Downloaded 01/09/21 to 73.65.191.216. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

Shortest Paths Among Obstacles in the Plane Revisited*

Haitao Wang!

Abstract

Given a set of pairwise disjoint polygonal obstacles in the
plane, finding an obstacle-avoiding Euclidean shortest path
between two points is a classical problem in computational
geometry and has been studied extensively. The previous
best algorithm was given by Hershberger and Suri [FOCS
1993, SIAM J. Comput. 1999] and the algorithm runs in
O(nlogn) time and O(nlogn) space, where n is the total
number of vertices of all obstacles. The algorithm is time-
optimal because Q(nlogn) is a lower bound. It has been an
open problem for over two decades whether the space can
be reduced to O(n). In this paper, we settle it by solving
the problem in O(nlogn) time and O(n) space, which is
optimal in both time and space; we achieve this by modifying
the algorithm of Hershberger and Suri. Like their original
algorithm, our new algorithm can build a shortest path map
for a source point s in O(nlogn) time and O(n) space, such
that given any query point ¢, the length of a shortest path
from s to t can be computed in O(logn) time and a shortest
path can be produced in additional time linear in the number
of edges of the path.

1 Introduction

Let P be a set of pairwise disjoint polygonal obstacles
with a total of n vertices in the plane. The plane mi-
nus the interior of the obstacles is called the free space,
denoted by F. Given two points s and t in F, we con-
sider the problem of finding a Euclidean shortest path
from s to ¢t in F. This is a classical problem in com-
putational geometry and has been studied extensively,
e.g., |2b[7H10L|12L[13]/17,19[20L[271[30}31].

Two main methods have been used to tackle the
problem in the literature: the visibility graph method
and the continuous Dijkstra method. The visibility
graph method is to first construct the visibility graph
of the vertices of P along with s and ¢, and then run
Dijkstra’s shortest path algorithm on the graph to find a
shortest s-t path. The best algorithms for constructing
the visibility graph run in O(nlogn + K) time [7] or in
O(n 4 hlog'™ h + K) time [3] for any constant e > 0,

This research was supported in part by NSF under Grant
CCF-2005323.

TDepartment of Computer Science, Utah State University,
Logan, UT 84322, USA. Email: haitao.wang@usu.edu

where h is the number of obstacles of P and K is
the number of edges of the visibility graph. Because
K = Q(n?) in the worst case, the visibility graph
method inherently takes quadratic time to solve the
shortest path problem. To achieve a sub-quadratic time
solution, Mitchell [20] made a breakthrough and gave
an O(n®/?*€) time algorithm by using the continuous
Dijkstra method. Also using the continuous Dijkstra
method plus a novel conforming subdivision of the free
space, Hershberger and Suri [13] presented an algorithm
of O(nlogn) time and O(nlogn) space; the running
time is optimal as Q(nlogn) is a lower bound in the
algebraic computation tree model. Hershberger and
Suri |13] raised an open question whether the space of
their algorithm can be reduced to O(n)E

The continuous Dijkstra algorithms in both [20]
and [13] actually construct the shortest path map, de-
noted by SPM(s), for a source point s. The map
is of O(n) size and can be used to answer shortest
path queries. By building a point location data struc-
ture [64/16] on SPM (s) in additional O(n) time, given a
query point ¢, the shortest path length from s to ¢ can
be computed in O(logn) time and a shortest s-t path
can be reported in time linear in the number of edges
of the path.

The problem setting for P is usually referred to as
polygonal domains or polygons with holes in the liter-
ature. The shortest path problem in simple polygons
is relatively easier [8+10,/12,[17]. Guibas et al. [9] gave
an algorithm that can construct the shortest path map
with respect to a source point in linear time. For two-
point shortest path query problem where both s and ¢
are query points, Guibas and Hershberger [8,/10] built a
data structure in linear time such that each query can
be answered in O(logn) time. In contrast, the two-point
query problem in polygonal domains is much more chal-
lenging: to achieve O(logn) time queries, the current
best result uses O(n'!) space |4].

1.1 Owur result. In this paper, by modifying the
algorithm of Hershberger and Suri [13] (referred to as
the HS algorithm), we show that the problem of finding

TAn unrefereed report [L5| announced an algorithm based on

the continuous Dijkstra approach with O(n + hloghlogn) time
and O(n) space.

Copyright © 2021 by SIAM

810 Unauthorized reproduction of this article is prohibited

Downloaded 01/09/21 to 73.65.191.216. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

a shortest path among obstacles in P is solvable in
O(nlogn) time and O(n) space, which is optimal in
both time and space. This answers the longstanding
open question raised by Hershberger and Suri |13]. Our
algorithm actually constructs the shortest path map
SPM (s) for a source point s in O(nlogn) time and O(n)
space. We give an overview of our approach below.

The reason that the HS algorithm needs O(nlogn)
space is two-fold. First, it uses fully persistent binary
trees (with the path-copying method) to represent wave-
fronts. Because there are O(n) events in the wavefront
propagation algorithm and each event costs O(logn) ad-
ditional space on a persistent tree, the total space con-
sumed in the algorithm is O(nlogn). Second, in order
to construct SPM (s) after the propagation algorithm,
some previous versions of the wavefronts are needed,
which are maintained in those persistent trees. We re-
solve these two issues in the following way.

We still use persistent trees to represent wavefronts.
However, since there are O(n) events in the propaga-
tion algorithm, we divide the algorithm into O(logn)
phases such that each phase has no more than n/logn
events. The total additional space for processing the
events using persistent trees in each phase is O(n). At
the end of each phase, we “reset” the space of the al-
gorithm by only storing a “snapshot” of the algorithm
(and discarding all other used space) so that (1) the
snapshot contains sufficient information for the subse-
quent algorithm to proceed as usual, and (2) the total
space of the snapshot is O(n). More specifically, the HS
algorithm relies on a conforming subdivision of the free
space F to guide the wavefront propagation; our snap-
shot is composed of the wavefronts of a set of edges of
the subdivision (intuitively, those are the edges in the
forefront of the current wavefront). In this way, we reset
the space to O(n) at the end of each phase. As such,
the total space of the propagation algorithm is bounded
by O(n). This resolves the first issue.

For the second issue of constructing SPM (s), the HS
algorithm relies on some historical wavefronts produced
during the propagation algorithm, plus some marked
wavelet generators (a wavelet generator is either s or a
vertex of P) for each cell of the conforming subdivision;
the total number of marked generators for all cells
of the subdivision is O(n). Due to the space-reset,
our algorithm does not maintain historical wavefronts
anymore, and thus we need to somehow restore these
wavefronts. To this end, a key observation is that by
marking a total of O(n) additional wavelet generators
it is possible to restore all historical wavefronts that are
needed for constructing SPM (s). In this way, SPM(s)
can be constructed in O(nlogn) time and O(n) space.

