
19

SIKE in 32-bit ARM Processors Based on Redundant Number

System for NIST Level-II

HWAJEONG SEO, College of IT Engineering at Hansung University, Seoul, Republic of Korea

PAKIZE SANAL and REZA AZARDERAKHSH, Department of Computer, Electrical Engineering

and Computer Science at Florida Atlantic University, Boca Raton, FL, USA

We present an optimized implementation of the post-quantum Supersingular Isogeny Key Encapsulation

(SIKE) for 32-bit ARMv7-A processors supporting NEON engine (i.e., SIMD instruction). Unlike previous

SIKE implementations, finite field arithmetic is efficiently implemented in a redundant representation, which

avoids carry propagation and pipeline stall. Furthermore, we adopted several state-of-the-art engineering

techniques as well as hand-crafted assembly implementation for high performance. Optimized implemen-

tations are ported to Microsoft SIKE library written in “a non-redundant representation” and evaluated in

high-end 32-bit ARMv7-A processors, such as ARM Cortex-A5, A7, and A15. A full key-exchange execution

of SIKEp503 is performed in about 109 million cycles on ARMCortex-A15 processors (i.e., 54.5 ms@2.0 GHz),

which is about 1.58× faster than previous state-of-the-art work presented in CHES’18.

CCS Concepts: • Security and privacy→ Public key (asymmetric) techniques; •Mathematics of com-

puting→ Mathematical software; • Computer systems organization → Embedded software;

Additional Key Words and Phrases: Post quantum cryptography, software implementation, SIDH, ARM, par-

allel computation

ACM Reference format:

Hwajeong Seo, Pakize Sanal, and Reza Azarderakhsh. 2021. SIKE in 32-bit ARM Processors Based on Redun-

dant Number System for NIST Level-II. ACM Trans. Embed. Comput. Syst. 20, 3, Article 19 (March 2021), 23

pages.

https://doi.org/10.1145/3439733

1 INTRODUCTION

Hard problems of traditional public key cryptography (e.g., RSA and Elliptic Curve Cryptogra-
phy (ECC)) can be easily solved by using Shor’s algorithm [Shor 1994] on an emerging quantum
computer. For this reason, traditional public key cryptography cannot be secure anymore against

This work was partly supported by Institute for Information & communications Technology Planning & Evaluation (IITP)

grant funded by the Korea government (MSIT) (<Q |Crypton>, No. 2019-0-00033, Study on Quantum Security Evaluation

of Cryptography based on Computational Quantum Complexity) and this work was partly supported by the National

Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2020R1F1A1048478). The

work of Reza Azarderakhsh is supported in part by NSF CNS-1801341 and NIST60NANB16D246.

Author’s addresses: H. Seo (corresponding author), Hansung University, Republic of Korea; email: hwajeong84@gmail.com;

P. Sanal and R. Azarderakhsh, Department of Computer, Electrical Engineering and Computer Science at Florida Atlantic

University, Boca Raton, FL, USA; emails: {psanal2018, razarderakhsh}@fau.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2021/03-ART19 $15.00

https://doi.org/10.1145/3439733

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

19:2 H. Seo et al.

quantum attacks. A number of post-quantum cryptography algorithms have been proposed to
resolve this issue. Among them, Supersingular Isogeny Diffie-Hellman key exchange (SIDH) pro-
tocol proposed by Jao and De Feo is considered as a premier candidate for post-quantum cryp-
tosystems [Jao and Feo 2011]. Its security is believed to be secure against quantum algorithms on
quantum computers. SIDH is the basis of the Supersingular Isogeny Key Encapsulation (SIKE) pro-
tocol [Azarderakhsh et al. 2019], which is currently under consideration by the National Institute
of Standards and Technology (NIST) for inclusion in a future standard for post-quantum cryptog-
raphy [NIST 2019]. Recently, NIST announced the round 3 finalist and alternatives and the SIKE
is selected as an alternative candidate.1 One of the attractive features of SIDH and SIKE protocols
is their relatively small public key size, which are the most compact ones among well-established
quantum-resistant algorithms. In spite of this prominent advantage, the “slow” speed of these pro-
tocols has been a sticking point, which hinders them to act like the practical solution. Therefore,
the speeding up SIDH and SIKE protocols has become a critical issue as it judges the practicality
of these isogeny-based cryptographic schemes in a real-world setting.

1.1 Efficient Implementations of SIDH and SIKE

The SIDH and SIKE implementations have been actively studied on both hardware and software.
For the hardware implementation, efficient implementations of modular multiplication have been
introduced. In Koziel et al. [2020], Montogmery multiplication and parallel computation based im-
plementation was introduced. In Liu et al. [2019a], the SIDH hardware/software co-design imple-
mentation using the FFM2 hardware showed 31% faster than the best SIDH software implementa-
tion. In Liu et al. [2019b] a new high performance modular multiplication algorithm named HFFM
for the specific fields in SIDH was proposed. This algorithm saved multiplications and additions
compared with the previous algorithms.
For the software implementation, there are also several SIDH and SIKE implementations

on various ARM embedded processors ranging from low-end ARM Cortex-M microcontrollers
(for energy-efficient embedded devices) to high-end ARM Cortex-A processors (for supreme
performance at optimal power). In 2018, the first implementation of SIDH on low-end 32-bit
ARM Cortex-M4 microcontroller was suggested by Koppermann et al. [2018]. They utilized the
state-of-the-art field arithmetic algorithm and optimize it in assembly language. An ephemeral key
exchange (i.e., SIDHp751) on a 32-bit ARMCortex-M4@120MHz requires 18.833 s to perform—too
slow to use on low-endmicrocontrollers. This work failed to prove the practicality of SIDH on low-
end ARMmicrocontrollers. In CANS’19, the first practical SIKE result on a 32-bit ARM Cortex-M4
microcontroller was suggested by Seo et al. [2019a]. They presented new optimized implementa-
tion of modular arithmetic for the case of low-end 32-bit ARM Cortex-M4 microcontroller. With
highly optimized modular arithmetic, the SIKE round 2 protocols for NIST Post QuantumCryptog-
raphy (PQC) competition (i.e., SIKEp434, SIKEp503, and SIKEp751) were efficiently implemented.
The benchmark result on STM32F4 Discovery board equipped with 32-bit ARM Cortex-M4 micro-
controllers shows that the entire key encapsulation over SIKEp434 takes only about 326 million
clock cycles (i.e., 1.94 s @168 MHz). In Seo et al. [2020], the modular multiplication was further
optimized by combining multiplication and reduction in a function. They presented all SIKE
protocols such as SIKEp434, SIKEp503, SIKEp610, and SIKEp751. They achieved the 184 million
clock cycles (i.e., 1.09 s @168 MHz). This is reasonably fast enough for practical applications.
For the high-end ARM processor, 32-bit ARMv7 Cortex-A for wearable devices and 64-bit

ARMv8 Cortex-A for smartphones are widely used. First SIDH implementations on 64-bit ARMv8
Cortex-A processors are presented in 2017 [Jalali et al. 2017]. They analyzed the use of both affine

1https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

SIKE in 32-bit ARM Processors Based on Redundant Number System for NIST Level-II 19:3

and projective SIDH formulas and provided a comprehensive analysis of both approaches based
on the inversion-to-multiplication ratio. Benchmark results on ARMv8 demonstrated speedup of
up to 5× over the generic version of SIDH implementation. In CHES’18, previous SIDH implemen-
tations on high-end 64-bit ARMv8 Cortex-A processors were improved further [Seo et al. 2018].
They presented high-speed Montgomery multiplication by utilizing 64-bit instructions and effi-
cient computation orders. On an ARM Cortex-A72 from the ARMv8-A family, a full key-exchange
execution of SIDHp503 was carried out in about 90 million cycles (i.e., 45 ms @1.992 GHz). In
WISA’19, they optimized implementation of SIKE round 2 on 64-bit ARM, including SIKEp434 and
SIKEp610 parameters [Seo et al. 2019b]. They used different optimization techniques to reduce
the total number of underlying arithmetic operations on the field level. Benchmark results on the
64-bit ARM CortexA53@1.536 GHz processor showed that the entire SIKE round 2 key encapsu-
lation mechanism took only 84 ms at NISTâs security level 1.
For the case of 32-bit ARMv7 Cortex-A processors, the first SIDH implementation was presented

in CANS’16 [Koziel et al. 2016]. They provided fast affine SIDH implementations over 512, 768,
and 1,024-bit primes on 32-bit ARM Cortex-A8 and A15 processors. The modular multiplication
was optimized with the Cascade Operand Scanning (COS) method [Seo et al. 2016]. In SPACE’18,
they presented a highly optimized implementation of SIKE mechanism on ARMv7 family of pro-
cessors. They exploited state-of-the-art implementation techniques, including COS method and
Karatsuba algorithm, and processor capabilities to efficiently develop post-quantum key encapsu-
lation scheme on 32-bit ARMv7 Cortex-A processors [Jalali et al. 2018]. They achieved almost 7.5x
performance improvement of the entire protocol over the SIKE 503-bit prime field on a Cortex-
A8 core than reference code. In CHES’18, high-speed implementations of SIDH on 32-bit ARM
Cortex-A15 processors were presented [Seo et al. 2018]. For the optimized multi-precision modu-
lar arithmetic, they finely integrated both ARM andNEON instructions, which reduces the number
of pipeline stalls and memory accesses and presented a newMontgomery reduction technique that
combines the use of the UMAAL instruction with a variant of the hybrid-scanning approach. On an
ARM Cortex-A15 from the ARMv7-A family, a full key-exchange execution of SIDHp503 is carried
out in about 176 million cycles (i.e., 88 ms @2.0GHz).
Previous optimized SIDH/SIKE implementations on 32-bit ARMv7 Cortex-A processors are

based on a non-redundant representation. However, alternative approach, namely redundant rep-
resentation, may achieve better performance than the non-redundant representation by referring
previous ECC implementations on 32-bit ARMv7 Cortex-A processors. In CHES’12, the first cryp-
tography implementation on 32-bit ARMv7 Cortex-A processors in a redundant representation
was suggested [Bernstein and Schwabe 2012]. They showed ARM Cortex-A8 can sign a short mes-
sage and verify a signature on a short message within 368,212 and 650,102 clock cycles for Ed25519,
respectively. In CHES’14, the fast implementation of Elliptic Curve Diffie-Hellman (ECDH) over
Curve41417 on 32-bit ARM Cortex-A8 was presented [Bernstein et al. 2014]. They utilized the re-
dundant representation and refined Karatsuba algorithm. They achieved 1,648,409 clock cycles on
the FreeScale i.MX515, which is faster than secp160r1 of openssl. Previous works proved that
well-designed redundant representation can lead to significant performance improvements.

