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Abstract
Global warming is resulting in unprecedented levels of coral mortality due to mass bleaching events and,

more recently, marine heatwaves, where rapid increases in seawater temperature cause mortality within days.
Here, we compare the response of a ubiquitous scleractinian coral, Stylophora pistillata, from the northern Red
Sea to acute (7 h) and chronic (7–11 d) thermal stress events that include temperature treatments of 27�C
(i.e., the local maximum monthly mean), 29.5�C, 32�C, and 34.5�C, and assess recovery of the corals following
exposure. Overall, S. pistillata exhibited remarkably similar responses to acute and chronic thermal stress,
responding primarily to the temperature treatment rather than duration or heating rate. Additionally, corals dis-
played an exceptionally high thermal tolerance, maintaining their physiological performance and suffering little
to no loss of algal symbionts or chlorophyll a up to 32�C, before the host suffered from rapid tissue necrosis
and mortality at 34.5�C. While there was some variability in physiological response metrics, photosynthetic effi-
ciency measurements (i.e., maximum quantum yield Fv/Fm) accurately reflected the overall physiological
response patterns, with these measurements used to produce the Fv/Fm effective dose (ED50) metric as a proxy
for the thermal tolerance of corals. This approach produced similar ED50 values for the acute and chronic experi-
ments (34.47�C vs. 33.81�C), highlighting the potential for acute thermal assays with measurements of Fv/Fm
as a systematic and standardized approach to quantitively compare the upper thermal limits of reef-building
corals using a portable experimental system.

Reef-building corals are the foundation species for some of
the most diverse marine communities in the world, yet the
ecosystems they build are being threatened by a number of
environmental stressors at both local and global scales
(Kennedy et al. 2013). In recent years, warming seawater tem-
peratures as a result of anthropogenic CO2 emissions have
emerged as the principal threat to reef-building corals, causing

coral bleaching and mortality at unrivaled scales (Hughes
et al. 2017a, 2018). Since 1998, rising seawater temperatures
have resulted in three global mass bleaching events, with the
most severe of these events, spanning 2015–2016, causing
severe bleaching (> 30% of corals bleached) on more than half
of 100 globally distributed reefs (Hughes et al. 2018). In turn,
99% of the world’s coral reefs are predicted to experience
severe bleaching events annually before the end of the cen-
tury (van Hooidonk et al. 2016).

The threat of ocean warming to reef-building corals has led
to considerable research into the effects of elevated seawater
temperatures on the physiology of corals and their symbionts
since the 1970s (Jokiel and Coles 1977; Glynn 1984; Hoegh-
Guldberg and Smith 1989). Indeed, there is extensive evidence
that the symbiotic relationship between corals and the unicel-
lular alga (Symbiodiniaceae; LaJeunesse et al. 2018) inhabiting
their tissue breaks down above certain temperature thresholds
(reviewed in Jokiel 2004). However, thermal stress events can
be highly variable in their intensity and duration. Recent
extreme thermal events, termed marine heatwaves, have
resulted in tissue necrosis and coral mortality within days of
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heating (Leggat et al. 2019), compared to previously described
bleaching events that yielded more distinct succession of coral
bleaching and eventual recovery or mortality over multiple
weeks (Marshall and Baird 2000; Hughes et al. 2017b). Indeed,
variation in duration, intensity, and rate of onset of thermal
stress events are likely to elicit different responses in corals.
While bleaching during slower and less intense heating often
is attributed to the expulsion of defunct symbionts that are
damaging the host through oxidative stress (Weis 2008), tissue
and symbiont loss in response to acute stress is likely due to
host tissue necrosis and/or host-cell disassociation (sensu
Gates et al. 1992). Thus, developing a standardized experimen-
tal approach to assess coral thermal tolerances is important to
ensure results are comparable across studies (McLachlan
et al. 2020).

Current projections indicate that, even if global warming is
limited to 1.5�C, up to 70%–90% of corals worldwide will be
lost by mid-century (Hoegh-Guldberg et al. 2018). However,
the severity of these impacts is projected to vary greatly
among locations (van Hooidonk et al. 2016), with many coral
populations already identified as having a superior thermal
tolerance compared to most due to prior exposure to elevated
temperatures (Oliver and Palumbi 2011; Howells et al. 2012;
Schoepf et al. 2015). Thus, in addition to ensuring comparable
results within and between studies, a standardized approach is
important to determine the relative tolerance thresholds of
corals across species, populations, and locations, and accu-
rately identify corals that are more likely to survive in future,
warmer oceans. Such corals/populations can then become
study models for further research into the genetic and physio-
logical mechanisms that dictate thermal tolerance, and
improve efforts to genetically engineer stress tolerant corals
(i.e., assisted evolution; van Oppen et al. 2015; Jin et al. 2016)
and restore reefs through assisted migration (Dixon et al.
2015; van Oppen et al. 2017).

In the present study, we focused on a Stylophora pistillata
population from the Gulf of Aqaba in the northern Red Sea
that previously has exhibited an exceptional thermal tolerance
(Bellworthy and Fine 2017; Grottoli et al. 2017; Krueger et al.
2017). While corals typically undergo bleaching when
exposed to temperatures 1–2�C above their local maximum
monthly mean (after Liu et al. 2014) for extended periods of
time, corals in this region have been found to withstand tem-
peratures up to 7�C above the local maximum monthly mean
(34�C and 27�C, respectively), which is hypothesized to be
due to exposure to a selective thermal barrier during their
migration northwards from the southern Red Sea (Fine et al.
2013). In contrast to previous studies that have simulated
thermal stress over weeks-to-months, we assess the ability of
these corals to tolerate a high intensity marine heatwave-type
event (sensu Hobday et al. 2016) lasting 7–11 d, as the fre-
quency of these events has increased in recent years in the
northern Red Sea (Genevier et al. 2019). We then compare the
response of the same colonies to an 18 h acute thermal assay,

consisting of a 7 h heating period, to assess the validity of
using a standardized, rapid heat stress experiment that is capa-
ble of resolving historical differences in thermal tolerance
between corals across microhabitat reef sites (Voolstra et al.
2020a). As the bleaching response involves both the coral host
and algal symbionts (and possibly other microbial entities
such as bacteria, archaea, and viruses), we conduct direct mea-
surements of a suite of response variables representative of
host (protein concentration, respiration rate) and symbiont
physiology (photosynthesis, Fv/Fm, chlorophyll a (Chl a)), as
well as their symbiosis (symbiont density). These measure-
ments were conducted during and after heat stress across both
experiments to assess if the use of acute thermal assays can be
used to accurately determine holobiont thermal tolerance.
From this, we present a novel approach to integrate the physi-
ological performance across thermal exposures into a single
measure and provide a quantitative proxy to determine the
relative thermal thresholds of corals, termed the Fv/Fm ED50,
which represents the temperature at which 50% of the photo-
synthetic efficiency is lost relative to the baseline temperature.

Methods
Experimental overview

The study was conducted at the Interuniversity Institute for
Marine Sciences (IUI) in Eilat, Israel (Fig. S1) in January–
February 2019. Ramets from eight genets of S. pistillata were
collected from the IUI coral nursery, located at � 8 m depth
directly in front of the research station in the Gulf of Aqaba,
Red Sea. While symbiont type was not assessed in the present
study, previous studies have shown that shallow-water
(< 17 m) S. pistillata in this location exclusively harbor Sym-
biodinium spp./Clade A (Lampert-Karako et al. 2008; Winters
et al. 2009; Byler et al. 2013). Ramets from each genet were
used in two experiments designed to assess the physiological
response of the corals and their symbionts across varying tem-
perature treatments of acute and chronic heat stress. In each
experiment, corals were exposed to four temperature treat-
ments (27�C (summer ambient), 29.5�C, 32�C, and 34.5�C),
with the focus of the study to contrast the heating rate and
duration of thermal stress exposure between the experiments
(Fig. 1), though these also utilized different experimental sys-
tems (detailed below). While average sea surface temperature
at the time of the experiment was � 22�C, the maximum
monthly mean of 27�C was selected as the experimental base-
line treatment as the purpose of the experiments was to deter-
mine the upper-most thermal limits of the corals under future
scenarios of ocean warming.

