
Further Optimizations of CSIDH: A Systematic
Approach to Efficient Strategies, Permutations,

and Bound Vectors

Aaron Hutchinson1, Jason LeGrow1, Brian Koziel2, and Reza Azarderakhsh2

1 Department of Combinatorics and Optimization and Institute for Quantum
Computing, University of Waterloo, {a5hutchinson,jlegrow}@uwaterloo.ca
2 Department of Computer and Electrical Engineering and Computer Science,

Florida Atlantic University, {bkoziel2017, razarderakhsh}@fau.edu

Abstract. CSIDH is a recent post-quantum key establishment proto-
col based on constructing isogenies between supersingular elliptic curves.
Several recent works give constant-time implementations of CSIDH along
with some optimizations of the ideal class group action evaluation algo-
rithm, including the SIMBA technique of Meyer et al. and the “two-
point method” of Onuki et al. A recent work of Cervantes-Vázquez et
al. details a number of improvements to the works of Meyer et al. and
Onuki et al. Several of these optimizations—in particular, the choice of
ordering of the primes, the choice of SIMBA partition and strategies,
and the choice of bound vector which defines the secret keyspace—have
been made in an ad hoc fashion, and so while they yield performance
improvements it has not been clear whether these choices could be im-
proved upon, or how to do so. In this work we present a framework
for improving these optimizations using (respectively) linear program-
ming, dynamic programming, and convex programming techniques. Our
framework is applicable to any CSIDH security level, to all currently-
proposed paradigms for computing the class group action, and to any
choice of model for the underlying curves. Using our framework we find
improved parameter sets for the two major methods of computing the
group action: in the case of the implementation of Meyer et al. we obtain
a 12.77% speedup without applying the further optimizations proposed
by Cervantes-Vázquez et al., while for that of Cervantes-Vázquez et al.
under the two-point method we obtain a speedup of 5.06%, giving the
fastest constant-time implementation of CSIDH to date.

1 Introduction

Isogenies between elliptic curves have gained increasing attention in the crypto-
graphic world over the last several years. It is widely believed that the problem
of constructing an isogeny between two given elliptic curves is hard, even with
the power of quantum computing, and so it is natural to base cryptographic pro-
tocols around this problem. The use of isogenies in cryptography was initially
proposed by Couveignes in [6], and was independently rediscovered by Stolbunov

and Rostovtsev in [18]. Perhaps the most well-known algorithm in isogeny-based
cryptography is SIKE, one of the submissions to the National Institute for Stan-
dards and Technology’s Post-Quantum Standardization process which is based
on the Supersingular Isogeny Diffie-Hellman algorithm [8].

In 2018, Castryck, Lange, Martindale, Panny, and Renes proposed a sim-
ilar key exchange algorithm titled Commutative Supersingular Isogeny Diffie-
Hellman (CSIDH) in [2]. CSIDH uses the action of the ideal class group on
the set of isomorphism classes of supersingular elliptic curves defined over Fp

to produce a key exchange algorithm reminiscent of the Diffie-Hellman method.
Specifically, fix a prime of the form p = 4�1 · · · �n − 1, where the �i are distinct
small odd primes; in practice �1, . . . , �n−1 are the first n−1 odd primes, and �n is
chosen small while ensuring p is prime. Let O denote the Fp-endomorphism ring
of the supersingular Montgomery curve E0 : y2 = x3 + x defined over Fp. Then
O has the property that each of the principal ideals �iO splits into the product
of li = (�i, π− 1) and li = (�i, π+1), where π is the Frobenius endomorphism of
E0. Since �iO is principal the elements of the ideal class group represented by
these ideals are inverses, and so [li]

−1 = [li] in the ideal class group.

To begin the key exchange protocol, Alice and Bob both select private keys of
the form (eA1 , . . . , e

A
n) and (eB1 , . . . , e

B
n), respectively, where each eAi and eBi is an

integer chosen from some fixed interval [−b, b]. Alice uses her key to compute a

curve EA, defined as applying the action of the ideal [l1]
eA1 · · · [ln]eAn on the initial

curve E0; Bob proceeds analogously, using his own key to compute a curve EB :

EA := [l1]
eA1 · · · [ln]eAn ∗ E0, EB := [l1]

eB1 · · · [ln]eBn ∗ E0, (1)

where ∗ denotes the ideal class group action. Alice then sends EA to Bob and
Bob sends EB to Alice. Each party then computes the action of the ideal cor-
responding to their own private key on the curve they received from the other
person; in particular, Alice computes EBA and Bob computes EAB , defined by:

EBA := [l1]
eA1 · · · [ln]eAn ∗ EB , EAB := [l1]

eB1 · · · [ln]eBn ∗ EA. (2)

The two curves EBA and EAB are Fp-isomorphic since they both correspond to

the action of [l1]
eA1 +eB1 · · · [ln]eAn+eBn on the curve E0, by the commutativity of the

ideal class group. The shared key is the Fp-isomorphism class of EBA
∼= EAB .

The original method proposed in [2] for carrying out the actions in (1) and
(2) is to first choose a random point P ∈ E[π ± 1], where E is the current
curve and π denotes the Frobenius endomorphism. The point P will have some
order |P | = �c11 · · · �cnn , where ci ∈ {0, 1} (after multiplication by 4). The curve∏

ci=1[li]
ci ∗EA can be computed by iteratively multiplying out all but one prime

from P to yield a point Q, constructing the isogeny ϕ : E → E/〈Q〉 via Vélu’s
formulas, and updating P ← ϕ(P) and E ← E/〈Q〉. One then repeats this
procedure with a fresh point P , skipping any primes �i for which the action of
the target ideal [li]

ei has been completed. Since the work of [2], there has been
much focus on making the evaluation of the group action more efficient.

2

Previous CSIDH Optimizations. CSIDH is a very new construction, but
there have been many contributions toward optimizing it. We focus on works
which optimize the structure of the group action evaluation itself, and put less
emphasis on methods which improve curve arithmetic, isogeny computation, etc.

Meyer and Reith gave the first optimization [14] in 2018. After choosing a
random point P the user has the freedom to choose the order in which the
action of the [li] are computed by selecting which primes �i to multiply out of
|P | first. The authors of [14] noticed that computing the action in descending
order of primes results in a speedup over using an ascending order. They make
other notable computational contributions as well, such as projectivizing the
curve coefficients and deriving formulas for the codomain curves using twisted
Edwards curves. See [14] for full details.

Meyer, Campos, and Reith gave a second optimization [13] in late 2018. First,
they proposed to change the keyspace interval [−b, b] so that each private key
value ei is selected from its own interval [0, bi] and the target security level is still
achieved. Each private key value having the same sign is desirable since ideals [li]
and [lj]

−1 cannot be computed using the same initial point P , i.e., once the field
of definition of P is determined only the ideals of the corresponding sign can be
considered. Furthermore the values bi can be selected to achieve a speedup, and
the authors use heuristics to find well-performing values for these parameters.
Additionally the authors propose to use ‘dummy’ isogenies so that the same
number of isogenies are always constructed, independent of the private key used.
Specifically, ei many ‘real’ isogenies and bi − ei many dummy isogenies would
be constructed, where the dummy computations would construct an isogeny but
not update the points and curve coefficients to their new values. In essence, the
isogenies are constructed but not used on dummy iterations. To our knowledge
this was the first constant-time implementation of CSIDH.

One of the most notable contributions that Meyer, Campos, and Reith make
in [13] is SIMBA (Splitting Isogenies into Multiple BAtches). The SIMBA tech-
nique partitions the primes {�1, . . . , �n} into disjoint sets and evaluates the re-
quired group action on each subset individually. See Section 2.4 for more details
on the SIMBA technique. The authors of [13] use a simple method for determin-
ing the partition, but one might also ask how to find an optimal partition.

A third optimization and constant-time version of CSIDH was performed by
Onuki, Aikawa, Yamazaki, and Takagi in [16]. Here the authors retain signed key
values ei chosen from some interval [−bi, bi]. They track two randomly chosen
points P+ ∈ E[π− 1] and P− ∈ E[π+1] through the algorithm. For each prime
�i, the appropriate point is used to derive a kernel generator according to the
sign of ei by multiplying out all other primes as before. Both P+ and P− are
then mapped through the isogeny to the next curve, and the point not used to
derive the kernel generator is multiplied by �i. This allows both the [li] and [li]

−1

to be considered on each iteration instead of being limited to only one.

There have been a few other improvements to CSIDH which optimize lower
level aspects of the algorithm, and we only briefly note them here. In [15] the
authors describe how to perform the CSIDH algorithm using Edwards curves

3

instead of Montgomery curves, giving an algorithm comparable in operation cost.
The authors of [12] implement CSIDH in embedded devices while optimizing the
field arithmetic and group operations. In [3], XZ-coordinates are used on twisted
Edwards curves with optimized addition chains for scalar multiplications, and
two flaws in the constant-time implementations of [13] and [16] are repaired
resulting in a speedup. The implementation of [3] is the fastest to date.

CSIDH Group Action Algorithm. Here we look at the ideal class group
action evaluation algorithm performed in CSIDH as originally described in [2].
This algorithm takes input integers (e1, . . . , en) and Montgomery curve coeffi-
cient A ∈ Fp and outputs the coefficient of the curve [l1]

e1 · · · [ln]en ∗ EA. The
evaluation is given in Algorithm 1 as it is written in [2].

Algorithm 1: CSIDH Group Action Evaluation

Input : A ∈ Fp and a list of integers (e1, . . . , em).
Output: B such that [le11 · · · lemm]EA = EB (where EB : y2 = x3 +Bx2 + x).

1 while some ei �= 0 do
2 Sample a random x ∈ Fp.
3 Set s ← +1 if r := x3 +Ax2 + x is a square in Fp, else s ← −1.
4 Let I = {i|ei �= 0, sign(ei) = s}. If I = ∅, then start over with a new x.
5 Let t ← ∏

i∈I �i and compute Q ← [(p+ 1)/t]P , where P := (x,
√
r).