1.2 Contribution

In this work, we improved SIKE implementations for NIST PQC competition (i.e., SIKEp503)
on 32-bit ARMv7 Cortex-A processors. We present the new way to implement the finite field
arithmetic in the redundant representation and Single Instruction Multiple Data (SIMD) instruc-
tion for SIKE parameters, which avoids carry propagation and pipeline stall. Furthermore, we
adopted several state-of-the-art engineering techniques as well as hand-crafted assembly imple-
mentation. The optimized implementations are ported to Microsoft SIDH/SIKE library written in

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

19:4 H. Seo et al.

“non-redundant representation” and evaluated in high-end 32-bit ARMv7 Cortex-A processors,
such as ARM Cortex-A5, A7, and A15. A full key-exchange execution of SIKEp503 is performed in
about 109 million cycles on 32-bit ARM Cortex-A15 processors (i.e., 54.5 ms @2.0 GHz), which is
about 1.58× faster than previous state-of-the-art work presented in CHES’18.

1.3 Organization

This article is organized as follows. In Section 2, we briefly review the SIDH key exchange and
SIKE key encapsulation mechanism. In Section 3.1, we introduce target high-end ARM processors
(i.e., 32-bit ARMv7 Cortex-A) and previous implementations of modular multiplication on 32-bit
ARMv7 Cortex-A processors. In Section 4, proposed implementations of finite field arithmetic are
presented. Thereafter, we summarize our experimental results on 32-bit ARMv7 Cortex-A micro-
controller in Section 5 and conclude the article in Section 6.

2 SUPERSINGULAR ISOGENY DIFFIE-HELLMAN KEY EXCHANGE

In this section, we briefly review SIDH and SIKE protocols and the required steps to generate a
shared secret.

2.1 SIDH key Exchange

In 2011, Feo Jao and Feo [2011] proposed the SIDH, a quantum resistant key exchange protocol
from isogenies of supersingular elliptic curves. Similarly to classical Diffie-Hellman key exchange,
SIDH protocol is constructed over some public parameters, which are agreed upon by communi-
cation parties prior to key exchange.

2.1.1 Public Parameters. Fix a prime p of the form p = �eA
A
· �eB

B
· f ± 1 where �A and �B are

small primes, eA and eB are positive integers, and f is a very small cofactor. We define a based su-
persingular elliptic curve E0 over Fp2 with cardinality #E0 = (�eA

A
· �eB

B
· f ∓ 1)2, and base points

{PA,QA} and {PB ,QB } from the torsion subgroups E0[�
eA
A
] and E0[�

eB
B
] respectively, such that

〈PA,QA〉 = E0[�
eA
A
] and 〈PB ,QB〉 = E0[�

eB
A
].

2.1.2 Key Exchange Protocol. Alice randomly chooses two integersmA,nA ∈ Z/�eA
A

Z, not both
divisible by �A as her secret key and computes an isogeny ϕA : E0 → EA using kernel RA :=
〈[mA]PA + [nA]QA〉. Alice also computes the image points {ϕA (PB),ϕA (QB)} ⊂ EA by applying
her secret isogeny ϕA to the public basis PB and QB . She sends ϕA (PB),ϕA (QB) and EA to Bob as
her public key. Bob also selects random elementsmB ,nB ∈ Z/�eB

B
Z, not both divisible by �B and

computes a secret isogeny ϕB : E0 → EB from kernel RB := 〈[mB]PB + [nB]QB〉, along with image
points {ϕB (PA),ϕB (QA)} ⊂ EB . He sends his public key, i.e., ϕB (PA),ϕB (QA) and EB to Alice.
In the second round of key exchange, Alice uses Bob’s public key (ϕB (PA),ϕB (QA),EB) and

computes an isogeny ϕ ′A : EB → EAB from kernel equal to 〈[mA]ϕB (PA) + [nA]ϕB (QA)〉. Similarly,
Bob computes an isogeny ϕ ′B : EA → EBA having kernel 〈[mB]ϕA (PB) + [nB]ϕA (QB)〉 using Alice’s
public key. Since the common j-invariant of EAB and EBA are equal, they use this value to form a
secret shared key. The entire SIDH key exchange protocol is illustrated in Figure 1.

2.2 SIKE Mechanism

SIKE mechanism is constructed by applying a transformation of Hofheinz et al. [2017] to the su-
persingular isogeny Public Key Encryption scheme described in Jao and Feo [2011]. It is an actively
secure key encapsulation mechanism (IND-CCA KEM) that addresses the static key vulnerability
of SIDH due to active attacks in Galbraith et al. [2016].

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

SIKE in 32-bit ARM Processors Based on Redundant Number System for NIST Level-II 19:5

Fig. 1. SIDH key exchange protocol.

2.2.1 Public Parameters. Similarly to SIDH, SIKE can be defined over a prime of the form p =
�eA
A
· �eB

B
· f ± 1. However, for efficiency reasons, �A = 2, �B = 3, and f = 1 are fixed, thus the SIKE

prime has the form ofp = 2eA · 3eB − 1. The starting supersingular elliptic curve E0/Fp2 : y
2 = x3 +

x with cardinality equal to (2eA · 3eB)2, along with base points 〈PA,QA〉 = E0[2
eA] and 〈PB ,QB〉 =

E0[3
eB] are defined as public parameters.

2.2.2 Key Encapsulation Mechanism. The key encapsulation mechanism can be divided into
three main operations: Alice’s key generation, Bob’s key encapsulation, and Alice’s key decapsu-
lation. We describe each operation in the following. Figure 2 presents the entire key encapsulation
mechanism in a nutshell.

Key generation. Alice randomly chooses an integer skA ∈ Z/2eAZ and by applying an isogeny
ϕA : E0 → EA with kernel RA := 〈PA + [skA]QA〉 to the base points {PB ,QB }, computes her public
key pkA = [EA,ϕA (PB),ϕA (QB)]. Moreover, she generates an t-bit2 random sequence s ∈R {0, 1}t .
Encapsulation. Bob generates an t-bit randommessage m ∈R {0, 1}t , concatenates it with Alice’s

public key pkA and computes an eB-bit hash value r using cSHAKE256 hash function H1, taking

2The value of t is defined by the implementation parameters.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

19:6 H. Seo et al.

Fig. 2. SIKE mechanism.

m ‖ pkA as the input. Using r , he applies a secret isogeny ϕB : E0 → EB to the base points
{PA,QA} and forms his public key pkB (r) = [EB ,ϕB (PA),ϕB (QA)]. Bob also computes the com-
mon j-invariant of curve EBA by applying another isogeny ϕ ′B : EA → EBA using Alice’s public
key. Bob forms a ciphertext c = (c0, c1), such that:

c = (c0, c1) = (pkB (r),H2 (j (EBA)) ⊕m),

whereH2 is a cSHAKE256 hash with a custom length output and a defined initialization parameter.
Finally, Bob computes the shared secret as K = H3 (m ‖ c) and sends c to Alice.
Decapsulation. Upon receipt of c , Alice computes the common j-invariant of EAB by applying her

secret isogeny to EB . She computesm′ = c1 ⊕ H2 (j (EAB)) and r
′ = H1 (m ‖ pkA) mod 3eB . Finally,

she validates Bob’s public key by computing pkB (r
′) and comparing it with c0. She generates the

same shared secretK = H3 (m
′ ‖ c) if the public key is valid; otherwise, she outputs a random value

K = H3 (c ‖ s) to be resistant against active attacks.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

SIKE in 32-bit ARM Processors Based on Redundant Number System for NIST Level-II 19:7

Fig. 3. Isogeny map in SIKE (p = 71, # of nodes = 7 ≈ p/12, j (E0) = 24, j (EA) = 41, j = (EB) = j (EB′) = 48,

j (EAB) = j (EBA) = 40).

As a toy example of SIKE, choose a prime p = 23 · 32 − 1 = 71 and a starting elliptic curve E0 :
y2 = x3 + x over Fp2 = Fp (i) with modulus i2 + 1 = 0. Note that j (E0) = 24. For this example, the
isogenymaps between j-invariant classes are illustrated in Figure 3 as the number of supersingular
j-invariants is ≈ p/12. For the hash functions H1, H2, and H3, we use a well-known hash function
SHA-1. Choose the base points 〈PA,QA〉 = E0[2

3] and 〈PB ,QB〉 = E0[3
2] as

PA = (5i + 26, 63i + 66),

QA = (66i + 45, 66i + 8),

PB = (46i + 60, 39i + 70),

QB = (30i + 41, 11i + 29).

