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Abstract—New primes were proposed for Supersingular
Isogeny Key Encapsulation (SIKE) in NIST standardization
process of Round 2 after further cryptanalysis research showed
that the security levels of the initial primes chosen were over-
estimated [1], [2]. In this paper, we develop a highly optimized
F, Montgomery multiplication algorithm and architecture that
further utilizes the special form of SIKE prime compared to
previous implementations available in the literature. We then
implement SIKE for all Round 2 NIST security levels (SIKEp434
for NIST security level 1, SIKEp503 for NIST security level
2, SIKEp610 for NIST security level 3, and SIKEp751 for
NIST security level 5) on Xilinx Virtex 7 using the proposed
multiplier. Our best implementation (NIST security level 1)
runs 29% faster and occupies 30% less hardware resources in
comparison to the leading counterpart available in the literature
[3] and implementations for other security levels achieved
similar improvement.

Keywords: hardware architectures, isogeny-based cryptography,
Montgomery multiplication, post-quantum cryptography, SIKE.

I. INTRODUCTION

Post-quantum cryptography (PQC) centers on identifying
and understanding new mathematical techniques upon which
cryptography can be built that are both resistant against quan-
tum attacks and feasible to be implemented on today’s widely
used computerized devices. In a seminal paper [4], Peter Shor
showed that both RSA and ECC would be easily broken by
employing a quantum computer. The five main classes of
quantum-hard problems are as follows [5]: code-based cryp-
tography, lattice-based cryptography, hash-based cryptography,
multivariate cryptography, and isogeny-based cryptography.
The second round of the NIST PQC standardization process
features a greater emphasis on evaluating the performance
of candidates. NIST has anticipated that the second round
will conclude by June 2020 and the third round will begin
after. During the two final rounds, the PQC candidates will be
scrutinized for their security and performance.

When considering quantum-safe alternatives to ECC,
isogeny-based cryptography appears as an attractive replace-
ment. The security of isogeny-based cryptosystems such as
Supersingular Isogeny Key Encapsulation (SIKE) scheme is
based on the problem of computing isogenies between elliptic
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curves. Improving the performance of isogeny-based cryptog-
raphy is critical to ensuring that it survives into subsequent
rounds of standardization. Notably, the supersingular isogeny
key encapsulation (SIKE) [2] scheme features the smallest
public key sizes [6], [7] of known quantum-safe public key
exchange algorithms. Although isogeny-based cryptography is
among the newest PQC candidates, SIKE offers a conservative
security analysis, no possibility of decryption errors, and
similar computations to well-established ECC. Small public
key sizes are extremely advantageous in many different sce-
narios as it reduces the communication overhead and stor-
age necessary for secure communications. As an example,
low communication overhead is critical to establishing and
maintaining secure communications over long distances or
in high interference environments. The smallest set of SIKE
parameters with key compression features keys of only 196
bytes, which is only around three times larger than 57-byte
NIST X448 or 67-byte NIST P-521 public keys. SIKE offers
all recommended security levels named SIKEp434, SIKEp503,
SIKEp610, and SIKEp751 for NIST level-1, -2, -3, -5, respec-
tively. Unfortunately, the main drawback of SIKE is that it is
a few orders of magnitude slower than ECC or other PQC
schemes. However, recently researchers were able to improve
the computation time of SIKE by over an order of magnitude
[8], [9], reducing the total time to under 20 milliseconds while
adding protection against active attacks. In this work, we show
that there is still room for improvement of intensive lower
level computations. This paper is another step forward in this
direction which reduces the computation time to less than
10 milliseconds and cuts the occupied number of hardware
resources considerably when implemented in FPGA. The goal
of this paper is to develop efficient and high-performance
hardware architectures for SIKE. The contributions of this
paper is itemized in the following:

Our contributions:

o We develop a highly optimized Montgomery multiplica-
tion algorithm and architecture that further utilizes the
special form of SIKE prime. We experimented various
configurations for our high-radix design to find the best
choice for area-time trade-offs.



Table I. SIKE primes for post-quantum cryptography based on
NIST Round 2 standardization process [2]

Security . Public Key Shared Key
Prime Form . . .