6 for each i ∈ I do
7 Compute R ← [t/�i]Q. If R = ∞, then skip this i.
8 Compute an isogeny ϕ : EA → EB : y2 = x3 +Bx2 + x with kerϕ = 〈R〉.
9 Set A ← B,Q ← ϕ(Q), t ← t/�i, and finally ei ← ei − s.

10 end

11 end
12 Return A

A given iteration of the loop on line (6) of Algorithm 1 would use a point
Q to compute [u]Q for some integer u, and then build an isogeny ϕ using [u]Q
as the generator for kerϕ. The following iteration will compute [u/�i]ϕ(Q) from
ϕ(Q). Writing u/�i as v, the effect from these two iterations is to compute [v�i]Q
and [v]ϕ(Q) given only the point Q. The algorithm as written accomplishes this
by evaluating [v�i], evaluating ϕ, and finally evaluating [v]. If the integer v is
large (as is often the case), this method potentially requires more effort than,
say, computing [v]Q, then [�i][v]Q, then ϕ([v]Q).

A similar observation holds on a larger scale. For simplicity suppose line (4)
of Algorithm 1 computes I = {1, . . . , n}. The goal of the loop on line (6) is to
use the initial point Q defined on line (5) to successively compute the points

(1.) [�1 · · · �n−1]Q

(2.) [�1 · · · �n−2]ϕ1(Q)

(3.) [�1 · · · �n−3]ϕ2ϕ1(Q)

...
...

4

(n− 1.) [�1]ϕn−2 · · ·ϕ1(Q)

(n.) ϕn−1ϕn−2 · · ·ϕ1(Q)

while also constructing the isogenies ϕi as needed. These n points can be com-
puted from Q in a wide variety of different ways, and is entirely reminiscent of
the problem of efficiently constructing an isogeny of degree �n detailed by De Feo,
Jao, and Plût in [8]. In fact, if one takes all primes �i above to be some common
prime �, the problem of efficiently computing the n points defined above reduces
to precisely the problem solved in [8], which makes use of “optimal strategies”.

We point out that the user has the freedom to iterate through the set I
in any fashion desired due to the ideal class group being abelian. If a differ-
ent order of iteration is chosen, the corresponding points (as well as the curves
themselves) computed by the algorithm will differ since the sequence of points
{[�1 · · · �i−1]ϕn−i · · ·ϕ1(Q)} depends on the ordering. Changing the ordering
changes the computations involved, and so the computations for some order-
ings may require less effort than others. As far as we are aware, all previous
implementations of CSIDH at the time of this writing use heuristics to select
a well-performing permutation of the primes �i, and a systematic method of
determining an efficient permutation remains a relatively untouched problem.

Contributions. The contributions of this work are as follows:

– We detail a general framework for analyzing and optimizing the CSIDH
group-action evaluation algorithm. This framework applies to any CSIDH
parameter set and can be tailored to further optimize any other CSIDH
implementation to date, such as those of [2,13,14,16,3]. Specifically, we use
our framework to optimize parameters used in any CSIDH instantiation:
• We generalize the concept of the measure of a strategy, originally defined
in [8]. Any strategy on n leaves provides a method for carrying out
the CSIDH algorithm. We analyze these strategies and are able to find
globally optimal strategies when fixing the permutation parameter. A
dynamic programming approach similar to that of [8] will easily find
these optimal strategies for practical CSIDH parameters.

• We frame the problem of finding an optimal permutation of the primes
�i—for a fixed strategy—as a linear program; that is, an optimization
problem in which the objective function and constraints are affine func-
tions of the the permutation variables. This allows us to use linear pro-
gramming techniques (e.g., the simplex method) to find a corresponding
optimal permutation. This technique extends in a straightforward fash-
ion to SIMBA, and can be used to find not only an optimal permutation
of primes for each batch, but also an optimal distribution of primes to
the SIMBA substrategies of a fixed SIMBA strategy.

• We derive a mathematical program to produce a bound vector which
approximately optimizes the running time for the class group action
algorithms used in CSIDH. We approximate the solution by relaxing to
a convex program and applying an iterative rounding technique.

5

• We further generalize the SIMBA technique of [13] to allow for different
SIMBA strategies on each round of the algorithm, and eliminate each
prime �i from all strategies after the bthi round.

– We used our optimization techniques to find parameter sets consisting of
efficient SIMBA strategies, permutations, and bound vectors for two previous
constant-time implementations of CSIDH-512: that of Meyer et al. in [13],
and Cervantes-Vázquez et al. in [3]. Our optimized implementations achieve
a speedup of 12.77% over the original code of [13] (without the optimizations
proposed by [3]), and a speedup of 5.06% over the original code of [3] using
the two-point method. To the best of our knowledge this gives the fastest
constant-time implementation of CSIDH to date.

This paper is organized as follows. Section 2 details the framework which we
use to optimize CSIDH, and discusses strategies, measures, permutations, the
two-point method [16], and SIMBA [3]. Section 3 develops theoretical methods
for finding efficient parameters for computing the ideal class group action for
CSIDH, including strategies, permutations, and bound vectors. In Section 4 we
report the results of our implementation of our best parameter sets.

2 Preliminaries

2.1 General Framework for Optimization

Strategies. The idea of a strategy has been explored in [8], but we use an
alternative definition to better suit our needs. For a positive integer n we let
Tn = (V,E) be the directed graph defined as follows. The vertices V of Tn

are all points in the plane with integer coordinates which lie inside or on the
boundary of the region bounded by the lines x = 0, y = 0, and y = −x+ n− 1.
The edges E of Tn consist of all line segments of unit length which connect two
vertices in V . It follows that every edge is either horizontal or vertical. We turn
Tn into a directed graph by orienting all horizontal edges to the right and all
vertical edges upward.

Definition 1. A strategy (in Tn) is a subgraph of Tn such that:

1. The vertex (0, 0) and all vertices on the line y = −x+ n− 1 are in S,
2. For each vertex v on the line y = −x + n − 1, there is a (not necessarily

unique) path from (0, 0) to v in S.

We write |S| = n to mean S is a strategy in Tn.

To define our version of canonical strategy, we define a binary operator # called
join on the set of all strategies. For strategies S1 and S2, with |S1| = n1 and
|S2| = n2, we define S1#S2 to be the strategy in Tn1+n2

constructed as follows:

1. S1#S2 contains the (unique) path connecting (0, 0) to (n2, 0),
2. S1#S2 contains the (unique) path connecting (0, 0) to (0, n1),
3. S1#S2 contains S1 as a subgraph, shifted to the right n2 units,

6

4. S1#S2 contains S2 as a subgraph, shifted up n1 units.

The join operator is both nonassociative and noncommutative. We say a strategy
S in Tn is canonical if S can be expressed as n− 1 many applications of the join
operator on the strategy T1; i.e., S is some parenthesization of T1#T1# · · ·#T1︸ ︷︷ ︸

n

.

Each canonical strategy has a unique such expression, and so it follows that the
number of canonical strategies in Tn is the number of parenthesizations of a
binary operator on n terms. This is exactly the nth Catalan number. An easy
induction shows that every vertex in a canonical strategy has indegree at most
1 and outdegree at most 2, and a vertex has outdegree 0 precisely when it lies
on the line y = −x+ n− 1. This allows one to associate a binary tree structure
to each canonical strategy S, and we therefore say that (0, 0) is the root of S,
and the vertices on the line y = −x+ n− 1 are the leaves of S.

Suppose we merge together all but the outermost join operation to write a
canonical strategy as S = S1#S2 for some canonical strategies S1 and S2; we
define SL := S1 to be the left substrategy of S, and SR := S2 to be the right
substrategy of S. We emphasize that visually SL lies to the right of the origin, and
SR lies above the origin. By definition of #, we always have |S1#S2| = |S1|+|S2|.

In the context of CSIDH, we interpret the horizontal edges of a strategy
as individual point multiplications and the vertical edges as isogeny evalua-
tions, which motivates the following definitions. The nth multiplication-based
strategy MBn is defined recursively as MB1 = T1 and MBn = T1#MBn−1.
The nth isogeny-based strategy IBn is defined recursively as IB1 = T1 and
IBn = IBn−1#T1. As far as we are aware, every implementation of CSIDH uses
(various sizes of) a multiplication-based strategy to perform the ideal class group
action evaluation.

Our definition of strategy is entirely equivalent to that of a full strategy as
defined in [8], and our canonical strategies are equivalent to those of [8]; we
simply view the problem on a rectangular lattice as opposed to an equilateral
triangular lattice, and the root of our strategies always corresponds to the origin.

Encoding Strategies. It will be convenient in our analysis and for algorithmic
purposes to have a systematic method of writing down the edges which are
present in a given strategy S. To do this we use two {0, 1}-valued (n−1)×(n−1)
sized matrices H(S) and V (S) (or simply H and V when S is clear), which
respectively encode the horizontal and vertical edges of S. Specifically, Hij = 1
if and only if the line segment connecting (j − 1, n − 1 − i) to (j, n − 1 − i) is
present in the strategy S, and Hij = 0 otherwise. Similarly Vij = 1 if and only
if the line segment connecting (j − 1, n − i − 1) to (j − 1, n − i) is present in
S, and Vij = 0 otherwise. Both H and V are lower triangular matrices since
Tn is bounded by the line y = −x + n − 1. H(Tn) and V (Tn) are both lower
triangular matrices in which every entry on and below the main diagonal is a
1. See Figure 2 in Appendix D for an example of a canonical strategy and its
encoding matrices.

7

Measures. We now generalize the idea of measure from [8] to account for
differing weights for differing edges, which we need to analyze CSIDH strategies.

Definition 2. A measure on Tn is a tuple M = ({pi}ni=1, f, g), where:

– {pi}ni=1 is a sequence of positive real numbers,
– f, g : R+ → R

+ are some weight functions.

We assign weights to the edges of Tn using the measure M as follows. For 1 ≤
i ≤ n − 1 we assign the weight f(pi) to any horizontal edge which connects a
vertex on the line x = i − 1 to a vertex on the line x = i. For 1 ≤ i ≤ n − 1,
we assign the weight g(pn−i+1) to any vertical edge which connects a vertex on
the line y = i − 1 to a vertex on the line y = i. Any strategy in Tn inherits the
weights from Tn.

