
Vol.:(0123456789)1 3

Journal of Computer-Aided Molecular Design 
https://doi.org/10.1007/s10822-021-00400-x

Predicting partition coefficients for the SAMPL7 physical property 
challenge using the ClassicalGSG method

Nazanin Donyapour1 · Alex Dickson1,2 

Received: 25 February 2021 / Accepted: 17 June 2021 
© Springer Nature Switzerland AG 2021

Abstract
The prediction of logP values is one part of the statistical assessment of the modeling of proteins and ligands (SAMPL) 
blind challenges. Here, we use a molecular graph representation method called Geometric Scattering for Graphs (GSG) to 
transform atomic attributes to molecular features. The atomic attributes used here are parameters from classical molecular 
force fields including partial charges and Lennard–Jones interaction parameters. The molecular features from GSG are used 
as inputs to neural networks that are trained using a “master” dataset comprised of over 41,000 unique logP values. The 
specific molecular targets in the SAMPL7 logP prediction challenge were unique in that they all contained a sulfonyl moeity. 
This motivated a set of ClassicalGSG submissions where predictors were trained on different subsets of the master dataset 
that are filtered according to chemical types and/or the presence of the sulfonyl moeity. We find that our ranked prediction 
obtained 5th place with an RMSE of 0.77 logP units and an MAE of 0.62, while one of our non-ranked predictions achieved 
first place among all submissions with an RMSE of 0.55 and an MAE of 0.44. After the conclusion of the challenge we also 
examined the performance of open-source force field parameters that allow for an end-to-end logP predictor model: General 
AMBER Force Field (GAFF), Universal Force Field (UFF), Merck Molecular Force Field 94 (MMFF94) and Ghemical. We 
find that ClassicalGSG models trained with atomic attributes from MMFF94 can yield more accurate predictions compared 
to those trained with CGenFF atomic attributes.

Keywords  SAMPL7 logP challenge · Geometric scattering for graphs · Neural networks · Partition coefficient · Molecular 
representations · Log P · Machine learning · Chemical features

Introduction

The logarithm of the octanol-water partition coefficient (P) 
of a neutral compound is referred to as logP and can also be 
denoted as logKow or logPow . The partition coefficient itself 
is defined as the ratio of the concentrations of a compound in 
a two-phase system in equilibrium. One of the main applica-
tions of logP is in drug design and discovery. It is a quanti-
tative descriptor of lipophilicity, which affects the absorp-
tion, distribution, metabolism, elimination, and toxicology 
(ADMET) of a drug compound in the body. Additionally, 

the logP value of a chemical compound determines its drug-
likeness and is included in the famous Lipinski’s Rule of 
Five [1]. The applications of logP are not specific to drug 
design and extend to other fields such as agriculture [2–4], 
environmental science [5–7] among many others.

Considering the widespread usage of logP and the cost 
associated with experimental measurements, a large variety 
of computational methods such as XlogP3 [8], AlogP [9], 
ClogP [10], KowWIN [11], JPlogP [12] László et al [13], 
Huuskonen et al [14], MlogP [15], iLogP [16], Manhold 
[17], AlogPS [18], S+logP [19], CSLogP [20], Silicos-IT 
LogP [21], TopP-S [22], OpenChem [23] have been devel-
oped over the years. These methods employ various tech-
niques and algorithms for predicting logP and have their 
pros and cons as explained in our previous work [24]. In 
publications, these methods often use their own specific test 
sets, making the comparison between different algorithms 
challenging. Hence, benchmarks and standardized test sets 
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are needed to effectively compare these methods and further 
advance the research on logP prediction.