Outline. The rest of the paper is organized as fol-

811

lows. Section [2] defines notation and introduces some
concepts. As our algorithm is a modification of the
HS algorithm, we briefly review the HS algorithm in
Section |3| and refer the reader to |13] for details. Our
modified algorithm is described in Section [4] Section
concludes with remarks on some problem extensions and
other possible applications of our technique.

2 Preliminaries

For any two points p and ¢ in the free space F of
P, we use m(p,q) to denote a shortest path from p
to ¢ in F. Note that 7(p,¢) may not be unique, in
which case m(p,q) may refer to an arbitrary shortest
path. Let d(p,q) denote the length of 7(p,q); we call
d(p,q) the geodesic distance between p and ¢. For
two line segments e and f in the free space F, their
geodesic distance is defined to be the minimum geodesic
distance between any point on e and any point on f,
i.e., minyee qer d(p, q); by slightly abusing the notation,
we use d(e, f) to denote their geodesic distance.

For any two points a and b in the plane, denote by
ab the line segment with a and b as endpoints; denote
by |ab| the length of the segment.

Throughout the paper, let s represent the source
point. For any point p in the free space F, the vertex
prior to p in w(s,p) is called the predecessor of p
in w(s,p). The shortest path map SPM(s) of s is a
decomposition of F into maximal regions such that each
region R has an obstacle vertex that is the predecessor
of all points in R; each edge of R is either a fragment of
an obstacle edge or a portion of a bisector, which is the
locus of points p with d(s, u)+|pu| = d(s,v)+|pv| for two
obstacle vertices u and v (we use B(u, v) to denote their
bisector). B(u,v) is in general a hyperbola; a special
case happens if one of v and v is the predecessor of the
other, in which case B(u,v) is on a straight line.

For any compact region A of the plane, let 0A
denote its boundary. We use P to denote the union of
the boundaries of all obstacles of P. We call the vertices
of P and s the obstacle vertices and call the edges of P
the obstacle edges.

The conforming subdivision &’ of the free space.
A novel contribution of the paper [13] is a conforming
subdivision &’ of the free space F. We briefly review it
here by following the notation in [13]. Let V denote the
set of all obstacle vertices of P plus the source point s.

The conforming subdivision &’ is built upon a
conforming subdivision & with respect to the points of
V (ignoring the obstacle edges). The subdivision S is a
quad-tree-style subdivision of the plane into O(n) cells
with the following properties. (1) Each cell is either a
square or a square annulus (i.e., an outer square with an

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 01/09/21 to 73.65.191.216. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

inner square hole). (2) Each cell of S contains at most
one point of V' (only square cells can contain points of
V). (3) Each edge of S is axis-parallel. (3) Each edge e
of S is well-covered, i.e., there exists a set of O(1) cells
whose union U(e) contains e with the following three
properties: (a) the size of U(e) is O(1); (b) for each
edge f on 0U(e), the Euclidean distance between e and
f (i.e., the minimum |pg| among all points p € e and
q € f) is at least 2 - max{|e|,|f|}; (c¢) U(e), which is
called the well-covering region of e, contains at most
one point of V.

The conforming subdivision S’ of the free space F
is built by inserting the obstacle edges into S. More
specifically, §" is a subdivision of F into O(n) cells
with the following properties. (1) Each cell of S’ is
one of the connected components formed by intersecting
F with an axis-parallel rectangle (which is the union
of a set of adjacent cells of S) or a square annulus of
S. (2) Each cell of &' contains at most one point of
V. (3) & has two types of edges: opaque edges, which
are fragments of obstacles edges, and transparent edges,
which are introduced by the subdivision construction
(these edges are in the free space F); each transparent
edge is axis-parallel. (4) Each point of V is incident
to a transparent edge. (5) Each transparent edge e of
S’ is well-covered, i.e., there exists a set of O(1) cells
whose union U(e) contains e with the following three
properties: (a) the size of U(e) is O(1); (b) for each
edge f on dU(e), the geodesic distance d(e, f) between
e and f is at least 2 - max{|e|,|f|}; (c) U(e), which is
called the well-covering region of e, contains at most one
point of V.

Both subdivisions § and S’ can be constructed in
O(nlogn) time and O(n) space [13].

3 A brief review of the HS algorithm

In this section, we briefly review the HS algorithm. We
refer the readers to [13] for details.

The algorithm starts generating a wavefront from
the source point s and uses the conforming subdivision
S’ to guide the wavefront expansion. At any moment of
the algorithm, the wavefront consists of all points of F
with the same geodesic distance from s (e.g., see Fig. .
The wavefront is composed of a sequence of wavelets,
each centered at an obstacle vertex that is already cov-
ered by the wavefront (the obstacle vertex is called the
generator of the wavelet). To simulate the wavefront ex-
pansion, the algorithm produces the wavefront passing
through each transparent edge of §’. As it is difficult to
compute a true wavefront for each transparent edge e of
S’ akey idea of the HS algorithm is to compute two one-
sided wavefronts (called approximate wavefronts) for e,
each representing the wavefront coming from one side of

Figure 1: Tllustrating the wavefront. The black region are
obstacles. The green point is s. The red curves are bisectors of
SPM (s). The gray region is the free space that has been covered
by the wavefront. The boundary between the white region and
the grey region is the wavefront. The figure is generated using
the applet at [11].

e. Intuitively, an approximate wavefront from one side
of e is what the true wavefront would be if the wave-
front were blocked off at e by considering e as an (open)
opaque obstacle segment. To limit the interaction be-
tween approximate wavefronts from different sides of e,
when an approximate wavefront propagates across e, an
artificial wavelet is created at each endpoint of e. This
is a mechanism to eliminate an approximate wavefront
from one side of e if it arrives at e later than the ap-
proximate wavefront from the other side of e.

In the following, unless otherwise stated, a wave-
front at a transparent edge e of S’ refers to an approxi-
mate wavefront. We use W (e) to denote a wavefront at
e. As there are two wavefronts at e, to make the descrip-
tion concise, depending on the context, W (e) may refer
to both wavefronts, i.e., the discussion on W (e) applies
to both wavefronts. For example, “construct the wave-
fronts W (e)” means construct the two wavefronts at e.
Also, unless otherwise stated, an edge of S’ refers to a
transparent edge.

For each transparent edge e of &', define input(e)
as the set of transparent edges on the boundary of U(e)
and define output(e) = input(e) U{g | e € input(g)}fl
As the size of U(e") for each transparent edge €’ of &’
is O(1), both |input(e)| and |output(e)| are O(1). The
wavefronts at e are computed from the wavefronts at
all edges of input(e); this guarantees the correctness
because e is in U(e) (and thus the shortest path = (s, p)
passes through some edge f € input(e) for any point

?The set input(e) is included in output(e) because the algo-
rithm relies on the property that edges of output(e) form a cycle
enclosing e.