Taking {pi} to be a constant sequence yields the original notion of measure
defined in [8] when interpreted under our definition of Tn. Though the assignment
of weights to vertical edges may seem unnatural, it is motivated by CSIDH, where
the cost of the ith isogeny evaluation depends on the degree of the isogeny, which
in turn depends on the (n− i+ 1)-th prime used. In this case, f(pi) represents
the cost of multiplying a point by pi, whereas g(pn−i+1) represents the cost of
evaluating an isogeny of degree pn−i+1 at a point.

Throughout this paper, differing measures will all use common weight func-
tions f and g. We will often identify a measure M with its sequence {pi}ni=1 and
omit mention of the functions f and g.

Definition 3. The cost of a subgraph S of Tn for a given measure M is the
sum of the weights of all edges in S. We write (S)M for the cost of S relative to
M , or (S) when M is clear.

Equation (3) below gives a formula for the cost of a subgraph.

Permutations. In our original problem of optimizing CSIDH, we have the
freedom to choose the order in which the primes �i are used. Choosing a different
order will result in a permuted measure M , and so we need to take into account
all possible permutations of M in our analysis.

Definition 4. Let Sym(n) denote the symmetric group on {1, 2, . . . , n}. We let
σ ∈ Sym(n) act on a measure M = {pi}ni=1 by defining σ ·M = {pσ(i)}ni=1.

The cost of a strategy S under the permuted measure σ ·M is

(S)σM =

n−1∑
i=1

f(pσ(i))

n−1∑
j=1

Hj,i +

n−1∑
i=1

g(pσ(i+1))

n−1∑
j=1

Vi,j . (3)

Our goal is to find an algorithm which determines a pair (S, σ) for a given
measure M such that (S)σM is minimal among all such pairs. This would yield
an optimal method for to evaluate the ideal class group action for CSIDH.

8

2.2 Mitigating Leakage Under Arbitrary Strategies

As first pointed out by Meyer et al. in [13] one may use dummy isogenies in
CSIDH so that the number of isogenies constructed during the group action
evaluation is independent of the private key. One issue that arises from using
dummy isogenies is that additional multiplications are required on iterations that
construct a dummy isogeny. This is because a real isogeny evaluation within the
algorithm reduces the order of the point by a factor of the degree � of the isogeny.
If the isogeny is dummy, then the value of the point won’t be updated and the
factor � will remain. In this situation we should instead multiply the point by �
to remove this factor.

Since strategies different from the multiplication-based strategy may require
multiple isogeny evaluations on a given iteration, instead of multiplying all the
points by � we can simply multiply the initial randomly chosen point by any
primes which will correspond to a dummy isogeny construction before the eval-
uation of the strategy begins. In this way we remove the ‘bad’ factors at the
start by means of a single scalar multiplication per prime. This can be done in
a secure fashion by using two copies of the point, multiplying one of them by
each prime (not just the primes for dummies) while conditionally swapping the
two points depending on the private key value for the current prime.

2.3 Two-Point Method and Parallelization

In [16], Onuki et al. find improved performance by tracking two points through
each strategy: one from E[π − 1] and one from E[π + 1]. When reaching an
isogeny construction, the appropriate point is used depending on the sign of the
private key in the corresponding position.

In the multiplication-based strategy, having two points results in a negligible
cost increase since only one of the two points needs to be multiplied to derive
the kernel generator of the isogeny (though both points are still evaluated under
the isogeny). When using other strategies this luxury is not an option since the
path from the root to the leaf under consideration may pass through internal
branch vertices, and so both points should be multiplied through nearly the
entire strategy; the exception is horizontal paths within the strategy that end
at a leaf and contain no branch vertices, in which case one can only multiply
through whichever point is needed at the leaf node. In a non-parallel computation
model, this would result in highly increased cost since it uses roughly double the
number of point multiplications.

As a potential remedy, one might parallelize the operations on the two points
together, allowing strategies different from the multiplication-based strategy to
feasibly be used. We theorize that the parallelization results of Hutchinson and
Karabina in [11] apply in this case, but we do not pursue this avenue here.

2.4 Splitting Isogenies into Multiple Batches (SIMBA)

In [13], Meyer et al. propose to partition the set of primes {�1, . . . , �74} into m
many disjoint subsets to evaluate the group action on each subset individually.

9

The output curve from evaluating the action on one subset is fed as the input
curve to the next, and a new initial point P is chosen for each iteration of each
subset. They focus exclusively on positive private key values so that P is always
chosen from E[π− 1], and it’s more likely that |P | contains larger prime factors
than smaller ones. Consequently, after a given number of rounds on a fixed key
it’s more likely that lower degree isogenies will still need to be constructed than
higher ones. Meyer et al. therefore find it beneficial to merge the primes back
into one set after μ many iterations and run CSIDH as originally proposed (but
still using dummy isogenies) to construct the remaining isogenies. They call this
technique Splitting Isogenies into Multiple Batches, or SIMBA-m-μ.

Within our framework, SIMBA can be summarized as: partition the primes
{�1, . . . , �n} into m subsets, associate some strategy with each subset, and eval-
uate each strategy using the primes from each subset. Fresh points are randomly
chosen for each strategy and must be multiplied by every prime not in the current
subset, as well as by 4, prior to beginning the operations within the strategy.

We can generalize this further. First, there is no reason that the same strategy
and permutation must be used for each of the subsets, so we are free to choose
optimal parameters on each of them. Second, it’s not required that the same
partitioning be used each round. That is, once the strategies for each of the
subsets have been evaluated once, we could optionally repartition the primes
and use a different collection of strategies. This is quite advantageous since if
any value bi in the private key bound vector b is small in comparison to the rest
of the vector, the prime �i can simply be removed from the partitioning after
bi number of rounds since all degree �i isogenies (both real and dummy) have
likely been constructed by that point. This also eliminates the need of merging
the batches after μ rounds since each batch is on a ‘minimal’ set of primes to
begin with. Overall this has the effect of eliminating a significant number of
redundant operations, although it yields a much more complex algorithm.

This motivates the following definition. Recall that we identify a measure M
with its sequence {pi}, leaving the weight functions f and g implicit.

Definition 5. For a collection of numbers M = {p1, . . . , pn}, a SIMBA strat-
egy S is a collection of pairs (S1,M1), . . . , (Sm,Mm) such that

1. Si is a strategy (under Definition 1) for i = 1, . . . ,m,
2. Mi is a measure for Si for i = 1, . . . ,m,
3. M is the disjoint union of M1, . . . ,Mm.

The Si are referred to as the SIMBA substrategies, and Mi the SIMBA
submeasures, of S. We say (|S1|, . . . , |Sm|) is the SIMBA partition of S.

We can also encode SIMBA strategies as matrices; see Appendix A for details.

2.5 General Algorithm

Once a strategy and permutation have been chosen, the method for evaluating
them is fairly intuitive and at a high level closely mimics the procedure for eval-
uating a strategy for SIDH [8]. See Appendix D for an example, and Appendix
C for the complete algorithm description.

10

3 Optimization Methods

For much of this section we work over an arbitrary set of primesM = {p1, . . . , pn},
and all strategies, permutations, and measures will reference these primes. These
primes can be thought of as some subset of the odd primes used in CSIDH. Sec-
tions 3.1, 3.2, and 3.3 respectively tackle optimizing the strategy, permutation,
and bound vector variables. Finally, in Section 3.4, we discuss how the three op-
timization algorithms come together to produce a full parameter set for CSIDH.

3.1 Optimizing the Strategies

Let M be a measure. In this section we fix an arbitrary permutation σ and de-
scribe a method for determining an optimal canonical strategy for the permuted
measure σM . That is, we optimize (S)σM over S for fixed σ and M . For this
section by replacing M with σM we may assume that σ is the identity permu-
tation. This reduces the problem to finding an optimal strategy for a measure
M . This is done nearly identically to the method described in [8] for constant
measures.

Theorem 1. Fix a measure M = {pi}ni=1. Suppose S is a canonical strategy for
which (S)M is minimal over all canonical strategies for M . If k = |SL|, then SL

and SR are canonical strategies for which (SL)ML and (SR)MR are minimal over
all canonical strategies for ML and MR, respectively, where ML := {pi}ni=n−k+1

and MR := {pi}n−k
i=1 .

Theorem 1 is a generalization of [8, Lemma 4.5]. The proof is essentially the
same, with the appropriate generalizations made—it appears in Appendix B.

Definition 6. For a measure M = {pi}ni=1 with n > 1, for 1 ≤ k ≤ n − 1 we
define the k-th left and right submeasures of M as

ML
k = {pi}ni=n−k+1 MR

k = {pi}n−k
i=1 .

Let C(M) be the cost of an optimal strategy under the measureM = {pi}ni=1.
As a consequence of Theorem 1, C(M) can be computed recursively as

C(M) = min
k=1,...,n−1

{
C(ML

k) + C(MR
k) +

n−k∑
i=1

f(pi) +
n∑

i=n−k+1

g(pi)

}
. (4)

Just as in the case of finding an optimal strategy for SIDH in [8], the above
equality again suggests a dynamic programming approach for finding an optimal
strategy in our generalized setting. That is, we compute C({pi}ni=1) by using
a sliding window submeasure which increases in size: we iterate k = 1, . . . , n
and j = 1, . . . , n − k + 1 and compute C({pi}j+k−1

i=j) using equation (4) with
the length-one measure initial values C(pi) = 0 for all i. Here, k represents
the window size and j represents the window position. This gives an Õ(n2)
algorithm computing the cost of the best strategy, and an optimal strategy can

11

be constructed by keeping track of an index at which the minimum occurs at
each step. Alternatively, one may construct the matricesH and V for the optimal
strategy recursively as defined in Section 2.1.