For each experiment, ramets were brought back to the
research station and placed into the experimental tanks imme-
diately following collection to minimize the potential for any
genet-specific rates of recovery from collection or acclimation
to the tanks. Two additional ramets from each genet were col-
lected to assess the physiological state of the corals
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(physiological measurements detailed below) prior to the
experiments. Physiological state of the first ramet (termed
"field control”) was assessed directly upon collection from the
field (at 22�C) and prior to placing corals into the experimen-
tal tanks. Physiological state of the second ramet (termed
"T0”) was assessed after � 2 h incubation in the experimental
tanks (and immediately prior to the start of the experiments),
during which time seawater temperatures in the tanks was
steadily ramped up from 22�C to 27�C. Field control and T0
measurements were collected for all response variables for the
acute experiment and all response variables excepting photo-
synthesis and respiration for the chronic experiment.

Acute heat stress experiment
The acute heat stress experiment was conducted over 18 h

(January 27–28) using the Coral Bleaching Automated Stress

System (Voolstra et al. 2020a). The stress system consists of
four replicated 10-liter flow-through tanks, each capable of
running independent temperature profiles (total of eight
tanks). Temperature control in each tank is achieved using a
combination of IceProbe Thermoelectric chillers (Nova Tec)
and 150-200 W aquarium heaters linked to a custom-built
controller (Arduino MEGA 2560). Due to space limitations,
only five of the eight genets sampled for the chronic experi-
ment were used in the acute heat stress experiment. Two
ramets from each of the five genets were randomly arranged
in each tank (80 ramets total), with two replicate tanks for
each of the four temperature treatments. Temperatures in the
tanks were gradually ramped up to the respective target tem-
peratures over 3 h, followed by a 3 h hold at max temperature,
a 1-h ramp down to 27�C, and 11-h recovery period at 27�C
(Fig. 1a). The physiological state of the corals was assessed at
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Fig. 1. (a and b) Targeted and (c and d) recorded temperature profiles for the acute (Coral Bleaching Automated Stress System) and chronic (Red Sea
Simulator) heat stress experiments, demonstrating the ramp up from ambient winter temperatures (22�C) to 27�C (the maximum monthly mean), before
exposing corals to target experimental temperatures 29.5�C, 32�C, and 34.5�C. Sampling time points are indicated in each panel with dashed vertical lines:
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vals in the acute and chronic experiments, respectively, with dashed horizontal lines representing the targeted hold temperatures for the experiments.
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the end of the hold period ("T1”) and following the recovery
period ("T2”). Tanks were supplied with 500-μm filtered seawa-
ter at a rate � 2 L h−1 (� 5 h renewal rate), with each tank
equipped with powerhead pumps (Sun JVP-110 series) to
increase internal water flow. Tanks were located indoors and
received � 300 μmol quanta m−2 s−1 from LED aquarium
lights (GalaxyHydro, Roleandro) for 12 h per day, as measured
via a Li-Cor spherical quantum PAR (Photosynthetically Active
Radiation) sensor (LI-192, Li-COR).

Chronic heat stress experiment
The chronic heat stress experiment was conducted in the Red

Sea Simulator (Bellworthy and Fine 2018) over 2 weeks, from
January 20th to February 3rd. Two ramets from each of the eight
genets were randomly arranged in each of eight 40-liter tanks
(16 ramets/tank, 128 ramets total), with two replicate tanks
(i.e., technical/tank replicates) for each of the four temperature
treatments. Temperatures in the tanks then were gradually
ramped up to the respective target temperatures over the next 4
d. The temperature treatments were held for 6 d, except for the
34.5�C treatment, which was only held at maximum tempera-
ture for 2 d as corals started to exhibit considerable paling, with
the physiological state of the corals assessed at the end of the
hold period ("T1”) for each tank. Treatments were then ramped
back down to 27�C over 1 d and held at 27�C for a 3-day period
of recovery (7 d for the 34.5�C treatment) from heat stress (Fig.
1b). Finally, the physiological state of the corals was assessed fol-
lowing the recovery period ("T2”). Throughout the experiment,
tanks were supplied with 500-μm filtered seawater at a rate � 10
L h−1 (� 4 h renewal rate), with tanks equipped with powerhead
pumps (Sun JVP-110 series) to increase water flow. Tanks were
located outdoors, shaded by black mesh cloth to expose corals
to maximum daily Photosynthetically Active Radiation (PAR)
light intensities of � 300 μmol quanta m−2 s−1, as measured via
a Li-Cor spherical quantum PAR sensor (LI-192, Li-COR), over a
10.5–11 h photoperiod.

Physiological response measurements
In total, six response variables were assessed at each time-

point, in each experiment. Live metabolic measurements
included dark adapted maximum quantum yield of photosys-
tem II of the algal symbionts (Fv/Fm), and respiratory and net
photosynthetic rate. Destructive response variables included
host tissue protein content, Chl a concentration, and algal
symbiont density. Additionally, Chl a per cell was calculated
based on measurements of Chl a concentration and symbiont
densities (both per cm2).

The maximum quantum yield of photosystem II (Fv/Fm,
dimensionless) of the symbionts was measured on dark-accli-
mated corals (� 45 min of dark acclimation) directly in the
experimental tanks using a pulse amplitude-modulated (PAM)
fluorometer (Junior PAM, WALZ). Following these measure-
ments, a subset of ramets (n = 5) from the five genets that were
common to both experiments were transferred to individual

80 mL chambers for measurements of respiration and net pho-
tosynthetic rates. Chambers were sealed and maintained at the
respective treatment temperatures from which the ramets origi-
nated using a circulating water bath (MRC BL-30 liter) and
water mixed in the chambers using magnetic stirrers. Corals
first were incubated in the dark to measure respiration rates
and then illuminated using a high intensity grow light at
100 μmol quanta m−2 s−1 to measure net photosynthetic out-
put, with the dark and light incubations each lasting � 20 min.
Oxygen flux in the chambers was measured at 1-s intervals
using oxygen probes (FireSting O2, Pyroscience), with a blank
chamber (containing no coral) also assessed during each run to
account for any change in oxygen caused by instrument drift
or microbial metabolic activity.

Following the live measurements of physiological perfor-
mance, fragments were snap-frozen in liquid nitrogen and
stored at − 80�C until further processing. Frozen fragments
were airbrushed using 0.22 μm filtered seawater, with tissue
slurries homogenized (Diax 900, Heidolph Instruments) and
aliquoted into individual 1 mL samples for measurements of
host protein, Chl a, and symbiont density. Homogenized pro-
tein and Chl a samples were stored at − 80�C until processing,
while samples for algal symbiont density were fixed immedi-
ately with 5 μL of 8% glutaraldehyde and stored at 4�C until
measurements of cell counts.

Host protein homogenates were centrifuged at 5000g and
4�C for 10 min to separate the host supernatant from
Symbiodiniaceae cells. The host supernatant was further cen-
trifuged at 16,000g and 4�C for 10 min to remove any other par-
ticulate material. Total host protein concentration was
determined using a Coomassie (Bradford) Protein Assay (Pierce,
Thermo Scientific) and bovine serum albumin standard
(Bradford 1976). Triplicate protein measurements were con-
ducted for each sample using a multi-scan spectrum spectropho-
tometer (Biotek HT Synergy plate reader) at 450 and 595 nm.

