 33.7 347

Koziel et al. [25]∗ 6 26,659 19,882 8,918 192 40 181.4 3.80 20.9 186

Koziel et al. [8]∗ 6 24,908 18,820 7,491 192 43.5 202.1 3.34 16.5 124

Massolino et al. [24] (Fast) - - - 7,408 162 38.0 152.2 - 28.7 212

Koziel et al. [3] 6 27,609 23,746 8,907 264 33.5 165.9 2.35 14.1 126

This work 6 19,935 13,963 6,163 225 34.0 243.7 2.88 11.8 73

SIKEp610
Massolino et al. [24] (Fast) - - - 7,408 162 38.0 152.2 - 51.8 384

Koziel et al. [3] 6 33,297 28,217 10,675 312 39.5 165.8 3.59 21.6 231

This work 6 26,757 16,226 7,461 270 38.5 239.0 4.56 19.1 142

SIKEp751
SIKE Team [2] 8 51,914 44,822 16,756 376 56.5 198.0 6.60 33.4 560

Massolino et al. [24] (Fast) - - - 7,408 162 38.0 152.2 - 60.8 450

Koziel et al. [3] 8 50,079 39,953 15,834 512 43.5 163.1 4.55 27.8 440

This work 8 39,339 20,207 11,136 452 41.5 232.7 5.93 25.5 284
∗ SIDH

2019.2 and all the results were obtained after place-and-route.

We report area, timing and area-time trade-off (number of

slices×time in ms) results of the design in Table VI. For the

best performance, we chose 3 Dual-Multipliers (6 multipliers

total) for SIKEp434, SIKEp503 and SIKEp610 and 4 Dual-

Multipliers for SIKEp751. We tested the functionality of the

design using known answers tests (KATs) available in SIKE

submission to NIST.

We compare our architecture results to the previous leading

one [3] as well as the Software-Hardware co-design [24] (fast

implementation only) and some of the previous Supersingular

Isogeny Diffie-Hellman (SIDH) implementations. The total

latency is the summation of key encapsulation and key de-

capsulation as key generation can be done offline. As one can

see, for NIST level 1 security (SIKEp434) in Virtex-7, our

design requires 5,458 Slices (17,557 flip flops, 12,999 LUTs),

195 DSPs, and 32 BlockRAMs. It also runs 249.6 MHz and

performs the whole SIKE protocol in 8.8 ms. The drop in

frequency in comparison to the Montgomery multiplier in

Table V is caused by the strategy and program controller. Our

design is smaller (except for the BlockRAMs) and faster with

area-time trade-off being about 92% improved in comparison

to the leading counterpart [3]. For the remaining security

levels in Virtex-7, a similar improvement can be observed.

It is to be noted that the design in [24] is one design for all

SIKE security levels. In addition, the design targets smaller

area/lower performance device so a direct comparison is not

fair.

The improvements made in the design makes SIKE a

feasible option for small embedded devices. Note that SIKE

already offers smallest key sizes which reduces communica-

tion overhead in comparison to the other PQC submissions.

Although all of our computations and implementations in

this paper are secure (based on [3]) and constant-time, it is

worth mentioning that this work mainly focuses on the high-

performance implementations of the isogeny-based candidate

SIKE in FPGA and investigating side-channel analysis attacks

will be in our future work.

V. CONCLUSION

Post-quantum crypto accelerator hardware cores offer chip-

makers an easy-to-integrate technology-independent solution,

offering various NIST recommended security levels. In this

paper, we optimized the Montgomery multiplication algorithm

and architecture targeting SIKE primes. We also presented

FPGA implementations of supersingular isogeny key encap-

sulation (SIKE) for all NIST Round 2 security levels. The de-

signs are the fastest FPGA implementations of SIKE over large

prime characteristic fields for various NIST security levels.

More specifically, our design utilizes 36% less hardware area

and is 12-20% faster than the leading FPGA implementations.

For NIST level 1, our proposed hardware accelerator performs

the SIKE protocol in 8.8 ms. We verified our architectures

by using the Known Answer Tests (KATs) from the SIKE

submission and our code will be available online for further

improvements and evaluations.

Minimizing public key sizes are critical for reducing trans-

mission and storage requirements for internet applications as

well as IoTs. Our future work will involve implementing the

key compression mechanism and bench-marking the whole de-



sign with compressed keys for various security level required

by NIST.
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