Suppose Alice picks skA = 3 as her secret key and Bob picks a message m = ‘qwkhizoncl ’. Alice
computes the isogeny ϕA : E0 → EA (by following the 2-isogeny map path 24→ 24→ 17→ 41)
so that

EA : y2 = x3 + 31x + 28,

ϕA (PB) = (10i + 16, 15i + 20),

ϕA (QB) = (62i + 68, 62i + 24),

and then she shares those as her public key with Bob. Bob calculates r by using his secret message
m and Alice’s public key pkA:

r = H1 (m ‖ pkA) mod 32 = 0.

Then, Bob computes the isogeny ϕB : E0 → EB (by following the 3-isogeny map path 24→ 48→
48) so that

EB : y2 = x3 + (28i + 10)x + (31i + 29),

ϕB (PA) = (5i + 8, 3i + 48),

ϕB (QA) = (45i + 5, 62i + 48),

and then he shares those values as his public key. He also computes the isogeny ϕ ′B : EA → EBA
(by following the 3-isogeny map path 41→ 17→ 40) so that

EBA : y2 = x3 + (26i + 15)x + (9i + 13),

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

19:8 H. Seo et al.

and then he uses the j (EBA) andm to compute

0xaf3e133428b9e25c55bc2889382a219ccfae9217

as c1. He also shares c1. Notice that Bob computes the shared key K ,

0xfcc1ddb6e9bc283c6e107355103952ce6b6639ae.

Alice computes the isogeny ϕ ′A : EB → EAB (by following the 2-isogeny map path 48→ 40→ 0→
40) so that

EAB : y2 = x3 + (26i + 15)x + (9i + 13).

Alice then obtainsm′ by using c1 and j (EAB), and therefore she obtains r
′ by usingm′ and Alice’s

public key pkA,

m′ = c1 ⊕ H (j (EAB)) = qwkhizoncl ,

r ′ = H (m′ ‖ pkA) mod 32 = 0.

She finally computes the isogeny ϕ ′′B : E0 → EB′ (by following 3-isogeny map path 24→ 48→ 48)
so that

EB′ : y
2 = x3 + (28i + 10)x + (31i + 29),

ϕB′′ (PA) = (5i + 8, 3i + 48),

ϕB′′ (QA) = (45i + 5, 62i + 48).

After checking whether those values are as same as Bob’s public key, Alice computes the secret
key K

0xfcc1ddb6e9bc283c6e107355103952ce6b6639ae.

It is easily seen that Alice’s and Bob’s shared secret keys are the same.

3 TARGET PROCESSOR AND MODULAR MULTIPLICATION

3.1 32-bit ARMv7 Cortex-A

In this article, we implemented proposed implementation methods on 32-bit ARMv7-A processors,
which are widely used in mini–computers and wearable devices.
The target architecture supports both ARM and NEON instruction sets. On one hand, there

are 16 32-bitwise ARM general purpose registers. Among these ARM registers, the engineer can
utilize 14 32-bit registers, including R0∼R12 and R14 in assembly language. The ARM register can
maintain 448-bit (32 × 14)-wise data.
However, the NEON engine provides 64-bit double (D) word and 128-bit quadruple (Q) word

registers. For example, one 128-bit (Q0) register can be divided in two 64-bit (D0 and D1) registers
and manged. Such engineers can utilize sixteen 128-bit registers (or thirty-two 64-bit registers),
including Q0∼Q15 (or D0∼D30) in assembly language. The NEON register can retain 2,048-bit (128 ×
16)-wise data, which is enough space to maintain long length of intermediate result and operand.
Another feature of NEON instruction is a vectorized computation (i.e., 8-bit, 16-bit, 32-bit, and
64-bitwise), which utilizes a data-parallelism in instruction set level. For the 32-bit unsigned /
signed vectorized multiplication, the NEON engine utilizes six multiplication instruction sets as
follows:

• VMULL.U32/S32 (Vectorized Unsigned / Signed Multiplication)
VMULL.U32 Q0, D2, D3[0]
→ D1 = D2[1] × D3[0], D0 = D2[0] × D3[0],

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

SIKE in 32-bit ARM Processors Based on Redundant Number System for NIST Level-II 19:9

• VMLAL.U32/S32 (Vectorized Unsigned / Signed Multiplication Accumulation)
VMLAL.U32 Q0, D2, D3[0]
→ D1 = D1 + D2[1] × D3[0], D0 = D0 + D2[0] × D3[0],

• VMLSL.U32/S32 (Vectorized Unsigned / Signed Multiplication and Subtraction)
VMLSL.U32 Q0, D2, D3[0]
→ D1 = D1 - D2[1] × D3[0], D0 = D0 - D2[0] × D3[0],

• VQDMULL.U32/S32 (Vectorized Unsigned / Signed Doubled Multiplication)
VQDMULL.U32 Q0, D2, D3[0]
→ D1 = 2 × D2[1] × D3[0], D0 = 2 × D2[0] × D3[0],

• VQDMLAL.U32/S32 (Vectorized Unsigned / Signed Doubled Multiplication Accumulation)
VQDMLAL.U32 Q0, D2, D3[0]
→ D1 = D1 + 2 × D2[1] × D3[0],
D0 = D0 + 2 × D2[0] × D3[0],

• VQDMLSL.U32/S32 (Vectorized Unsigned / Signed Doubled Multiplication and Subtraction)
VQDMLSL.U32 Q0, D2, D3[0]
→ D1 = D1 - 2 × D2[1] × D3[0],
D0 = D0 - 2 × D2[0] × D3[0].

Instruction sets can issue two 32-bit unsigned multiplications and output two 64-bit results in
parallel. However, unsigned instructions are usually useful for the non-redundant representation
since the redundant representation needs to handle a sign bit. The signed alternative can be per-
formed by replacing U32 to S32 option. Furthermore, multiplication results are efficiently doubled
while computations with VQDMULL, VQDMLAL, and VQDMLSL instructions without additional dou-
bling costs. These instructions are useful for some partial product calculations in the squaring
operation.
In this work, we perform the benchmark of the proposed implementation on three 32-bit ARMv7

Cortex-A processors, including ARM Cortex-A5, A7, and A15. The ARM Cortex-A5 processor is
working at 1.5 GHz and is equipped with 1-GB DDR3 RAM. The processor provides single issue
and in-order microarchitecture with 8-stage pipeline. The ARM Cortex-A7 processor is working at
0.9 GHz and is equipped with 1-GB DDR3 RAM. The processor provides partial dual-issue and in-
order microarchitecture with 8-stage pipeline. The ARMCortex-A15 processor is working at 2 GHz
and is equipped with 2-GB DDR3 RAM. The processor provides a 15-stage integer pipeline and a
17- to 25-stage floating point pipeline, with out-of-order speculative issue three-way super-scalar
execution pipeline.

3.2 Modular Multiplication on 32-bit ARMv7 Cortex-A

The modular multiplication is the most expensive cryptography primitive in several Public Key
Cryptography (i.e., RSA, ECC, SIDH, and SIKE). For this reason, previous works mainly focused on
high-speed modular multiplication and squaring operations. Implementations are largely divided
into two categories. One is the non-redundant representation (i.e., general implementation), and
the other one is the redundant representation (i.e., specialized implementation).
Many works suggested high-speed implementations based on the non-redundant representa-

tion. In SAC’13, Bos et al. evaluated the performance of Montgomery multiplication on ARM–
NEON processors [Bos et al. 2013]. They presented an approach to split the Montgomery multipli-
cation into two parts, which can be computed in parallel. They flip the sign of the pre-computed
Montgomery constant value and accumulate the result in two separate intermediate values that
are computed. This approach can efficiently perform the Montgomery multiplication in the non-
redundant representation. In Martins and Sousa [2014] and Martins and Sousa [2015], several

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

19:10 H. Seo et al.

Montgomery multiplication methods were evaluated on 32-bit ARM Cortex-A15 processor. They
concluded that the proposed Finely Integrated Operand Scanning achieved the fastest performance
compared with Separated Operand Scanning. InWISA’14, Seo et al. introduced the COS method to
speed up multi-precision multiplication on ARM–NEON architectures [Seo et al. 2014]. They de-
veloped the COS technique with the goal of reducing Read-After-Write (RAW) dependencies in the
propagation of carries, which also reduces the number of pipeline stalls. The COSmethod operates
on 32-bit words in a row-wise fashion and does not require redundant representation. In Seo et al.
[2016], the Double Operand Scanning (DOS) method to speed-up multi-precision squaring with
non-redundant representations on ARM-NEON architecture was presented. The DOS technique
partly doubles the operands and computes the squaring operation without RAW dependencies be-
tween source and destination variables. In CHES’18, a unified ARM/NEON multi-precision multi-
plication for 32-bit ARMv7 Cortex-A processors was proposed [Seo et al. 2018]. The method finely
integrated ARM and NEON instructions to exploit ARMâs instruction level parallelism. This ap-
proach reduces the number of memory accesses by employing both ARM and NEON registers for
temporal storage and reduces the number of pipeline stalls even in processors with out-of-order
execution capabilities, such as ARM Cortex-A15 processors.
Alternative implementations based on the redundant representation have been actively stud-