For chlorophyll concentrations, homogenates were cen-
trifuged at 5000g and 4�C for 10 min to separate the host
supernatant from Symbiodiniaceae cells. The supernatant was
discarded, and the symbiont pellet was resuspended in 1 mL
of 100% acetone. Samples were stored at 4�C in the dark for
21 h, and vortexed at regular intervals to promote chlorophyll
extraction. Once the chlorophyll was fully extracted, samples
were centrifuged for 5 min at 2000g at 4�C to remove any par-
ticulates. Chl a concentrations were measured in duplicate for
each sample based on absorbances at 630 nm, 664 nm, and
750 nm, using a multiscan spectrum spectrophotometer
(Biotek HT Synergy plate reader; after Ritchie 2006).

The fixed symbiont samples were prepared for cell count
measurements by adding SDS (0.01% final concentration) and
passing the samples through 35 μm cell strainers. Cell counts
were measured in duplicate for each sample using a flow
cytometer (MACSQuant Analyzer 10, Miltenyi Biotec).

Surface area was determined using the single wax dipping
method (Stimson and Kinzie 1991), with photosynthetic and
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respiratory rates, symbiont densities, and protein and Chl
a concentrations all normalized to the surface area of each ramet.

Statistical analysis
The effects of temperature and experiment duration

(i.e., acute vs. chronic) on overall coral physiology (considering
all physiological response variables) were analyzed using a per-
mutational multivariate ANOVA (PERMANOVA) with the
"vegan” package (Oksanen et al. 2018) in R (R Core Team
2018). Temperature and experiment duration were included as
fixed effects. Time points were analyzed separately as the pur-
pose of the experiment was to compare temperature treatments
within each time point, with temperatures at each time point
representing different treatment conditions (i.e., T1 treatments
were at their respective treatment temperatures, while T2 treat-
ments were all at 27�C). Data were standardized and PER-
MANOVA was conducted on Euclidian distances, with
999 permutations used to generate p values. Post hoc pairwise
comparisons were conducted using "pairwiseAdonis” (Martinez
Arbizu 2019) with Bonferroni adjusted p-values, comparing
temperature treatments within the acute and chronic experi-
ments separately due to the inability to compute pairwise com-
parisons for multiple interacting main effects in PERMANOVA.

Individual response variables were analyzed using linear
mixed effects (LME) models, with temperature and experiment
as fixed effects, and genet and tank replicate as random effects
to account for non-independence of fragments from the same
colonies and any potential tank effects. Time points again
were analyzed separately. Additionally, LMEs were conducted
for each response variable to compare the 27�C treatments to
the field control and measurements at T0, using the same
aforementioned model structure. Models were conducted in
the "lmerTest” package (Kuznetsova et al. 2017) in R. Model
simplification was conducted by backwards elimination of pre-
dictor variables (step function), with F-tests used to compare
full and reduced models upon removal of the fixed effects. For
significant main effects, Tukey’s honestly significant differ-
ence (HSD) post hoc pairwise comparisons were conducted
using the package "emmeans” (Lenth et al. 2020). For meta-
bolic processes (respiration and net photosynthesis), rates of
oxygen flux were determined using "RespR” (Harianto et al.
2019). Measurements of Fv/Fm at T2 ("recovery”) in the
chronic experiment were not collected, thus, the model for
Fv/Fm measurements for the acute experiment at T2 was fitted
with temperature as the fixed factor and tank replicate and
genet as random factors. For all models, distributions of the
residuals were plotted to ensure they fit a normal distribution
and residuals were plotted against fitted values to confirm that
the errors had constant variance. Data were log-transformed
to help meet these assumptions when necessary. Figures were
plotted in R using "ggplot2” (Wickham 2016) or in Prism
(v. 8.0; GraphPad Software, Inc.).

Measurements of Chl a and metabolic rates conducted at
T2 on ramets from the 34.5�C treatment in the chronic

experiment were dropped from the analyses as they were
mostly dead and overgrown by microbial biofilms and turf
algae, providing unreliable values.

Fv/Fm 50% effective dose (ED50) metric
In order to produce a standardized and comparable proxy to

quantitively determine the upper thermal limit of the corals in
each experiment, we computed a critical temperature thresh-
old using measurements of Fv/Fm. Measurements of Fv/Fm
were fitted to log-logistic dose–response curves (DRCs) using
the package "drc” (Ritz et al. 2015), with model selection based
on Akaike’s Information Criterion (AIC; Table S2) and individ-
ual curves fit for each experiment. From these, an "ED50”
parameter (effective dose 50) was obtained for each experi-
ment, representing the x-value at the inflection point of the
curve (in this case the temperature) where Fv/Fm values in the
model fit were 50% lower in comparison to the starting values
of the model. This provided a quantitative thermal threshold,
designated as the Fv/Fm ED50, for S. pistillata in each
experiment.

All code used in the statistical analyses is available in the
electronic notebook associated with this publication on the
Barshis Lab GitHub: https://github.com/BarshisLab/CBASS-vs-
RSS-Physiology.

Results
Treatment conditions

Temperature treatments were consistently maintained
throughout the acute and chronic experiments to match the
targeted temperature profiles (Fig. 1). In the acute experiment,
all tank temperatures matched the targeted temperatures of
27, 29.5, 32, and 34.5�C during the hold (all ± 0.1 S.E.M; Fig.
1c). In the chronic experiment, temperatures exhibited some
variability, though still closely matched the target tempera-
tures, averaging 27.1 and 27.4, 29.5 and 29.5, 31.9 and 31.7,
and 34.4 and 34.4�C in the targeted 27, 29.5, 32, and 34.5�C
treatments, respectively (all ± 0.1 S.E.M; Fig. 1d). Based on the
NOAA climatology for this particular site (extracted from
coralreefwatch.noaa.gov), these treatments were equivalent to
0.6, 3.0, 5.6, 5.3 Degree Heating Weeks (DHW), respectively.

Holobiont response
The physiological traits of the holobiont varied depending

on the temperature treatment and experiment. At T1 (end of
the heating hold), there was an interactive effect of experi-
ment duration × temperature on holobiont physiology (p =
0.02), with all response variables contributing to differences
between treatments in the PERMANOVA (p < 0.01; Fig. 2). For
the acute experiment, there was a difference in holobiont
physiology between field and 27�C ramets (adj. p = 0.03), but
no difference between the field and T0 ramets or T0 and 27�C
ramets (adj. p ≥ 0.63). Within both experiments, holobiont
physiology of corals in the 34.5�C treatment differed from all
other temperature treatments (adj. p < 0.05).
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Following the recovery period (T2), there again was an inter-
active effect of temperature × experiment duration on holobiont
physiology (p < 0.05), with all response metrics contributing to
differences between treatments. Pairwise comparisons revealed a
difference between the 34.5�C treatment and the 29.5�C and
32�C treatments in the acute experiment (adj. p ≤ 0.02), and no
difference between 27�C, 29.5�C, and 32�C treatments in the
chronic experiment (dead corals from the 34.5�C treatment were
omitted from the analysis).

Host protein, Chl a, and symbiont density
There were no differences in host protein, Chl a, and sym-

biont densities between field, T0, and 27�C ramets (p > 0.05).
At T1, temperature had an overall negative effect on host pro-
tein concentration (p = 0.02; Table S1) regardless of experi-
ment duration. Protein concentrations remained stable up to
32�C, before declining by 37% at 34.5�C, compared to all
other treatments (Fig. 3a). Similarly, only temperature had an
effect on host protein at T2, driven by an 80% decrease in pro-
tein concentration at 34.5�C compared to the other treat-
ments (p < 0.01; Fig. 3b).

