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Abstract

The prediction of log P values is one part of the statistical assessment of the modeling of proteins and ligands (SAMPL)
blind challenges. Here, we use a molecular graph representation method called Geometric Scattering for Graphs (GSG) to
transform atomic attributes to molecular features. The atomic attributes used here are parameters from classical molecular
force fields including partial charges and Lennard—Jones interaction parameters. The molecular features from GSG are used
as inputs to neural networks that are trained using a “master” dataset comprised of over 41,000 unique log P values. The
specific molecular targets in the SAMPL7 log P prediction challenge were unique in that they all contained a sulfonyl moeity.
This motivated a set of Classical GSG submissions where predictors were trained on different subsets of the master dataset
that are filtered according to chemical types and/or the presence of the sulfonyl moeity. We find that our ranked prediction
obtained 5th place with an RMSE of 0.77 log P units and an MAE of 0.62, while one of our non-ranked predictions achieved
first place among all submissions with an RMSE of 0.55 and an MAE of 0.44. After the conclusion of the challenge we also
examined the performance of open-source force field parameters that allow for an end-to-end log P predictor model: General
AMBER Force Field (GAFF), Universal Force Field (UFF), Merck Molecular Force Field 94 (MMFF94) and Ghemical. We
find that ClassicalGSG models trained with atomic attributes from MMFF94 can yield more accurate predictions compared
to those trained with CGenFF atomic attributes.

Keywords SAMPL7 log P challenge - Geometric scattering for graphs - Neural networks - Partition coefficient - Molecular
representations - Log P - Machine learning - Chemical features

Introduction

The logarithm of the octanol-water partition coefficient (P)
of a neutral compound is referred to as log P and can also be
denoted as log K, or log P,,,. The partition coefficient itself
is defined as the ratio of the concentrations of a compound in
a two-phase system in equilibrium. One of the main applica-
tions of log P is in drug design and discovery. It is a quanti-
tative descriptor of lipophilicity, which affects the absorp-
tion, distribution, metabolism, elimination, and toxicology
(ADMET) of a drug compound in the body. Additionally,
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the log P value of a chemical compound determines its drug-
likeness and is included in the famous Lipinski’s Rule of
Five [1]. The applications of log P are not specific to drug
design and extend to other fields such as agriculture [2—4],
environmental science [5—7] among many others.
Considering the widespread usage of log P and the cost
associated with experimental measurements, a large variety
of computational methods such as XlogP3 [8], AlogP [9],
ClogP [10], KowWIN [11], JPlogP [12] Laszl6 et al [13],
Huuskonen et al [14], MlogP [15], iLogP [16], Manhold
[17], AlogPS [18], S+logP [19], CSLogP [20], Silicos-IT
LogP [21], TopP-S [22], OpenChem [23] have been devel-
oped over the years. These methods employ various tech-
niques and algorithms for predicting log P and have their
pros and cons as explained in our previous work [24]. In
publications, these methods often use their own specific test
sets, making the comparison between different algorithms
challenging. Hence, benchmarks and standardized test sets
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are needed to effectively compare these methods and further
advance the research on log P prediction.

To help meet this need, the statistical assessment of the
modeling of proteins and ligands (SAMPL) [25] project
recently created a distinct blind challenge for predicting
log P allowing fair evaluation and comparison of differ-
ent log P prediction methods (SAMPL6 in 2019 [26] and
SAMPL7 in 2020 [27]). In this challenge, the participants
predict log P for a set of drug-like molecules and the predic-
tions are assessed using experimental log P values that are
revealed later. The submitted prediction methods are classi-
fied into one of the following categories: Empirical methods,
Physical molecular mechanics (MM)-based, Physical quan-
tum mechanics (QM)-based, or Mixed methods. Empiri-
cal methods [8-22, 24, 28, 29] are data-driven methods in
which predictor models are trained directly on a dataset of
molecules. The empirical category includes methods that
employ atomic/fragment-based additive methods, machine
learning, and quantitative structure-property relationship
(QSPR) approaches. In MM-based methods [30, 30-34],
molecular dynamics simulations are run and used to esti-
mate the solvation free energy. Then, the log P for a com-
pound is calculated analytically from the solvation energy.
QM-based methods [35—41] utilize the solvation free energy
estimated from the quantum mechanical energy calculations.
The mixed approaches [40, 42-44] employ the combination
of physical (QM/MM-based) and empirical techniques.