Copyright © 2021 by SIAM

812 Unauthorized reproduction of this article is prohibited

Downloaded 01/09/21 to 73.65.191.216. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

p € e). After the wavefronts at e are computed, they
will pass to the edges of output(e). In the meanwhile,
the geodesic distances from s to both endpoints of e
will be computed. By the property (4) of &', each
obstacle vertex is incident to a transparent edge of
S’. Hence, after the algorithm is finished, geodesic
distances from s to all obstacle vertices will be available.
The process of passing the wavefronts W (e) at e to all
edges g € output(e) is called the wavefront propagation
procedure (see Section 5 in [13|), which will compute
the wavefront W (e, g), the portion of W (e) that passes
to g through the well-covering region U(g) of g if
e € input(g) and through U(e) otherwise; whenever the
procedure is invoked on e, we say that e is processed.
The wavefronts W (e) at e are constructed by merging
the wavefronts W(f,e) for all edges f € input(e); this
process is called the wavefront merging procedure (see
Lemma 4.6 in [13]).

The transparent edges of S’ are processed in a rough
time order. The wavefronts W (e) of each edge e are
constructed at the time d(s,) + |e|, where d(s, e) is the
minimum geodesic distance from s to the two endpoints
of e. At the time d(s,e) + |e|, it is guaranteed that all
edges f € input(e) whose wavefronts W (f) contribute
a wavelet to W(e) have already been processed (see
Lemma 4.2 |13]); this is due to the property 5(b) of S’
that d(e, f) > 2 - max{|e|,|f|} (because f is on dU(e)).

Define covertime(e) = d(s,e) + |e|. The value
covertime(e) will be computed during the algorithm.
Initially, for each edge e whose well-covering region con-
tains s, covertime(e) is computed directly. The algo-
rithm maintains a timer 7 and processes the transpar-
ent edges e of S’ following the order of covertime(e).
The main loop of the algorithm works as follows. Re-
call that “processing an edge e’ means invoking the
wavefront propagation procedure on Wi(e). As long
as &’ has an unprocessed edge, we do the following.
First, among all unprocessed edges, choose the one e
with minimum covertime(e) and set 7 = covertime(e).
Second, call the wavefront merging procedure to con-
struct the wavefronts W(e) from W (f,e) for all edges
f € input(e) satisfying covertime(f) < covertime(e);
compute d(s,v) from W{(e) for each endpoint v of e.
Third, process e, i.e., call the wavefront propagation
procedure on W(e) to compute Wi(e,g) for all edges
g € output(e); in particular, compute the time 7, when
the wavefronts W (e) first encounter an endpoint of g
and set covertime(g) = min{covertime(g), 7, + |g|}.

Each wavefront W (e) is represented by a persistent
balanced binary trees by path copying [5] so that we can
operate on an old version of W (e) even after it is used
to construct wavefronts W (e, g) for some g € output(e).
Due to the path-copying of the persistent data structure,

each operation on Wi(e) will cost O(logn) additional
space. Note that in the wavefront merging procedure,
because we do not need the old versions of W(f,e) af-
ter W (e) is constructed, it is not necessary to use the
path-copying method after each operation on W (f, e) in
the procedure. Hence, the total additional space in the
wavefront merging procedure in the entire algorithm is
O(n). But O(nlogn) additional space is needed in the
wavefront propagation procedure because after it is used
to compute W (e, g) for some g € output(e), the old ver-
sion of W(e) needs to be kept for computing W (e, g’)
for other ¢’ € output(e). There are O(n) bisector events
in the wavefront propagation procedure in the entire al-
gorithm. In particular, if two generators u and v are not
adjacent in W (e) but become adjacent during the prop-
agation from e to an edge g € output(e), then there
is a bisector event involving u and v. The intersec-
tion between a bisector and an obstacle edge will also
cause a bisector event. There are a total of O(n) op-
erations on persistent trees during the wavefront prop-
agation procedure (we call them wavefront propagation
operations) and each such operation requires O(logn)
additional space in the persistent trees; thus the total
space needed in the wavefront propagation procedure is
O(nlogn).

The algorithm halts once all transparent edges of
S’ are processed. Then, geodesic distances from s to
all obstacle vertices are computed. This is actually
the first main step of the HS algorithm, which we
refer to as the wavefront expansion step (we could call
it the wavefront propagation step, but to distinguish
it from the wavefront propagation procedure, we use
“expansion” instead). The second main step of the HS
algorithm is to construct the shortest path map SPM (s),
which we call the SPM-construction step.

During the above wavefront expansion step, some
generators are marked so that if a generator v is involved
in a true bisector event of SPM(s) in a cell ¢ of &,
then v is guaranteed to be marked for c¢. Also, after
the wavefront expansion step, thanks to the persistent
binary trees, the wavefronts W(e) for all transparent
edges e of S’ are still available. To construct SPM (s),
its vertices in each cell ¢ of &’ are computed. To this
end, the marked generators for ¢ and the wavefronts for
the transparent edges on the boundary of ¢ are utilized,
as follows.

First, c¢ is partitioned into active and inactive re-
gions so that no vertices of SPM(s) are in inactive re-
gions. Because only marked generators possibly con-
tribute to true bisector events in ¢, the portion of a bi-
sector defined by a marked generator and an unmarked
generator in ¢ belongs to an edge of SPM (s). All such
bisectors, which must be disjoint in ¢, partition ¢ into

Copyright © 2021 by SIAM

813 Unauthorized reproduction of this article is prohibited

Downloaded 01/09/21 to 73.65.191.216. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

regions each of which is claimed either by only marked
generators or by only unmarked generators; the former
regions are active while the latter are inactive.

Consider an active region R, whose boundary con-
sists of O(1) segments, each of which is a transparent
edge fragment, an obstacle edge fragment, or a bisector
portion in SPM (s). For each transparent edge fragment
e of OR, we use W (e) to partition R into sub-regions,
each with a unique predecessor in W (e). This can be
done in O(|W (e)|log |W(e)|) time by propagating the
wavefront W (e) into R using the wavefront propagation
procedure (and ignoring the wavefronts of other trans-
parent edges of OR). Let S(e) denote the partition of
R.

Remark. Since the wavefront W (e) is not useful any-
more after the above step, here in the wavefront prop-
agation algorithm for computing S(e) we do not need
to use the path-copying method for each operation on
the tree representing W (e). Therefore, constructing the
partition S(e) takes only linear additional space. Con-
sequently, the total additional space for constructing
SPM (s) is O(n). Although this does not matter for
the HS algorithm, it helps in our new algorithm.

The partitions S(e) for all transparent edges e €
OR are merged in a similar way as the merge step
in the standard divide-and-conquer Voronoi diagram
algorithm [29]; during the merge process, the vertices
of SPM (s) in R are computed (see Lemma 4.12 in [13]).

Applying the above for all active regions of ¢
computes all vertices of SPM(s) in c.

After the vertices of SPM(s) in all cells ¢ € &’
are computed, which in total takes O(nlogn) time
and O(n) space as remarked above, SPM(s) can be
constructed in O(nlogn) additional time and O(n)
space by first computing all edges of SPM(s) and then
assembling the edges using a standard plane sweep
algorithm (see Lemma 4.13 in [13]).