Level Size (Bytes) Size (Bits)
NIST level 1 | pggq = 22163137 _ 1 330 128
NIST level 2 | pso3 = 22°03159 — 1 378 192
NIST level 3 | pgio = 23953192 — 1 462 192
NIST level 5 | prs1 = 23723239 — 1 564 256

e We implement SIKE for NIST Round 2 primes;
SIKEp434, SIKEp503, SIKEp610, and SIKEp751 with
the developed Montgomery multiplier architecture.

o We evaluate time and area performance of the proposed
hardware architecture benchmarked on an FPGA and
compare with counterparts.

The organization of the paper is as follows. In Section II,
we give a literature review of SIKE. In Section III, we
discuss the algorithm and architecture of our highly optimized
Montgomery multiplication. In Section IV, we propose our
SIKE architecture and compare our results with counterparts
available in the literature. Finally, in Section V, we give our
final thoughts and discuss future work.

II. PRELIMINARIES: SIKE PrROTOCOL

In this section, we provide an overview of the SIKE
protocol. SIKE mainly requires two operations: Isogeny and
Shake256. The latter is part of the NIST standardized hashing
algorithm SHA-3 [10]. Isogeny operations are done over
Montgomery curve [11], [12] using the efficient projective
isogeny formulas [2] for better performance.

A. SIKE Operations

A prime p is chosen of the form 2°43°% — 1 where
2¢4 ~ 3°B (Check Table I for standardized primes). For
public parameters, we have a starting curve Ejp, two points
P4 and @Q 4 of order 2¢4 and two points P and @ p of order
3¢ (standardized parameters are in SIKE specs [2]). Each
pair of points with the same order must be chosen such that
there is Weil pairing so that P + [s]@ also has an order of ¢°
(the order of P and Q) for any s < /°.

Key Generation: In key generation, Bob chooses a random
secret key sp € [0,3°5) and computes the isogenous elliptic
curve Epusing the isogeny ¢p with kernel (Pp + [sp|@p).
The elliptic curve Ep along with ¢5(Pa) and ¢5(Q 4) make
up Bob’s public key pkg.

Key Encapsulation: In key encapsulation, Alice chooses a
secret message m € [0, 2°5-572¢) (where ss_size is the shared
key size in Table I) and hashes {m,pkp} using Shake256
to generate her secret key r of size 2°4 bits. She can then
compute her emphemeral public key {E4,04(P5),04(Q5)}
using the isogeny ¢4 : Ey — Ep = Ey/{(Pa+[r]Qa).
She also generates a key to encrypt the message m by
first computing the elliptic curve F4p under the isogeny
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Figure 1. Breakdown of isogeny computations [9]

¢aB : Ep = Eap = Ep/(¢p(Pa)+ [rl¢p(Q4)). Then
she computes the j-invariant j(Fap) and hashes it with
Shake256 to the same size of the message. She encrypts the
message m by XORing it with the key to generate c. She
shares the ciphertext ¢t = {pka,c} publicly and, finally,
generates the shared secret ss4 of size ss_size by hashing
{m, ct} with Shake256.

Key Decapsulation: In key decapsulation, Bob
first computes the key used to encrypt c¢ by first
computing the elliptic curve FEp4 under the isogeny

¢pa : Ea — FEpa = FEa/(pa(Pp)+[splpa(Qa))
using Alice’s public key pka. If he receives Alice’s correct
ciphertext, /54 should be isomorphic to F4p, a.k.a. equal
j-invariant. Therefore, he can compute the key by hashing
the j-invariant j(Ep4) with Shake256. The message m’ can
then be recovered by XORing ¢ with the key. He can recover
Alice’s secret key ' by hashing {m/, pkp} and then generate
Alice’s public key pk'y = {E'y, ¢'4(PB), ¢’ (@)} under the
isogeny ¢’y = Ey — E'y = Ey/ (Pa + [r']Qa). He checks
that Alice’s public key he computed is equal to Alice’s actual
public key. If they are equal, he outputs the correct shared
secret ssp by hashing {m, pka,c}.

Isogeny Computations: The pyramid in Fig. 1 shows the
breakdown of isogeny computations. To compute the Isogeny
E/ (P + [s]Q), the kernel point R = P + [s]Q needs to
be computed first using a three point ladder algorithm. The
fastest algorithm is in [13] which requires one point addition
and one point doubling per bit of the scalar s. For the
large degree isogeny computation £/ (R), we break it down
into point multiplications and small isogeny evaluations and
computations following a specific strategy. When the kernel is
of order 32, we perform point tripling and 3-isogenies. When
the kernel is of order 24, we perform point quadrupling and
4-isogenies as their formulas are more efficient than point
doubling and 2-isogenies. Note that for SIKEp610, since e 4
is odd, one 2-isogeny is performed at the beginning. The
elliptic curve group operations are built using > arithmetic
which in turn is built using F,, arithmetic.