The main advantage of empirical methods is that they are
quite fast compared to physical (MM/QM-based) methods.
However, training a log P predictor model with the ability
to generalize to new data is not easy. For example, the Root
Mean Squared Error (RMSE) of the best log P predictor
model for the NonStar [17] test set is 0.82 [22], which is
higher than expected experimental sources of error, even
taking into account different experimental methods for log P
measurement [45]. This test set, which is publicly available
[46] has 43 compounds that are unlike compounds typically
found in the training sets of tested methods (see Table 7 in
[22]). Similarly, the SAMPL7 challenge [27] involves a set
of 22 molecules that each contain a sulfonyl moiety, which
is relatively under-represented in training sets. Here we
examine the accuracy of different training sets in predicting
log P values for compounds with special structures. A mas-
ter training dataset which includes 41, 409 molecules, was
filtered according to chemical elements and/or the existence
of the sulfonyl moiety to generate three smaller datasets.

On the other hand, the performance of the empirical mod-
els also depends on the choice of molecular features used
for training the models. Generally, molecular features are a
set of numerical values that describe the relevant properties
of a molecule. Additive empirical methods such as XlogP3
[8], Alog [9], ClogP [10], KowWIN [11], JPlogP [12] simply
construct a vector of atomic—or fragment-based attributes
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and predict log P using a function that sums contributions
from each of the component attributes. Additive methods
are inherently approximate, as they do not take into account
the entire structure of a molecule. Other methods address
this through a combination of molecular and atomic—or
fragment-based descriptors [21, 22]. The challenge we seek
to address in our approach is to develop a set of molecular
features that succinctly describe the contributions of each
atom while taking the molecular structure into account.

A natural way to represent molecules is to use a graph
where nodes are atoms and the edges are bonds. Graph rep-
resentation of molecules is becoming very popular in recent
years, and it enables us to represent the complex molecular
structures effectively and subsequently ensure high perfor-
mance of models [23, 47-52]. We should notice that graph-
based models are naturally invariant to translation, rotation,
and reflection symmetries. To ensure symmetry with respect
to re-indexation of atoms, methods such as convolution neu-
ral networks and a recently developed graph data analysis
method called geometric scattering for graphs (GSG) [53]
can be used.

Our approach in this work for predicting log P is based
on a graph representation of molecules that employs GSG
for generating invariant molecular features from atomic
attributes. GSG is beneficial in that it uses a fast analytical
method for creating molecular features. The molecular fea-
tures are of equal length for molecules with any number of
atoms allowing us to use any distance metric for calculating
the similarity of two molecules. Here, we use atomic attrib-
utes taken from molecular mechanics force fields including
partial charges, atom type, and Lennard—Jones interaction
parameters: radius () and well-depth (¢). The GSG molecu-
lar features are used as inputs to neural networks that are
trained to predict log P. We refer to this combined approach
as “Classical GSG™.

In our previous work [24], we employed Classical GSG to
examine the performance of two force field parameter match-
ing programs: CHARMM General Force Field (CGenFF)
[54, 55] and General AMBER Force Field 2 (GAFF2) [56,
57]. The NN models were trained using a dataset of mol-
ecules made available by OpenChem [23] and we showed
that CGenFF-generated parameters with a specific ad hoc
scheme of classifying CGenFF atomic types achieved the
highest accuracy in predicting log P values.

For the SAMPL7 target molecules we used the best
performing parameter sets to train four log P predictor
models. One of our verified (but non-ranked) prediction
sets achieved the lowest RMSE (0.55) and the second-
lowest Mean Absolute Error (MAE) of 0.44 among all
the submitted predictions. We note that in SAMPL6 [26]
the best set of predictions was using Cosmotherm [36],
achieving an RMSE of 0.38, and 10 models achieved an
RMSE of less than 0.5. In SAMPL7 none of the submitted
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predictions were below this threshold, implying that these
molecules had specific structures that introduced diffi-
culty into both the empirical and physical predictions.