For Chl a concentration (μg cm−2), there was an overall
effect of temperature at T1 (p < 0.01), with little change in Chl
a up to 32�C, but declining by 62% at 34.5�C (Fig. 3c) and no
difference between experiments. At T2, there was an experi-
ment duration × temperature effect on Chl a concentration

(p < 0.01), with Chl a 59% lower in the 34.5�C treatment com-
pared to all other temperature treatments in the acute experi-
ment, 42% lower in the 32�C vs. the 27�C and 29.5�C
treatments in the chronic experiment (all p < 0.01), and 40%
lower in the acute vs. chronic experiment at 29.5�C (p < 0.05;
Fig. 3d).

At T1, there was an interactive effect of experiment duration ×
temperature on symbiont density (cells cm−2) (p < 0.01; Table
S1). In the acute experiment, symbiont densities were 40%
lower at 34.5�C compared to the 27�C and 32�C treatments
(p ≤ 0.04), 75% lower than all other treatments in the chronic
experiment (p < 0.01), and 58% lower in the chronic vs. acute
experiments at 34.5�C (p < 0.01; Fig. 3e). At T2, there was also
an experiment duration × temperature effect on symbiont den-
sity (p < 0.01; Fig. 3f). In the acute experiment, symbiont densi-
ties were 69% lower at 34.5�C compared to all other
temperatures (p < 0.01). In the chronic experiment, symbiont
densities exhibited a more gradual decrease with increasing
temperature, with symbiont densities 26% lower at 32�C com-
pared to 27�C and 29.5�C (p ≤ 0.03) and 99% lower at 34.5�C
compared to all other temperatures (p < 0.01). Symbiont densi-
ties were 26% lower in the acute vs. chronic experiment at
29.5�C (p < 0.01), but 99% lower in the chronic vs. acute exper-
iment at 34.5�C (p < 0.01; Fig. 3f).

Concentration of Chl a (pg) per cell was unaffected by tem-
perature at T1 (p = 0.38) but did differ between experiments
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Fig. 2. Non-metric multidimensional scaling (nMDS) plot displaying similarities within temperature treatments in the acute (open ellipses) and chronic
(shaded ellipses) experiments, at time point 1 (left) and 2 (right). Ellipses encompass 2/3 of the replicates in each treatment. For both time points, there
was a temperature × experiment duration effect on holobiont physiology, with results from pairwise comparisons indicated in the bottom left of each
panel. Vectors driving differences between treatments are located in the bottom-right corner of each panel, with the length of the vector representing
the strength of the variable in driving differences. At T2, the chronic 34.5�C treatment was not included due to high coral mortality and Fv/Fm was not
assessed.
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(p < 0.01; Table S1), with Chl a per cell 23% lower for corals in
the acute experiment than the chronic experiment (Fig. S2a).
Conversely, there was no difference in Chl a per cell between
experiments at T2 (p = 0.10), but there was an effect of tem-
perature (p = 0.03), with concentrations 21% lower at 32�C
compared to all other temperatures (Fig. S2b).

Photosynthesis, respiration, and Fv/Fm
Metabolic rates differed between field and T0 ramets and

ramets in the 27�C treatment in the acute experiment (no field
or T0 ramets assessed for the chronic experiment). Respiration
rates were 42% lower in field and T0 samples compared to the
27�C treatment (p ≤ 0.05), while net photosynthetic rates were
63% lower at T0 and 27�C compared to the field corals (p ≤ 0.04).

For respiration, there was an experiment duration ×
temperature effect at T1 (p < 0.01; Table S1). In the acute
experiment, respiration was highest at 27�C and 29.5�C, and
was on average 112% higher than at 32�C and 34.5�C
(p ≤ 0.04). Conversely, respiration was highest at 32�C in the
chronic experiment, with respiration 75% higher at 32�C than
34.5�C (p = 0.03; Fig. S3a). At T2, respiration was affected by
both temperature and experiment (p < 0.01). Overall, respira-
tion rates were 55% lower in the acute experiment compared
to the chronic experiment (Fig. S3b), with respiration rates at
27�C higher than at 29.5�C and 32�C (p < 0.01).

For net photosynthesis, there was an experiment duration ×
temperature effect at T1 (p < 0.01; Table S1), with differences
between the experiments at all temperatures but the 29.5�C
treatment (p ≤ 0.02; Fig. S3c). In the acute experiment, net

Fig. 3. Measurements of (a,b) host protein, (c,d) chlorophyll a (Chl a), and (e,f) symbiont density at each time point in the acute (blue) and chronic
(red) experiments. Time point 1 panels (a,c,e) also include measurements conducted on field and "T0” samples. The designations "Temp,” "Exp,” and
"Int” indicate significant effects of temperature, experiment, or their interaction. Letters denote differences among treatments across experiments when
only temperature was significant, while asterisks denote differences between experiments within a temperature treatment when experiment was signifi-
cant. For an interactive effect, uppercase and lowercase letters represent differences in the acute and chronic experiment, respectively. Points represent
means ± SE (n = 5–16 per treatment). Error bars are missing for treatments with very little variance as these were smaller than the symbols denoting the
mean. For Chl a measurements, the 34.5�C treatment at time point 2 in the chronic experiment was omitted from the analysis as results were affected by
microbial films and turf algae overgrowing the dead coral skeletons.
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photosynthesis was reduced from 0.05 ± 0.01 in the 27�C and
29.5�C treatments compared to − 0.09 ± 0.01 in the 32�C and
34.5�C treatments (mean ± S.E.M., n = 13–16). In the chronic
experiment, there was a gradual decline in net photosynthesis,
going from 0.17 ± 0.03 in the 27�C treatment, to − 0.32 ± 0.05
in the 34.5�C treatment. At T2, there remained an effect of tem-
perature on net photosynthesis (p < 0.01; Fig. S3d), with net
photosynthetic rates 71% lower for corals in the 32�C treat-
ment compared to the 27�C treatment (p = 0.01).

Most notably, applying the Fv/Fm ED50 approach, we
found consistent thermal threshold values across the chronic
and acute experiments, with the 33.81�C Fv/Fm ED50 in the
chronic experiment slightly lower than the 34.47�C threshold
in the acute experiment due lower Fv/Fm values at 34.5�C in
the chronic experiment. Results of the linear mixed effects
models indicated that Fv/Fm was affected by temperature only
at T1 (p < 0.01; Table S1), with Fv/Fm 60% lower at 34.5�C
compared to all other temperatures (Fig. 4).

Discussion
The present study found a remarkably similar response of

the coral S. pistillata and its associated algal symbionts to acute
(7 h) and chronic (7–11 d) thermal stress, with a clear upper
thermal threshold between 32�C and 34.5�C, beyond which
corals suffered rapid tissue necrosis and mortality. While

corals exposed to 32�C experienced some decline in physio-
logical performance, with decreases in Chl a concentration
(per cm2) and net photosynthetic yield, corals began to
recover from thermal stress once temperatures returned
to 27�C. In turn, there was little evidence of bleaching up to
32�C, as demonstrated by a maintenance of symbiont densi-
ties and concentrations of Chl a. These results support past
indications that corals in the Gulf of Aqaba tolerate
temperatures much higher than those experienced locally,
maintaining physiological performance up to 32�C (� 5�C
above local maximum monthly mean) regardless of the dura-
tion or rate of onset of thermal stress (Fine et al. 2013; Krueger
et al. 2017). In turn, our results indicate that intense heat
spikes above a critical threshold lasting just a few hours can
result in considerable coral mortality. Although such acute
changes in seawater temperature may be unlikely for fringing
reefs such as those in the Gulf of Aqaba, these findings high-
light the need to consider fine-scale variability in seawater
temperature when characterizing and predicting the impacts
of future thermal stress events on corals in more variable reef
environments, such as back reefs.