Table II. Optimal modular adder parameters

l Prime [ atb [ atbFp
SIKEp434 | L=23,H=3 | L=21,H=3
SIKEp503 L=20,H=3 | L=26,H=3
SIKEp610 | L=27,H=3 | L=20,H=3
SIKEp751 L=25H=3| L=20,H=3

Algorithm 1: Optimized Montgomery Multiplication
for SIKE Primes

Input tp=2°4.38 — 1 < 2K R=2K w,s,
K=w-s,s4=1[2/w]|, a,b<2p—1
Output: MontMult(a,b)

1T+0

2fori<0tos—1do

3 | (C.S) « T[0] +ali] - O] } P i
4 m <« S

5 for j < 1to sy —1do

6 L (C, S) — T[j] + a[z] : b[j] +C } s A-Mult
7 T[j—1« S

8 | Ulsal & m+m-plsa] } sp-Redd
9 for j < sy +1tos—1do

w | | U]« m-plj] } spRed

1 for j < s5 to s—1do

12 (C.8) ¢ T(j] + Ulj] +ali] - blj] + C } s 5-Mult
13 Tlj—1+« S

14 | if p < 2K — 2 then

15 (C,S) «C

16 Tls—1]« S

17 else

18 (C,8)«T[s|+C PE Final
19 Tls—1]« S

20 T[s] + C

21 return 7'

III. PROPOSED EFFICIENT LOWER LEVEL ARITHMETIC
OPERATIONS

In this section, we are going to discuss our low level
arithmetic operations. For the modular adder, we reused the
modular adder in the leading hardware candidate of SIKE
[3], which utilizes the adder in [14], with more efficient
parameters. The parameter L indicates length of carry chain
before going to the next level compaction while the parameter
H indicates the maximum level of compaction. It is near
impossible to obtain the optimal parameters for the adder
as place and route greatly changes for different parameters.
However, going beyond H = 3 will add a significant routing
delay and roughly L = ,/p is a good starting point to test.
We tested all L around /p for H = 1,2,3 for a & b first and
then for a £ b F p. Table II shows optimal parameters for the
modular adder we are using.

For the modular multiplication (a xb mod p), Montgomery
multiplication is a fast modular multiplication algorithm that

transforms the expensive division by p into a cheap division by
power of 2 which is a simple shift right in software or hard-
ware. Word-by-word Montgomery multiplication algorithms
were proposed in [15], [16]. Some hardware implementations
can be found in [3], [17], [18], [19], [20], [21], [22].

Finely Integrated Operand Scanning (FIOS) Montgomery
multiplication algorithm is a word-by-word algorithm first
proposed in [15]. The original implementation was suitable
for software. In [17], the FIOS algorithm was re-purposed
for hardware implementation suitable for SIKE primes. We
had two issues using that implementation directly in SIKE.
The first issue is that it was not fully interleaved (a.k.a
unused blocks in the multiplier unit can’t be used before the
multiplication is complete). Since SIKE has a lot of modular
multiplication computation that can be parallelized, the extra
cycles from non-interleaving slows down SIKE. The issue can
be easily resolved by pushing each chunk of the multiplicand
(b for example) into the corresponding processing element as
soon as it is needed instead of pushing all the chunks in one
go. This technique will have no impact on the total number
of cycles. The second issue is that when plugged in SIKE, the
operating frequency is around 200MHz. This frequency makes
the implementation non-competitive.

A. Proposed Montgomery Multiplication Algorithm

We further optimized the Montgomery multiplication algo-
rithm in [17] to minimize the number of operations in the
critical path and the total number of operations used specifi-
cally for SIKE primes. Our optimized algorithm is provided in
Algorithm 1. The algorithm performs the following s (number
of words) times: an initial step, s — 1 multiplication-reduction
steps and a final step.