In this work we describe the process of curating the
four training datasets, training the models and making
predictions for SAMPL7 target molecules. Further, to
achieve better predictions we examined the performance
of various open-source force fields such as General
AMBER Force Field (GAFF) [58], Universal Force Field
(UFF) [59], Merck Molecular Force Field 94 (MMFF94)
[60, 61] and Ghemical [62]. Our results show that
MMFF94 models create predictors that on average are
as accurate or better than those created with CGenFF.
We conclude with a discussion regarding the curation of
training sets for the SAMPL7 challenge, the performance
of open-source force field generator tools and the code
available in the Classical GSG package.
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Methods

SAMPL7 log P challenge molecules and curation
of the training datasets

The SAMPL7 target molecules were synthesized by the Bal-
latore group at the UC San Diego university and their log P
values were measured experimentally [63]. This collection
includes 22 small drug-like molecules whose 2D structures
in their neutral state are shown in Fig. 1. These molecules all
consist of only five atomic elements of (C, N, O, S, and H)
and all have a sulfonyl moiety. The molecular weights vary
from 227.285 to 365.476.

For the SAMPL7 challenge, we first built a master train-
ing dataset by combining the log P datasets in Table 1. The
physical properties database (PHYSPROP) [65] was built
by the Syracuse Research Corporation (SRC) and contains
the log P values of over 41,000 diverse chemical com-
pounds. Here, we used the public version of PHYSPROP.
The Huuskonen dataset [14] has 1844 unique molecules,
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Fig.1 The SAMPL7 log P challenge molecules. The SAMPL7 target molecules are shown in their 2D structures in their neutral microstate
(micro000). The 2D structures are generated and drawn from SMILES by RDKkit [64]
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Table 1 log P datasets used for training

Table 2 The parameters hyperparameters of neural networks

Test set name Number of
molecules
PHYSPROP [65] 41,039
Huuskonen training set [14, 66] 1496
TopP-S [14] 8199
OpenChem [23] 14,176
ALOGPS_3_01 17,436
Logpt_all_data_training 233
Logpt_challenge_training 187

combining 326 molecules from its initial version [66] with
1663 molecules from the Klopman dataset [67]. The 1844
molecules in the Huuskonen dataset have been organized
into a training set with 1496 compounds and a test set with
348 compounds. Here we use molecules from the Huuskonen
training set. The TopP-S dataset consists of 8199 chemical
compounds, initially compiled by Hansch et al. [68] and then
compiled by Cheng et al. [8] to include only molecules with
reliable experimental log P values. The OpenChem dataset
was curated from the PHYSPROP drug database [23] and
contains of 14,176 molecules. The Logpt_all_data_training,
ALOGPS_3_01, and Logpt_challenge_training are public
log P training sets which can be downloaded from https://
ochem.eu. The RDkit program [64] is employed to create
canonical SMILES for molecules in these 7 datasets. After
removing duplicate molecules, 44,595 molecules remained
in the dataset. As the generation of CGenFF atomic attrib-
utes failed for some molecules, we ended up with 41, 409
molecules in our dataset, which we refer to as the “master
dataset.

The master dataset itself serves as “DB1”, which is used
to train a GSG model to generate a set of predictions for the
SAMPL7 molecules. The presence of only five atomic ele-
ments C, N, O, S, and H in the SAMPL7 target molecules
motivated us to make a subset of the master dataset where
each compound has only has these atomic elements, which
we call “DB2”. Molecules that either had another element
not listed above or did not have the full set of elements were
not selected. The DB2 dataset has 3482 molecules. Also,
the existence of a specific structure —a sulfonyl moiety—in
all of the SAMPL7 target molecules inspired us to gener-
ate the third dataset by filtering the master training set and
keeping only those with sulfonyl moiety. The “HasSubstruct-
Match” function of RDKit was used to check if a molecule
has this moiety. The obtained training dataset is referred to
as “DB3” and has 2379 molecules. The fourth training set
was obtained by filtering the master dataset and keeping only
those with both a sulfonyl moiety and the following elements
(C, N, O, S, and H). This training set has 1482 molecules,
and we refer to it as “DB4”. These four datasets DB1, DB2,
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Parameter Values
Number of hidden layers [2,3,4,5]
Size of hidden layers [300, 400, 500]
Dropout rate [0.2,0.4]
Initial learning rate 0.005
Learning coefficient 0.5

Batch size 256

Max epoch size 400

Sets in square brackets denote possible parameter values used in the
grid search method

DB3, and DB4, are used to train four Classical GSG models
and generate four sets of predictions for the SAMPL7 target
molecules.