ied. The redundant representation (e.g., radix-28) does not fully utilize bits of word (e.g., 32-bit).
Instead, remaining bits (e.g., 4-bit) are utilized for carry or borrow bit. This approach avoids carry
or borrow propagation. In CHES 2012, Bernstein and Schwabe used the reduced radix (225.5) for
an efficient modular multiplication of Curve25519 [Bernstein and Schwabe 2012]. They utilized
the fast reduction to accelerate the performance of signature generation and verification. In HPEC
2013, a multiplicand reduction method in the reduced-radix representation was introduced for im-
plementations of NIST P-192 and P-224 curves [Pabbuleti et al. 2013]. In particular, radix-24 and
radix-28 were used for NIST P-192 and P-224 curves, respectively. In CHES 2014, the high-speed
implementation of Curve41417 was proposed [Bernstein et al. 2014]. they utilized the reduced
radix (225.875) and two-level Karatsuba multiplication. The modular multiplication combined re-
fined Karatsuba and modular reduction to reduce the number of addition operations. In ICISC’15,
the speed record of NIST P-521 over ARM-NEON platform in redundant representation (226.1) was
proposed [Seo et al. 2015]. They exploited 1-level refined Karatsuba method to provide asymp-
totically faster integer multiplication and fast reduction algorithms. In SAC’16, they presented a
high-speed and high-security implementation of the FourQ for 32-bit ARM Cortex-A processors
with NEON support [Longa 2016]. They utilized the reduced radix (226) and achieved the faster per-
formance than genus 2 Kummer and Curve25519 implementations by between 1.3× and 1.7× and
between 2.1× and 2.4×, respectively. In conclusion, the redundant representation usually shows
better performance than the non-redundant representation for the SIMD architecture when data
or task parallelism is available.
In this article, we first implement the SIDH/SIKE protocol in the redundant representation on

32-bit ARMv7 Cortex-A processors. Unlike previous ECC implementations with redundant repre-
sentation (i.e., Mersenne prime), SIDH/SIKE primes are inefficient with the fast reduction, while
Montgomery reduction can be efficiently handled.We used radix-28 and refined Karatsubamethod.
The detailed comparison is given in Table 1.

4 OPTIMIZED SIDH/SIKE ARITHMETIC ON ARM–NEON

To perform SIDH/SIKE protocols, a number of primitive operations should be efficiently imple-
mented. Among them, we focused on cryptographic primitive operations. In Figure 4, the overview
of SIDH/SIKE computations are given. The bottom line is finite field arithmetic, which is primi-
tive operations of SIDH/SIKE. By using finite field arithmetic, above operations (i.e., Fp2 , group

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

SIKE in 32-bit ARM Processors Based on Redundant Number System for NIST Level-II 19:11

Table 1. Comparison of Reduced Radix-based Implementations on 32-bit ARMv7

Implementation Cryptography Radix Limb Karatsuba Reduction

Bernstein and Schwabe [2012] Curve25519 225.5 10 – Fast reduction

Pabbuleti et al. [2013] NIST P-192 224 8 – Fast reduction

Pabbuleti et al. [2013] NIST P-224 228 8 – Fast reduction

Bernstein et al. [2014] Curve41417 225.875 16
√

Fast reduction

Seo et al. [2015] NIST P-521 226.1 20
√

Fast reduction

Longa [2016] FourQ 226 5 – Fast reduction

This work SIKEp503 228 18
√

Montgomery reduction

Fig. 4. Overview of SIDH/SIKE computations.

operation, extended group operation, and post-quantum protocol) are efficiently executed. Since
the modular multiplication operation occupies the highest computation overheads among finite
field arithmetic, we focused on optimizing the modular multiplication to improve the SIDH/SIKE
protocol.

4.1 Multi-precision Multiplication

The prime of SIDHp503/SIKEp503 is 2250 · 3159 − 1 and 503-bit long. We chose radix-28 to align
the operand and intermediate result. We increased a length of operand by 1-bit long to match the
length of lower and higher parts of operand. The extended 504-bit operand is divided into 18-limb
with radix-28 (50428) as follows:

(28, 28, 28, 28, 28, 28, 28, 28, 28 ‖ 28, 28, 28, 28, 28, 28, 28, 28, 28).
Since lower and higher 252-bitwise operands are properly aligned, we can directly apply Karat-

suba multiplication, which replaces the one 504-bit multiplication complexity to three 252-bit mul-
tiplicationswith some addition and subtraction operations. In particular, we used the refinedKarat-
suba algorithm,which optimizes addition operations further [Bernstein 2009]. The implementation
of Karatsuba algorithm is efficient with the NEON engine. The NEON engine supports SIMD in-
structions, which can process multiple data in single instruction. Furthermore, the NEON engine
has large space of registers to maintain the values. The NEON engine over 32-bit ARMv7 Cortex-A
provides sixteen 128-bitwise registers.3 The sub-routines of 504-bit Karatsuba multiplication are

364-bit ARMv8 Cortex-A provides 32 128-bitwise registers.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

19:12 H. Seo et al.

performing three 252-bit multiplication operations. For the 252-bit multiplication, we need 5 reg-
isters for both 18-limb of 32-bit operands and 9 registers for 18-limb of 64-bit intermediate results
and 1 register for temporal storage.
For the memory efficiency, whole results are not maintained. Intermediate results are accu-

mulated and only part of results are stored to the memory. By implementing multiplication and
modular reduction operations in an integrated form, the memory access is optimized. Detailed
descriptions are given in Algorithm 1.

ALGORITHM 1: Refined Karatsuba-based multiplication for 504-bit

Require: Integer a,b satisfying 1 ≤ loд2a, loд2b ≤ 504.

Ensure: Results c = a · b in memorym (m3,m2,m1,m0).
1: aL ← amod 2252

2: aH ← a div 2252

3: bL ← bmod 2252

4: bH ← b div 2252

5: cL ← aL · bL {lower 252-bit multiplication}
6: m0 ← cLmod 2252 {saving lower part to memory}

7: t ← cL div 2252 − (aH · bH mod 2252) + (aH · bH div 2252) · 2252
{higher 252-bit multiplication}

8: m3 ← t div 2252 {saving higher part to memory}
9: t ← t + (t mod 2252) · 2252
10: t ← (t mod 2252 −m0) − (t div 2252) · 2252

11: aK ← aL + aH
12: bK ← bL + bH
13: cK ← t + aK · bK {middle 252-bit multiplication}
14: (m2,m1) ← cK {saving middle part to memory; this can be optimized away}

In the beginning, both operands are divided into lower and higher parts from Steps 1–4. Both
lower and higher parts are 252-bit long. In Step 5, the lower part of operands (aL,bL) are mul-
tiplied and output the result (cL). In Step 6, the lower part of result (cL) is stored into mem-
ory (m0; i.e., stack or heap) and flushed from registers. In Step 7, the higher part of interme-
diate result (cL div 2252) is maintained in NEON registers to accumulate the result. When the
higher part of operands (aH ,bH) are multiplied, the lower part (aH · bH mod 2252) and higher part
(aH · bH div 2252) of intermediate results are directly subtracted and added to the result (cL div 2252),
respectively. These operations are efficiently handled with VMLSL.S32 and VMLAL.S32 instruc-
tions, which ensure multiplication together with subtraction/addition operations. In Step 8, the
higher part of result (t div 2252) is stored into memory (m3; i.e., stack or heap). In Step 9, the
lower part of intermediate result (t mod 2252) is added to the higher part of intermediate result.
In Step 10, the lower part of intermediate result is subtracted by result in m0 (aL · bL mod 2252)
and the higher part of intermediate result (t div 2252) is negated. In Steps 11 and 12, higher
and lower parts of operands are added each other. In Step 13, operands (aK and bK) are mul-
tiplied and added to the intermediate result (t). Finally, results (cK) are stored in memory
(m2,m1).
For the 252-bit multiplication, we perform 9-limb multiplication in radix-28 representation

(i.e., Step 5, 7, and 13 of Algorithm 1). Notations (a0 ∼ a8 and b0 ∼ b8) indicate both operands in
28-bit long and other notations (c0 ∼ c16) represent intermediate results in 56-bit or above. Detailed

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

SIKE in 32-bit ARM Processors Based on Redundant Number System for NIST Level-II 19:13

Fig. 5. Illustration of 252-bit multiplication in 2-way data parallelism.

descriptions of 252-bit multiplication on 28-radix is as follows:

c0 ← a0b0

c1 ← a0b1 + a1b0

c2 ← a0b2 + a2b0 + a1b1

c3 ← a0b3 + a3b0 + a1b2 + a2b1

c4 ← a0b4 + a4b0 + a1b3 + a3b1 + a2b2

c5 ← a0b5 + a5b0 + a1b4 + a4b1 + a2b3 + a3b2

c6 ← a0b6 + a6b0 + a1b5 + a5b1 + a2b4 + a4b2 + a3b3

c7 ← a0b7 + a7b0 + a1b6 + a6b1 + a2b5 + a5b2 + a3b4 + a4b3

c8 ← a0b8 + a8b0 + a1b7 + a7b1 + a2b6 + a6b2 + a3b5 + a5b3 + a4b4

c9 ← a1b8 + a8b1 + a2b7 + a7b2 + a3b6 + a6b3 + a4b5 + a5b4

c10 ← a2b8 + a8b2 + a3b7 + a7b3 + a4b6 + a6b4 + a5b5

c11 ← a3b8 + a8b3 + a4b7 + a7b4 + a5b6 + a6b5

c12 ← a4b8 + a8b4 + a5b7 + a7b5 + a6b6

c13 ← a5b8 + a8b5 + a6b7 + a7b6

c14 ← a6b8 + a8b6 + a7b7

c15 ← a7b8 + a8b7

c16 ← a8b8

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

19:14 H. Seo et al.