The initial step begins by adding the first result chunk
T[0] with a[i] x p[0]. The least significant word S is used
to compute the quotient m and the carry C' is propagated to
the first multiplication-reduction step. Because of the special
form of SIKE primes where p[0] is all 1s for any word
w<eq, p=—p ' mod?2¥ = 1. This leads to m = S - p’
mod 2% = §. Finally, a second carry C, is propagated to the
first multiplication-reduction step. (C,S) = S + m - p[0] =
m+m-p[0] = (m,0) = C, = m. Our first change here is
to keep the carries separate instead of merging them together
by adding them.

Each of the multiplication-reduction steps consists of addi-
tion of current result chunk 7'[;], two parallel multiplications
(alt] - b[j] and m - p[j]), and the carry from the previous step.
The least significant word is stored in the previous result chunk
T[j — 1] and the carry is propagated to the next step. Our
approach was to split the multiplication-reductions steps into
two parts. In the first part where 1 < j < sy = [2°4/w]
(sa—Mult), we notice that all the bits of p[j] are 1. The
reduction operation m x p[j] can be skipped completely as
(C.,S) = Cr. +m x plj] = (m,0). Therefore, T[j — 1] is
independent of the reduction operation and we are always
propagating m to the next step. In the second part where
sa < j < s (sp~Mult and sp—-Red), all operations of
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Figure 2. Proposed Montgomery multiplication architecture.

the multiplication-reduction step are performed. In the first
reduction operation (sp—-Red0), we add the carry C,, = m
to the reduction operation m X p[s4] which will be added to
the first multiplication operation in s 3—Mult and merged with
the carry C' in subsequent steps. This means that in subsequent
reduction operations only m x p[j] is performed without adding
C... Note that the carry C'is 1 bit larger (w+ 1 bits total) after
the merging.

In the final step, the carry C' of the last multiplication-
reduction step is pushed into the final result chunk 7'[s — 1]. If
the radix R = 25K = 25'% is chosen such that p < 2K=2 then
C < 2% can fit in the result chunk. Otherwise, if p = 251,
then an additional 1-bit register T'[s] is used to process the
extra bit of C.

The changes made to the algorithm cut s4 — 1 multiplica-
tions and s — 2 additions. Furthermore, sp—Red operations
can be computed ahead of time which will reduce the critical
path delay in our architecture.

B. Proposed Architecture for Montgomery Multiplication

Fig. 2 shows our proposed architecture. Our design can
perform two multiplications in parallel and each block in
our design is pipelined and performs one operation in the
algorithm. The first block PE initial computes the first multipli-
cation carry C' and the quotient m, which is also the reduction
carry C, for Montgomery multiplication with SIKE primes.
m is pushed to the reduction path (s4—Red— sp—-Red0—
sp—Red) where the reduction operations in the algorithm
are performed. The first multiplication carry C' is pushed to



Table III. Breakdown of our proposed Montgomery multiplication architecture compared to previous design (Dual Multiplier).

Total Critical Arithmetic Total Arithmetic
Block Operation
Blocks Path Operations Operations
El Khatib et al. [17] twice
PE initial 1 T[0] + ali] - b[0] My + Azwy My + Azw My, + Azw
Mult-Red s—1 T[] +ali]-blg]+m-pljl+C My +2A24 2My + 3A2, (28 — 2)My, + (3s — 3)Agy,
PE final 1 C 0 0 0
Full design - - M, + 2A2, - (28 — 1)My, + (3s — 2) Aoy
Proposed Design
PE initial 1 T'[0] 4+ alé] - b[0] My + Az My + Aoy My + Azw
sa-Red sA — 2 C 0 0 0
s A-Mult saA—1 T[] + ali] - b[4] + C My + Aoy My +2A24 (sa —1)My + (254 — 2)Agy,
sp-Red0 1 m + m - p[j] My, + Az My, + Az My + Aoy
sp-Red sp— 1 m - plj] M., M., (sp — 1)My,
s p-Mult sB T[]+ Ulj] + ald] - blj] + C My + A2y My + 3A2y, (sB)Muy + (3sB)Azw
PE final 1 C 0 0 0
Full design - My, + Ay - (s+s)Mw + (2s + sB)Azw

Note: sp = s — sa

the multiplication path (s4-Mult— sp-Mult) where the
multiplication operations in the algorithm are performed and
the result chunks are collected. Finally, PE final receives
the final carry from the multiplication path and is used to
process the final result chunk. Inside the main path (PE
initial—Multiplication path—PE final), carry C' is propagated
forward while S is propagated backward as S is stored in
previous result chunk 7'[j — 1] in the algorithm.