In summary, the SPM-construction step of the HS
algorithm runs in O(nlogn) time and O(n) space.

4 Our new algorithm

In this section, we present our modified algorithm,
which uses O(nlogn) time and O(n) space. It turns
out that we have to modify both main steps of the HS
algorithm. We first give an overview of our approach
in Section 1l Then we describe our modification to
the wavefront expansion step in Section while the
proof of a key lemma is given in Section [£:3] Section[4.4]
discusses the SPM-construction step.

4.1 Overview. Our modification to the wavefront
expansion step is mainly on the wavefront propagation

procedure. As there are a total of O(n) wavefront
propagation operations, we divide the algorithm into
O(log n) phases such that each phase has no more than
n/logn operations. We still use persistent binary trees
to represent wavefronts W(e). To reduce the space,
at the end of each phase, we “reset” the space of the
algorithm by storing a “snapshot” of the algorithm and
discarding the rest of the used space. The snapshot
consists of wavefronts W (e) of a set of transparent edges
e of §’. We show that these wavefronts are sufficient
for the subsequent algorithm to proceed as usual. We
prove that the total space of the snapshot is O(n); this
is a main challenge of our approach and Section is
devoted to this. Since each phase has n/logn wavefront
propagation operations, the total additional space in
each phase is O(n). Due to the space reset, the total
space used in the algorithm is O(n).

For the SPM-construction step, it considers each
cell of & individually. For each cell ¢, the algorithm
has two sub-steps. First, compute the active regions
of ¢. Second, for each active region R, compute the
vertices of SPM (s) in R. For both sub-steps, the original
HS algorithm utilizes the wavefronts of the transparent
edges on the boundary of ¢. Due to the space reset,
the wavefronts are not available anymore in our new
algorithm. We use the following strategy to resolve the
issue. First, to compute the active regions in ¢, we need
to know the bisectors defined by an unmarked generator
u and a marked generator v. We observe that u is
a generator adjacent to v in the wavefronts along the
boundary of ¢. Based on this observation, in our new
algorithm we will mark the neighbors of the generators
originally marked in the HS algorithm and we call
them newly-marked generators (the generators marked
in the original HS algorithm are called originally-marked
generators). We show that the newly-marked generators
and the originally-marked generators are sufficient for
computing all active regions of each cell ¢, and the total
number of all marked generators is still O(n). Second, to
compute the vertices of SPM(s) in each active region R
of ¢, we need to restore the wavefronts of the transparent
edges on the boundary of R. To this end, we observe
that these wavefronts are exactly determined by the
originally-marked generators. Consequently, the same
algorithm as before can be applied to construct SPM (s)
in O(nlogn) time, but the space is only O(n).

4.2 The wavefront expansion step. In the wave-
front expansion step, our main modification is on the
wavefront propagation procedure, which is to compute
the wavefronts W (e, g) for all edges g € output(e) using
the wavefront W (e).

We now maintain a counter count in the wavefront

Copyright © 2021 by SIAM

814 Unauthorized reproduction of this article is prohibited

Downloaded 01/09/21 to 73.65.191.216. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

expansion step to record the number of wavefront
propagation operations that have been executed so far
since the last space reset; count = 0 initially. Consider a
wavefront propagation procedure on a wavefront W (e)
of a transparent edge e. The algorithm will compute
W (e, g) for each edge g € output(e), by propagating
Wi(e) through the well-covering region U(g) of g if
e € input(g) and through U(e) otherwise. We apply
the same algorithm as before. For each wavefront
propagation operation, we first do the same as before.
Then, we increment count by one. If count < n/logn,
we proceed as before (i.e., process the next wavefront
operation). Otherwise, we have reached the end of the
current phase and start a new phase. To do so, we first
reset count = 0 and then reset the space by constructing
and storing a snapshot of the algorithm, as follows.

1. Let g refer to the edge of output(g) whose W (e, g)
is currently being computed in the algorithm. We
store the tree that is currently being used to
compute Wi(e, g) right after the above wavefront
propagation operation. To do so, we can make
a new tree by copying the newest version of the
current persistent tree the algorithm is operating
on, and thus the size of the tree is O(n). We will
use this tree to “resume” computing W (e, g) in the
subsequent algorithm.

2. For each ¢’ € output(e) \ {g} whose W(e,g') has
been computed, we store the tree for W(e, g’). We
will use the tree to compute the wavefronts W(g’)
of ¢’ in the subsequent algorithm.

3. We store the tree for the wavefront W (e). Note that
the tree may have many versions due to performing
the wavefront propagation operations and we only
keep its original version for W (e). Hence, the size
of the tree is O(|W(e)|). This tree will be used
in the subsequent algorithm to compute W(e, g’)
for those edges ¢’ € output(e) \ {g} whose W (e, ¢)
have not been computed.

4. We check every transparent edge e’ of &’ with
e’ # e. If ¢’ has been processed (i.e., the wavefront
propagation procedure has been called on W (e'))
and there is an edge ¢’ € output(e’) that has not
been processed, we know that W (e’,¢’) has been
computed and is available; we store the tree for
W(e',g'). We will use the tree to compute the
wavefronts W (g’) of ¢’ in the subsequent algorithm.

We refer to the above four steps as the snapshot
construction algorithm. We refer to the wavefronts
stored in the algorithm as the snapshot; intuitively, the

snapshot contains all wavelets in the forefront of the
current global wavefront.

The following lemma shows that if we discard all
persistent trees currently used in the algorithm and
instead store the snapshot, then the algorithm will
proceed without any issues.

LEMMA 4.1. The snapshot stores sufficient information
for the subsequent algorithm to proceed as usual.

Proof. Let £ denote the moment of the algorithm when
the snapshot construction algorithm starts. Let & be
any moment of the algorithm after the snapshot is
constructed. In the following, we show that if the
algorithm needs any information that was computed
before £ in order to perform certain operation at &,
then that information is guaranteed to be stored at the
snapshot. This will prove the lemma.

At £, the transparent edges of 8’ excluding e can be
classified into two categories: those that have already
been processed at £ and those that have not been
processed. Let E7 and F5 denote the sets of the edges in
these two categories, respectively. The edge e is special
in the sense that it is currently being processed at &.

At &', the algorithm may be either in the wavefront
merging procedure or in the wavefront propagation
procedure. We discuss the two cases separately.

The wavefront merging procedure case. Suppose
the algorithm is in the wavefront merging procedure at
&', which is to compute W (e’) for some edge ¢’ by merg-
ing all wavefronts W (f’,¢e’) for f’ € input(e’). Because
at ¢ we need some information that was computed be-
fore &, that information must be the wavefront W (f, e’)
for some edge f' € input(e’). Depending on whether
f' = e, there are two subcases.

e If f' = e, then since W (e, ¢') was computed before
&, W(e, €) is stored in the snapshot by step (2) of
the snapshot construction algorithm.

o If f/ = e, then since W (f’, ') was computed before
£, the edge f/ must have been processed at &.
Because the algorithm is computing W (e') at &', €’
has not been processed at £. Therefore, W (', ¢’) is
stored in the snapshot by step (4) of the snapshot
construction algorithm.