Further, to assess the performance of the open-source
force field tools we use a group of external test sets includ-
ing FDA [8], Star [17], NonStar [17] and Huuskonen [14,
66] and SAMPL6 molecules set [26] (see Table 2 in Refs
[24]). To quantify our uncertainty, we chose molecules
from these test sets that are similar to the set of SAMPL7
molecules. More specifically, these test sets are filtered to
include molecules with a sulfonyl moiety and to include
each of the elements (C, N, O, S, and H). Molecules that
contained other elements were excluded. The selected 44
molecules are filtered further by keeping molecules which
their molecular weight is in the range of SAMPL7 molecules
weights. The resulting test set has 36 molecules and referred
toas S7 TEST.

Generating atomic attributes

In the Geometric Scattering for Graphs method [53], molec-
ular features are generated by “scattering” atomic attributes
over the graph structure of the molecule. Here our set of
atomic attributes includes partial charges, atom type, and
Lennard—Jones interaction parameters for the atoms of each
molecule. These atomic attributes are generated either by
CGenFF [54, 55] or open-source force fields such as GAFF
[58], UFF [59], MMFF94 [60, 61] and Ghemical [62].

To generate CGenFF atomic attributes, OpenBabel [69,
70] is used to generate 3D structures for the molecules from
SMILES and save them in mol2 format. The mol?2 file is
passed to the CGenFF tool of the SilcsBio package (http://
silcsbio.com) to create a CGenFF parameter file in str for-
mat. Atomic partial charges and atomic types for each atom
are extracted from the str file. Then two Lennard—Jones
parameters—radius (r) and well-depth (¢)—are extracted
from CHARMM parameter file (par_all36_cgenff.prm)
for each atom type in the molecule. The one-hot encoding
format is used for representing atomic types while atomic
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charge and two Lennard—Jones parameters are scalar values.
CGenFF has 169 atomic types, and to reduce the number
of atomic type categories, as in our previous work [24], we
manually grouped CGenFF atom types into 36 groups and
refer to this as Atom Category 36 “AC36” (see Table S1
[24]).

All of the open-source force fields such as GAFF, UFF,
MMFF94, and Ghemical are implemented inside OpenBabel
and making it easier to generate force field parameters for a
molecule. The SMILES is used to generate an OpenBabel
molecule and 3D structures. Using the “Setup” function of
the force field method the atomic parameters are generated
for a given molecule. This method is straight forward and
does not require any external program. We use all the atomic
types generated by each of these force fields without further
grouping them, which we denote as “ACall”.

Geometric scattering for graphs

Geometric scattering for graphs (GSG) [53] is a non-traina-
ble graph feature extraction method proposed by Gao et al.
[53] that is analogous to Graph Convolution Neural Net-
works (GCNs) [71]. Unlike the GCNs, GSG uses a cascade
of designed wavelet filters instead of convolution filters with
learned parameters. Another advantage of GSG is that its
features can be directly assigned to particular atomic attrib-
utes, whereas this analysis in GCNs is more challenging.
The GSG method has been shown to be a powerful tool for
representing the graph structures in varied datasets includ-
ing the classification of enzymes via protein structural fea-
tures [53]. Here, we use GSG to generate invariant features
from the graph representation of small organic molecules.
Each atom is represented by a node and the edges are cova-
lent bonds. A vector of attributes is associated with each
atom, which can include the atomic number or more spe-
cific atomic types. GSG encodes the geometric information
of molecules in an adjacency matrix and generates wavelet
filters to capture several convolutions of node attributes that
take into account the graph structure of the molecule. The
architecture of GSG is shown in Fig 1 of Ref. [24].

Here we describe of the mathematical construction of
this method (additional discussion can be found in Refs. [24,
53]). Let G = (V, E, W) be a weighted graph where V is the
set of nodes, and E is the set of edges in the graph. A signal
function x(v;) = R" is defined on each node where N is the
number of node attributes, 1 < i < n is the index of a node,
and 7 is the number of nodes in the graph. GSG uses a lazy
random walk matrix, defined as follows

P=1(+AD™ ()

where [ is the identity matrix, A is the adjacency matrix
showing the node connectivity, and D is the degree matrix.