In the two-point setting of [16], a similar result holds by doubling most of
the above summations. The discussion in Section 2.3 suggests that every edge in
the strategy should have double weight, except those which lie on a horizontal
path ending in a leaf and containing no branch node. This occurs precisely when
the left substrategy is T1. Thus for the two-point scenario we have the recursion

C(M) = min

({
C(MR

1) +

n−1∑
i=1

f(pi) + 2g(pn)

}
∪ (5)

{
C(ML

k) + C(MR
k) +

n−k∑
i=1

2f(pi) +

n∑
i=n−k+1

2g(pi) : k = 2, . . . , n− 1

})
.

3.2 Optimizing the Permutations

We now fix a full strategy S and measure M , and show how to use mathematical
programming to find a permutation σ which minimizes (S)σM . Write M =
({pi}ni=1, f, g), and define vectors μ = [f(pi)]

n
i=1 and ι = [g(pi)]

n
i=1.

Let H and V be the matrices that encode the edges of S. If the primes are
permuted according to σ, then by Equation (3) we have

(S)σM =

n−1∑
i=1

n−1∑
j=1

Hi,jμσ(j) +

n−1∑
i=1

n−1∑
j=1

Vi,jισ(i+1).

In order to simplify this expression and write it in a form that is amenable
to standard optimization techniques, we will use the permutation matrix rep-
resentation of Sym(n). For any σ ∈ Sym(n), let ρ(σ) ∈ {0, 1}n×n be defined
by ρ(σ) =

∑n
i=1 eie

T
σ(i) where {ei}ni=1 are the standard basis vectors. Letting

TL =
[
In−1|0

]
, TR =

[
0|In−1

]
, and Σ = ρ(σ) with In−1 an identity matrix of

size n−1, we can write (S)σM = 〈TT
L HT1μT +TT

RV 1ιT , Σ〉F where 〈·, ·〉F is the
Frobenius inner product. Then the problem of finding the optimal permutation
for a given strategy and measure is to minimize the above quantity subject to
Σ being a permutation matrix; more succinctly:

Minimize 〈TT
L HT1μT + TT

RV 1ιT , Σ〉F
Subject to Σ1 = 1

1TΣ = 1T

Σ ≥ 0
Σ ∈ Z

n×n

(6)

Problem (6) is an integer linear program. Relaxing the integrality constraint,
we obtain a linear program whose feasible region is Bn—the Birkhoff polytope in
R

n2

. The vertices of Bn are precisely the n×n permutation matrices; then, by the

12

Fundamental Theorem of Linear Programming, there is an optimal solution to
the relaxed problem which is feasible (and hence optimal) for (6). Such a solution
can be found easily using standard techinques (e.g. the simplex method).

For SIMBA and the two-point method, (6) must be modified to account for
changes to the cost model; these modifications are described in Appendix E.1.

3.3 Optimizing the Bound Vector

We now leave behind the setting of full generality and return to CSIDH, where
we consider the primes M = {�1, . . . , �n}. Castryck et al. in [2] propose to select
the values of the private key (e1, . . . , en) from some common interval [−b, b].
Meyer et al. in [13] instead consider sampling each value ei from its own interval
[0, bi], where the vector b = (b1, . . . , bn) is to be chosen so that a speedup is
gained while still maintaining a target security level. In [13] the authors state
that trying to find optimal values of bi leads to a large integer optimization
problem which is not likely to be solvable exactly. They give some vectors b
that they found heuristically, but gave no details on the method used to find the
provided values. We give details on our optimization problem now.

To write a mathematical program for the optimal exponent bound vector b,
we must determine the relationship between b and the cost of computing the
(real and dummy) isogenies for the group action, using a given strategy, as well
as the constraints that must be enforced on b in order to ensure security.

The requirement to maintain security in the case of non-negative exponents
(à la [13]) is that ideals of the form le11 · · · lenn for 0 ≤ ei ≤ bi cover the class
group nearly uniformly. An analysis was performed in [16] when selecting ei
from the intervals [−bi, bi], which can be easily adapted to the case [0, bi]. Under
this adaptation, the requirement for the vector b when selecting each ei from
the interval [0, bi] is that

∏
(bi + 1) is at least the size of the class group. By

the heuristics in [4] the size of the class group is approximately
√
p (recall that

p = 4�1 · · · �n − 1), and so we need
∏
(bi + 1) ≥ √

p as a constraint in the
optimization problem. Then, sufficient security can be guaranteed by enforcing

n∏
i=1

(bi + 1) ≥ √
p ⇐⇒

n∑
i=1

log2(bi + 1) ≥ 1
2 log2 p =: λ. (7)

This reformulated constraint is convex, which is computationally convenient.
In the case of exponents which are not restricted to be non-negative (à la

[2,16]) the argument of [16] applies without modification, and we arrive at a
similarly-reformulated convex constraint as (7) where bi is replaced with 2bi.

All that remains is to determine the cost of computing the isogenies when
executing a given strategy. As before, let μσ(i) and ισ(i) denote the cost of eval-
uating multiplication-by-�σ(i) maps and evaluating �σ(i)-isogenies, respectively.
As well, let κσ(i) be the combined cost of computing the kernel points from a
given generator and computing the codomain curve of an �σ(i)-isogeny.

We must consider two cases: rounds in which �σ(i) is ‘active’ (that is, there
are still �σ(i)-isogenies to be computed), and rounds in which �σ(i) is ‘inactive’
(that is, there are no more �σ(i)-isogenies to compute).

13

�σ(i) is active. In this case, we must:

1. Compute one �σ(i)-isogeny kernel and codomain curve, incurring cost κσ(i).

2. Evaluate [�σ(i)] for each 1 in ith column of H, if i ≤ n−1, at cost (1TH)iμσ(i)

3. Evaluate an �σ(i)-isogeny for each 1 in (i − 1)th row of V , if i ≥ 2, at cost
(V 1)i−1ισ(i).

�σ(i) is inactive. In this case, we must evaluate [�σ(i)] once, at cost μσ(i).
Let ci denote the cost associated with prime �i in an active round, and di

denote the cost associated with prime �i in an inactive round. In the event that
the starting point in every round is of full order (so that an isogeny of each
order can be computed in each round), there are bi active rounds for �i and
maxj{bj} − bi inactive rounds for �i. Thus the total cost associated with �i is

ci · bi + di · (max
j

{bj} − bi) = (ci − di) · bi +max
j

{bj}di

so that the total cost across all i is 〈c− d, b〉+maxj{bj}1Td, where

c = Σ−1
(
(1THTL)

T ◦ (Σμ) + (TT
RV 1) ◦ (Σι) +Σκ

)
and d = μ

where ◦ is the Hadamard product.
So far we have accounted only for the cost of the first maxj{bj} strategy

executions. If each execution always lets us evaluate isogenies of each active
degree �i this would be sufficient; however, we are not guaranteed that our initial
points P will be of full order, so it is possible that there will be some active primes
for which we cannot construct the required isogenies. When this happens, we
must perform additional rounds of computation. To account for this additional
cost, we estimate the number of additional rounds required and their cost.

The point P0 allows us to compute the required �σ(i)-isogeny if and only if:

1. P0 ∈ E[π − 1] (in case bσ(i) > 0), or P0 ∈ E[π + 1] (in case bσ(i) < 0); and,
2. �σ(i) divides the order of P0.

If we choose b ≥ 0 (as proposed in [13]), or use the two-point technique of [16],
at the beginning of each strategy round these conditions are satisfied with prob-

ability
�σ(i)−1

�σ(i)
, since for each i we have E[�i, π ± 1] ∼= Z/�iZ. For large �σ(i) the

success probability is relatively high, and so we expect most of the isogenies will
be computed during the maxj{bj} rounds. Though we can in principle compute
the expected cost of each additional round for a given bound vector b, this cost
is not a convex function of b, and its inclusion in the mathematical program
would make it difficult to solve. Instead, acknowledging that few isogenies need
to be computed, and that these isogenies will likely correspond to small primes
for which isogeny evaluations are cheap, we approximate the expected cost of an
additional round by 1Tμ. Despite being inexact, this approximation works well
enough in practice to yield a runtime improvement.

It remains to determine the expected number of required additional rounds.
The expected total number of rounds required to complete the required �σ(i)

14

isogenies is
�σ(i)

�σ(i)−1bσ(i), and bσ(i) rounds which include the prime �σ(i) are com-

pleted. Thus the number of additional rounds required for �σ(i) is expected to be
bσ(i)

�σ(i)−1 . The maximum of this quantity over all i is then the number of additional

rounds expected to be required to finish the algorithm.
From the above, given a pair (H,V) of strategy matrices and a permutation

matrix Σ, we use the following program to estimate the optimal bound vector
when using SIMBA with only one torsion point:

Minimize 〈c− d, b〉+maxj{bj}1Td+maxj

{
bj

�j−1

}
1Tμ

Subject to
∑n

i=1 log2(bi + 1) ≥ λ
b ≥ 0
b ∈ Z

n

. (8)

Problem (8) is a convex mixed-integer nonlinear program (convex MINLP)
which, for small enough instances, can be solved exactly. We solve Problem (8)
for the CSIDH-512 parameter set and our optimal (Permutation, Strategy) pair
using Couenne [1] running on the NEOS server [7,9,10].

For larger parameter sets, it may not be feasible to solve the MINLP exactly.
To approximate the solution in this regime, we propose the following scheme
method. Begin by relaxing to a continuous convex program by removing the

constraint b ∈ Z
n and solving. Let (CP0) denote the relaxed problem and b̂

(0)
its

solution. Construct a new program (CP1) by adding the constraint bi0 =
⌈
b̂
(0)
i0

⌋
,

where i0 is the index of the entry of b̂
(0)

which is closest to integer. Then for
1 ≤ k ≤ n− 1, we repeat this process: solve (CPk) and fix the entry of b which

is nearest to an integer in b̂
(k)

. In (CPn), all but one variable is fixed; solve the
problem and round the only unfixed variable up to ensure sufficient security.

In our numerical experiments, this approximate bound vector performs very
well, with average running time within 0.3% of the exactly optimal bound vector.