al and a2, the first operands for the dual multiplier, are
pushed serially in odd and even cycles, respectively, into PE
initial and then propagated to the next block in the multipli-
cation path. The second operands for the dual multiplier, b1
and b2, are pushed directly to their respective block. However,
to achieve interleaving and increase throughput, b1 and b2 are
pushed in the first s cycles with one cycle delay for the next
word. On odd cycles, the odd blocks (1,3,5,...) compute
chunks for the first pair of operands (ajand b;) while the
even blocks (2,4, 6, . ..) compute chunks for the second pair of
operands (a2 and bs). On even cycles, the blocks switch places
where now the odd blocks work on the second pair of operands
and the even blocks work on the first pair of operands. A reset
is required to the register .S that stores the result chunks during
the first s cycles. The final result is collected word-by-word
over s cycles after 2s cycles have passed since the start of the
multiplier.

In the reduction path, s4—Red is completely eliminated
in our algorithm and therefore m is simply propagated to
sp—Red0 after a certain delay. To shorten the critical path,
sp—Red blocks are processed one cycle in advance before the
result is pushed into their corresponding s 4—-Mult block.

Table IIT gives a breakdown of the total number of blocks
required as well as the critical path and the number of
arithmetic operations used in comparison to [17] (used twice
for dual-multiplication). The critical path is shortened by one
addition and the design requires s4 — 1 less multiplications
and s4 — 2 less additions.

Table IV. DSP breakdown of our proposed Montgomery
multiplication architecture (Dual Multiplier)

| Block | DSP 1 [ DSP 2 | Total DSPs |
PE initial  T'[0] + ali] x b[0] - 1
s a-Red - - -
s.A-Mult ali] x b[j] DSP1+ Tl +C 2(sa — 1)
sp-Red0 m +m - p[j] - 1
sp-Red m - plj] - sp—1
sp-Mult U] +afi] x blj] DSP1+T[]+ C 2sp
PE final - - 0
Full design - - 2s +sp — 1

Table V. Montgomery multiplication DSP and timing analysis

# Freq Latency (cc) Latency (ns)
Reference
DSP | (MHz) | Mult. l Interleave | Mult. l Interleave
SIKEp434
Liu et al. [23]* 36 236 66 54 280 229
This work 65 294.0 81 52 276 177
SIKEp503
Koziel et al. [3] 88  171.2 70 49 409 286
Liu er al. [23]* 64 213 66 54 310 254
This work 75 294.0 93 60 316 204
SIKEp610
Liu et al. [23]* 81 191 66 54 346 283
This work 90 2940 111 72 378 245
SIKEp751
Koziel et al. [3] 128 1674 100 69 597 412
Liu et al. [23]* 144 161 66 54 410 335
This work 113 2940 138 90 469 306

* LUT usage is 5-6X more than our design.

C. Implementation and Results

The FPGA we are using in our SIKE implementation is
the Xilinx Virtex-7. The DSP unit in this series of FPGA can
perform fast multiply-and-add (a x b+ ¢) or 3-input addition
(a + b+ ¢). Chaining the DSPs allow for complex arithmetic
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operations with a small additional delay per DSP. Furthermore,
DSPs support dual input for one of the multiplicand (a x by +c¢
or a X by + ¢) by exploiting the pre-adder. This allows us to
design a dual multiplier while fully utilizing the DSP unit.
Table IV shows how to utilize a maximum of 2 DSPs per
block. In [17], the reduction and multiplication operations are
not separated and therefore require 3 chained DSPs to compute
them and more DSPs for a dual-multiplier design. Thus, our
design requires less number of DSPs in the critical path and
less total DSPs.

A few additional optimizations can be exploited by the DSP.
The registers to store the second operands 00 and b1 are used
directly in the DSP. The DSP can select whether to add O or
one of the operands in the addition step. This is used to replace
the reset signal of the registers that hold the result chunks S.
Another optimization that can be utilized is to store a and b
going to the multiplication of each block in the DSP’s register.
This will add one extra cycle but greatly shorten the critical
path. The start control signals and the even control signal for
b1 and b2 are stored one cycle in advance in the DSP’s control
registers for improved performance. The registers used to store
C and S are stored in the fabric outside the DSP as this will
give the best performance.