Crucial to the mechanics of coral bleaching is that corals
expel their symbionts but retain their tissue, and thus have
the potential to recover by reacquiring symbionts once seawa-
ter temperatures return below a coral’s thermal threshold
(Thornhill et al. 2006). In such instances, corals can not only
recover from thermal stress, but also have the potential to
increase their thermal tolerance by selecting for more stress
tolerant symbionts (Grottoli et al. 2014; Silverstein et al.
2015). In the current study, corals showed little indication of
bleaching, as assessed through measurements of symbiont
density, in response to both acute and chronic thermal stress
up to 32�C. Similarly, host protein and respiration (the princi-
pal metrics assessed related to the host) remained unchanged
up until 32�C. However, host protein and symbiont density
then rapidly declined at 34.5�C due to extensive tissue necro-
sis, with the strong decrease in symbiont density at 34.5�C
more likely a reflection of tissue loss than a loss of symbionts
within the remnant tissue. While such a response may have
allowed corals to maintain their physiological performance
well above peak local temperatures (which rarely exceed 28�C;
Krueger et al. 2017), it ultimately led to a point of no return as
corals continued to lose tissue and die after temperatures were
brought back down to 27�C, even in the acute experiment.

Similar patterns of rapid tissue necrosis and mortality at
high temperatures have been documented previously in both
field and laboratory settings. Following in situ observations of
rapid tissue loss and mortality on the Great Barrier Reef, a
study found that Acropora aspera and Pocillopora damicornis
experienced tissue loss and biofilm formation over the entire
coral skeleton within 1–3 d of exposure to severe heat stress
(34�C; Leggat et al. 2019). Similarly, A. aspera colonies from
the Kimberley region in northwest Australia, home to corals
naturally adapted to high water temperatures due to strong

Fig. 4. Maximum quantum yield of photosystem II (Fv/Fm) at time point
1 fitted to log-logistic, dose response curves (dotted lines represent 95%
confidence intervals). Curve fits were used to determine the Fv/Fm ED50

for each experiment (vertical lines), which represent the x-value at the
inflection point of the curve (in this case the temperature) where Fv/Fm
values in the model fit were 50% lower in comparison to the starting
values of the model. This approach demonstrates the consistency of this
non-destructive Fv/Fm measurements to determine the upper thermal
thresholds of corals across acute and chronic heat stress (n = 10–16 per
treatment), despite differences in temperature ramping, duration, and
light conditions between experiments. Letters denote differences between
temperature treatments across both the acute and chronic experiments.
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diurnal temperature variations, experienced tissue necrosis
within 5–6 d of exposure to increased seawater temperatures
(34�C), and died 24–48 h later (Schoepf et al. 2015). Although
average daily temperatures in both studies were only � 2–3�C
above the local maximum monthly mean, short temperature
spikes upwards of 34�C in each appeared sufficient to result in
tissue loss and mortality. Thus, while exposure to natural tem-
perature variability might reduce the risk of bleaching in some
corals (Safaie et al. 2018), there is evidence of an upper limit
to the amount of variability corals can tolerate.

An important consideration of the present study, and how it
might relate to previous thermal stress studies on this species, is
the heating rate and duration of the experiments (Grottoli et al.
2020). There is evidence that short, yet sudden and severe,
marine heatwaves can yield distinct physiological responses com-
pared to longer and more progressive bleaching events (Fordyce
et al. 2019; Leggat et al. 2019). Indeed, there are numerous
reports of bleaching (followed by mortality or recovery) for this
species in Eilat and other locations (Hoegh-Guldberg and Smith
1989; Baird and Marshall 2002; Sampayo et al. 2008; Grottoli
et al. 2017). Notably, Grottoli et al. (2017) found that S. pistillata
bleached severely (95% loss of symbionts) following a 37-day
exposure to 32�C in the winter months (February–April), though
these corals still experienced no mortality. We found a 23%
decrease in symbiont density for corals that had been incubated
in the 32�C treatment, relative to the 27�C treatment, suggesting
that corals may have suffered further symbiont loss had the
chronic experiment been extended. In turn, a study of S. pistillata
on Heron Island, Australia, reported high rates of tissue sloughing
and mortality in a "high stress” treatment (32�C and
1000 μmol quanta m−2 s−1 for 8 h), while the majority of corals
in a "low stress” treatment (31�C and 550 μmol quanta m−2 s−1

for 5 d) bleached but survived (Franklin et al. 2004). Thus, differ-
ent temperature and/or light regimes may produce distinct physi-
ological outcomes, though it remains largely untested whether a
high tolerance of corals to short-term thermal stress is congruent
with tolerance to long-term stress.

In addition to the experimental conditions, seasonality may
have a strong impact on the response patterns and thermal
thresholds observed (Berkelmans and Willis 1999). In contrast
to the present study and that of Grottoli et al. (2017), a study
by Fine et al. (2013) reported no visual signs of bleaching and
just a 25% decrease in symbiont density for the same coral pop-
ulation after a 4-week incubation at 34�C, though the study
took place during the summer (August) and thus used corals
that were already acclimated to 27�C in situ. With the present
study conducted in the winter, corals were heated from 22�C
to 27�C prior to the start of the experiment, which led to
increased respiration rates, indicating some impact of this rapid
temperature change on coral physiology. Still, and notably, the
response pattern observed herein is similar to that of a short-
term experiment conducted in August using the same coral
population, where corals were exposed to temperatures up to
32�C for 8 d (4.4 DHWs compared to 5.6 DHWs in the present

study) and exhibited little change in symbiont density and Chl
a (Bellworthy and Fine 2017). This fits well with the notion
that differences in thermal tolerance are at least partially adap-
tive (Palumbi et al. 2014), and seasonality would be expected to
be a variable, but not major contributor. Beyond 32�C, we
found a sharp decline in symbiont density and high rates of
mortality at 34.5�C, just 0.5�C higher than the maximum tem-
perature in the study by Fine et al. (2013). Thus, while it is pos-
sible that the thermal threshold for this coral population lies
within a very narrow range between 34�C and 34.5�C, a more
likely explanation is an upper thermal threshold around 34�C,
which is partially influenced by seasonal phenotypic variation
(Berkelmans and Willis 1999) and variation in experimental
designs (e.g., heating rate and duration).

Regardless, these corals clearly can tolerate, and even thrive
under, temperatures far beyond local summer conditions for
extended periods. Working on S. pistillata from the same coral
nursery, Krueger et al. (2017) found evidence for a beneficial
effect of exposure to 29�C (� 5�C above in situ conditions dur-
ing the experiment) over 1.5 months, with coral exhibiting
improved photochemistry (i.e., Fv/Fm) and higher Chl
a pigmentation that led to a doubling in net photosynthetic
output. Thus, while this coral population may bleach under
certain scenarios, these corals also appear to exhibit atypical
responses to certain short- or long-term heat stress regimes,
with no clear bleaching response. Instead, these corals appear
able to maintain physiological performance until reaching an
upper thermal limit � 34�C at which point the host suffers
from rapid cellular breakdown. While this threshold appears
to be consistent with aforementioned studies for other species
in different regions, it is nonetheless likely that the upper
thermal limits will vary across regions and latitudes.

Most metrics displayed very similar patterns in response to
increasing temperatures across both the acute vs. chronic
experiments, though there were some consistent differences.
Notably, values of symbiont density and net photosynthesis
were lower at T1 in the 34.5�C treatment in the chronic com-
pared to the acute experiment, though this is unsurprising as
corals in the chronic experiment had endured considerably
more heat loading (up to 5.6 DHWs) and sustained time at
high temperature. Interestingly, these differences were much
less pronounced at T2 suggesting consistency in the afteref-
fects of the exposures. There also was a difference in the Chl
a per cell between the experiments, with Chl a per cell
decreasing in the acute experiment compared to field values,
while remaining constant in the chronic experiment. The loss
of pigments in the acute experiment may be due to light
stress, as corals received constant artificial light in these tanks,
compared to the chronic experiment that was exposed to nat-
ural fluctuating light regimes that may have been more repre-
sentative of the reef environment.