To help meet this need, the statistical assessment of the 
modeling of proteins and ligands (SAMPL) [25] project 
recently created a distinct blind challenge for predicting 
logP allowing fair evaluation and comparison of differ-
ent logP prediction methods (SAMPL6 in 2019 [26] and 
SAMPL7 in 2020 [27]). In this challenge, the participants 
predict logP for a set of drug-like molecules and the predic-
tions are assessed using experimental logP values that are 
revealed later. The submitted prediction methods are classi-
fied into one of the following categories: Empirical methods, 
Physical molecular mechanics (MM)-based, Physical quan-
tum mechanics (QM)-based, or Mixed methods. Empiri-
cal methods [8–22, 24, 28, 29] are data-driven methods in 
which predictor models are trained directly on a dataset of 
molecules. The empirical category includes methods that 
employ atomic/fragment-based additive methods, machine 
learning, and quantitative structure-property relationship 
(QSPR) approaches. In MM-based methods [30, 30–34], 
molecular dynamics simulations are run and used to esti-
mate the solvation free energy. Then, the logP for a com-
pound is calculated analytically from the solvation energy. 
QM-based methods [35–41] utilize the solvation free energy 
estimated from the quantum mechanical energy calculations. 
The mixed approaches [40, 42–44] employ the combination 
of physical (QM/MM-based) and empirical techniques.

The main advantage of empirical methods is that they are 
quite fast compared to physical (MM/QM-based) methods. 
However, training a logP predictor model with the ability 
to generalize to new data is not easy. For example, the Root 
Mean Squared Error (RMSE) of the best logP predictor 
model for the NonStar [17] test set is 0.82 [22], which is 
higher than expected experimental sources of error, even 
taking into account different experimental methods for logP 
measurement [45]. This test set, which is publicly available 
[46] has 43 compounds that are unlike compounds typically 
found in the training sets of tested methods (see Table 7 in 
[22]). Similarly, the SAMPL7 challenge [27] involves a set 
of 22 molecules that each contain a sulfonyl moiety, which 
is relatively under-represented in training sets. Here we 
examine the accuracy of different training sets in predicting 
logP values for compounds with special structures. A mas-
ter training dataset which includes 41, 409 molecules, was 
filtered according to chemical elements and/or the existence 
of the sulfonyl moiety to generate three smaller datasets.

On the other hand, the performance of the empirical mod-
els also depends on the choice of molecular features used 
for training the models. Generally, molecular features are a 
set of numerical values that describe the relevant properties 
of a molecule. Additive empirical methods such as XlogP3 
[8], Alog [9], ClogP [10], KowWIN [11], JPlogP [12] simply 
construct a vector of atomic—or fragment-based attributes 

and predict logP using a function that sums contributions 
from each of the component attributes. Additive methods 
are inherently approximate, as they do not take into account 
the entire structure of a molecule. Other methods address 
this through a combination of molecular and atomic—or 
fragment-based descriptors [21, 22]. The challenge we seek 
to address in our approach is to develop a set of molecular 
features that succinctly describe the contributions of each 
atom while taking the molecular structure into account.

A natural way to represent molecules is to use a graph 
where nodes are atoms and the edges are bonds. Graph rep-
resentation of molecules is becoming very popular in recent 
years, and it enables us to represent the complex molecular 
structures effectively and subsequently ensure high perfor-
mance of models [23, 47–52]. We should notice that graph-
based models are naturally invariant to translation, rotation, 
and reflection symmetries. To ensure symmetry with respect 
to re-indexation of atoms, methods such as convolution neu-
ral networks and a recently developed graph data analysis 
method called geometric scattering for graphs (GSG) [53] 
can be used.

Our approach in this work for predicting logP is based 
on a graph representation of molecules that employs GSG 
for generating invariant molecular features from atomic 
attributes. GSG is beneficial in that it uses a fast analytical 
method for creating molecular features. The molecular fea-
tures are of equal length for molecules with any number of 
atoms allowing us to use any distance metric for calculating 
the similarity of two molecules. Here, we use atomic attrib-
utes taken from molecular mechanics force fields including 
partial charges, atom type, and Lennard–Jones interaction 
parameters: radius (r) and well-depth ( � ). The GSG molecu-
lar features are used as inputs to neural networks that are 
trained to predict logP . We refer to this combined approach 
as “ClassicalGSG”.