The lazy random walk includes self-connections and acts
like a Markov process with a transition matrix of AD™.
Higher powers of P (e.g. P') represent the probability distri-
bution of a graph lazy random walk after ¢ steps. Here, this
can be seen as a random walk over the structure of the mole-
cule, where “steps” are transitions between atoms. These are
used to create a set of wavelet matrices, denoted ¥, where
o ;

Y. =pP” - P? 2)
The wavelet matrices are thus convolution-like filters, used
to transform the information of nodes at different scales and
are also referred to as graph wavelet transforms. These are
applied to graph signals X to generate geometric scattering
transforms, which are defined at three orders (zeroth, first
and second) that are named based on the number of trans-
formations ¥; applied to x.

The zeroth order scattering moments (S;) are the
untransformed q‘h moments of x, defined as follows:

So= ) x(n), 1<g<Q 3)
i=1

where Q is the number of moments considered for each sig-
nal in x. The number of features in S is equal to NQ. The
S, are the simplest invariant features but cannot capture the
variability of x completely. Hence, the higher order scatter-
ing is defined that takes into account the molecular structure.
The first order scattering moments (S,) are ¢ order
moments of x “scattered” by the wavelet matrices ¥:

n
S =Y Wxm)IY, 1<j<J 1<9<0Q @
i=1
where J is the maximum wavelet scale, and the total number
of first order features is equal to NJQ.
The second order scattering moments (S,) are con-
structed by applying wavelet matrices ¥ to [¥;x(v))| at
different scales (e.g. where j # j'):

n
S, =) 1% [Zx)II, 1<q<0 (5
i=1
S, combines wavelet transforms at two scales 2/ and 2/’ and
generates features that connect the patterns of short- and
long-range subgraphs within the full graph. There are a total
of %NJ (J — 1)Q second order features.

The stack of {S,,S,,S,} generates symmetry-invariant
and informative information for a given molecule. Note
that GSG generates features with the same length regard-
less of the size of the molecule, allowing us to use any
distance metric for similarity measurements. Here, the
adjacency matrices are constructed from the 2D structure
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of molecules. If there is a bond between nodes i and j, A;
is set to 1, and is O otherwise.

Neural network architecture

The neural networks we employed for training the Classi-
calGSG models are multilayer perceptron (MLP) networks
and we implemented them using the PyTorch package [72].
We used Rectified Linear Unit (ReLLU) as the nonlinear acti-
vation functions in our models. To tune the hyperparameters
and train the models, we performed a 5-fold cross validation
using Skorch [73] where we did a comprehensive grid search
in the space of hyperparameters to find the best perform-
ing models. We used the Mean Squared Error (MSELOSS
) and Adaptive Momentum Estimation (Adam) [74] as the
loss function and optimizer of the parameters, respectively.
We chose an adaptive learning rate policy with the initial
value of 0.005 which drops by a factor of 0.5 every 15 steps.
The “standardization” function from the scikit-learn pack-
age [75] was used for regularizing molecular features. The
hyperparameters and other parameters of NNs are summa-
rized in Table 2.

Results
Uncertainty estimations

Upon submission of our results to the SAMPL7 organiz-
ers, our predictions for uncertainty in log P were simply the
standard errors of the mean of the predictions using the four
training sets. Here we first calculate more accurate estimates
for the prediction uncertainty using prediction intervals (PIs)
obtained separately for each of the four predictors. PIs define
the range of values in which predictions for new data are
expected to lie with a defined probability. For example, a
90% PI in the range of [a, b] indicates that a future predic-
tion will fall into the range [a, b] 90% of the time. There are
a variety of methods for calculating PIs for NNs, such as
bootstrapping [76, 77], Mean-Variance Estimation (MVE)
[78], Delta, and Bayesian methods. In this paper, we utilize
a parametric approach similar to the MVE method. However,
unlike the MVE, our method constructs PIs from the Mean
Absolute Errors (MAE) between the predicted and observed
values of similar inputs rather than all of the input data.
The PIs are determined by finding a MAE value (ey,) below
which 90% of MAE values fall. Thus for a future prediction
() the Pl is defined as [ — ey, § + €91