The Coral Bleaching Automated Stress System recently has
been used to assess the thermal tolerance of two S. pistillata
populations in the Central Red Sea (Voolstra et al. 2020a).
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While the previous study conducted a similar chronic experi-
ment, with 9 d of heat stress, it focused on the ability of each
experiment to resolve disparities in thermal tolerances across
the two populations based on historical differences in observed
bleaching susceptibility. As such, the study conducted no direct
comparison of the stress response profiles between the acute
and chronic experiments. The present study provides an impor-
tant comparison of the coral stress response to acute and
chronic thermal stress, with a complete assessment of the
holobiont physiology in both experiments at corresponding
time points and matching temperature intensities; as summa-
rized by the multivariate analysis (Fig. 2). From this, we found
that Fv/Fmmeasurements were consistent with most physiolog-
ical response metrics and representative of holobiont perfor-
mance under acute and chronic heat stress, with a slight
reduction in Fv/Fm at 32�C and a substantial decline at 34.5�C
that was more pronounced in the chronic experiment.
Prompted by the similarity in conclusions that can be drawn
from the acute and chronic thermal stress experiments with
regard to thermal tolerance, we sought to develop a metric rep-
resentative of holobiont thermal tolerance that can serve as a
proxy to quantitatively compare the upper thermal limit of
corals across populations, regions, and species. We computed
the temperature threshold at which photosynthetic perfor-
mance is halved relative to values in the 27�C treatment (base-
line temperatures), the Fv/Fm ED50, which produced similar
proxies of upper thermal limits for both experiments, 34.47�C
vs. 33.81�C for the acute and chronic experiments, respectively.

While Fv/Fm has been used as a non-invasive measurement
of coral stress during heat exposure for many years (Warner
et al. 1996), we propose combining acute heat stress assays
using the experimental stress system with the Fv/Fm ED50

value as a standardized approach to quantitatively determine
upper thermal thresholds of corals. Notably, using four temper-
ature treatments (the maximum monthly mean and three heat
stress treatments) was essential to modeling the dose response
curves, an approach that was not possible in previous studies
using a control and single heat stress treatment (e.g., Krueger
et al. 2017) or the three temperatures of the “classic” experi-
ment of Voolstra et al. (2020a). The Fv/Fm ED50 is not an abso-
lute measure of thermal tolerance, as the absolute thermal
tolerance of a coral is likely to be affected by the prospective
diel/seasonal heating and light regime among other factors.
Still, our results, along with those from Voolstra et al. (2020a)
and Morikawa and Palumbi (2019), indicate some consistency
in the response of corals to acute thermal assays and more pro-
longed thermal exposures and serve as evidence that acute
thermal assays could provide realistic assessments of natural
variance in the thermal tolerance of coral populations
(Voolstra et al. 2020b). As such, this approach could hold great
promise as a standardized diagnostic to empirically assess envi-
ronmental and evolutionary drivers of thermal tolerance across
large scales and identify coral populations with the greatest
chance of surviving future impacts of global warming.

Data availability statement
All raw data, analyses, and scripts are available as an elec-

tronic notebook on GitHub (https://github.com/BarshisLab/
CBASS-vs-RSS-Physiology) prior to publication.

References
Baird, A. H., and P. A. Marshall. 2002. Mortality, growth and

reproduction in scleractinian corals following bleaching on
the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237: 133–141.
doi:10.3354/meps237133

Bellworthy, J., and M. Fine. 2017. Beyond peak summer tem-
peratures, branching corals in the Gulf of Aqaba are resil-
ient to thermal stress but sensitive to high light. Coral
Reefs 36: 1071–1082. doi:10.1007/s00338-017-1598-1

Bellworthy, J., and M. Fine. 2018. The Red Sea Simulator: A
high-precision climate change mesocosm with automated
monitoring for the long-term study of coral reef organisms:
A large future ocean mesocosm in the Gulf of Aqaba. Limnol.
Oceanogr. Methods 16: 367–375. doi:10.1002/lom3.10250

Berkelmans, R., and B. L. Willis. 1999. Seasonal and local spa-
tial patterns in the upper thermal limits of corals on the
inshore Central Great Barrier Reef. Coral Reefs 18: 219–
228. doi:10.1007/s003380050186

Bradford, M. M. 1976. A rapid and sensitive method for the
quantitation of microgram quantities of protein utilizing
the principle of protein-dye binding. Anal. Biochem. 72:
248–254. doi:10.1016/0003-2697(76)90527-3

Byler, K. A., M. Carmi-Veal, M. Fine, and T. L. Goulet. 2013.
Multiple Symbiont acquisition strategies as an adaptive
mechanism in the coral Stylophora pistillata. PLoS One 8:
e59596. doi:10.1371/journal.pone.0059596

Dixon, G. B., S. W. Davies, G. V. Aglyamova, E. Meyer, L. K.
Bay, and M. V. Matz. 2015. Genomic determinants of coral
heat tolerance across latitudes. Science 348: 1460–1462.
doi:10.1126/science.1261224

Fine, M., H. Gildor, and A. Genin. 2013. A coral reef refuge in
the Red Sea. Global Change Biol 19: 3640–3647. doi:10.
1111/gcb.12356

Fordyce, A. J., T. D. Ainsworth, S. F. Heron, and W. Leggat.
2019. Marine Heatwave hotspots in coral reef environ-
ments: Physical drivers, ecophysiological outcomes, and
impact upon structural complexity. Front. Mar. Sci. 6: 498.
doi:10.3389/fmars.2019.00498

Franklin, D. J., O. Hoegh-Guldberg, R. J. Jones, and J. A. Berges.
2004. Cell death and degeneration in the symbiotic dinofla-
gellates of the coral Stylophora pistillata during bleaching.
Mar. Ecol. Prog. Ser. 272: 117–130. doi:10.3354/meps272117

Gates, R. D., G. Baghdasarian, and L. Muscatine. 1992. Tem-
perature stress causes host cell detachment in symbiotic
cnidarians: Implications for coral bleaching. Biol. Bull. 182:
324–332. doi:10.2307/1542252

Evensen et al. Acute vs. chronic coral heat stress

1727

https://github.com/BarshisLab/CBASS-vs-RSS-Physiology
https://github.com/BarshisLab/CBASS-vs-RSS-Physiology
https://doi.org/10.3354/meps237133
https://doi.org/10.1007/s00338-017-1598-1
https://doi.org/10.1002/lom3.10250
https://doi.org/10.1007/s003380050186
https://doi.org/10.1016/0003-2697(76)90527-3
https://doi.org/10.1371/journal.pone.0059596
https://doi.org/10.1126/science.1261224
https://doi.org/10.1111/gcb.12356
https://doi.org/10.1111/gcb.12356
https://doi.org/10.3389/fmars.2019.00498
https://doi.org/10.3354/meps272117
https://doi.org/10.2307/1542252


Genevier, L. G. C., T. Jamil, D. E. Raitsos, G. Krokos, and I.
Hoteit. 2019. Marine heatwaves reveal coral reef zones sus-
ceptible to bleaching in the Red Sea. Global Change Biol.
25(7): 2338–2351. doi:10.1111/gcb.14652

Glynn, P. W. 1984. Widespread coral mortality and the
1982–83 El Niño warming event. Environ. Conserv. 11:
133–146. doi:10.1017/S0376892900013825

Grottoli, A. G., M. E. Warner, S. J. Levas, M. D. Aschaffenburg,
V. Schoepf, M. McGinley, J. Baumann, and Y. Matsui.
2014. The cumulative impact of annual coral bleaching can
turn some coral species winners into losers. Global Change
Biol 20: 3823–3833. doi:10.1111/gcb.12658