There are two types of multiplication instructions, including UMULL and UMLAL instructions.
When we need to initialize the register, we used UMULL instruction. For multiplication and
accumulation step, the UMLAL instruction is more efficient than general UMULL instruction.
For the data parallel computation, the above multiplication routine should be re-written in a

SIMD friendly form. Particularly, the NEON architecture supports 2-way 32-bitwise multiplica-
tion, which means two concurrent 32-bit multiplications are computed and results are stored
in two consecutive 64-bit results (i.e., 128-bit register). For this reason, alignments in the 128-
bit register should be concerned to accumulate multiplication results into correct columns. We
group two adjacent partial products as follows: (c1, c0), (c3, c2), (c5, c4), (c7, c6), (c9, c8), (c11, c10),
(c13, c12), (c15, c14). However, all partial products cannot be grouped in original operand (b) align-
ment. We re-located the operand by conducting the shift to left by word size. The original operand
alignment of b is (b1,b0), (b3,b2), (b5,b4), (b7,b6),b8. The shifted operand is (b2,b1), (b4,b3),
(b6,b5), (b8,b7). This can be done with the VEXT instruction and detailed descriptions are as
follows:
...

VEXT.S32 Q3, Q3, Q4 // Q3 ← (b2,b1,b4,b3)
VEXT.S32 Q4, Q4, Q5 // Q4 ← (b6,b5,b8,b7)
...

Afterward, vectorized partial products can be performed. Still, some partial products
(a7b0,a5b0,a3b0,a1b0,a6b8,a4b8,a2b8,a0b8) are not properly aligned in groupwise. Re-
sults are first performed in groupwise and the result is aligned, sequentially. The com-
plete 252-bit multiplication in two-way data parallelism, as illustrated in Figure 5, is as
follows:

(c1, c0) ← (a0b1, a0b0)

(c3, c2) ← (a0b3, a0b2) + (a1b2, a1b1) + (a2b1, a2b0)

(c5, c4) ← (a0b5, a0b4) + (a1b4, a1b3) + (a2b3, a2b2) + (a3b2, a3b1)

+ (a4b1, a4b0)

(c7, c6) ← (a0b7, a0b6) + (a1b6, a1b5) + (a2b5, a2b4) + (a3b4, a3b3)

+ (a4b3, a4b2) + (a5b2, a5b1) + (a6b1, a6b0)

(c9, c8) ← (a1b8, a1b7) + (a2b7, a2b6) + (a3b6, a3b5) + (a4b5, a4b4)

+(a5b4, a5b3) + (a6b3, a6b2) + (a7b2, a7b1) + (a8b1, a8b0)

(c11, c10) ← (a3b8, a3b7) + (a4b7, a4b6) + (a5b6, a5b5) + (a6b5, a6b4)

+ (a7b4, a7b3) + (a8b3, a8b2)

(c13, c12) ← (a5b8, a5b7) + (a6b7, a6b6) + (a7b6, a7b5) + (a8b5, a8b4)

(c15, c14) ← (a7b8, a7b7) + (a8b7, a8b6)

(t1, t0) ← (a3b0, a1b0); c1 ← c1 + t0; c3 ← c3 + t1

(t1, t0) ← (a7b0, a5b0); c5 ← c5 + t0; c7 ← c7 + t1

(t1, t0) ← (a2b8, a0b8); c8 ← c8 + t0; c10 ← c10 + t1

(t1, t0) ← (a6b8, a4b8); c12 ← c12 + t0; c14 ← c14 + t1

c16 ← a8b8

To avoid pipeline stall, partial products are updated to destination variables without RAW de-
pendencies between source and destination variables. The order of computation follows operand-
scanning method and detailed instructions are as follows:

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

SIKE in 32-bit ARM Processors Based on Redundant Number System for NIST Level-II 19:15

...
VMULL.S32 Q5, D6, D0[0] // (c1, c0) ← (a0b1,a0b0)
VMULL.S32 Q6, D7, D0[0] // (c3, c2) ← (a0b3,a0b2)
VMULL.S32 Q7, D8, D0[0] // (c5, c4) ← (a0b5,a0b4)
VMULL.S32 Q8, D9, D0[0] // (c7, c6) ← (a0b7,a0b6)
...

VMLAL.S32 Q6, D6, D1[0] // (c3, c2) ← (c3, c2) + (a2b1,a2b0)
VMLAL.S32 Q7, D7, D1[0] // (c5, c4) ← (c5, c4) + (a2b3,a2b2)
VMLAL.S32 Q8, D8, D1[0] // (c7, c6) ← (c7, c6) + (a2b5,a2b4)
VMULL.S32 Q9, D9, D1[0] // (c9, c8) ← (a2b7,a2b6)
...

In the beginning, partial products (a0b0 ∼ b7) are computed and results are saved into registers
(Q5, Q6, Q7, Q8) in a sequential order. Afterward, partial products with the operand a2 is per-
formed. At this time, we ensure that previous destination variables are not directly accessed in
the next instruction, which incurs pipeline stalls. This kind of pipeline stall avoidance mechanism
is working even for processors with out-of-order feature (i.e., 32-bit ARM Cortex-A15) [Seo et al.
2018].

4.2 Multi-precision Squaring

Multi-precision squaring can be implemented with ordinary multiplication methods. However,
the squaring method has two distinguished features over multiplication methods. Both partial
products (a[i] × a[j] and a[j] × a[i]) output identical results. By taking account of this feature,
parts can be calculated in multiplied with doubled form (i.e., 2 × a[i] × a[j]) which provides same
results of conventional multiplication (i.e., a[i] × a[j] + a[j] × a[i]) replacing one multiplication
into one addition. We applied the squaring method to 252-bitwise operand. Unlike the multipli-
cation operation, the squaring can eliminate the almost half of partial products with doubling
technique. To perform doubling in an efficient way, double multiplication instructions, such as
VQDMULL, VQDMLAL, and VQDMLSL, are utilized. These operations save one addition for each multi-
plication. Detailed squaring operations are as follows:

c0 ← a0a0

c1 ← 2(a0a1)

c2 ← 2(a0a2) + a1a1

c3 ← 2(a0a3 + a1a2)

c4 ← 2(a0a4 + a1a3) + a2a2

c5 ← 2(a0a5 + a1a4 + a2a3)

c6 ← 2(a0a6 + a1a5 + a2a4) + a3a3

c7 ← 2(a0a7 + a1a6 + a2a5 + a3a4)

c8 ← 2(a0a8 + a1a7 + a2a6 + a3a5) + a4a4

c9 ← 2(a1a8 + a2a7 + a3a6 + a4a5)

c10 ← 2(a2a8 + a3a7 + a4a6) + a5a5

c11 ← 2(a3a8 + a4a7 + a5a6)

c12 ← 2(a4a8 + a5a7) + a6a6

c13 ← 2(a5a8 + a6a7)

c14 ← 2(a6a8) + a7a7

c15 ← 2(a7a8)

c16 ← a8a8

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

19:16 H. Seo et al.

Similarly to the SIMD friendly multiplication, the squaring operation also needs to group two
intermediate results in SIMD friendly way. Detailed descriptions are as follows:

(c1, c0) ← (a0a1, a0a0); c1 ← 2c1

(c3, c2) ← (a1a2, a1a1); c3 ← 2c3

(c3, c2) ← (c3, c2) + 2(a0a3, a0a2)

(c5, c4) ← (a2a3, a2a2); c5 ← 2c5

(c5, c4) ← (c5, c4) + 2(a0a5, a0a4) + 2(a1a4, a1a3)

(c7, c6) ← (a3a4, a3a3); c7 ← 2c7

(c7, c6) ← (c7, c6) + 2(a0a7, a0a6) + 2(a1a6, a1a5) + 2(a2a5, a2a4)

(c9, c8) ← (a5a5, a4a4); (c11, c10) ← (0, 0); c10 ↔ c9

(c13, c12) ← (a7a7, a6a6); (c15, c14) ← (0, 0); c14 ↔ c13

c16 ← a8a8

(c9, c8) ← (c9, c8) + 2(a5a4, a5a3) + 2(a6a3, a6a2) + 2(a7a2, a7a1)

+ 2(a8a1, a8a0)

(c11, c10) ← (c11, c10) + 2(a6a5, a6a4) + 2(a7a4, a7a3) + 2(a8a3, a8a2)

(c13, c12) ← (c13, c12) + 2(a7a6, a7a5) + 2(a8a5, a8a4)

(c15, c14) ← (c15, c14) + 2(a8a7, a8a6)

As we noted that half of partial products are optimized with simple doubling. Some grouped
partial products consists of normal product and doubled product. In this case, grouped partial
product is performed first and one product is doubled with addition instruction (VADD.S64). Four
partial products (a4a4,a5a5,a6a6,a7a7) are performed in a groupwise but the destination is not
aligned properly. These four products are performed in a groupwise and results are swapped with
initialized value for efficient result accumulation. Detailed descriptions are as follows:
...

VMULL.S32 Q9, D2, D2 // (c9, c8) ← (a5a5,a4a4)
VEOR Q10, Q10, Q10 // Initialization of (c11, c10)
VSWP D19, D20 // c10 ↔ c9
...

4.3 Modular Reduction

Modular reduction is a performance-critical building block of SIDH/SIKE based post-quantum
cryptography. One of the most well-known techniques used for its implementation is Mont-
gomery reduction [Montgomery 1985]. A basic description of Montgomery reduction is depicted
in Algorithm 2.