In our previous work [24], we employed ClassicalGSG to 
examine the performance of two force field parameter match-
ing programs: CHARMM General Force Field (CGenFF) 
[54, 55] and General AMBER Force Field 2 (GAFF2) [56, 
57]. The NN models were trained using a dataset of mol-
ecules made available by OpenChem [23] and we showed 
that CGenFF-generated parameters with a specific ad hoc 
scheme of classifying CGenFF atomic types achieved the 
highest accuracy in predicting logP values.

For the SAMPL7 target molecules we used the best 
performing parameter sets to train four logP predictor 
models. One of our verified (but non-ranked) prediction 
sets achieved the lowest RMSE (0.55) and the second-
lowest Mean Absolute Error (MAE) of 0.44 among all 
the submitted predictions. We note that in SAMPL6 [26] 
the best set of predictions was using Cosmotherm [36], 
achieving an RMSE of 0.38, and 10 models achieved an 
RMSE of less than 0.5. In SAMPL7 none of the submitted 
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predictions were below this threshold, implying that these 
molecules had specific structures that introduced diffi-
culty into both the empirical and physical predictions.

In this work we describe the process of curating the 
four training datasets, training the models and making 
predictions for SAMPL7 target molecules. Further, to 
achieve better predictions we examined the performance 
of various open-source force fields such as General 
AMBER Force Field (GAFF) [58], Universal Force Field 
(UFF) [59], Merck Molecular Force Field 94 (MMFF94) 
[60, 61] and Ghemical [62]. Our results show that 
MMFF94 models create predictors that on average are 
as accurate or better than those created with CGenFF. 
We conclude with a discussion regarding the curation of 
training sets for the SAMPL7 challenge, the performance 
of open-source force field generator tools and the code 
available in the ClassicalGSG package.

Methods

SAMPL7 log P challenge molecules and curation 
of the training datasets

The SAMPL7 target molecules were synthesized by the Bal-
latore group at the UC San Diego university and their logP 
values were measured experimentally [63]. This collection 
includes 22 small drug-like molecules whose 2D structures 
in their neutral state are shown in Fig. 1. These molecules all 
consist of only five atomic elements of (C, N, O, S, and H) 
and all have a sulfonyl moiety. The molecular weights vary 
from 227.285 to 365.476.

For the SAMPL7 challenge, we first built a master train-
ing dataset by combining the logP datasets in Table 1. The 
physical properties database (PHYSPROP) [65] was built 
by the Syracuse Research Corporation (SRC) and contains 
the logP values of over 41,000 diverse chemical com-
pounds. Here, we used the public version of PHYSPROP. 
The Huuskonen dataset [14] has 1844 unique molecules, 

Fig. 1   The SAMPL7 logP challenge molecules. The SAMPL7 target molecules are shown in their 2D structures in their neutral microstate 
(micro000). The 2D structures are generated and drawn from SMILES by RDkit [64]
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combining 326 molecules from its initial version [66] with 
1663 molecules from the Klopman dataset [67]. The 1844 
molecules in the Huuskonen dataset have been organized 
into a training set with 1496 compounds and a test set with 
348 compounds. Here we use molecules from the Huuskonen 
training set. The TopP-S dataset consists of 8199 chemical 
compounds, initially compiled by Hansch et al. [68] and then 
compiled by Cheng et al. [8] to include only molecules with 
reliable experimental logP values. The OpenChem dataset 
was curated from the PHYSPROP drug database [23] and 
contains of 14,176 molecules. The Logpt_all_data_training, 
ALOGPS_3_01, and Logpt_challenge_training are public 
logP training sets which can be downloaded from https://​
ochem.​eu. The RDkit program [64] is employed to create 
canonical SMILES for molecules in these 7 datasets. After 
removing duplicate molecules, 44,595 molecules remained 
in the dataset. As the generation of CGenFF atomic attrib-
utes failed for some molecules, we ended up with 41, 409 
molecules in our dataset, which we refer to as the “master 
dataset.