Grottoli, A. G., D. Tchernov, and G. Winters. 2017. Physiolog-
ical and biogeochemical responses of super-corals to ther-
mal stress from the northern Gulf of Aqaba, Red Sea. Front.
Mar. Sci. 4: 215. doi:10.3389/fmars.2017.00215

Grottoli, A. G., R. J. Toonen, R. van Woesik, et al. 2020.
Increasing comparability among coral bleaching experi-
ments. Ecol Appl: e2262. doi:10.1002/eap.2262

Harianto, J., N. Carey, and M. Byrne. 2019. respR—An R pack-
age for the manipulation and analysis of respirometry data.
Methods Ecol Evolut 10: 912–920. doi:10.1111/2041-210X.
13162

Hobday, A. J., and others. 2016. A hierarchical approach to
defining marine heatwaves. Prog. Oceanogr. 141: 227–238.
doi:10.1016/j.pocean.2015.12.014

Hoegh-Guldberg, O., and G. J. Smith. 1989. The effect of sud-
den changes in temperature, light and salinity on the popu-
lation density and export of zooxanthellae from the reef
corals Stylophora pistillata (Esper) and Seriatopora hystrix
(Dana). J. Exp. Mar. Biol. Ecol. 129: 279–303. doi:10.1016/
0022-0981(89)90109-3

Hoegh-Guldberg, O., and others. 2018. Impacts of 1.5�C
global warming on natural and human systems. In V. Mas-
son-Delmotte, P. Zhai, H.-O. Pörtner, et al. [eds.], Global
Warming of 1.5�C. An IPCC special report on the impacts
of global warming of 1.5�C above pre-industrial levels and
related global greenhouse gas emission pathways, in the
context of strengthening the global response to the threat
of climate change, sustainable development, and efforts to
eradicate poverty. Intergovernmental Panel on Climate
Change.

van Hooidonk, R., and others. 2016. Local-scale projections of
coral reef futures and implications of the Paris Agreement.
Sci. Rep. 6: 1–8. doi:10.1038/srep39666

Howells, E. J., V. H. Beltran, N. W. Larsen, L. K. Bay, B. L.
Willis, and M. J. H. van Oppen. 2012. Coral thermal toler-
ance shaped by local adaptation of photosymbionts. Nature
Clim Change 2: 116–120. doi:10.1038/nclimate1330

Hughes, T. P., and others. 2017a. Coral reefs in the
Anthropocene. Nature 546: 82–90. doi:10.1038/nature22901

Hughes, T. P., and others. 2017b. Global warming and recur-
rent mass bleaching of corals. Nature 543: 373–377. doi:10.
1038/nature21707

Hughes, T. P., and others. 2018. Spatial and temporal patterns
of mass bleaching of corals in the Anthropocene. Science
359: 80–83. doi:10.1126/science.aan8048

Jin, Y. K., P. Lundgren, A. Lutz, J.-B. Raina, E. J. Howells, A. S.
Paley, B. L. Willis, and M. J. H. van Oppen. 2016. Genetic
markers for antioxidant capacity in a reef-building coral.
Sci. Adv. 2: e1500842. doi:10.1126/sciadv.1500842

Jokiel, P. L. 2004. Temperature stress and coral bleaching,
p. 401–425.In E. Rosenberg and Y. Loya [eds.], Coral health
and disease. Springer.

Jokiel, P. L., and S. L. Coles. 1977. Effects of temperature on
the mortality and growth of Hawaiian reef corals. Mar. Biol.
43: 201–208. doi:10.1007/BF00402312

Kennedy, E. V., and others. 2013. Avoiding coral reef func-
tional collapse requires local and global action. Curr. Biol.
23: 912–918. doi:10.1016/j.cub.2013.04.020,

Krueger, T., N. Horwitz, J. Bodin, M.-E. Giovani, S. Escrig, A.
Meibom, and M. Fine. 2017. Common reef-building coral
in the northern Red Sea resistant to elevated temperature
and acidification. R. Soc. Open Sci. 4: 170038. doi:10.1098/
rsos.170038

Kuznetsova, A., P. B. Brockhoff, and R. H. B. Christensen.
2017. lmerTest Package: Tests in linear mixed effects
models. J. Stat. Softw. 82: 1–26. doi:10.18637/jss.v082.i13

LaJeunesse, T. C., J. E. Parkinson, P. W. Gabrielson, H. J.
Jeong, J. D. Reimer, C. R. Voolstra, and S. R. Santos. 2018.
Systematic revision of Symbiodiniaceae highlights the
antiquity and diversity of coral endosymbionts. Curr. Biol.
28: 2570–2580.e6. doi:10.1016/j.cub.2018.07.008

Lampert-Karako, S., N. Stambler, D. J. Katcoff, Y. Achituv, Z.
Dubinsky, and N. Simon-Blecher. 2008. Effects of depth
and eutrophication on the zooxanthella clades of
Stylophora pistillata from the Gulf of Eilat (Red Sea).
Aquatic Conserv.: Mar. Freshw. Ecosyst. 18: 1039–1045.
doi:10.1002/aqc.927

Leggat, W. P., and others. 2019. Rapid coral decay is associated
with marine heatwave mortality events on reefs. Current
Biology 29: 2723-2730.e4. doi:10.1016/j.cub.2019.06.077

Lenth, R., H. Singmann, J. Love, P. Buerkner, and M. Herve.
2020. emmeans: Estimated Marginal Means, aka Least-
Squares Means.

Liu, G., and others. 2014. Reef-scale thermal stress monitoring
of coral ecosystems: New 5-km global products from NOAA
coral reef watch. Remote Sens. (Basel) 6: 11579–11606. doi:
10.3390/rs61111579,

Marshall, P. A., and A. H. Baird. 2000. Bleaching of corals on
the Great Barrier Reef: Differential susceptibilities among
taxa. Coral Reefs 19: 155–163. doi:10.1007/s003380000086

Martinez Arbizu, P. 2019. pairwiseAdonis: Pairwise multilevel
comparison using adonis.

McLachlan, R. H., J. T. Price, S. L. Solomon, and A. G.
Grottoli. 2020. Thirty years of coral heat-stress experiments:
A review of methods. Coral Reefs 39: 885–902. doi:10.
1007/s00338-020-01931-9

Evensen et al. Acute vs. chronic coral heat stress

1728

https://doi.org/10.1111/gcb.14652
https://doi.org/10.1017/S0376892900013825
https://doi.org/10.1111/gcb.12658
https://doi.org/10.3389/fmars.2017.00215
https://doi.org/10.1002/eap.2262
https://doi.org/10.1111/2041-210X.13162
https://doi.org/10.1111/2041-210X.13162
https://doi.org/10.1016/j.pocean.2015.12.014
https://doi.org/10.1016/0022-0981(89)90109-3
https://doi.org/10.1016/0022-0981(89)90109-3
https://doi.org/10.1038/srep39666
https://doi.org/10.1038/nclimate1330
https://doi.org/10.1038/nature22901
https://doi.org/10.1038/nature21707
https://doi.org/10.1038/nature21707
https://doi.org/10.1126/science.aan8048
https://doi.org/10.1126/sciadv.1500842
https://doi.org/10.1007/BF00402312
https://doi.org/10.1016/j.cub.2013.04.020
https://doi.org/10.1098/rsos.170038
https://doi.org/10.1098/rsos.170038
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.1016/j.cub.2018.07.008
https://doi.org/10.1002/aqc.927
https://doi.org/10.1016/j.cub.2019.06.077
https://doi.org/10.3390/rs61111579
https://doi.org/10.1007/s003380000086
https://doi.org/10.1007/s00338-020-01931-9
https://doi.org/10.1007/s00338-020-01931-9


Morikawa, M. K., and S. R. Palumbi. 2019. Using naturally
occurring climate resilient corals to construct bleaching-
resistant nurseries. PNAS 116: 10586–10591. doi:10.1073/
pnas.1721415116

Oksanen, J., and others. 2018. vegan: Community ecology
package.