When using two torsion points in each strategy, the process is essentially the
same, except that the coefficient vectors change slightly (because we sometimes
have to perform two computations—one for each torsion point—rather than one)
and that the mathematical program uses a different bound to ensure security.
This is explained precisely in Appendix E.2.

3.4 The Complete Optimization Methodology

So far, we have defined the optimization methodology only piecewise; here we
present the full optimization ‘pipeline,’ starting from a measureM = ({�i}ni=1, f, g)
and ending with a complete parameter set: a bound vector, and a collection of
SIMBA strategies and permutations to use for each round. We present the rou-
tine we used for plain SIMBA (à la [13]) here; details of the method used for
the two-point technique (with SIMBA) appear in Appendix E.3.

1. We first search for a SIMBA strategy S = (S1, S2, . . . , Sm) and correspond-
ing permutation Σ. In particular, we apply Algorithm 2 on measure M =

15

({�i}ni=1, f, g). We chose T = 1000,mmin = 1,mmax = 5. In initial searches,
we did not bound the sizes of the SIMBA substrategies; going forward, we
chose to bound the size of each SIMBA substrategy by

max
{
2,
⌊

n
m+2

⌋}
≤ |Sj | ≤

⌈
n
m

⌉
+ 15 ∀1 ≤ j ≤ m.

(where m is the number of SIMBA substrategies), because initial searches
suggested that this range was most promising. This S will be the SIMBA
strategy that is used in the first round of computing the class group action.

2. Using the strategy and permutation obtained in step 1., we approximately
solve the program (8) using the iterative rounding technique described in
Section 3.3 to obtain a bound vector b.

3. For 2 ≤ k ≤ maxj{bj}, letM (b)
k = ({�i}i : bi≥k, f, g). To obtain a permutation

and SIMBA strategy for the kth round, we run Algorithm 2 on the measure

M
(b)
k . We used T = 100,mmin = 1,mmax = 5. As in Step 1., for each number

m of substrategies, we bound the size of each SIMBA substrategy by

max
{
2,
⌊

n
m+2

⌋}
≤ |Sj | ≤

⌈
n
m

⌉
+ 15 ∀1 ≤ j ≤ m.

Algorithm 2: Our stochastic search algorithm for an optimal strategy and
permutation.

Input : A measure M of size n. Natural numbers T,mmin,mmax. An initial
permutation σ∗.

Output: A permutation σ and SIMBA strategy S
1 Choose m∗ ← {mmin,mmin + 1, . . . ,mmax} uniformly at random
2 Choose P ∗ = (n1, n2, . . . , nm∗), a partition of n, uniformly at random
3 Set S∗ = (S∗

1 , S
∗
2 , . . . , S

∗
m∗) to be the optimal SIMBA strategy with SIMBA

substrategies of size (n1, n2, . . . , nm) for the measure σ∗M
4 Set C∗ = (S∗)σ∗M
5 for i from 1 to T do
6 Set (σ,C) ← (σ∗, C∗)
7 Choose m ← {mmin,mmin + 1, . . . ,mmax} uniformly at random
8 do
9 Set C′ ← C

10 Choose P = (n1, n2, . . . , nm), a partition of n, uniformly at random
11 Set S = (S1, S2, . . . Sm) to be the optimal SIMBA strategy with SIMBA

substrategies of size (n1, n2, . . . , nm) for the measure σM
12 Set σ to be the optimal permutation for S and M
13 Set C ← (S)σM

14 while C < C′

15 if C < C∗ then
16 Set (σ∗,m∗, P ∗, S∗, C∗) ← (σ,m, P, S, C)

17 end

18 end
19 Return (P ∗, σ∗, S∗)

16

Operation M S
a

Montgomery Edwards

LADDER 8t− 4 4t− 2 8t− 6 8t− 6

EVAL 2�− 2 2 �+ 1 �+ 3

KER 2�− 6 �− 3 4�− 12 3�− 11

CODOM �+ 2t∗ − 1 2t+ 6 6 2

Table 1. Costs for various operations. M,S, and a respectively represent multiplica-
tions, squarings, and additions in Fp. Here � is an odd prime, t = �log2(�)�, and t∗ is
the Hamming weight of �. For the purposes of the model, we estimate t∗ ≈ 1

2
�log2 ��.

4 Implementation

In terms of formulating a cost model, there are essentially two scenarios: using
Montgomery curves with the formulas of [14], or using twisted Edwards curves
with the formulas of [3]. The costs for various operations are summarized in
Table 1. We use M to denote Fp multiplications, S to denote Fp squarings, and
a to denote Fp additions/subtractions. In the table, � is interpreted as an odd
prime. LADDER refers to computing [�]P for a given point P using the Mont-
gomery ladder. The operation KER denotes the cost of computing the kernel
points P, [2]P, . . . , [�−1

2]P of an isogeny ϕ from a given generator P of order �. In
the Montgomery setting, the KER table entry includes the cost of the computing
the points [i]P , as well as the � − 1 additions required for computing the sums
and differences of these coordinates described in Algorithm 4 of [5]. CODOM con-
siders constructing the codomain of a degree � isogeny ϕ given its kernel points
〈P 〉. EVAL computes ϕ(Q) for a given point Q, assuming the kernel points are
already computed. We point out that each operation requires the same number
of multiplications and squarings independent of the setting (e.g., Montgomery
or Edwards), but the number of additions and subtractions vary.

In the context of a measure M = ({�i}, f, g) on a strategy for CSIDH, f(�i)
represents the cost of performing the operation (�i, P) �→ [�i]P , while g(�i) rep-
resents the cost to evaluate an isogeny of degree �i at some point (assuming the
kernel points have been computed already). In practice, we therefore take f as
the sum over the LADDER row of Table 1 and g as the sum over the EVAL row,
including only one of the ‘Montgomery’ or ‘Edwards’ columns according to the
appropriate context. We set S = 0.8M and a = 0M.

Implementation Details. We applied our results to two settings:

1. The work of Meyer, Campos, and Reith in [13] (based on previous work of
Meyer and Reith in [14]). Here, Montgomery curves are used with points rep-
resented in XZ-coordinates. To compute the codomain curve of an isogeny,
a conversion to a Twisted-Edwards model is used. This method uses non-
negative private key values, and so only one point is traced through a strategy
at a time. We refer to this as the “MCR method”.

2. The work of Cervantes-Vázquez, Chenu, Chi-Domı́nguez, De Feo, Rodŕıguez-
Henŕıquez, and Smith in [3]. Here, twisted Edwards curves are used exclu-

17

sively with points represented using Y Z-coordinates. The authors apply for-
mulas for the Edwards setting to both the MCR method and the two-point
technique of [16], along with a projectivized Elligator map and optimized ad-
dition chains for scalar multiplication. We call this the “CCCDRS” method.

In each setting we used the optimization techniques of Section 3.4 to find full
CSIDH parameter sets at the 128-bit security level, where we take the primes
�i suggested by [2] for CSIDH-512. It should be pointed out that Peikert in
[17] suggests that the parameters given by [2] for CSIDH-512 may not actually
provide 128 bits of security, but we consider this parameter set in order to directly
compare with previous optimizations of CSIDH; all of the results in this work
are compatible with any collection of distinct odd primes used for CSIDH. We
implemented Algorithm 2 in a combination of Octave and Matlab in order to
construct SIMBA strategies, permutations, and bound vectors for each of the
implementations described below.

Table 2 summarizes our results for each of the implementations we consider.
The values of the table reflect the median over 1024 iterations of a single group
action evaluation, including validation of supersingularity of the output curve.
All of the tests were executed on a i7-7500k clocked at 2.70 GHz running on a
single core only. All tests were performed using optimized field arithmetic.

The first row of Table 2 gives the original implementation of CSIDH [2]. This
implementation is not constant-time and is included only for reference.

For the MCR method we used the publicly-available code of [13], modified to
fit our optimized parameter set (which includes an optimized SIMBA strategy
and corresponding permutation for each round, and a bound vector). Our imple-
mentation of the MCR method used a custom Sage script which takes a strategy
and permutation as input and outputs C code which efficiently executes them—
in particular, merging consecutive point multiplications (horizontal paths in the
strategy for which no internal leaf in the path is a branch). This Sage script
allowed us to test a wide variety of strategies without having to write custom
code for each one. The implementation did not use the optimizations suggested
by [3]. Compared with [13], our results yielded a 12.77% speedup.

For the CCCDRS implementations we only considered the two-point version,
and we did not find any SIMBA substrategies that outperform the multiplication-
based strategy. Consequently our C code generation script for this implemen-
tation only produces code for custom SIMBA substrategy sizes, permutations,
and bound vectors. We used an Octave script to produce C header files that can
be used as drop-in replacements for corresponding header files in the implemen-
tation of [3] to implement our custom parameters.

To demonstrate how optimizing each parameter using our techniques affects
the efficiency of the implementations, we provide benchmarks for three CCC-
DRS method implementations. The first we denote as CCCDRS-1, in which we
use the bound vector of [3] and a single SIMBA strategy S and corresponding
permutations for the full measure M = {�i} found using Algorithm 2; here, the
same strategy S is used in each round. For CCCDRS-1, we achieve a speedup of
only 1.09% over the original implementation of [3]. Our second implementation

18

is denoted CCCDRS-2, in which we modify CCCDRS-1 to use optimized per-

mutations and a SIMBA strategy on the submeasure M
(b)
i in the ith round, for

1 ≤ i ≤ 7 = maxj{bj}, rather than a SIMBA strategy and permutation on the
full measure M . For CCCDRS-2 we attained a speedup of 3.77% over [3]. Finally
we have CCCDRS-3, where we use a bound vector obtained by the technique of
Section 3.3 on top of the optimizations of CCCDRS-2. CCCDRS-3 applies all of
the optimizations of Section 3, and with it we achieved a speedup of 5.06%. All
of our code and the final parameter sets used for these tests can be found here:

https://github.com/AaronHutchinson/CSIDH

Implementation M S a
Latency Speedup
(Mcycles) (%)

CSIDH [2] 463 287 136 654 416 891 165.1 -

MCR [13] 1 036 675 425 377 1 020 712 407.87 -
This work (MCR) 905 200 312 483 859 759 355.77 12.77

CCCDRS [3] (Two pt.) 664 936 224 081 750 992 251.21 -
This work (CCCDRS-1) 659 816 223 793 745 710 248.47 1.09
This work (CCCDRS-2) 637 352 218 635 724 958 241.74 3.77
This work (CCCDRS-3) 632 444 209 310 704 576 238.51 5.06

Table 2. Field operation counts and latency for seven implementations of CSIDH-512.