To construct PIs, we make four sets of predictions for
the S7 TEST dataset using ClassicalGSG models trained
on DB1, DB2, DB3, or DB4 training sets. As mentioned in
Sect. 2.1, S7_TEST is a subset of external test sets con-
taining molecules similar to the SAMPL7 molecules. For
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training these models, we used the parameters of the best
Classical GSG models obtained in our previous work [24].
More specifically, atomic attributes from CGenFF param-
eters, 2D molecular structure information and AC36 atomic
types fed to GSG with parameters of maximum wavelet
number (J) of 4, and all scattering operators (zeroth, first,
and second order) to generate molecular features. After
making predictions using these models, the MAE values
are calculated for S7_TEST for each set of predictions. We
then binned them in a histogram with 20 bins to determine
cumulative probability distributions shown in Fig. 2.

The four sets of predictions made for SAMPL7 target
molecules using each model and their 90% PIs are shown in
Fig. 3. We determined the coverage of PIs for experimental
log P values for each model and the results are shown in
Table 3. The ClassicalGSG_DB2 method has the highest
coverage of 90.90%, as expected, although other predic-
tors fall below this threshold. This could indicate that the
SAMPL7 log P values were more difficult to predict than
the similar S7_TEST molecules.

Predictions for SAMPL7 log P challenge

Four sets of blind predictions were generated using differ-
ent training sets, as described above. By the rules of the
SAMPLY7 challenge, only one of these predictions could
be used as a “ranked” submission. To determine which set
to use we examined the performance of each predictor on
the FDA [8] and Huuskonen test sets [14] and chose the
model with the lowest RMSE: Classical GSG-DB3. We note
that there was an error in our analysis code at this time,
and later we found the ClassicalGSG-DB1 was the model
with the lowest RMSE. The RMSE and 2 values of pre-
diction sets using these four models was determined after
the SAMPLY7 challenge (Table 4). Note that the best model
in terms of RMSE is the one trained on the DB2 training
set and the worst performing model was DB3. The model
we were intending to select, DB1, is the second-worst per-
forming model. In retrospect, this shows that the FDA and
Huuskonen test sets were not good proxies for the SAMPL7
molecules. We show comparisons of our predictions with
experimental results, along with linear fit lines for each
model in Fig. 4. Note the best fitting coefficients also cor-
respond to the model trained on the DB2 training set.

To identify the prediction outliers, we show the log P
predictions from our methods for the SAMPL7 target mol-
ecules in Fig. 5. We find the largest systematic errors in
compounds: SM36, SM40, SM41, SM42, SM43 and SM45
molecules. As shown in Fig. 6A from Ref. [27], these mol-
ecules were found to have some of the highest prediction
errors across all submissions. For SM36, SM41, SM42 and
SM43, Classical GSG consistently over-predicted the experi-
mentally determined log P, which was also true for the other
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Table3 The PIs and coverage range for the SAMPL7 molecules
using four Classical GSG methods

Model name PIs Coverage of PlIs
ClassicalGSG_DB1 y+0.94 72.72%
ClassicalGSG_DB2 y+0.88 90.90%
ClassicalGSG_DB3 y+0.88 68.18%
ClassicalGSG_DB4 $+£0.98 86.36%

y is the prediction of log P

well-performing methods (in Fig. 6D of Ref. [27]). Mol-
ecules SM40 and SM45 were under-predicted compared to
experiment, which was also in line with other well-perform-
ing methods, although the trend is less clear.

Performance of Open-source force fields

Although there is an online server for generating CGenFF
parameter files for a given molecule, it is still challenging
to use CGenFF for high throughput applications as it is not
open-source. Hence, we decided to assess the performance
of open-source force field tools implemented by OpenBa-
bel [69, 70] which is open-source and free to use on large
databases of molecules. We utilized GAFF [58], UFF [59],
MMFF94 [60, 61] and Ghemical [62] force field parameters
to generate atomic attributes including atom types, partial
charges and the two Lennard—Jones interaction parameters
(e and r). As above, we applied the GSG method with maxi-
mum wavelet scale of 4 while using all scattering operators
to generate molecular features from atomic attributes. We
used the DB2 training set to train 5 log P predictor models
for each force field. Each of these models is trained using
a 5-fold cross validation approach. These models are tested
on the SAMPL7 molecules and the RMSE and 72 values are
calculated for each set of predictions. We took the average
values over the 5 runs for each force field and the results
are shown in Fig. 6. This figure shows that Classical GSG
models from MMFF94 force field parameters achieve the
highest r2 and lowest RMSE value, which are on par with
the CGenFF results submitted to the challenge.
Additionally, we studied the performance of MMFF94
Classical GSG models on independent external test sets such