ALGORITHM 2:Montgomery reduction

Require: An odd modulus m, the Montgomery radix r > m, an operand c ∈ [0,m2 − 1], and the pre-

computed constantm′ = −m−1 mod r
Ensure: Montgomery product z = MonRed(c, r) = c · r−1 modm
1: q ← c ·m′ mod r
2: z ← (c + q ·m)/r
3: if z ≥ m then z ← z −m
4: return z

The efficient implementation of Montgomery multiplication has been actively studied for ARM
architectures. However, previous SIDH implementation focused on the non-redundant represen-
tation for Montgomery reduction.
First SIDH implementation on 32-bit ARMv7 Cortex-A used the COS method, issuing two

multiplications at once and finely re-ordering the computation routines to avoid pipeline stalls

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

SIKE in 32-bit ARM Processors Based on Redundant Number System for NIST Level-II 19:17

[Seo et al. 2014, 2016; Koziel et al. 2016; Jalali et al. 2018]. However, the non-redundant represen-
tation consumes long execution timing for carry propagation routine.

In CHES’18, Seo et al. suggested the variant of Hybrid-Scanning (HS) for “SIDH-friendly”
Montgomery reduction on 32-bit ARMv7 Cortex-A processors [Seo et al. 2018]. The basic
structure follows Operand-Scanning (OS) method but the whole computation is divided into two
parts. Both parts are computed in parallel way by exploiting both ARM and NEON Arithmetic
Logic Unit. This work still utilized the non-redundant representation to ensure compatibility with
Microsoft SIDH library.
In this article, we firstly applied the redundant representation for “SIDH-friendly” Montgomery

reduction. Montgomery multiplication for SIDH/SIKE can be simplified by taking advantage of
so-called “Montgomery-friendly” modulus, which admits efficient computations, such as all-zero
words for lower part of the modulus. These all-zero words can be ignored during computation.
Efficient optimizations for the modulus were first pointed out by Costello et al. [2016] in the

setting of SIDHwhen usingmodulus of the form 2x · 3y − 1 (referred to as “SIDH-friendly” primes)
are exploited by the SIDH library [Costello et al. 2018]. The simplified equation for SIDHp503,
where r = 2504, is given as follows:

z = (c + (c ·m′ mod 2504) ·m)/2504

= (c + (c ·m′ mod 2504) · (2250 · 3159) − (c ·m′ mod 2504))/2504

= (c + (c ·m′ mod 2504) · (2250 · 3159))/2504
The equation ((c ·m′ mod 2504))/2504) can be optimized away. For this reason, the modulus with

one addition is efficiently performing the Montgomery reduction and radix-28 representation is
as follows:

m + 1 := 4066F54 1811E1E 6045C6B DDA77A4 D01B9BF 6C87B7E,

7DAF130 85BDA22 11E7A0A C000000 0000000 0000000,

0000000 0000000 0000000 0000000 0000000 0000000

As we can see the modulus with one addition, the lower 8-limb is filled with all-zero bits, which
can be optimized away. Only higher 10-limb is used for the Montgomery reduction.
In Step 14 of Algorithm 1, the result (cK) is stored into memory (m2,m1). For the efficient im-

plementation, Montgomery reduction is directly performed after multiplication. In this case, the
result (cK) is kept in NEON registers and Montgomery reduction is performed while accumulating
the output on the intermediate result (cK), which optimizes the 504-bit memory load and store.

Montgomery reduction consists of similar computations of multiplication. Only two features
are different. First, partial products are accumulated to the intermediate result of multi-precision
multiplication. This can be performedwith VMLAL.S32 instruction. Second, the length of operand is
asymmetric. For the case of SIDHp503/SIKEp503, the number of limb for modulus and quotient are
10 (280-bit) and 18 (504-bit), respectively. We divide the multiplication of modulus and quotient
into 2 blocks since the number of NEON register is limited to maintain values. By calculating
required number of registers, the optimal block size is around 9- to 10-limb in NEON. Detailed
descriptions are given in Algorithm 3. The Algorithm consists of three steps including first block
computation, second block computation, and finalization. In Steps 1–6, quotients (q) are obtained
from intermediate results (c). Since the multiplication is performed in radix-28, the quotient should
be properly adjusted to radix-28. In Steps 7–12, the multiplication of modulus and quotient (m · q)
are accumulated to the intermediate result (c). From Step 13, second block is performed. Similarly,
in Steps 13–18, quotients (q) are obtained from intermediate results (c). Afterward, the remaining
multiplication of modulus and quotient is performed. Before generating the final result, the final
reduction and radix adjustment are performed. Detailed descriptions of final reduction and radix
adjustment are given in Section 4.4 and 4.5, respectively.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

19:18 H. Seo et al.

ALGORITHM 3: Blockwise scanning for Montgomery reduction of SIDHp503 in 28-radix

Require: Intermediate result c (c17 ∼ c0)
= a · b where c ∈ [0,m2 − 1], modulus

m + 1 (m17 ∼m8).

Ensure: Montgomery product

z = MonRed(c, r) = t · r−1 modm

First block computation

1: for i = 0 to 7 by 1 do

2: qi = ci mod 228

3: ci+1 = ci+1 + (ci � 28)
4: c8 = c8 +m8 · q0
5: q8 = c8 mod 228

6: c9 = c9 + (c8 � 28)

7: for i = 9 to 16 by 1 do

8: for j = 7 to i by 1 do

9: ci = ci +mj+1 · qi−j−1
10: for i = 17 to 25 by 1 do

11: for j = 26 to i by −1 do
12: ci = ci +m35−j · qj−i−1

Second block computation

13: for i = 9 to 16 by 1 do

14: qi = ci mod 228

15: ci+1 = ci+1 + (ci � 28)
16: c17 = c17 +m8 · q9
17: q17 = c17 mod 228

18: c18 = c18 + (c17 � 28)

19: for i = 18 to 25 by 1 do

20: for j = 7 to i − 9 by 1 do

21: ci = ci +mj+1 · qi−j−1
22: for i = 26 to 34 by 1 do

23: for j = 26 to i − 9 by −1 do
24: ci = ci +m35−j · qj−i+17

Finalization

25: v = final reduction (c)
26: z = radix adjustment (v)

27: return z

The Montgomery reduction consists of a number of multiplication and accumulation routines.
This routine can be efficiently handled with VMLAL.S32 instruction. Similarly to multi-precision
multiplication and squaring operations in two-way implementation, Montgomery reduction also
needs to group two intermediate results in SIMD friendly way. The following is SIMD friendly
Montgomery reduction for 1 block computation:

t0 ← q0m8; c8 ← c8 + t0;q8 ← c8&0xFFFFFFF; c9 ← c9 + c8 � 28

(c10, c9) ← (c10, c9) + (q0m10, q0m9) + (q1m9, q1m8)

(c12, c11) ← (c12, c11) + (q0m12, q0m11) + (q1m11, q1m10) + (q2m10, q2m9)

+ (q3m9, q3m8)

(c14, c13) ← (c14, c13) + (q0m14, q0m13) + (q1m13, q1m12)

+ (q2m12, q2m11) + (q3m11, q3m10) + (q4m10, q4m9) + (q5m9, q5m8)

(c16, c15) ← (c16, c15) + (q0m16, q0m15) + (q1m15, q1m14) + (q2m14, q2m13)

+ (q3m13, q3m12) + (q4m12, q4m11) + (q5m11, q5m10) + (q6m10, q6m9)

+ (q7m9, q7m8)

(c18, c17) ← (c18, c17) + (q1m17, q1m16) + (q2m16, q2m15) + (q3m15, q3m14)

+ (q4m14, q4m13) + (q5m13, q5m12) + (q6m12, q6m11) + (q7m11, q7m10)

+ (q8m10, q8m9)

(c20, c19) ← (c20, c19) + (q3m17, q3m16) + (q4m16, q4m15) + (q5m15, q5m14)

+ (q6m14, q6m13) + (q7m13, q7m12) + (q8m12, q8m11)

(c22, c21) ← (c22, c21) + (q5m17, q5m16) + (q6m16, q6m15) + (q7m15, q7m14)

+ (q8m14, q8m13)(c24, c23) ← (c24, c23) + (q7m17, q7m16) + (q8m16, q8m15)

t0 ← q2m8; c10 ← c10 + t0

(t1, t0) ← (q6m8, q4m8); c12 ← c12 + t0; c14 ← c14 + t1

t0 ← q8m8; c16 ← c16 + t0

(t1, t0) ← (q2m17, q0m17); c17 ← c17 + t0; c19 ← c19 + t1

(t1, t0) ← (q6m17, q4m17); c21 ← c21 + t0; c23 ← c23 + t1

t0 ← q8m17; c25 ← c25 + t0

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

SIKE in 32-bit ARM Processors Based on Redundant Number System for NIST Level-II 19:19

In the beginning, the quotient (q8) is extracted from the result (c8) and upper part of c8 is
added to the c9. Afterward, two-way multiplication routines are performed. Among them, six
partial products (q6m8, q4m8, q6m17, q4m17, q2m17, q0m17) can be performed in groupwise but
the destination is not aligned properly. For this reason, these six products are performed in
groupwise and results are swapped with initialized value for efficient result accumulation. The
other partial products (q2m8,q8m8,q8m17) are performed in single multiplication and added to the
result.