5 Conclusions

We developed systematic techniques for optimizing three parameters used in
the CSIDH group action evaluation algorithm: the strategy, permutation of the
primes �i, and bound vector from which private key values are chosen. Prior
works in this area have used ad hoc methods to determine these parameters,
and as far as we are aware this work is the first step in the direction of determin-
ing an optimal parameter set. Our implementation results show that significant
speedups can be achieved when using our techniques to find efficient parameter
sets. In light of recent cryptanalysis (in particular, [17]), new CSIDH parameter
sets will have to be derived to meet NIST security levels. The optimization meth-
ods presented here can be used to contribute to these parameter sets (in the form
of the bound vector) and to efficient class group action evaluation algorithms.

Acknowledgements The authors would like to thank the reviewers for their
helpful comments. This work is supported in parts by NSF CNS-1801341, NSF
GRFP-1939266, and NIST-60NANB17D184.

References

1. P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and bounds
tightening techniques for non-convex MINLP. Optimization Methods and Software,
24(4-5):597–634, 2009.

2. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: An Efficient Post-Quantum Commutative Group Action. In Thomas
Peyrin and Steven Galbraith, editors, Advances in Cryptology – ASIACRYPT
2018, pages 395–427, Cham, 2018. Springer International Publishing.

19

3. Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domı́nguez, Luca
De Feo, Francisco Rodŕıguez-Henŕıquez, and Benjamin Smith. Stronger and Faster
Side-Channel Protections for CSIDH. In Peter Schwabe and Nicolas Thériault,
editors, Progress in Cryptology – LATINCRYPT 2019, pages 173–193, Cham, 2019.
Springer International Publishing.

4. H. Cohen and H. W. Lenstra. Heuristics on Class Groups of Number Fields. In
Hendrik Jager, editor, Number Theory Noordwijkerhout 1983, pages 33–62, Berlin,
Heidelberg, 1984. Springer Berlin Heidelberg.

5. Craig Costello and Huseyin Hisil. A Simple and Compact Algorithm for SIDH
with Arbitrary Degree Isogenies. In Tsuyoshi Takagi and Thomas Peyrin, editors,
Advances in Cryptology – ASIACRYPT 2017, pages 303–329, Cham, 2017. Springer
International Publishing.

6. Jean-Marc Couveignes. Hard Homogeneous Spaces. Cryptology ePrint Archive,
Report 2006/291, 2006. https://eprint.iacr.org/2006/291.

7. Joseph Czyzyk, Michael P. Mesnier, and Jorge J. Moré. The neos server. IEEE
Journal on Computational Science and Engineering, 5(3):68 – 75, 1998.

8. Luca De Feo, David Jao, and Jérôme Plût. Towards Quantum-Resistant Cryp-
tosystems from Supersingular Elliptic Curve Isogenies. J. Mathematical Cryptol-
ogy, 8(3):209–247, 2014.

9. Elizabeth D. Dolan. The neos server 4.0 administrative guide. Technical Memoran-
dum ANL/MCS-TM-250, Mathematics and Computer Science Division, Argonne
National Laboratory, 2001.

10. William Gropp and Jorge J. Moré. Optimization environments and the neos server.
In Martin D. Buhman and Arieh Iserles, editors, Approximation Theory and Op-
timization, pages 167 – 182. Cambridge University Press, 1997.

11. Aaron Hutchinson and Koray Karabina. Constructing Canonical Strategies for
Parallel Implementation of Isogeny Based Cryptography. In 19th International
Conference on Cryptology in India, New Delhi, India, December 9–12, 2018, Pro-
ceedings, pages 169–189. Springer, 12 2018.

12. Amir Jalali, Reza Azarderakhsh, Mehran Mozaffari Kermani, and David Jao. To-
wards Optimized and Constant-Time CSIDH on Embedded Devices. Cryptology
ePrint Archive, Report 2019/297, 2019. https://eprint.iacr.org/2019/297.

13. Michael Meyer, Fabio Campos, and Steffen Reith. On Lions and Elligators: An Ef-
ficient Constant-Time Implementation of CSIDH. In Jintai Ding and Rainer Stein-
wandt, editors, Post-Quantum Cryptography, pages 307–325, Cham, 2019. Springer
International Publishing.

14. Michael Meyer and Steffen Reith. A Faster Way to the CSIDH. In Debrup
Chakraborty and Tetsu Iwata, editors, Progress in Cryptology – INDOCRYPT
2018, pages 137–152, Cham, 2018. Springer International Publishing.

15. Tomoki Moriya, Hiroshi Onuki, and Tsuyoshi Takagi. How to Construct CSIDH
on Edwards Curves. Cryptology ePrint Archive, Report 2019/843, 2019. https:

//eprint.iacr.org/2019/843.
16. Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and Tsuyoshi Takagi. (Short

Paper) A Faster Constant-Time Algorithm of CSIDH Keeping Two Points. In
Nuttapong Attrapadung and Takeshi Yagi, editors, Advances in Information and
Computer Security, pages 23–33, Cham, 2019. Springer International Publishing.

17. Chris Peikert. He Gives C-Sieves on the CSIDH. Cryptology ePrint Archive,
Report 2019/725, 2019. https://eprint.iacr.org/2019/725.

18. Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem Based on
Isogenies. Cryptology ePrint Archive, Report 2006/145, 2006. https://eprint.

iacr.org/2006/145.

20

A Recursive Encoding of Strategies

When restricting to canonical strategies, the matrices H and V from Section 2.1
can alternatively be defined recursively. We define H(T1#T1) = V (T1#T1) = [1]
as an initial value, and compute the matrices of larger strategies as shown in
Figure 1. These recursive definitions follow immediately from the definition of the
join operator # given in Section 2.1. Note that for canonical strategies either one
of the matrices H or V uniquely determines the other, and so S can be specified
by giving only one of them. For computational purposes having both matrices
is convenient, however.

H(SL#T1) =

⎡
⎢⎣

0 0

en1 H(SL)

⎤
⎥⎦ V (SL#T1) =

⎡
⎢⎣

1 0

1 V (SL)

⎤
⎥⎦

H(T1#SR) =

⎡
⎢⎣

H(SR) 0

1 1

⎤
⎥⎦ V (T1#SR) =

⎡
⎢⎣

V (SR) 0

eT
1 0

⎤
⎥⎦

H(SL#SR) =

⎡
⎢⎢⎢⎢⎣

H(SR) 0 0

0 0 0

en1−11
T en1−1 H(SL)

⎤
⎥⎥⎥⎥⎦

V (SL#SR) =

⎡
⎢⎢⎢⎢⎣

V (SR) 0 0

eT
1 0 0

1eT
1 0 V (SL)

⎤
⎥⎥⎥⎥⎦

Fig. 1. Recursive expressions for the encoding matrices H and V . Both SL and SR

are canonical strategies with |SL| = n1 and |SR| = n2, with n1, n2 > 1. Every H(S)
and V (S) matrix is square of dimension |S| − 1. We use 0 and 1 to represent (often
nonsquare) matrices of the appropriate size with all entries 0 and 1, respectively; 0 and
1 represent individual matrix entries. As well, ei is the unit basis column vector of the
appropriate size with a 1 in the ith position and 0’s elsewhere. We let AT denote the
transpose of a matrix A.

Encoding SIMBA Strategies. Just as for full strategies, it is desirable to
encode SIMBA strategies as a pair of matrices (H,V). If S = (S1, S2) is a
SIMBA strategy on two SIMBA substrategies, we define

H(S) =

⎡
⎢⎢⎢⎢⎣

H(S1) 0 0

0 0 0

0 0 H(S2)

⎤
⎥⎥⎥⎥⎦ and V (S) =

⎡
⎢⎢⎢⎢⎣

V (S1) 0 0

0 0 0

0 0 V (S2)

⎤
⎥⎥⎥⎥⎦

21

where H(Si) and V (Si) are the encoding matrices of the Si as defined in Section
2.1. Then, for a SIMBA strategy S = (S1, S2, . . . , Sm) on m ≥ 3 substrategies,
we define

H(S) =

⎡
⎢⎢⎢⎢⎣

H(S′) 0 0

0 0 0

0 0 H(Sm)

⎤
⎥⎥⎥⎥⎦ and V (S) =

⎡
⎢⎢⎢⎢⎣

V (S′) 0 0

0 0 0

0 0 V (Sm)

⎤
⎥⎥⎥⎥⎦

where S′ = (S1, S2, . . . , Sm−1). This definition is used to make the optimization
problems in Sections 3.2 and 3.3 compatible with SIMBA strategies.

B Proof of Theorem 1

Here we give a proof of Theorem 1, which we restate here for convenience.

Theorem 1. Fix a measure M = {pi}ni=1. Suppose S is a canonical strategy for
which (S)M is minimal over all canonical strategies for M . If k = |SL|, then SL

and SR are canonical strategies for which (SL)ML and (SR)MR are minimal over
all canonical strategies for ML and MR, respectively, where ML := {pi}ni=n−k+1

and MR := {pi}n−k
i=1 .

Proof. If S is fixed, we first notice that the cost that SL contributes to (S)M
depends only on the last k entries of M . This can be seen through Equation (3)
with σ taken as the identity. Alternatively, by the construction of S = SL#SR

given in Section 2.1, SL is contained within the lines x = n − k, y = 0, and
y = −x + n − 1, and by the weight assignment given in Definition 2 each hor-
izontal (resp. vertical) edge in this region is assigned some weight from the set
{f(pn−k+1), . . . , f(pn)} (resp. the set {g(pn−k+1), . . . , g(pn)}). By a similar ar-
gument, the cost that SR contributes to (S)M depends only on the first n − k
entries of M . We can therefore view SL as a strategy in Tk under the measure
ML, and SR as a strategy in Tn−k under the measure MR.