as FDA [8], Huuskonen [14, 66], Star [17], NonStar [17] and
the compounds from the SAMPL6 log P prediction challenge
[26]. For the purpose of a fair comparison, we used the same
10722 molecules from the OpenChem dataset as utilized in
our previous paper [24]. All combinations of a set of maxi-
mum wavelet scales (/) and sets of scattering operators are
used as GSG parameters to train 20 ClassicalGSG models
as indicated in Table 5.

The atomic attributes were generated from MMFF94
atomic parameters and all atomic types from MMFF94
(ACall). The parameters corresponding to the best mod-
els per each test test along with their performance results
are shown in Table 6. The ClassicalGSG models based on
MMFF%4 achieve better performance compared to CGenFF
based models for all test sets (see Table 7 in Ref. [24]). The
comparison between log P prediction results for FDA, Star,
and NonStar test sets and those from other log P predictor
methods are shown in Tables S1, S2, and S3. As these tables
show, MMFF94 Classical GSG achieves the best results to
date for the NonStar test set and the second-best results for
the FDA and Star test sets. Moreover, our method shows a
significant improvement in the prediction of log P values for
SAMPL6 molecules, with a RMSE in the range [0.29, 0.52]
and median of 0.42 over 20 models. This compares favorably
to the best performing model (Cosmotherm [36]) with an
RMSE of 0.35 in the SAMPL6 blind challenge.

Discussion and conclusions

In this work, we described the curation of four training
sets that we utilized to train ClassicalGSG log P predictor
models for the SAMPL7 physical property blind challenge.
The molecular features originally submitted for these mod-
els were created by CGenFF force field parameters. Our
most accurate set of predictions—with an RMSE of 0.55
and MAE of 0.44—were made by the ClassicalGSG-DB2
model, which had the lowest RMSE among the 36 submit-
ted sets of predictions based on the non-ranked predictions
analysis. Our ranked predictions were from ClassicalGSG-
DB3—with an RMSE of 0.77 and MAE of 0.62—which
were ranked in 5th place. To further compare Classical GSG
with other predictors we also made post-hoc predictions for

Table 4 The log P prediction

Model name RMSE r? MAE Ranking among all veri- Ranking among
;cl(s)lllfl:tcsu{(; the SAMPL7 fied predictions rgnked predic-
tions
ClassicalGSG_DB2 0.55 0.51 0.44 1
ClassicalGSG_DB4 0.65 0.50 0.56 3
ClassicalGSG_DBl1 0.76 0.28 0.62 7
ClassicalGSG_DB3 0.77 0.51 0.62 9 5
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Fig.4 The best fit lines for prediction sets. The experimental versus
prediction values are shown in red circles as a scatter plot. The actual
fit line is shown in orange. The dashed blue curve shows the best fit

the previous SAMPL6 challenge molecules. We trained 20
predictors using different parameters and obtained some
estimates that had significantly lower RMSE (0.29) than the
best performing model at the time (Cosmotherm [36], 0.35).
However, this parameter selection had the benefit of hind-
sight, so a more meaningful comparison is with our median
RMSE of 0.42. We note that this RMSE would have placed
fourth among the submissions to SAMPL6 [26].