The master dataset itself serves as “DB1”, which is used 
to train a GSG model to generate a set of predictions for the 
SAMPL7 molecules. The presence of only five atomic ele-
ments C, N, O, S, and H in the SAMPL7 target molecules 
motivated us to make a subset of the master dataset where 
each compound has only has these atomic elements, which 
we call “DB2”. Molecules that either had another element 
not listed above or did not have the full set of elements were 
not selected. The DB2 dataset has 3482 molecules. Also, 
the existence of a specific structure —a sulfonyl moiety—in 
all of the SAMPL7 target molecules inspired us to gener-
ate the third dataset by filtering the master training set and 
keeping only those with sulfonyl moiety. The “HasSubstruct-
Match” function of RDKit was used to check if a molecule 
has this moiety. The obtained training dataset is referred to 
as “DB3” and has 2379 molecules. The fourth training set 
was obtained by filtering the master dataset and keeping only 
those with both a sulfonyl moiety and the following elements 
(C, N, O, S, and H). This training set has 1482 molecules, 
and we refer to it as “DB4”. These four datasets DB1, DB2, 

DB3, and DB4, are used to train four ClassicalGSG models 
and generate four sets of predictions for the SAMPL7 target 
molecules.

Further, to assess the performance of the open-source 
force field tools we use a group of external test sets includ-
ing FDA [8], Star [17], NonStar [17] and Huuskonen [14, 
66] and SAMPL6 molecules set [26] (see Table 2 in Refs 
[24]). To quantify our uncertainty, we chose molecules 
from these test sets that are similar to the set of SAMPL7 
molecules. More specifically, these test sets are filtered to 
include molecules with a sulfonyl moiety and to include 
each of the elements (C, N, O, S, and H). Molecules that 
contained other elements were excluded. The selected 44 
molecules are filtered further by keeping molecules which 
their molecular weight is in the range of SAMPL7 molecules 
weights. The resulting test set has 36 molecules and referred 
to as S7_TEST.

Generating atomic attributes

In the Geometric Scattering for Graphs method [53], molec-
ular features are generated by “scattering” atomic attributes 
over the graph structure of the molecule. Here our set of 
atomic attributes includes partial charges, atom type, and 
Lennard–Jones interaction parameters for the atoms of each 
molecule. These atomic attributes are generated either by 
CGenFF [54, 55] or open-source force fields such as GAFF 
[58], UFF [59], MMFF94 [60, 61] and Ghemical [62].

To generate CGenFF atomic attributes, OpenBabel [69, 
70] is used to generate 3D structures for the molecules from 
SMILES and save them in mol2 format. The mol2 file is 
passed to the CGenFF tool of the SilcsBio package (http://​
silcs​bio.​com) to create a CGenFF parameter file in str for-
mat. Atomic partial charges and atomic types for each atom 
are extracted from the str file. Then two Lennard–Jones 
parameters—radius (r) and well-depth ( �)—are extracted 
from CHARMM parameter file (par_all36_cgenff.prm) 
for each atom type in the molecule. The one-hot encoding 
format is used for representing atomic types while atomic 

Table 1   logP datasets used for training

Test set name Number of 
molecules

PHYSPROP [65] 41,039
Huuskonen training set [14, 66] 1496
TopP-S [14] 8199
OpenChem [23] 14,176
ALOGPS_3_01 17,436
Logpt_all_data_training 233
Logpt_challenge_training 187

Table 2   The parameters hyperparameters of neural networks

Sets in square brackets denote possible parameter values used in the 
grid search method

Parameter Values

Number of hidden layers [2, 3, 4, 5]
Size of hidden layers [300, 400, 500]
Dropout rate [0.2, 0.4]
Initial learning rate 0.005
Learning coefficient 0.5
Batch size 256
Max epoch size 400

https://ochem.eu
https://ochem.eu
http://silcsbio.com
http://silcsbio.com
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charge and two Lennard–Jones parameters are scalar values. 
CGenFF has 169 atomic types, and to reduce the number 
of atomic type categories, as in our previous work [24], we 
manually grouped CGenFF atom types into 36 groups and 
refer to this as Atom Category 36 “AC36” (see Table S1 
[24]).