Hence, in either subcase, the information needed by
the algorithm at &’ is stored at the snapshot.

The wavefront propagation procedure case. Sup-
pose the algorithm is in the wavefront propagation pro-
cedure at &', which is to process a transparent edge €,
i.e., compute W(e',¢’) for some ¢’ € output(e’). Be-
cause at & the algorithm needs some information that

Copyright © 2021 by SIAM

815 Unauthorized reproduction of this article is prohibited

Downloaded 01/09/21 to 73.65.191.216. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

was computed before £ to compute W(e',g"), W(e')
must have been computed before £ (since W(e', ¢’) relies
on W(e)).

We claim that ¢ must be e. Indeed, if ¢/ € E1, then
¢’ has been processed before £ and thus the wavefront
propagation procedure cannot happen to ¢’ at £, a con-
tradiction. If ¢’ € Fs, then €’ has not been processed at
&. According to our algorithm, for any transparent edge
e, W(e") is computed during the wavefront merging
procedure for e”, which is immediately followed by the
wavefront propagation procedure to process e”. Since at
& the algorithm is in the wavefront propagation proce-
dure to process e, the wavefront merging procedure for
¢’ must have not been invoked at £, and thus W (e’) must
have not been computed at £. This contradicts with the
fact that W (e’) has been computed at . Therefore, €’
must be e.

Depending on whether ¢’ is g, there are two sub-
cases.

e If ¢ = g, then the tree at the moment £ during
the propagation for computing W (e, g) from W(e)
is stored in the snapshot by the step (1) of the
snapshot construction algorithm, and thus we can
use the tree to “resume” computing W (e, g) at &'.

e If ¢’ # g, then in order to compute W (e, ¢’) at &,
we need the wavefront W (e), which is stored in the
snapshot by step (3) of the snapshot construction
algorithm.

Hence, in either subcase, the information needed by
the algorithm at &’ is stored at the snapshot.
The lemma thus follows. d

A challenging problem is to bound the space of the
snapshot, which is established in the following lemma.
As the proof is lengthy and technical, we devote the
next subsection to it.

LEMMA 4.2. The total space of the snapshot is O(n).

Since each phase has no more than n/logn wave-
front propagation operations, the total extra space in-
troduced by the persistent trees in each phase is O(n).
Due to the space-reset and Lemma the total space
of the algorithm is O(n).

For the running time of our new algorithm, com-
paring with the original HS algorithm we spend extra
time on constructing the snapshot at the end of each
phase. In light of Lemma [4.2] each call of the snap-
shot construction algorithm takes O(n) time. As there
are O(logn) phases, the total time on constructing the
snapshots in the entire algorithm is O(nlogn). Hence,
the running time of our new algorithm is still bounded
by O(nlogn).

4.3 Proof of Lemma In this subsection, we
prove Lemma i.e., prove that the space introduced
by the four steps of the snapshot construction algorithm
is O(n).

For the first step, as each wavefront has O(n)
generators, the size of one tree is O(n). For the second
step, since |output(e)] = O(1) and the size of each
W(e,g') is O(n), the total space is O(n). For the third
step, since |W(e)| = O(n), the space is O(n). Below we
focus on the fourth step.

Let ITI denote the collection of pairs (e, g) whose
wavefront W(e, g) is stored in the fourth step of the
snapshot construction algorithm. Our goal is to show
that Z(e,g)eH |W(6,g)‘ = O(n)

For an edge e, II may have multiple pairs with
e as the first element and the second elements of all
these pairs are in output(e); among all those pairs,
we only keep the pair (e, g) such that |W(e,g)| is the
largest in II and remove all other pairs from II. Since
loutput(e)| = O(1), it suffices to show that the total sum
of |W{(e, g)| for all pairs (e,g) in the new II is O(n).
Now in the new II, no two pairs have the same first
element. However, for an edge g, it is possible that there
are multiple pairs in IT whose second elements are all g
and their first elements are all from input(g); among
all those pairs, we only keep the pair (e,g) such that
|[W (e, g)| is the largest in IT and remove all other pairs
from II. Since |input(g)| = O(1), it suffices to show
that the total sum of |W (e, g)| for all pairs (e, g) in the
new IT is O(n). Now in the new II, no two pairs have
the same first element and no two pairs have the same
second element. Hence, the size of IT is O(n).

For each pair (e,g) € II, recall that Wi(e,g) may
have up to two artificial generators (i.e., the endpoints of
e). Since |II| = O(n), there are a total of O(n) artificial
generators in W(e, g) for all pairs (e,g) € II. In the
following discussion we ignore these artificial generators
and by slightly abusing the notation we use W(e, g) to
refer to the remaining wavefront without the artificial
generators. Hence, each generator of W(e,g) is an
obstacle vertex. It suffices to prove 3, e [W (e, g)| =
O(n).

For any three adjacent generators u, v, and w that
are obstacle vertices in a wavefront, we call (u,v,w)
an adjacent-generator-triple. Two adjacent-generator-
triples (u1,v1,w1) and (ug, ve,ws) are distinct if uy #
Ug, Or V1 # Vg, Or wy # wg. We have the following
observation.

OBSERVATION 1. The total number of distinct adjacent-
generator-triples in all wavefronts involved in the entire
wavefront expansion step of the HS algorithm is O(n).

Proof. Initially, the algorithm starts a wavefront from

Copyright © 2021 by SIAM

816 Unauthorized reproduction of this article is prohibited

Downloaded 01/09/21 to 73.65.191.216. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

s with only one generator s. Whenever a distinct
adjacent-generator-triple is produced during the algo-
rithm, a bisector event must happen. As there are O(n)
bisector events [13], the observation follows. O

Lemma [4.2] is almost an immediate consequence of
the following lemma.

LEMMA 4.3. Any adjacent-generator-triple (u, v, w)
can appear in the wavefront We, g) for at most O(1)

pairs (e, g) of II.

Before proving Lemma [4.3] we prove Lemma |4.2
with the help of Lemmal[4.3] Indeed, there are O(n) dis-
tinct adjacent-generator-triples in the entire algorithm
by Observation |1} Now that each such triple can only
appear in a constant number of wavefronts W (e, g) for
all (e, g) € T, the total number of generators in all wave-
fronts W (e, g) for all (e,g) € II is bounded by O(n).
This leads to Lemma 2]

Proving Lemma 4.3} We prove Lemma in the
rest of this subsection. Assume to the contrary that
an adjacent-generator-triple (u,v,w) appears in the
wavefront W (e, g) for more than O(1) pairs (e, g) of II
P} let TI’ denote the set of all such pairs.