Here we trained several Classical GSG models on molec-
ular features generated by atomic attributes from open-
source force fields. We find that MMFF94 ClassicalGSG
models are slightly more accurate than CGenFF Classi-
calGSG models. Applying the MMFF94 log P predictor
model trained on the OpenChem dataset to external test
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line. A predictions using DB1, B predictions using DB2, C predic-
tions using DB3, and D predictions using the DB4 training set

sets obtains excellent results throughout, at times achieving
the best results acquired to date. An added benefit is that
the MMFF94 Classical GSG models provide an end-to-end
framework for predicting log P values using only SMILES
strings as input and does not require any auxiliary stream
files like the CGenFF models. It might be counter-intuitive
that a force field developed in the 1990s [60, 61] would out-
perform a modern forcefield that is still being actively devel-
oped [54, 55]. We note here that pertinent features of force
fields for predicting log P values are very different from
those needed to conduct physically-meaningful molecular
dynamics simulations. We suspect that the leading benefit
of MMFF94 is its broad coverage of atom types describing
the chemical features of small, organic molecules that are
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DB1 predictions

DB2 predictions

DB3 predictions sMaz
DB4 predictions
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®
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Fig.5 The log P predictions from our submissions to the SAMPL7
challenge. The orange line shows the experimental values. The Clas-
sical GSG predictions are shown as circles (DB1: blue, DB2: orange,
DB3: green, DB4: red). The thick orange area shows the MAE inter-
val of 0.44, which is the lowest MAE of our submitted predictions
(ClassicalGSG-DB2). Molecules are labeled with their molecule ID
from SAMPL7 [27]

relevant to log P. Differences in one-hot encodings of atom
type would likely have a much stronger impact than improv-
ing predictions of partial charges, for example.

Our code is publicly available on GitHub https://github.
com/ADicksonLab/Classical GSG and our training and test
sets are available in SDF format on Zenodo https://doi.
org/10.5281/zeno0d0.4560967. The Classical GSG reposi-
tory contains two pre-trained log P predictors, one using
MMFF94 and another one using CGenFF atomic attrib-
utes. Once the predictor is trained, values can be predicted
extremely quickly. Predictions for a set of 1000 molecules
can be made in about 150 seconds on an Intel i7 proces-
sor, without parallelization. The code provides modules for

0.84

mil

MMFF94 CGenFF GAFF FF Ghemical

o
o

Average RMSE

©
N

o
o

Fig.6 Results of ClassicalGSG models trained using open-source
force field parameters. Error bars are computed over five indepen-
dently-trained models. These models are trained using the 2D struc-
ture information and using all the scattering moments with the max-
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Table 5 Sets of parameters used to evaluate MMFF94 ClassicalGSG
models on external test sets

Parameter Values
Max. wavelet scale (J) [4,5,6,7,8]
Scattering operators [(z, D), (z,9),
(£, 9), (z,
£, )]

Sets in square brackets denote all the GSG parameter values used
for generating the molecular features. For scattering operators, “z”
denotes the zeroth order operator (Eq. 3), “f” is first order (Eq. 4), and

TRt

s” is second order (Eq. 5)

Table 6 The logP prediction results from MMFF94 force field param-
eters for external test set

GSG parameters Performance results

Max. wave- Scattering  Test setname RMSE ;2 MAE
let scale operators

7 £, 9) FDA 0.53 093 0.27
7 (z,1,s) Star 0.44 093 029
5 (z, f) NonStar 0.74 0.89 0.59
7 (z, ) Huuskonen 0.35 0.94 0.18
5 (z,1,s) SAMPL6 0.29 087 0.23

extracting GSG features and training NN models on new
datasets.

As mentioned in our previous work [24] the Classi-
calGSG method is not specific to log P and could predict
other molecular properties as well. We emphasize that pro-
gress in the field of molecular property prediction can be
greatly accelerated by the free sharing of molecular prop-
erty datasets. Efforts such as OpenChem [23] that support

B 1.0

0.8+

T

MMFF94 CGenFF GAFF FF Ghemical

o
o

Average r?
o
i

0.

N

o
o

imum wavelet scale (J) of 4. For each set of ClassicalGSG models
trained using these force field parameters we show A the average
RMSE, and B the average r?


https://github.com/ADicksonLab/ClassicalGSG
https://github.com/ADicksonLab/ClassicalGSG
https://doi.org/10.5281/zenodo.4560967
https://doi.org/10.5281/zenodo.4560967
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the sharing of methods and datasets will be useful catalysts
for methods development. Publicly available data sources
for properties such as intestinal permeability, pKa values,
intrinsic clearance rates (CL;,) and serum protein binding
fractions would similarly be great catalysts for the develop-
ment of accurate predictors of pharmacokinetic effects.

Supplementary Information The online version of this article at
https://doi.org/10.1007/s10822-021-00400-x.
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