All of the open-source force fields such as GAFF, UFF, 
MMFF94, and Ghemical are implemented inside OpenBabel 
and making it easier to generate force field parameters for a 
molecule. The SMILES is used to generate an OpenBabel 
molecule and 3D structures. Using the “Setup” function of 
the force field method the atomic parameters are generated 
for a given molecule. This method is straight forward and 
does not require any external program. We use all the atomic 
types generated by each of these force fields without further 
grouping them, which we denote as “ACall”.

Geometric scattering for graphs

Geometric scattering for graphs (GSG) [53] is a non-traina-
ble graph feature extraction method proposed by Gao et al. 
[53] that is analogous to Graph Convolution Neural Net-
works (GCNs) [71]. Unlike the GCNs, GSG uses a cascade 
of designed wavelet filters instead of convolution filters with 
learned parameters. Another advantage of GSG is that its 
features can be directly assigned to particular atomic attrib-
utes, whereas this analysis in GCNs is more challenging. 
The GSG method has been shown to be a powerful tool for 
representing the graph structures in varied datasets includ-
ing the classification of enzymes via protein structural fea-
tures [53]. Here, we use GSG to generate invariant features 
from the graph representation of small organic molecules. 
Each atom is represented by a node and the edges are cova-
lent bonds. A vector of attributes is associated with each 
atom, which can include the atomic number or more spe-
cific atomic types. GSG encodes the geometric information 
of molecules in an adjacency matrix and generates wavelet 
filters to capture several convolutions of node attributes that 
take into account the graph structure of the molecule. The 
architecture of GSG is shown in Fig 1 of Ref. [24].

Here we describe of the mathematical construction of 
this method (additional discussion can be found in Refs. [24, 
53]). Let G = (V ,E,W) be a weighted graph where V is the 
set of nodes, and E is the set of edges in the graph. A signal 
function �(vi) → ℝ

N is defined on each node where N is the 
number of node attributes, 1 < i ≤ n is the index of a node, 
and n is the number of nodes in the graph. GSG uses a lazy 
random walk matrix, defined as follows

where I is the identity matrix, A is the adjacency matrix 
showing the node connectivity, and D is the degree matrix. 

(1)P =
1

2
(I + AD−1)

The lazy random walk includes self-connections and acts 
like a Markov process with a transition matrix of AD−1 . 
Higher powers of P (e.g. Pt ) represent the probability distri-
bution of a graph lazy random walk after t steps. Here, this 
can be seen as a random walk over the structure of the mole-
cule, where “steps” are transitions between atoms. These are 
used to create a set of wavelet matrices, denoted �j , where

The wavelet matrices are thus convolution-like filters, used 
to transform the information of nodes at different scales and 
are also referred to as graph wavelet transforms. These are 
applied to graph signals � to generate geometric scattering 
transforms, which are defined at three orders (zeroth, first 
and second) that are named based on the number of trans-
formations �j applied to �.

The zeroth order scattering moments ( �0 ) are the 
untransformed qth moments of � , defined as follows:

where Q is the number of moments considered for each sig-
nal in � . The number of features in �0 is equal to NQ. The 
�0 are the simplest invariant features but cannot capture the 
variability of � completely. Hence, the higher order scatter-
ing is defined that takes into account the molecular structure.

The first order scattering moments ( �1 ) are qth order 
moments of � “scattered” by the wavelet matrices �j:

where J is the maximum wavelet scale, and the total number 
of first order features is equal to NJQ.