Consider a pair (e,g) € II'. Recall that W (e, g) is
obtained by propagating W (e) from e to g through the
well-covering region U(g) if e € input(g) and through
U(e) otherwise. If one of u, v, and w is in U(g) UlU(e),
then we call (e, g) a special pair. The properties of the
subdivision 8’ guarantee that each obstacle vertex is in
U(f) for at most O(1) edges f of &’ [13], and thus IT'
has at most O(1) special pairs. We remove all special
pairs from IT'; after which II" still has more than O(1)
pairs and for each pair (e, g) € II' the three generators
u, v, and w are all outside U(g) UU(e).

OBSERVATION 2. For each pair (e,g) € II', (u,v,w) is
an adjacent-generator-triple in We).

Proof. Since the wavefront W (e, g) is obtained by prop-
agating W (e) from e to g inside U, where U is either
U(g) or U(e), all generators of W (e, g) are also gener-
ators of W(e) except possibly a single obstacle vertex
in U [13]. As u, v, and w are all outside U, they must
be generators that are adjacent in W(e). Therefore,
(u,v,w) is an adjacent-generator-triple in W (e). O

For each pair (e,g) € II', since (u,v,w) is an
adjacent-generator-triple of both W (e, g) and W (e), the

3By “more than O(1) pairs”, we intend to say “more than c
pairs for a constant c to be fixed later”. To simplify the discussion,
we use “more than O(1) pairs” instead with the understanding
that such a constant ¢ can be fixed.

€2 > >
bi v
I I
| I
| I
gl | I
qa’a Tq
| | |q
| |
€1 T T
| |
| |
o | ° | °
U | v | w

Figure 2: Tllustrating the two bisectors B(u,v) and B(v,w) as
well as the three edges e1, g1, and ez (each of these edges may
also be vertical).

bisector B(u,v) (resp., B(v,w)) intersects both e and
g, and v is closer to the intersection with e than that
with g. Let (e1,¢1) be the pair in II' such that the
intersection of B(u,v) with its first element is closest
to v among the intersections of B(u,v) with the first
elements of all pairs of IT'.

By the property 5(a) of §’, the size of U(g1) UU(e)
is O(1). Because [IT'| is not O(1), II’ must have a pair,
denoted by (e2, g2), such that es is outside U(g1) Ul (e).
Recall that W (e, g1) is obtained by propagating W (e;)
from ey to g1 inside U(g1) or U(e). Hence, if we move
along the bisector B(u,v) from its intersection with e;
to its intersection with g¢;, all encountered edges of S’
are in U(g1) UU(e). Therefore, by the definitions of ey
and es, B(u,v) intersects e1, g1, and e in this order
following their distances from v (see Fig. [2)).

By definition (i.e., the fourth step of our snapshot
construction algorithm), e; has been processed but gy
has not. According to the wavefront expansion algo-
rithm, covertime(es) < covertime(gy). In the following
we will obtain covertime(es) > covertime(g;), which
leads to a contradiction.

Let b be the intersection between the bisector
B(u,v) and ey (e.g., see Fig. . Since u and v are
two generators in W (es, g2), vb is in the free space F.
We have the following observation.

OBSERVATION 3. vb intersects ¢ (e.g., see Fig. @

Proof. Since (u,v,w) is an adjacent-generator-triple in
both wavefronts W(ez) and W(e1,91), each of the
bisectors B(u,v) and B(v,w) intersects both g; and es.
Let ¢ and ¢’ be the intersections of g; with B(u,v) and
B(v,w), respectively. Let & be the intersection of es
and B(v,w). Then, q¢/, which is a subsegment of g,
is claimed by v in W (e, g1) (i-e., among all wavelets of

Copyright © 2021 by SIAM

817 Unauthorized reproduction of this article is prohibited

Downloaded 01/09/21 to 73.65.191.216. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

T2 Y2

€ o—o——o

T ‘a U1
91 Q—Q—Q

R)
Se -

Figure 3: Tllustrating the proof of Lemma

W (e1, g1), the wavelet at v reaches p the earliest, for all
points p € gq’). Similarly, bb/, which is a subsegment
of eg, is claimed by v in W(ez). Recall that v is closer
to ¢ than to b. Hence, for any point p € bb/, pv must
intersect gq’. This leads to the observation, for ¢¢’ C g;.
0

In light of the above observation, let a be an
intersection point of vb and ¢; (e.g., see Fig. . Using
the properties of the well-covering regions of S’, we have
the following observation.

OBSERVATION 4. |ab| > 2 |g1].

Proof. Since b € ey is outside the well-covering region
U(g1) of g1, a € g1 is inside U(g1), and ab is in the
free space F, ab must cross the boundary of U(g1), say,
at a point p. By the property 5(b) of the conforming
subdivision &', [@p| > 2 - |g1|. As |ab] > |ap|, the
observation follows. a

The following lemma, which is a consequence
of Observation [leads to a contradiction, for
covertime(gy) > covertime(es), and thus Lemma
is proved.

LEMMA 4.4. covertime(g1) < covertime(es).

Proof. Let 1 and y; be the two endpoints of g1,
respectively. Let xo and ys be the two endpoints of
ea, respectively. Refer to Fig. [3l We have the following
for covertime(gy):

covertime(gr) = min{d(s, z1),d(s,y1)} + |g1]
< d(s,v) + [va] + |g1]/2 + |1]
= d(s,v) + [va| + 3|g1]/2.

On the other hand, because (u,v,w) is an adjacent-
generator-triple of W(e) and b is the intersection of ey
and the bisector B(u,v), v claims b in W(ez). Hence,
min{d(s, xs),d(s,y2)} + |ea| > d(s,v) + |vb| must hold,

since otherwise the artificial wavelets at the endpoints
of e; would have prevented v from claiming b [13].
Therefore, we have the following for covertime(ez):

covertime(ez) = min{d(s,z2),d(s,y2)} + |ea]
> d(s,v) + |vb]
= d(s,v) + |val + |ab|
> d(s,v) + |val + 2 - |g1].

The last inequality is due to Observation[d] As|g;| > 0,
we obtain covertime(g1) < covertime(ez). d

4.4 The SPM-construction step. The above
shows that the wavefront expansion step of the HS algo-
rithm can be implemented in O(nlogn) time and O(n)
space. As discussed in Section [3 the algorithm com-
putes geodesic distances from s to the endpoints of all
transparent edges of §’. As each obstacle vertex is inci-
dent to a transparent edge of S’, geodesic distances from
s to all obstacle vertices are known. In this subsection,
we discuss our modification to the SPM-construction
step of the HS algorithm so that the shortest path map
SPM (s) can be constructed in O(nlogn) time and O(n)
space. As discussed before, the key is to compute the
vertices of SPM(s) in each cell ¢ of §'.

Consider a cell ¢ of §’. To compute the vertices of
SPM (s) in ¢, there are two major steps. First, partition
¢ into active and inactive regions. Second, compute the
vertices of SPM(s) in each active region. The original
HS algorithm achieves this using the wavefronts W (e) of
the transparent edges e on the boundary of ¢ as well as
the marked generators for ¢, which are marked during
the wavefront expansion step. As our new algorithm
does not maintain the wavefronts W(e) anymore due to
the space-reset, we cannot use the same algorithm as
before. We instead propose the following approach.