4.4 Final Reduction

The last step of Montgomery reduction is final reduction. This reduces the result once again with
simple subtraction. Unlike the redundant implementation for Mersenne prime, the modulus of
SIDHp503 (2250 · 3159 − 1) cannot take advantages of fast reduction. For the SIDHp503 case, we
perform the subtraction by observing carry bits. In Algorithm 4, the optimized final reduction for
SIDHp503 is given.

ALGORITHM 4: Final reduction for SIDHp503

Require: Result c ∈ [0, 504].
Ensure: Reduced result v = c − (m · c � 503).
1: carry ← c � 503

2: c ← c − carry · (m + 1)
3: v ← c + carry
4: return v

First, carry bits are extracted from the result (c) over 503-bit. Afterward, the result (c) is sub-
tracted by the partial product with carry bits (carry) and modulus (m + 1). Straightforward multi-
plication requires 18 partial products (9 groupwise products). However, the proposed final reduc-
tion replaces 18 partial products to 10 partial products (5 groupwise products) and 1 addition since
the multiplication of carry bits and SIDHp503 prime can be rewritten as follows:

−carry ·m = −carry · (m + 1) + carry.
The left and right parts of above equation generate the identical value. The proposed final re-

duction is implemented in following instructions:
...

VSHR.S64 D0, D27, #27 // carry (CA) extraction
VADD.S64 D10, D10, D0 // c0 ← c0 +CA
VMLSL.S32 Q9, D4, D0[0] // (c9, c8) ← (c9, c8) − (m9,m8) ·CA
VMLSL.S32 Q10, D5, D0[0] // (c11, c10) ← (c11, c10) − (m11,m10) ·CA
VMLSL.S32 Q11, D6, D0[0] // (c13, c12) ← (c13, c12) − (m13,m12) ·CA
VMLSL.S32 Q12, D7, D0[0] // (c15, c14) ← (c15, c14) − (m15,m14) ·CA
VMLSL.S32 Q13, D8, D0[0] // (c17, c16) ← (c17, c16) − (m17,m16) ·CA
...

Carry bits (D0) are extracted with VSHR.S64 instruction and carry bits (D0) are added to c0.
Afterward, carry bits (D0) are multiplied by modulus (D4 ∼ D8) and subtracted to the intermediate
result (Q9 ∼ Q13) with the VMLSL instruction.
During the computation, the result is not fully reduced to take an advantage of lazy reduction.

The full reduction is performed at the last step of SIDH protocols.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

19:20 H. Seo et al.

Table 2. Comparison of Modular Multiplication Method for SIDH Implementations on

32-bit ARMv7 Cortex-A Processors

Method Representation Instruction Technique Karatsuba

Koziel et al. [2016] non-redundant NEON COS
√

Jalali et al. [2018] non-redundant NEON COS
√

Seo et al. [2018] non-redundant ARM/NEON HS
√

This work redundant NEON OS
√

4.5 Radix Adjustments

Multiplication and squaring computations produce a product of 63-bit 18 limbs for intermediate
results. These values cannot be used in following computations due to overflow or underflow. For
this reason, we use a sequence of carries to bring each limb down to 26 or 27 bits. We vectorized
between a carry c0 → c1 and c9 → c10, between a carry c1 → c2 and c10 → c11. The computation
order is as follows: (c9, c0) → (c10, c1), (c10, c1) → (c11, c2), (c11, c2) → (c12, c3), (c12, c3) → (c13, c4),
(c13, c4) → (c14, c5), (c14, c5) → (c15, c6), (c15, c6) → (c16, c7), (c16, c7) → (c17, c8). The computations
output 18 limbs of results (28, 28, 28, 28, 28, 28, 28, 28, 29 | | 28, 28, 28, 28, 28, 28, 28, 28, 29). The
highest limb is set to radix-29 and the others are set to radix-28.

4.6 Modular Addition and Subtraction

The NEON instruction supports 4-way 32-bitwise addition (VADD.S32) or subtraction (VSUB.S32).
We utilized these instructions to perform addition or subtraction. Afterward, final reduction is
performedwith Algorithm 4. In this case, VMLS.I32 instruction is utilized, which ensures four-way
32-bitwise multiplication and subtraction, since the result of addition or subtraction is between
28- and 30-bit.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of proposed algorithms for 32-bit ARMv7 Cortex-A
processors. All our finite field implementations were written in assembly language and higher
layer (group operation and protocol) is written in C language. The program is compiled with GCC
5.4.0 in an optimization level -O34. The operating system is Ubuntu 16.04. Target processors are
32-bit ARM Cortex-A5, A7, and A15.
To evaluate the performance of the proposed Montgomery multiplication specialized to the set-

ting of SIDH/SIKE, we integrate it into the Microsoft SIDH/SIKE library [Costello et al. 2018].
This library includes the SIDH/SIKE protocols using the parameters sets SIDHp503/SIKEp503
based on the 503-bit [Costello et al. 2016; Azarderakhsh et al. 2019]. In this article, we only in-
clude the SIDHp503/SIKEp503 implementation as a proof-of-concept but other parameters (i.e.,
SIDHp434/SIKEp434, SIDHp610/SIKEp610, and SIDHp751/SIKEp751) can be accelerated with pro-
posed method without difficulties.
In Table 2, the comparison of modular multiplication methods for SIDH implementations on

32-bit ARMv7 Cortex-A processors is described. Previous approaches used the fastest multipli-
cation technique in the non-redundant representation. Koziel et al. [2016] and Jalali et al. [2018]
utilized COS method from Seo et al. [2016], which is an optimal approach for NEON-only imple-
mentation. For the fast computation, Karatsuba technique is applied to COS method. Seo et al.
[2018] used HS by integrating ARM and NEON instructions to exploit super-scalar features. The

4Reference code is also compiled with -O3 option.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

SIKE in 32-bit ARM Processors Based on Redundant Number System for NIST Level-II 19:21

Table 3. Comparison of Implementations of the SIDHp503 Protocol on ARM Cortex-A5, A7, and A15

(ARMv7-A Architecture) Processors

Implementation Architecture Language Instruction
Timings [cc] Timings [cc × 106]

Fp mul Fp sqr Alice R1 Bob R1 Alice R2 Bob R2 Total

SIDH v3.2 [Costello et al.
2018]

A5

C ARM 34,743 – 842 926 686 782 3,236

Seo et al. [2018] ASM ARM/NEON 2,001 – 100 109 80 92 381

This work ASM NEON 1,287 1,190 70 77 56 65 268

SIDH v3.2 [Costello et al.
2018]

A7

C ARM 30,140 – 795 875 647 732 3,049

Seo et al. [2018] ASM ARM/NEON 1,885 – 93 102 75 86 356

This work ASM NEON 1,279 1,163 63 70 51 59 243

SIDH v3.2 [Costello et al.
2018]

A15

C ARM 8,947 – 597 657 487 555 2,296

Koziel et al. [2016] ASM NEON 1,372 – 83 87 66 68 302

Seo et al. [2018] ASM ARM/NEON 780 – 46 50 38 42 176

This work ASM NEON 552 484 29 32 23 27 111

Timings are reported in terms of clock cycles.

Table 4. Comparison of Implementations of the SIKEp503 Protocol on ARM Cortex-A5, A7, and

A15 (ARMv7-A Architecture) Processors

Implementation Architecture
Timings [cc × 106]

KeyGen Encaps Decaps Total

SIDH v3.2 [Costello et al. 2018]
A5

928 1,529 1,625 3,154
Seo et al. [Seo et al. 2018] 111 183 194 377

This work 78 127 136 263

SIDH v3.2 [Costello et al. 2018]
A7

868 1,432 1,549 2,981
Seo et al. [2018] 103 172 182 354

This work 72 118 126 244

SIDH v3.2 [Costello et al. 2018]

A15

655 1,081 1,149 2,230
Jalali et al. [2018] 68 112 121 233
Seo et al. [2018] 50 83 90 173

This work 32 53 56 109

Timings are reported in terms of clock cycles. Total timing includes encapsulation and decapsulation.

implementation also utilized 1-level Karatsuba algorithm and non-redundant representation. Un-
like previous modular multiplication of SIDH protocols, we firstly utilized the redundant repre-
sentation with NEON instruction sets. The main body of multiplication follows OS method and
Karatsuba algorithm. As in Seo et al. [2018], the redundant representation can implementwith both
ARM and NEON instructions but ARM instruction has limited register space and it is inefficient
to handle signed 64-bitwise computations. For this reason, we selected NEON-only instruction.
Table 3 shows the execution timing of finite field arithmetic and SIDHp503 protocol on

32-bit ARM Cortex-A5, A7, and A15 processors. Compared with previous modular multiplication,
the proposed modular multiplication on 32-bit ARM Cortex-A15 improves the performance by
93.8%, 59.7%, and 29.2% than SIDH v3.2, Koziel et al., and Seo et al., respectively. Furthermore,
we presented the modular squaring method. This enhances the performance by 94.5%, 64.7%, and
37.9% than modular multiplication of SIDH v3.2, Koziel et al., and Seo et al., respectively. The

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

19:22 H. Seo et al.

performance enhancement comes from efficient implementations of multiplication, squaring and
Montgomery reduction in the non-redundant representation.
The speed-up of finite field arithmetic directly reflects on the full SIDH protocol. Compared

with previous works, SIDHp503 key exchange on 32-bit ARM Cortex-A15 is executed approxi-
mately 20.68×, 2.72×, and 1.58× faster than SIDH v3.2, Koziel et al., and Seo et al., respectively.
We also evaluated the proposed method on 32-bit ARM Cortex-A5 and A7 processors. Compared
with Seo et al.’s work, the modular multiplication is improved by 35.6% and 32.1% for A5 and A7,
respectively. The modular squaring operation is also enhanced by 40.5% and 38.3% for A5 and
A7, respectively. By optimizing these cryptographic primitives, the performance of SIDHp503 key
exchange is optimized by 1.42× and 1.46× for A5 and A7, respectively, than Seo et al.’s work.
In Table 4, implementations of SIKEp503 are given. Proposed implementations achieved the

highest performance. Compared with CHES’18 works, the proposed implementation outperforms
by 30.2%, 31.0%, and 36.9% for A5, A7, and A15, respectively.