The second order scattering moments ( �2 ) are con-
structed by applying wavelet matrices �j′ to |�j�(vl)| at 
different scales (e.g. where j ≠ j′):

�2 combines wavelet transforms at two scales 2j and 2j′ and 
generates features that connect the patterns of short- and 
long-range subgraphs within the full graph. There are a total 
of 1

2
NJ(J − 1)Q second order features.

The stack of {�0, �1, �2} generates symmetry-invariant 
and informative information for a given molecule. Note 
that GSG generates features with the same length regard-
less of the size of the molecule, allowing us to use any 
distance metric for similarity measurements. Here, the 
adjacency matrices are constructed from the 2D structure 

(2)�j = P2j−1 − P2j

(3)�0 =

n∑

i=1

�(vi)
q, 1 ≤ q ≤ Q

(4)�1 =

n∑

i=1

|�j�(vi)|q, 1 ≤ j ≤ J 1 ≤ q ≤ Q

(5)�2 =

n∑

i=1

|𝛹j� |𝛹j�(vi)||q, 1 ≤ j < j� ≤ J 1 ≤ q ≤ Q
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of molecules. If there is a bond between nodes i and j, Aij 
is set to 1, and is 0 otherwise.

Neural network architecture

The neural networks we employed for training the Classi-
calGSG models are multilayer perceptron (MLP) networks 
and we implemented them using the PyTorch package [72]. 
We used Rectified Linear Unit (ReLU) as the nonlinear acti-
vation functions in our models. To tune the hyperparameters 
and train the models, we performed a 5-fold cross validation 
using Skorch [73] where we did a comprehensive grid search 
in the space of hyperparameters to find the best perform-
ing models. We used the Mean Squared Error (MSELOSS 
) and Adaptive Momentum Estimation (Adam) [74] as the 
loss function and optimizer of the parameters, respectively. 
We chose an adaptive learning rate policy with the initial 
value of 0.005 which drops by a factor of 0.5 every 15 steps. 
The “standardization” function from the scikit-learn pack-
age [75] was used for regularizing molecular features. The 
hyperparameters and other parameters of NNs are summa-
rized in Table 2.

Results

Uncertainty estimations

Upon submission of our results to the SAMPL7 organiz-
ers, our predictions for uncertainty in logP were simply the 
standard errors of the mean of the predictions using the four 
training sets. Here we first calculate more accurate estimates 
for the prediction uncertainty using prediction intervals (PIs) 
obtained separately for each of the four predictors. PIs define 
the range of values in which predictions for new data are 
expected to lie with a defined probability. For example, a 
90% PI in the range of [a, b] indicates that a future predic-
tion will fall into the range [a, b] 90% of the time. There are 
a variety of methods for calculating PIs for NNs, such as 
bootstrapping [76, 77], Mean-Variance Estimation (MVE) 
[78], Delta, and Bayesian methods. In this paper, we utilize 
a parametric approach similar to the MVE method. However, 
unlike the MVE, our method constructs PIs from the Mean 
Absolute Errors (MAE) between the predicted and observed 
values of similar inputs rather than all of the input data. 
The PIs are determined by finding a MAE value ( �90 ) below 
which 90% of MAE values fall. Thus for a future prediction 
( ̂y ) the PI is defined as [ŷ − 𝜖90, ŷ + 𝜖90].

To construct PIs, we make four sets of predictions for 
the S7_TEST dataset using ClassicalGSG models trained 
on DB1, DB2, DB3, or DB4 training sets. As mentioned in 
Sect. 2.1, S7_TEST is a subset of external test sets con-
taining molecules similar to the SAMPL7 molecules. For 

training these models, we used the parameters of the best 
ClassicalGSG models obtained in our previous work [24]. 
More specifically, atomic attributes from CGenFF param-
eters, 2D molecular structure information and AC36 atomic 
types fed to GSG with parameters of maximum wavelet 
number (J) of 4, and all scattering operators (zeroth, first, 
and second order) to generate molecular features. After 
making predictions using these models, the MAE values 
are calculated for S7_TEST for each set of predictions. We 
then binned them in a histogram with 20 bins to determine 
cumulative probability distributions shown in Fig. 2.