The first step. The first step is to compute the active
regions of c¢. Recall that c is partitioned into active and
inactive regions by bisectors defined by an unmarked
generator u and a marked generator v. Consider such
a bisector B(u,v). Observe that v and v must be from
the same wavefront W(e) of an edge e of de. Indeed,
assume to the contrary that v is from W(e,) and v
is from W (e,) of two different edges e, and e, of dc.
Then, e, and e, must share a common endpoint p and
both the wavelet of w in W(e,) and the wavelet of v
in W(e,) claim p. Hence, both u and v are marked by
Rule 2(a) of the generator marking rules [13]. But this
incurs a contradiction as u is unmarked. Therefore, u
and v must be from the same wavefront W (e) and they
are actually neighboring in W(e).

Based on the above observation, in addition to the
marking rules of the original HS algorithm (see Sec-

Copyright © 2021 by SIAM

818 Unauthorized reproduction of this article is prohibited

Downloaded 01/09/21 to 73.65.191.216. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

tion 4.1.2 of [13]), we add the following new rule: If a
generator v in a wavefront W (e) is marked for a cell by
the original rules during the wavefront expansion step of
the HS algorithm, we also mark both neighboring gen-
erators of v in W (e). We call the generators marked by
the new rule newly-marked generators, while the gener-
ators marked by the original rules are called originally-
marked generators. If a generator is both originally-
marked and newly-marked, we consider it originally-
marked. Since the total number of originally-marked
generators is O(n) [13|, the total number of newly-
marked generators is O(n). Also the new mark rules
can be easily incorporated into the wavefront expansion
step without affecting its running time asymptotically.

Now consider the bisector B(u,v) discussed in the
above observation. The generator u must be a newly-
marked generator. This suggests the following method
to compute the active regions of c¢. We collect all
marked generators (including both newly-marked and
originally-marked) for the transparent edges of dc and
order them around the boundary of ¢. For each pair
of adjacent generators u and v in the wavefront W(e)
of a transparent edge e such that u is newly-marked
and v is originally marked, we compute their bisector
in ¢. These bisectors are disjoint and partition ¢ into
regions, and the regions claimed by marked generators
only are active regions [13|. The time for computing all
active regions is bounded by O(mlogm), where m is the
number of all marked generators for c¢. Hence, the total
time of this step for all cells of S’ is O(nlogn) since the
total number of marked generators is O(n).

The second step. The second step is to compute the
vertices of SPM (s) in each active region R of ¢. For each
transparent edge e of R, which is on Jc, we need to
restore its wavefront W (e), because it is not maintained
by our new algorithm. To this end, the algorithm in
the above first step determines a list L(e) of originally-
marked generators that claim e. It turns out that L(e)
is exactly W (e), as shown below.

OBSERVATION 5. L(e) = W (e).

Proof. Since each generator of L(e) is marked for e and
¢, L(e) is a subset of W (e). On the other hand, because
R is an active region, R is claimed by originally-marked
generators only [13]. Since each generator of W(e)
claims at least one point of e and e C R, all generators
are originally-marked. Therefore, all generators of W (e)
are in L(e). The observation thus follows. 0

By the above observation, the wavefronts W (e) for
all transparent edges of all active regions of ¢ can be
restored once all active regions of ¢ are computed in
the first step. Subsequently, using the same method as

the original HS algorithm, the vertices of SPM (s) in ¢
can be computed in O(mlogm) time, where m is the
total number of marked generators of ¢. As remarked
in Section [3] the space is O(m). As the total number
of marked generators for all cells of &' is O(n), the
overall time for computing all vertices of SPM(s) is
O(nlogn) and the space is O(n). Finally, the edges of
SPM (s) can be computed separately and then SPM (s)
can be assembled by a plane sweep algorithm (see
Lemma 4.13 [13] for details); this step takes O(nlogn)
time and O(n) space.

The following theorem summarizes our main result.

THEOREM 4.1. Given a source point s and a set of
pairwise disjoint polygonal obstacles of n vertices in the
plane, the shortest path map of s can be constructed in
O(nlogn) time and O(n) space.

By building a point location data structure on
SPM (s) in O(n) time [6,{16], given any query point ¢, the
geodesic distance d(s,t) can be computed in O(logn)
time and a shortest path 7(s,t) can be produced in
additional time linear in the number of edges of the
path.

5 Concluding remarks

In this paper, by modifying the HS algorithm [13]
we solve the Euclidean shortest path problem among
polygonal obstacles in the plane in O(nlogn) time
and O(n) space, reducing the space complexity of
the HS algorithm by a logarithmic factor and settling
the longstanding open question of Hershberger and
Suri [13]. The new algorithm is now optimal in both
time and space. Our main technique is to divide the
HS algorithm into phases and perform a space-reset
procedure after each phase by constructing a linear-
space snapshot that maintains sufficient information for
the subsequent algorithm.

Like the original HS algorithm, our new algorithm
can also handle some extensions of the problem. For
example, if the source is not a point but a more complex
object like a line segment or a disk, then as discussed
in [13], except for initialization and propagating the
initial wavelets, the rest of the algorithm does not
change. As such, our new algorithm can solve this
case in O(nlogn) time and O(n) space. For the
multiple source case where there are m source points
and the goal is essentially to compute the geodesic
Voronoi diagram of these points, i.e., partition the free
space into regions so that all points in the same region
have the same nearest source point, our algorithm can
solve this case in O((n + m)log(n + m)) time and
O(n + m) space. Also, as in [13], the algorithm still
works if each source point has an initial “delay”. Note

Copyright © 2021 by SIAM

819 Unauthorized reproduction of this article is prohibited

Downloaded 01/09/21 to 73.65.191.216. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

that the geodesic Voronoi diagram problem in simple
polygons has been particularly considered; other than
some earlier work [1,26], the problem has recently
received increased attention |18}24,25]. Oh [24] finally
proposed an algorithm of O(n+mlogm) time, which is
optimal.

Our technique might be able to find applications
elsewhere. For example, Hershberger et al. [14] consid-
ered the shortest path problem among curved obstacles
in the plane. They gave an algorithm to construct a data
structure for a source point s so that each shortest path
query can be answered in O(logn) time. Their algo-
rithm runs in O(nlogn) time and O(nlogn) space, plus
O(n) calls to a bisector oracle, which is to compute the
intersection of two bisectors defined by pairs of curved
obstacle boundary segments. Their data structure is
not a shortest path map, but consists of all wavefronts
(represented by persistent binary trees) produced dur-
ing the algorithm after each event; the size of the data
structure is O(nlogn). If we are looking for a shortest
path from s to a single point ¢, then it might be pos-
sible that our technique can be applied to reduce the
space of their algorithm to O(n) because the high-level
scheme of their algorithm is the same as the wavefront
expansion step of the HS algorithm for polygonal obsta-
cles. For answering queries, however, the data structure
proposed in [14] is inherently of size Q(nlogn) because
all wavefronts need to be (implicitly) maintained. To
have a data structure of size O(n), one possible way is
to use a shortest path map as in the polygonal obstacle
case. However, this will require an additional oracle to
explicitly compute the bisector of two curved obstacle
boundary segments; this oracle was not used by Hersh-
berger et al. [14] because they wanted to minimize the
number of oracles their algorithm relies on.