6 CONCLUSION

This article presented NEON-assisted implementations for high-speed finite field arithmetic and
SIDHp503/SIKEp503 on 32-bit ARMv7 Cortex-A processors. In particular, we carefully optimized
modular multiplication and modular squaring operations in the redundant representation. We in-
tegrated our fast modular arithmetic implementations into Microsoft’s SIDH library and reported
the fastest performance on 32-bit ARM Cortex-A processors to date. A full key-exchange execu-
tion of SIKEp503 is performed in about 109 million cycles on 32-bit ARMv7 Cortex-A15 processors
(i.e., 54.5 ms @2.0 GHz). The result, which pushes further the performance of post-quantum su-
persingular isogeny-based protocols, is 1.58× faster than previously fastest assembly-optimized
implementations of SIDH on the same processor presented in CHES’18.

REFERENCES

Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Amir Jalali, David Jao, Brian Koziel, Brian

LaMacchia, Patrick Longa, Michael Naehrig, Geovandro Pereira, Joost Renes, Vladimir Soukharev, and David Urbanik.

2019. Supersingular Isogeny Key Encapsulation—Submission to the NIST’s Post-Quantum Cryptography Standardiza-

tion Process, round 2. Retrieved from https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions/

SIKE.zip.

Daniel J. Bernstein. 2009. Batch binary edwards. In Proceedings of the Annual International Cryptology Conference. Springer,

317–336.

Daniel J. Bernstein, Chitchanok Chuengsatiansup, and Tanja Lange. 2014. Curve41417: Karatsuba revisited. In Proceedings

of the Cryptographic Hardware and Embedded Systems (CHES’14). Springer, 316–334.

Daniel J. Bernstein and Peter Schwabe. 2012. NEON crypto. In Proceedings of the Cryptographic Hardware and Embedded

Systems (CHES’12). Lecture Notes in Computer Science, Vol. 7428, E. Prouff and P. R. Schaumont (Eds.). Springer, 320–

339.

Joppe W. Bos, Peter L. Montgomery, Daniel Shumow, and Gregory M. Zaverucha. 2013. Montgomery multiplication using

vector instructions. In Proceedings of the Selected Areas in Cryptography (SAC’13). Springer, 471–489.

Craig Costello, Patrick Longa, and Michael Naehrig. 2016. Efficient algorithms for supersingular isogeny diffie-hellman.

In Proceedings of the Advances in Cryptology Conference (CRYPTO’16). Lecture Notes in Computer Science, Vol. 9814.

Matthew Robshaw and Jonathan Katz (Eds.). Springer, 572–601.

Craig Costello, Patrick Longa, and Michael Naehrig. 2016–2018. SIDH Library. Retrieved from https://github.

com/Microsoft/PQCrypto-SIDH.

Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. 2016. On the security of supersingular isogeny cryp-

tosystems. In Proceedings of Advances in Cryptology: 22nd International Conference on the Theory and Application of

Cryptology and Information Security (ASIACRYPT’16). 63–91.

Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. 2017. A modular analysis of the fujisaki-okamoto transformation.

In Proceedings of the 15th International Conference on Theory of Cryptography (TCC’17). 341–371.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

SIKE in 32-bit ARM Processors Based on Redundant Number System for NIST Level-II 19:23

Amir Jalali, Reza Azarderakhsh, and Mehran Mozaffari Kermani. 2018. NEON SIKE: Supersingular isogeny key encapsula-

tion onARMv7. In Proceedings of the International Conference on Security, Privacy, and Applied Cryptography Engineering.

Springer, 37–51.

Amir Jalali, Reza Azarderakhsh, Mehran Mozaffari Kermani, and Daivd Jao. 2017. Supersingular isogeny diffie-hellman key

exchange on 64-bit ARM. IEEE Trans. Depend. Sec. Comput. 16, 5 (2017), 902–912.

David Jao and Luca De Feo. 2011. Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies.

In Proceedings of the Post-Quantum Cryptography (PQCrypto’11), Lecture Notes in Computer Science, Vol. 7071. Bo-Yin

Yang (Ed.). Springer, 19–34.

Philipp Koppermann, Eduard Pop, Johann Heyszl, and Georg Sigl. 2018. 18 Seconds to Key Exchange: Limitations of Su-

persingular Isogeny Diffie-Hellman on Embedded Devices. Cryptology ePrint Archive, Report 2018/932. Retrieved from

https://eprint.iacr.org/2018/932.

Brian Koziel, A-Bon Ackie, Rami El Khatib, Reza Azarderakhsh, and Mehran Mozaffari Kermani. 2020. SIKE’d Up: Fast

hardware architectures for supersingular isogeny key encapsulation. IEEE Trans. Circ. Syst. I: Regul. Pap. 67, 12 (2020),

4842–4854.

Brian Koziel, Amir Jalali, Reza Azarderakhsh, David Jao, and Mehran Mozaffari-Kermani. 2016. NEON-SIDH: Efficient im-

plementation of supersingular isogeny diffie-hellman key exchange protocol on ARM. In Proceedings of the International

Conference on Cryptology and Network Security (CANS’16). Springer, 88–103.

Weiqiang Liu, Jian Ni, Zhe Liu, Chunyang Liu, and Máire O’Neill. 2019a. Optimized modular multiplication for supersin-

gular isogeny diffie-hellman. IEEE Trans. Comput. 68, 8 (2019), 1249–1255.

Weiqiang Liu, Ziying Ni, Jian Ni, Ciara Rafferty, and Máire O’Neill. 2019b. High performance modular multiplication for

SIDH. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 39, 10 (2019), 3118–3122.

Patrick Longa. 2016. FourQ NEON: Faster elliptic curve scalar multiplications on ARM processors. In Proceedings of the

International Conference on Selected Areas in Cryptography. Springer, 501–519.

Paulo Martins and Leonel Sousa. 2014. On the evaluation of multi-core systems with SIMD engines for public-key cryptog-

raphy. In Proceedings of the Symposium on Computer Architecture and High Performance Computing Workshop (SBAC-

PADW’14). IEEE, 48–53.

Paulo Martins and Leonel Sousa. 2015. Stretching the limits of programmable embedded devices for public-key cryptogra-

phy. In Proceedings of the Workshop on Cryptography and Security in Computing Systems. ACM, 19.

Peter L. Montgomery. 1985. Modular multiplication without trial division. Math. Comp. 44, 170 (1985), 519–521.

NIST. 2017–2019. Post-Quantum Cryptography Standardization. Retrieved from https://csrc.nist.gov/projects/post-

quantum-cryptography/post-quantum-cryptography-standardization.

Krishna Chaitanya Pabbuleti, Deepak Hanamant Mane, Avinash Desai, Curt Albert, and Patrick Schaumont. 2013. SIMD

acceleration of modular arithmetic on contemporary embedded platforms. In Proceedings of the IEEE High Performance

Extreme Computing Conference (HPEC’13). IEEE, 1–6.

Hwajeong Seo, Mila Anastasova, Amir Jalali, and Reza Azarderakhsh. 2020. Supersingular isogeny key encapsulation (SIKE)

round 2 on ARM Cortex-M4.IACR Cryptol. IEEE Transactions on Computers. Early Access.

Hwajeong Seo, Amir Jalali, and Reza Azarderakhsh. 2019b. Optimized SIKE round 2 on 64-bit ARM. In Proceedings of the

World Conference on Information Security Applications (WISA’19). Springer.

Hwajeong Seo, Amir Jalali, and Reza Azarderakhsh. 2019a. SIKE round 2 speed record on ARM Cortex-M4. In Proceedings

of the International Conference on Cryptology and Network Security. Springer, 39–60.

Hwajeong Seo, Zhe Liu, Johann Großschädl, Jongseok Choi, and Howon Kim. 2014. Montgomery modular multiplication

on ARM-NEON revisited. In Proceedings of the International Conference on Information Security and Cryptology. Springer,

328–342.

Hwajeong Seo, Zhe Liu, Johann Großschädl, and Howon Kim. 2016. Efficient arithmetic on ARM-NEON and its application

for high-speed RSA implementation. Secur. Commun. Netw. 9, 18 (2016), 5401–5411.

Hwajeong Seo, Zhe Liu, Patrick Longa, and Zhi Hu. 2018. SIDH on ARM: Faster modular multiplications for faster post-

quantum supersingular isogeny key exchange. IACR Trans. Cryptogr. Hardw. Embed. Syst. 1, 3 (2018), 1–20.

Hwajeong Seo, Zhe Liu, Yasuyuki Nogami, Taehwan Park, Jongseok Choi, Lu Zhou, and Howon Kim. 2015. Faster ECC

over F2521−1(feat. NEON). In Proceedings of the Annual International Conference on Information Security and Cryptology

(ICISC’15). Springer, 169–181.

Peter W. Shor. 1994. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th

Annual Symposium on Foundations of Computer Science. IEEE, 124–134.

Received June 2020; revised November 2020; accepted November 2020

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 3, Article 19. Publication date: March 2021.