The four sets of predictions made for SAMPL7 target 
molecules using each model and their 90% PIs are shown in 
Fig.  3. We determined the coverage of PIs for experimental 
logP values for each model and the results are shown in 
Table 3. The ClassicalGSG_DB2 method has the highest 
coverage of 90.90% , as expected, although other predic-
tors fall below this threshold. This could indicate that the 
SAMPL7 logP values were more difficult to predict than 
the similar S7_TEST molecules.

Predictions for SAMPL7 log P challenge

Four sets of blind predictions were generated using differ-
ent training sets, as described above. By the rules of the 
SAMPL7 challenge, only one of these predictions could 
be used as a “ranked” submission. To determine which set 
to use we examined the performance of each predictor on 
the FDA [8] and Huuskonen test sets [14] and chose the 
model with the lowest RMSE: ClassicalGSG-DB3. We note 
that there was an error in our analysis code at this time, 
and later we found the ClassicalGSG-DB1 was the model 
with the lowest RMSE. The RMSE and r2 values of pre-
diction sets using these four models was determined after 
the SAMPL7 challenge (Table 4). Note that the best model 
in terms of RMSE is the one trained on the DB2 training 
set and the worst performing model was DB3. The model 
we were intending to select, DB1, is the second-worst per-
forming model. In retrospect, this shows that the FDA and 
Huuskonen test sets were not good proxies for the SAMPL7 
molecules. We show comparisons of our predictions with 
experimental results, along with linear fit lines for each 
model in Fig. 4. Note the best fitting coefficients also cor-
respond to the model trained on the DB2 training set.

To identify the prediction outliers, we show the logP 
predictions from our methods for the SAMPL7 target mol-
ecules in Fig. 5. We find the largest systematic errors in 
compounds: SM36, SM40, SM41, SM42, SM43 and SM45 
molecules. As shown in Fig. 6A from Ref. [27], these mol-
ecules were found to have some of the highest prediction 
errors across all submissions. For SM36, SM41, SM42 and 
SM43, ClassicalGSG consistently over-predicted the experi-
mentally determined logP , which was also true for the other 
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A B

C D

Fig. 2   Cumulative distribution of MAE of molecules in the S7_
TEST set. The solid blue line shows the cumulative distributions for 
each set of predictions. The dashed red line represents the probabil-

ity of 90%. Panels A through D show MAEs using models trained on 
DB1 through DB4, respectively

A B

C D

Fig. 3   Prediction intervals of logP predictions for the SAMPL7 mol-
ecules. The experimental logP values are shown in red circles as a 
scatter plot. The predictions are shown in a red line, and the orange 
wide range shows the prediction intervals (PIs). Panels A through D 

show predictions from models trained on DB1 through DB4, respec-
tively. In all cases, data is sorted according to the predicted logP val-
ues
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well-performing methods (in Fig. 6D of Ref. [27]). Mol-
ecules SM40 and SM45 were under-predicted compared to 
experiment, which was also in line with other well-perform-
ing methods, although the trend is less clear.

Performance of Open‑source force fields

Although there is an online server for generating CGenFF 
parameter files for a given molecule, it is still challenging 
to use CGenFF for high throughput applications as it is not 
open-source. Hence, we decided to assess the performance 
of open-source force field tools implemented by OpenBa-
bel [69, 70] which is open-source and free to use on large 
databases of molecules. We utilized GAFF [58], UFF [59], 
MMFF94 [60, 61] and Ghemical [62] force field parameters 
to generate atomic attributes including atom types, partial 
charges and the two Lennard–Jones interaction parameters 
( � and r). As above, we applied the GSG method with maxi-
mum wavelet scale of 4 while using all scattering operators 
to generate molecular features from atomic attributes. We 
used the DB2 training set to train 5 logP predictor models 
for each force field. Each of these models is trained using 
a 5-fold cross validation approach. These models are tested 
on the SAMPL7 molecules and the RMSE and r2 values are 
calculated for each set of predictions. We took the average 
values over the 5 runs for each force field and the results 
are shown in Fig. 6. This figure shows that ClassicalGSG 
models from MMFF94 force field parameters achieve the 
highest r2 and lowest RMSE value, which are on par with 
the CGenFF results submitted to the challenge.