Table V shows number of DSPs used and timing results
of our implementations for each of the SIKE primes. Our
design requires less DSP, has a higher frequency, but require
more clock cycles in comparison to [3]. However, the higher
frequency dominates the increased cycle count and the overall
total time to perform an operation is lower. In [23], a huge
part of the computation is moved from DSP to fabric. Their
LUT usage for SIKEp434 is 6724 in comparison to our LUT
usage of 1,157. In addition, the design is not very scalable
as SIKEp751 uses more DSP and 5x LUT in comparison to
our design. We reserve further comment until the design is
plugged in SIKE.

IV. FPGA IMPLEMENTATIONS OF SIKE

The implementation is performed in Xilinx Vivado 2019.2
for Xilinx Virtex-7 FPGA xc7vx690tffg1157-3 to be able to
fairly compare our proposed scheme with the ones available
in the literature. This FPGA includes 108,300 Slices (each
with four LUTs and eight flip-flops), 3,600 DSP blocks and
1,470 36kb BlockRAMs. Each DSP slice contains a pre-adder,
a 25x 18 multiplier, an adder, and an accumulator. Our design
is based on the design in the leading literature [3] with a
modified ALU based on Section III.

A. Proposed SIKE Architecture

The architecture for SIKE used in our design is illustrated
in Fig. 3 which is composed of field arithmetic logic unit
(ALU), main SIKE controller/ROM, program and strategy
controller/ROM, memory unit, message buffer to hold Alice’s
message and ciphertext and Bob’s message, secret key buffer
to hold Alice’s secret key and Bob’s secret key, and hash unit
based on Keccak-1088.

The ALU is the main core and performs operations in [F),
while interacting with the memory unit. F,> arithmetic is
done using F,, architectures. For instance, a IF,> multiplication
requires three IF,, multiplications, two [F,, additions and three
IF,, subtractions, whereas a [F,> squaring requires only two [,
multiplications, two [F,, additions and one [F,, subtraction. The
ALU consists of a Multiplication unit and adder/subtractor
unit. The adder/subtractor unit computes modular addition
and subtraction ( mod 2p) as well as modular reduction (
mod p) over the specified primes for SIKE. The multiplication
unit consists of n Dual-Multipliers based on the design pro-
posed in Section III. Since the multiplication unit is the critical
resource, we use as many Dual-Multipliers as is allowed for
parallelization while trying to minimize Time-Area cost.

The memory unit is implemented using BlockRAM re-
sources from the FPGA device. The memory unit, secret key
buffer, message buffer, and the hash unit can share data with
each other and can be accessed directly 64-bit at a time. The
SIKE controller/ROM includes main routines (fixed sequence
of instructions) for key generation, key encapsulation, and key
decapsulation. On the other hand, The strategy and program
controller/ROM includes hand-optimized routines for all the
operations required for computing an isogeny (three-point
ladder and large-degree isogeny). The ROM units, similar
to the memory unit, are implemented using the BlockRam
resources. Our design requires 32 BlockRAMs for SIKEp434.

The sizes for various component of the SIKE architecture
are different based on the required security level. For the
whole operation, first we pre-load public parameters into the
Memory unit. Secret keys are generated in the host CPU.
Following the SIKE protocol discussed in Section II-A, key
encapsulation and decapsulation are performed and ss, and
ssp are generated.

B. Implementation Results and Comparison

The proposed SIKE architectures for all NIST security
levels were implemented and tested using Xilinx Vivado