Let a be the (unique) path in Tn connecting the root (0, 0) to the vertex
(n−k, 0) (seen as the root of SL), and let b be the (unique) path in Tn connecting
the root (0, 0) to the vertex (0, k) (seen as the root of SR). Then the strategy
S decomposes as a disjoint union S = SL ∪ SR ∪ a ∪ b, and by the preceding
paragraph the cost of S under M can therefore be written as

(S)M = (SL)ML + (SR)MR +

n−k∑
i=1

f(pi) +

n∑
i=n−k+1

g(pi),

where the first and second summations represent the cost of the paths a and
b, respectively, under M . We notice that these two summations depend only on
M and k, and not on the substrategies SL and SR themselves. If either SL or
SR is suboptimal under ML or MR, respectively, then we may get a lower cost
strategy S by replacing the suboptimal strategy with an optimal one under its
corresponding measure. This concludes the proof.

22

C Complete Description of the Group Action Algorithm

We give a general high level algorithm for evaluating the group action in CSIDH
as follows. Let b = (b1, . . . , bn) be the bound vector used so that private key
values ei are chosen from the interval [−bi, bi] ∩ Z (or [0, bi] in the case of a
non-negative approach such as [13]), and let r = maxi bi. The algorithm runs
through r many rounds, with the i-th round considering an active subset Mi ⊂
{�1, . . . , �n} of primes. A SIMBA strategy Si = {(Si,1,Mi,1), . . . , (Si,mi

,Mi,mi
)}

is chosen (in advance) for each Mi, as well as a permutation σi,j for each Mi,j .
The i-th round iterates from j = 1 to mi, evaluating each of the SIMBA sub-
strategies Si,j under its corresponding permuted measure σi,jMi,j one time. Once
all r rounds are complete a final phase is executed, in which any isogenies which
remain to be constructed due to a failure (either real or dummy) are built by
means of a multiplication-based strategy with a descending-prime permutation.

The subsets Mi are defined to consist of all primes �j for which bj − i is posi-
tive. This choice of Mi eliminates a great deal of redundancy since a prime �j is
eliminated from all future strategies (save for the final phase) exactly upon fin-
ishing the bj-th round. Using the results of Section 3 one can find well-performing
parameter values for b, the SIMBA strategy S, and the permutations σi,j . The
final phase of the algorithm after the r rounds finish is entirely dependent upon
the points randomly generated during execution, and so the strategy used for it
cannot be optimized since it’s not known in advance which primes will be present
during this step and determining a strategy during run time is infeasible.

The group action evaluation algorithm is detailed in Algorithm 3, which
calls Algorithms 4 and 5 as subroutines. The algorithms as written use the two
point method of [16], but can be easily modified to use the non-negative key
method of [14] by ignoring steps which involve the variables P−1 and NegPts.
In this case some steps may be simplified, such as collapsing the loops (5) and
(11) in Algorithm 4 down into one. As noted before, the conditional branching
based on the private key values ei seen in loops (8) in Algorithm 3 and (4)
of Algorithm 5 can be performed securely by using constant time conditional
swaps to dummy points. The branching on lines (15), (20) in Algorithm 4 and
line (14) in Algorithm 5 can be handled similarly.

D Example—Evaluation of a Canonical Strategy

In Figure 2 we give a small example of a canonical strategy S in T9. Suppose that
the primes involved in evaluating S are L = {p1, p2, . . . , p9}, and are ordered as
such after being permuted. In preparation to evaluate the strategy Algorithm
3 would choose random points P1 ∈ EA[π − 1] and P−1 ∈ EA[π + 1] using
Elligator, and these points would each be multiplied by all primes in the set
{�1, . . . , �n} \ {p1, . . . , p9} and by 4. The order of each of these points will then
divide p1p2 · · · p9.

Suppose that the private key values ei corresponding to the primes pi are

(e1, e2, e3, e4, e5, e6, e7, e8, e9) = (1,−1, 0, 2, 0,−2, 0, 0, 1).

23

Algorithm 3: Our ideal class Group Action Algorithm

Parameters: b = (b1, . . . , bn) ∈ Z
n. For 1 ≤ i ≤ max

i
bi, there are mi ∈ N

determining the number of SIMBA substrategies in the ith
round. For each i and 1 ≤ j ≤ mi, there are strategies Si,j and
permutations σi,j on some set of primes Li,j ⊂ {�1, . . . , �n}.

Input : A ∈ Fp and private key (e1, . . . , en), with ei ∈ [−bi, bi] ∩ Z.
Output: A′ ∈ Fp such that [le11 · · · lenn]EA = EA′ .

1 t ← 0.
2 c ← b.
3 for i = 1 to max bi do
4 for j = 1 to mi do
5 Choose points P1 ∈ EA[π − 1] and P−1 ∈ EA[π + 1] using Elligator.
6 Compute u ← 4 · ∏

�k /∈Li,j

�k.

7 Update P1 ← [u]P1 and P−1 ← [u]P−1.
8 for �k ∈ Li,j do
9 If ek = 0, then update P1 ← [�k]P1 and P−1 ← [�k]P−1.

10 If ek �= 0, then update P−sign(ek) ← [�k]P−sign(ek).

11 end
12 A, e, c, t ← Eval(Si,j , σi,j , Li,j ; A,P1, P−1, e, c, t).

13 end

14 end
15 A ← BuildRemaining(A, e, c, t)
16 Return A

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 1 1 0
1 0 0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 2. A canonical strategy S (black lines) in T9 (black and dashed grey lines), and
the corresponding matrices H(S) and V (S). This strategy decomposes into copies of
T1 as S = ((T1#(T1#T1))#T1)#(((T1#T1)#T1)#(T1#T1)).

The innermost loop of Algorithm 3 would then multiply P1 by p2p3p5p6p7p8
(so that its order divides p1p4p9) and P−1 by p1p3p4p5p7p8p9 (so that its order
divides p2p6). We are then ready to begin evaluation of the strategy. For clarity,
we will let Q1 and Q−1 permanently denote these initial values of P1 and P−1,
respectively, whereas the variables P1 and P−1 will have their values updated as
we progress through Algorithm 4.

24

Algorithm 4: Eval: Strategy Evaluation

Parameters: A permutation σ represented as a subsequence of {1, 2, . . . , n} of
length m, a strategy S with m leaves represented by its vertical
encoding matrix V (S), defined on the primes {�σ(1), . . . , �σ(m)}.

Input : A ∈ Fp representing a curve EA : y2 = x3 +Ax2 + x, points
P1 ∈ EA[π − 1] and P−1 ∈ EA[π + 1], current value e of private key,
vector c = (c1, . . . , cn) such that ci many �i degree isogenies remain to
be constructed, integer t denoting total number of isogenies already
constructed.

Output: Updated values for A, e, c, t according to the isogenies constructed.
1 Initialize point arrays PosPts and NegPts, with PosPts[0] ← P1 and

NegPts[0] ← P−1.
2 for i = m− 1 down to 1 do
3 Update P1 and P−1 to the last entries of PosPts and NegPts, respectively,

and define k to be the index at which these entries appear.
4 k′ ← max{x : V (S)i,x = 1}.
5 for j = k + 1 to k′ − 1 do
6 Update P1 ← [

�σ(j)

]
P1 and P−1 ← [

�σ(j)

]
P−1

7 if V (S)i,j = 1 then
8 Append P1 to PosPts, append P−1 to NegPts
9 end

10 end
11 for j = k′ to i do
12 Update Psign(eσ(i))

← [�σ(i)]Psign(eσ(j))
.

13 end
14 if k = i, then delete the last entries of PosPts and NegPts.
15 if eσ(i) �= 0 and Psign(eσ(i))

�= ∞ then

16 Construct isogeny φ : EA → EB of degree �σ(i) with kernel 〈Psign(eσ(i))
〉.

17 Update all points in PosPts and NegPts with their images under φ.
18 A ← B, cσ(i) ← cσ(i) − 1, eσ(i) ← eσ(i) − sign(eσ(i)), t ← t+ 1.

19 end
20 if eσ(i) = 0 then
21 Construct dummy isogeny φ : EA → EB of degree �σ(i) with kernel

〈Psign(eσ(i))
〉.

22 cσ(i) ← cσ(i) − 1, t ← t+ 1.

23 end

24 end
25 Return A, e, c, t

The arrays in Algorithm 4 get initialized as PosPts = [Q1] and NegPts =
[Q−1]. The first branch node appears after 5 horizontal edges, and so both points
are multiplied by p1p2p3p4p5 and the results are stored into the arrays:

PosPts = [Q1, [p1p2p3p4p5]Q1]

NegPts = [Q−1, [p1p2p3p4p5]Q−1].

25

Algorithm 5: BuildRemaining: Construct any remaining isogenies.

Input : A ∈ Fp, current value e of private key, vector c = (c1, . . . , cn) such
that ci many �i degree isogenies remain to be constructed, integer t
denoting total number of isogenies already constructed

1 while t �=
n∑

i=1

bi do

2 Choose random points P1 ∈ EA[π − 1] and P−1 ∈ EA[π + 1] using Elligator.
3 Update P1 ← [4]P1 and P−1 ← [4]P−1.
4 for k = 1 to n do
5 if ek = 0, then update P1 ← [�k]P1 and P−1 ← [�k]P−1.
6 if ek �= 0, then update P−sign(ek) ← [�k]P−sign(ek).

7 end
8 for k = n down to 1 do
9 if ck �= 0 then

10 Assign Q ← Psign(ek).
11 for i = 1 to k − 1 do
12 if ci �= 0, then update Q ← [�i]Q.
13 end
14 if eσ(i) �= 0 and Psign(ek) �= ∞ then
15 Construct isogeny φ : EA → EB of degree �σ(i) with kernel 〈Q〉.
16 Update P1 ← φ(p1) and P−1 ← φ(P−1)
17 A ← B, ck ← ck − 1, eσ(i) ← eσ(i) − sign(eσ(i)), t ← t+ 1.