Oliver, T. A., and S. R. Palumbi. 2011. Many corals host ther-
mally resistant symbionts in high-temperature habitat.
Coral Reefs 30: 241–250. doi:10.1007/s00338-010-0696-0

van Oppen, M. J. H., J. K. Oliver, H. M. Putnam, and R. D. Gates.
2015. Building coral reef resilience through assisted evolution.
PNAS 112: 2307–2313. doi:10.1073/pnas.1422301112

van Oppen, M. J. H., and others. 2017. Shifting paradigms in
restoration of the world’s coral reefs. Global Change Biol
23: 3437–3448. doi:10.1111/gcb.13647

Palumbi, S. R., D. J. Barshis, N. Traylor-Knowles, and R. A. Bay.
2014. Mechanisms of reef coral resistance to future climate
change. Science 344: 895–898. doi:10.1126/science.
1251336

R Core Team. 2018. R: A language and environment for statis-
tical computing. Vienna, Austria: R Foundation for Statisti-
cal Computing, https://www.R-project.org/

Ritchie, R. J. 2006. Consistent sets of spectrophotometric chlo-
rophyll equations for acetone, methanol and ethanol sol-
vents. Photosynth. Res. 89: 27–41. doi:10.1007/s11120-
006-9065-9

Ritz, C., F. Baty, J. C. Streibig, and D. Gerhard. 2015. Dose-
response analysis using R. PLoS One 10: e0146021. doi:10.
1371/journal.pone.0146021

Safaie, A., and others. 2018. High frequency temperature vari-
ability reduces the risk of coral bleaching. Nat. Commun.
9: 1–12. doi:10.1038/s41467-018-04074-2

Sampayo, E. M., T. Ridgway, P. Bongaerts, and O. Hoegh-
Guldberg. 2008. Bleaching susceptibility and mortality of
corals are determined by fine-scale differences in symbiont
type. PNAS 105: 10444–10449. doi:10.1073/pnas.0708049105

Schoepf, V., M. Stat, J. L. Falter, and M. T. McCulloch. 2015.
Limits to the thermal tolerance of corals adapted to a
highly fluctuating, naturally extreme temperature environ-
ment. Sci Rep 5: 17639. doi:10.1038/srep17639

Silverstein, R. N., R. Cunning, and A. C. Baker. 2015. Change
in algal symbiont communities after bleaching, not prior
heat exposure, increases heat tolerance of reef corals.
Global Change Biol 21: 236–249. doi:10.1111/gcb.12706

Stimson, J., and R. A. Kinzie. 1991. The temporal pattern and
rate of release of zooxanthellae from the reef coral
Pocillopora damicornis (Linnaeus) under nitrogen-
enrichment and control conditions. J. Exp. Mar. Biol. Ecol.
153: 63–74. doi:10.1016/S0022-0981(05)80006-1

Thornhill, D. J., T. C. LaJeunesse, D. W. Kemp, W. K. Fitt, and
G. W. Schmidt. 2006. Multi-year, seasonal genotypic sur-
veys of coral-algal symbioses reveal prevalent stability or
post-bleaching reversion. Mar. Biol. 148: 711–722. doi:10.
1007/s00227-005-0114-2

Voolstra, C. R., and others. 2020a. Standardized short-term
acute heat stress assays resolve historical differences in coral
thermotolerance across microhabitat reef sites. Glob.
Chang. Biol. 26: 4328–4343.

Voolstra, C. R., Valenzuela, J. J., Cardenas, A., Hume, B. C.,
Gabriela, P., Buitrago-Lopez, C., Turkarslan, S., Orellana, M.
V., Baliga, N. S., Paranjape, S., Frias-Torres, S., Banc-
Prandi, G., Bellworthy, J., Fine, M., Barshis, D. J. 2020b. Con-
trasting heat stress response patterns of coral holobionts
across the Red Sea suggest distinct mechanisms of thermal
tolerance. preprint (Version 1) available at Research Square.
doi:10.21203/rs.3.rs-117181/v1.

Warner, M. E., W. K. Fitt, and G. W. Schmidt. 1996. The
effects of elevated temperature on the photosynthetic effi-
ciency of zooxanthellae in hospite from four different spe-
cies of reef coral: A novel approach. Plant Cell Environ. 19:
291–299. doi:10.1111/j.1365-3040.1996.tb00251.x

Weis, V. M. 2008. Cellular mechanisms of cnidarian
bleaching: Stress causes the collapse of symbiosis. J. Exp.
Biol. 211: 3059–3066. doi:10.1242/jeb.009597

Wickham, H. 2016. ggplot2: Elegant graphics for data analysis.
Springer.

Winters, G., S. Beer, B. B. Zvi, I. Brickner, and Y. Loya. 2009.
Spatial and temporal photoacclimation of Stylophora
pistillata: Zooxanthella size, pigmentation, location and
clade. Mar. Ecol. Prog. Ser. 384: 107–119. doi:10.3354/
meps08036

Acknowledgments
We thank Guilhem Banc-Prandi, Chen Azulay, Jessica Bellworthy, and

Dror Komet for their help. We also thank the staff at the IUI for their hos-
pitality. This research was supported by funding from the U.S. Israeli BiNa-
tional Science foundation (award 2016403 to DJB and MF), National
Science Foundation (award 1833201 to DJB), and by the University of
Konstanz and the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) project number 433042944.

Conflict of Interest
None declared.

Submitted 20 May 2020

Revised 19 October 2020

Accepted 10 January 2021

Associate editor: Steeve Comeau

Evensen et al. Acute vs. chronic coral heat stress

1729

https://doi.org/10.1073/pnas.1721415116
https://doi.org/10.1073/pnas.1721415116
https://doi.org/10.1007/s00338-010-0696-0
https://doi.org/10.1073/pnas.1422301112
https://doi.org/10.1111/gcb.13647
https://doi.org/10.1126/science.1251336
https://doi.org/10.1126/science.1251336
https://www.R-project.org/
https://doi.org/10.1007/s11120-006-9065-9
https://doi.org/10.1007/s11120-006-9065-9
https://doi.org/10.1371/journal.pone.0146021
https://doi.org/10.1371/journal.pone.0146021
https://doi.org/10.1038/s41467-018-04074-2
https://doi.org/10.1073/pnas.0708049105
https://doi.org/10.1038/srep17639
https://doi.org/10.1111/gcb.12706
https://doi.org/10.1016/S0022-0981(05)80006-1
https://doi.org/10.1007/s00227-005-0114-2
https://doi.org/10.1007/s00227-005-0114-2
https://doi.org/10.21203/rs.3.rs-117181/v1
https://doi.org/10.1111/j.1365-3040.1996.tb00251.x
https://doi.org/10.1242/jeb.009597
https://doi.org/10.3354/meps08036
https://doi.org/10.3354/meps08036

	 Remarkably high and consistent tolerance of a Red Sea coral to acute and chronic thermal stress exposures
	Methods
	Experimental overview
	Acute heat stress experiment
	Chronic heat stress experiment
	Physiological response measurements
	Statistical analysis
	Fv/Fm 50% effective dose (ED50) metric

	Results
	Treatment conditions
	Holobiont response
	Host protein, Chl a, and symbiont density
	Photosynthesis, respiration, and Fv/Fm

	Discussion
	Outline placeholder
	Data availability statement


	References
	Acknowledgments
	Conflict of Interest