Another possible application of our technique is
on finding shortest paths on the surface of a convex
polytope in three dimensions [21423,28/30]. The current
best algorithm was given by Schreiber and Sharir [2§]
and their algorithm uses O(nlogn) time and O(nlogn)
space. Although many details are different, Schreiber
and Sharir [28] proposed an oct-tree-like 3-dimensional
axis-parallel subdivision of the space, which is similar in
spirit to the planar conforming subdivision in [14], and
used it to guide their continuous Dijkstra algorithm to
propagate wavefronts, in a similar manner as the HS
algorithm. Schreiber and Sharir [28] raised an open
question whether the space of their algorithm can be
reduced to O(n). It would be interesting to see whether
our technique can be adapted to their algorithm.

References

820

[1] B. Aronov. On the geodesic Voronoi diagram of point
sites in a simple polygon. Algorithmica, 4:109-140,
1989.

[2] D.Z. Chen, J. Hershberger, and H. Wang. Computing
shortest paths amid convex pseudodisks. SIAM Jour-
nal on Computing, 42(3):1158-1184, 2013.

[3] D.Z. Chen and H. Wang. A new algorithm for comput-
ing visibility graphs of polygonal obstacles in the plane.
Journal of Computational Geometry, 6:316-345, 2015.

[4] Y.-J. Chiang and J.S.B. Mitchell. Two-point Euclidean
shortest path queries in the plane. In Proceedings
of the Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 215-224, 1999.

[5] J. Driscoll, N. Sarnak, D. Sleator, and R.E. Tarjan.
Making data structures persistent. Journal of Com-
puter and System Sciences, 38(1):86-124, 1989.

[6] H. Edelsbrunner, L. Guibas, and J. Stolfi. Optimal
point location in a monotone subdivision. SIAM
Journal on Computing, 15(2):317-340, 1986.

[7] S.K. Ghosh and D.M. Mount. An output-sensitive al-
gorithm for computing visibility graphs. SIAM Journal
on Computing, 20(5):888-910, 1991.

[8] L.J. Guibas and J. Hershberger. Optimal shortest path
queries in a simple polygon. Journal of Computer and
System Sciences, 39(2):126-152, 1989.

[9] L.J. Guibas, J. Hershberger, D. Leven, M. Sharir,
and R.E. Tarjan. Linear-time algorithms for visibility
and shortest path problems inside triangulated simple
polygons. Algorithmica, 2(1-4):209-233, 1987.

[10] J. Hershberger. A new data structure for shortest path
queries in a simple polygon. Information Processing
Letters, 38(5):231-235, 1991.

[11] J. Hershberger, V. Polishchuk, B. Speckmann, and
T. Talvitie. Geometric kth shortest paths. In
Proceedings of the 30th Annual Symposium on Compu-
tational Geometry (SoCG), pages 96:96-96:97, 2014.
http://www.computational-geometry.org/SoCG-
videos/socgl4video/ksp/applet/index.html.

[12] J. Hershberger and J. Snoeyink. Computing minimum
length paths of a given homotopy class. Computational
Geometry: Theory and Applications, 4(2):63-97, 1994.

[13] J. Hershberger and S. Suri. An optimal algorithm for
Euclidean shortest paths in the plane. SIAM Journal
on Computing, 28(6):2215-2256, 1999.

[14] J. Hershberger, S. Suri, and H. Yildiz. A near-optimal
algorithm for shortest paths among curved obstacles in
the plane. In Proceedings of the 29th Annual Sympo-
sium on Computational Geometry (SoCG), pages 359
368, 2013.

[15] R. Inkulu, S. Kapoor, and S.N. Maheshwari. A near
optimal algorithm for finding Euclidean shortest path
in polygonal domain. In arXiv:1011.6481v1, 2010.

[16] D. Kirkpatrick. Optimal search in planar subdivisions.
SIAM Journal on Computing, 12(1):28-35, 1983.

[17] D.T. Lee and F.P. Preparata. FEuclidean shortest
paths in the presence of rectilinear barriers. Networks,
14(3):393-410, 1984.

[18] C.-H. Liu. A nearly optimal algorithm for the geodesic

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 01/09/21 to 73.65.191.216. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

Voronoi diagram of points in a simple polygon. Algo-
rithmica, 82:915-937, 2020.

J.S.B. Mitchell. A new algorithm for shortest paths
among obstacles in the plane. Annals of Mathematics
and Artificial Intelligence, 3(1):83-105, 1991.

J.S.B. Mitchell. Shortest paths among obstacles in
the plane. International Journal of Computational
Geometry and Applications, 6(3):309-332, 1996.
J.S.B. Mitchell, D.M. Mount, and C.H. Papadimitriou.
The discrete geodesic problem. SIAM Journal on
Computing, 16:647-668, 1987.

D.M. Mount. On finding shortest paths on convex
polyhedra. Technical report, University of Maryland,
College Park, MD 20742, 1985.

D.M. Mount. Storing the subdivision of a polyhedral
surface. Discrete and Computational Geometry, 2:153—
174, 1987.

E. Oh. Optimal algorithm for geodesic nearest-point
Voronoi diagrams in simple polygons. In Proceedings
of the 20th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 391-409, 2019.

E. Oh and H.-K. Ahn. Voronoi diagrams for a
moderate-sized point-set in a simple polygon. Discrete
and Computational Geometry, 63:418-454, 2020.

E. Papadopoulou and D.T. Lee. A new approach for
the geodesic Voronoi diagram of points in a simple
polygon and other restricted polygonal domains. Al-
gorithmica, 20:319-352, 1998.

H. Rohnert. Shortest paths in the plane with convex
polygonal obstacles. Information Processing Letters,
23(2):71-76, 1986.

Y. Schreiber and M. Sharir. An optimal-time algo-
rithm for shortest paths on a convex polytope in three
dimensions. Discrete and Computational Geometry,
39:500-579, 2008.

M.I. Shamos and D. Hoey. Closest-point problems. In
Proceedings of the 16th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 151-162,
1975.

M. Sharir and A. Schorr. On shortest paths in
polyhedral spaces. SIAM Journal on Computing,
15(1):193-215, 1986.

J.A. Storer and J.H. Reif. Shortest paths in the
plane with polygonal obstacles. Journal of the ACM,
41(5):982-1012, 1994.

821

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Our result.

	Preliminaries
	A brief review of the HS algorithm
	Our new algorithm
	Overview.
	The wavefront expansion step.
	Proof of Lemma 4.2.
	The SPM-construction step.

	Concluding remarks