18 end

19 end

20 end

21 end
22 Return A

The final branch on this row of the strategy occurs after 1 additional horizontal
edge, and so p6 now gets multiplied and the results stored:

PosPts = [Q1, [p1p2p3p4p5]Q1, [p1p2p3p4p5p6]Q1]

NegPts = [Q−1, [p1p2p3p4p5]Q−1, [p1p2p3p4p5p6]Q−1].

This completes loop (5) of Algorithm 4. We have e9 = 1 > 0, and so P1 should be
used to determine the kernel generator of the first isogeny. Loop (11) multiplies
out primes p7 and p8 from P1 so that it has value [p1p2p3p4p5p6p7p8]Q1. Provided
that this point is nontrivial, it has order p9 and will be used to construct the
first isogeny ϕ9. All points in the arrays are evaluated under this isogeny (which
also removes a factor of p9 from their order):

PosPts = [ϕ9(Q1), ϕ9([p1p2p3p4p5]Q1), ϕ9([p1p2p3p4p5p6]Q1)]

NegPts = [ϕ9(Q−1), ϕ9([p1p2p3p4p5]Q−1), ϕ9([p1p2p3p4p5p6]Q−1)].

The last points in the above arrays are the images of the points corresponding
to the final branch node in row 8, column 6 of the strategy, and we use these

26

points to begin operations on row 7. There are no branch nodes on row 7 after
column 6, and so the loop (5) is skipped. We have e8 = 0, and so either point
P1 or P−1 can be multiplied by p8 and then used to construct a dummy isogeny
ϕ8. Dummy isogeny evaluations are performed on the arrays, completing row
7. The (dummy) images of the final array points correspond to the leaf node
of row 6. One of the points ϕ9([p1p2p3p4p5]Q±1) would then immediately used
to construct the next isogeny (the loops (5) and (11) are skipped), but since
e7 = 0 we perform another dummy construction. Furthermore, since an isogeny
evaluation landed us on a leaf node, we have no further use for the final entries
of the arrays and they may be safely removed:

PosPts = [ϕ9(Q1), ϕ9([p1p2p3p4p5]Q1)]

NegPts = [ϕ9(Q−1), ϕ9([p1p2p3p4p5]Q−1)].

The evaluation of the final points above again land at a leaf node and
again loops (5) and (11) can be skipped. This time we have e6 = −2, and
so ϕ9([p1p2p3p4p5]Q−1) is used as the kernel for isogeny ϕ6 (recall that p7p8 was
removed from |Q−1| at the start). Again the previous isogeny evaluation arrived
at a leaf node, and so the final entries of the arrays are removed:

PosPts = [ϕ6ϕ9(Q1)], NegP ts = [ϕ6ϕ9(Q−1)].

On row 4 we proceed similar to row 8 and arrive at the arrays

PosPts = [ϕ6ϕ9(Q1), ϕ6ϕ9([p1p2]Q1), ϕ6ϕ9([p1p2p3]Q1)]

NegPts = [ϕ6ϕ9(Q−1), ϕ6ϕ9([p1p2]Q−1), ϕ6ϕ9([p1p2p3]Q−1)].

We have e5 = 0 and a dummy isogeny is constructed after one point is multiplied
by p4. For row 3 we have e4 = 2 and the point ϕ6ϕ9([p1p2p3]Q1) of order dividing
p4 is used for an isogeny ϕ4 construction if possible. Since an evaluation landed
on a leaf node, we remove the final array entries:

PosPts = [ϕ4ϕ6ϕ9(Q1), ϕ4ϕ6ϕ9([p1p2]Q1)]

NegPts = [ϕ4ϕ6ϕ9(Q−1), ϕ4ϕ6ϕ9([p1p2]Q−1)].

We arrive in row 2 at a leaf node, and since e3 = 0 we do a dummy construc-
tion while also removing the final array entries:

PosPts = [ϕ4ϕ6ϕ9(Q1)], NegP ts = [ϕ4ϕ6ϕ9(Q−1)].

Since e2 = −1, in row 1 we multiply ϕ4ϕ6ϕ9(Q−1) by p1 to get a point of
order dividing p2 and construct the isogeny ϕ2. The final values of the arrays
are then:

PosPts = [ϕ2ϕ4ϕ6ϕ9(Q1)], NegP ts = [ϕ2ϕ4ϕ6ϕ9(Q−1)].

The value e1 = 1 determines the final isogeny ϕ1, constructed using kernel
generator ϕ2ϕ4ϕ6ϕ9(Q1) of order p1.

27

Along the way, the nonzero key values ei are decreased in magnitude any
time a real isogeny is successfully constructed, and a counter t is incremented
any time a real or dummy isogeny is constructed. This completes the execution
of Algorithm 4 for this strategy, and Algorithm 3 would continue by executing all
remaining strategies, and then running Algorithm 5 to construct any isogenies
which failed to be constructed in any execution of Algorithm 4.

E Extensions to SIMBA and the Two-Point Method

E.1 Optimal Permutations for SIMBA and the Two-Point Method

An Extension to SIMBA Strategies. The arguments of Section 3.2 apply
in a straightforward fashion to the case of SIMBA strategies; in this scenario,
however, we have

(S)σM = 〈TT
L HT1μT + TT

RV 1ιT , Σ〉F + (m− 1)1Tμ

where m is the number of SIMBA substrategies of S. Notably the additional
term (m− 1)1Tμ is independent of the decision variables Σ, and so we can use
Problem (6) without modification when optimizing the permutation for a given
SIMBA strategy.

An Extension to the Two-Point Method. The arguments of Section 3.2 do
not apply immediately to the two-point method, but can be extended to that
setting. When optimizing permutations for the two-point method, we cannot
use Program (6) without a minor modification. In this setting, all vertical edges
require two isogeny evaluations and, for the horizontal edges, some require two
point multiplications while some require only one. In particular, when consider-
ing the ith row of H, let ki = max1≤k≤n−1{k : Vi,k = 1}. Then in order to be
able to compute the isogeny evaluations specified by V , for each 1 among the
first k entries of the ith row of H, we must multiply both torsion points by the
corresponding prime, while for the remaining 1s in that row, we only need to
multiply one torsion point (the one which corresponds to the sign of ei).

To construct the appropriate linear program for this setting, we define mod-
ified strategy matrices Ĥ(S) and V̂ (S) by

Ĥ(S)ij =

{
Hi,j if j ≥ ki

2Hi,j if j ≤ ki − 1
V̂ (S) = 2V (S)

where ki is as defined above. We can then use Problem (6) with the following
modified objective function:

(S)σM = 〈TT
L ĤT1μT + TT

R V̂ 1ιT , Σ〉F .
We note that when S is the multiplication-based strategy (or a SIMBA strat-

egy all of whose SIMBA substrategies are multiplication-based), Ĥ(S) = H(S),

28

and so we can apply Problem (6) by instead modifying the cost model, using
2ι in place of ι; since the best SIMBA substrategies we have found for the two
point method have all been multiplication-based, we employ this modification
in our parameter-finding scripts.

E.2 Optimizing the Bound Vector in the Two-Point Method

When optimizing the bound vector for the two-point method, the techniques of
Section 3.3 apply in a fairly straightforward fashion. In particular, defining

c = Σ−1
(
(1T ĤTL)

T ◦ (Σμ) + (TT
R V̂ 1) ◦ (Σι) +Σκ

)
and d = 2μ

(where Ĥ and V̂ are as defined in Section 3.2), the mathematical program is

Minimize 〈c− d, b〉+maxj{bj}1Td+ 2maxj

{
bj

�j−1

}
1Tμ

Subject to
∑n

i=1 log2(2bi + 1) ≥ λ
b ≥ 0
b ∈ Z

n

. (9)

As before, in the case that S is the multiplication-based strategy or a SIMBA
strategy all of whose SIMBA substrategies are multiplication-based, we can in-
stead alter the definition of c to use a cost model with 2ι in place of ι. We apply
the same iterative rounding technique to this program as to the program (8) in
Section 3.3.

E.3 The Complete Optimization Methodology for SIMBA and the
Two-Point Technique

The algorithm above applies essentially unchanged when using the two-point
technique. In this setting the best SIMBA substrategies we found were consis-
tently multiplication-based. We exhaustively searched for the optimal SIMBA
decomposition and permutation when all SIMBA substrategies are multiplication-
based. Our process was:

1. For each m between 1 and 5 and each partition P = (n1, n2, . . . , nm) of n
with parts of size at least 2, compute the optimal permutation σ for the
SIMBA strategy S whose substrategies are the multiplication-based strate-
gies of size n1, n2, . . . , nm. Choose the partition, permutation, and strategy
with the lowest cost among these.

2. Using the strategy and permutation obtained in step 1., we approximately
solve the program (9) using the iterative rounding technique described in
Section 3.3 to obtain a bound vector b.

3. For 2 ≤ k ≤ maxj{bj}, let M (b)
k = ({�i}i : bi≥k, f, g). Applying the technique

of step 1., find the optimal permutation and partition for each M
(b)
k .

29

Optimizing for Submeasures. Suppose M ′ is a proper submeasure of M . We
note that the cost of evaluating a strategy S under M ′ is (S)M ′ + m1TμM ′′ ,
where M ′′ is the complement of M ′ in M and μM ′′ is the subvector of μ cor-
responding to the indices present in M ′′. This additional term accounts for the
multiplications that are performed to remove the prime factors present in M ′′

from the order of the initial points of the strategy (see line (7) of Algorithm
3). We must account for this cost during algorithms which compare the cost of
SIMBA strategies that consist of different numbers of SIMBA substrategies—in
particular, when computing costs in Algorithm 2, we must modify lines (4) and
(13) to include this term. When using the two-point method, the additional
term is instead 2m1TμM ′′ , since the primes of M ′′ must be eliminated from the
orders of both torsion points at the beginning of each SIMBA substrategy.

30