Table VI. Area and Timing results of SIKE implementation in Xilinx Virtex-7

Area Time Areax Time
Reference # Mults | # FFs | # LUTs | # Slices | # DSPs | # BRAMs | Freq Latency Total ATx1073
(MHz) | (cc x 10%) | time (m.s)
SIKEp434
Massolino et al. [24] (Fast) - - 7,408 162 38.0 152.2 - 24.3 180
Koziel et al. [3] 6 23,819 21,059 8,121 240 26.5 168.4 1.91 11.3 92
This work 6 18,271 12,818 5,527 195 32.0 249.6 2.19 8.8 48
SIKEp503
Koziel er al. [9]* 6 30,031 24,499 10,298 192 27 177 5.97 33.7 347
Koziel et al. [25]* 6 26,659 19,882 8918 192 40 181.4 3.80 20.9 186
Koziel er al. [8]" 6 24908 18,820 7,491 192 435 202.1 3.34 16.5 124
Massolino et al. [24] (Fast) - - 7,408 162 38.0 152.2 - 28.7 212
Koziel et al. [3] 6 27,609 23,746 8,907 264 335 165.9 2.35 14.1 126
This work 6 19,935 13,963 6,163 225 34.0 243.7 2.88 11.8 73
SIKEp610
Massolino et al. [24] (Fast) - - - 7,408 162 38.0 152.2 - 51.8 384
Koziel et al. [3] 6 33,297 28,217 10,675 312 39.5 165.8 3.59 21.6 231
This work 6 26,757 16,226 7,461 270 38.5 239.0 4.56 19.1 142
SIKEp751
SIKE Team [2] 8 51,914 44,822 16,756 376 56.5 198.0 6.60 334 560
Massolino et al. [24] (Fast) - 7,408 162 38.0 152.2 - 60.8 450
Koziel et al. [3] 8 50,079 39,953 15,834 512 435 163.1 4.55 27.8 440
This work 8 39,339 20,207 11,136 452 41.5 232.7 5.93 25.5 284
* SIDH

2019.2 and all the results were obtained after place-and-route.
We report area, timing and area-time trade-off (number of
slices xtime in ms) results of the design in Table VI. For the
best performance, we chose 3 Dual-Multipliers (6 multipliers
total) for SIKEp434, SIKEp503 and SIKEp610 and 4 Dual-
Multipliers for SIKEp751. We tested the functionality of the
design using known answers tests (KATs) available in SIKE
submission to NIST.

We compare our architecture results to the previous leading
one [3] as well as the Software-Hardware co-design [24] (fast
implementation only) and some of the previous Supersingular
Isogeny Diffie-Hellman (SIDH) implementations. The total
latency is the summation of key encapsulation and key de-
capsulation as key generation can be done offline. As one can
see, for NIST level 1 security (SIKEp434) in Virtex-7, our
design requires 5,458 Slices (17,557 flip flops, 12,999 LUTs),
195 DSPs, and 32 BlockRAMs. It also runs 249.6 MHz and
performs the whole SIKE protocol in 8.8 ms. The drop in
frequency in comparison to the Montgomery multiplier in
Table V is caused by the strategy and program controller. Our
design is smaller (except for the BlockRAMs) and faster with
area-time trade-off being about 92% improved in comparison
to the leading counterpart [3]. For the remaining security
levels in Virtex-7, a similar improvement can be observed.
It is to be noted that the design in [24] is one design for all
SIKE security levels. In addition, the design targets smaller
area/lower performance device so a direct comparison is not
fair.

The improvements made in the design makes SIKE a
feasible option for small embedded devices. Note that SIKE

already offers smallest key sizes which reduces communica-
tion overhead in comparison to the other PQC submissions.
Although all of our computations and implementations in
this paper are secure (based on [3]) and constant-time, it is
worth mentioning that this work mainly focuses on the high-
performance implementations of the isogeny-based candidate
SIKE in FPGA and investigating side-channel analysis attacks
will be in our future work.

V. CONCLUSION

Post-quantum crypto accelerator hardware cores offer chip-
makers an easy-to-integrate technology-independent solution,
offering various NIST recommended security levels. In this
paper, we optimized the Montgomery multiplication algorithm
and architecture targeting SIKE primes. We also presented
FPGA implementations of supersingular isogeny key encap-
sulation (SIKE) for all NIST Round 2 security levels. The de-
signs are the fastest FPGA implementations of SIKE over large
prime characteristic fields for various NIST security levels.
More specifically, our design utilizes 36% less hardware area
and is 12-20% faster than the leading FPGA implementations.
For NIST level 1, our proposed hardware accelerator performs
the SIKE protocol in 8.8 ms. We verified our architectures
by using the Known Answer Tests (KATs) from the SIKE
submission and our code will be available online for further
improvements and evaluations.

Minimizing public key sizes are critical for reducing trans-
mission and storage requirements for internet applications as
well as IoTs. Our future work will involve implementing the
key compression mechanism and bench-marking the whole de-



sign with compressed keys for various security level required
by NIST.
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