Additionally, we studied the performance of MMFF94 
ClassicalGSG models on independent external test sets such 

as FDA [8], Huuskonen [14, 66], Star [17], NonStar [17] and 
the compounds from the SAMPL6 logP prediction challenge 
[26]. For the purpose of a fair comparison, we used the same 
10722 molecules from the OpenChem dataset as utilized in 
our previous paper [24]. All combinations of a set of maxi-
mum wavelet scales (J) and sets of scattering operators are 
used as GSG parameters to train 20 ClassicalGSG models 
as indicated in Table 5.

The atomic attributes were generated from MMFF94 
atomic parameters and all atomic types from MMFF94 
(ACall). The parameters corresponding to the best mod-
els per each test test along with their performance results 
are shown in Table 6. The ClassicalGSG models based on 
MMFF94 achieve better performance compared to CGenFF 
based models for all test sets (see Table 7 in Ref. [24]). The 
comparison between logP prediction results for FDA, Star, 
and NonStar test sets and those from other logP predictor 
methods are shown in Tables S1, S2, and S3. As these tables 
show, MMFF94 ClassicalGSG achieves the best results to 
date for the NonStar test set and the second-best results for 
the FDA and Star test sets. Moreover, our method shows a 
significant improvement in the prediction of logP values for 
SAMPL6 molecules, with a RMSE in the range [0.29, 0.52] 
and median of 0.42 over 20 models. This compares favorably 
to the best performing model (Cosmotherm [36]) with an 
RMSE of 0.35 in the SAMPL6 blind challenge.

Discussion and conclusions

In this work, we described the curation of four training 
sets that we utilized to train ClassicalGSG logP predictor 
models for the SAMPL7 physical property blind challenge. 
The molecular features originally submitted for these mod-
els were created by CGenFF force field parameters. Our 
most accurate set of predictions—with an RMSE of 0.55 
and MAE of 0.44—were made by the ClassicalGSG-DB2 
model, which had the lowest RMSE among the 36 submit-
ted sets of predictions based on the non-ranked predictions 
analysis. Our ranked predictions were from ClassicalGSG-
DB3—with an RMSE of 0.77 and MAE of 0.62—which 
were ranked in 5th place. To further compare ClassicalGSG 
with other predictors we also made post-hoc predictions for 

Table 3   The PIs and coverage range for the SAMPL7 molecules 
using four ClassicalGSG methods

ŷ is the prediction of logP

Model name PIs Coverage of PIs

ClassicalGSG_DB1 ŷ ± 0.94 72.72%
ClassicalGSG_DB2 ŷ ± 0.88 90.90%
ClassicalGSG_DB3 ŷ ± 0.88 68.18%
ClassicalGSG_DB4 ŷ ± 0.98 86.36%

Table 4   The logP prediction 
results for the SAMPL7 
molecules

Model name RMSE r
2 MAE Ranking among all veri-

fied predictions
Ranking among 
ranked predic-
tions

ClassicalGSG_DB2 0.55 0.51 0.44 1
ClassicalGSG_DB4 0.65 0.50 0.56 3
ClassicalGSG_DB1 0.76 0.28 0.62 7
ClassicalGSG_DB3 0.77 0.51 0.62 9 5
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the previous SAMPL6 challenge molecules. We trained 20 
predictors using different parameters and obtained some 
estimates that had significantly lower RMSE (0.29) than the 
best performing model at the time (Cosmotherm [36], 0.35). 
However, this parameter selection had the benefit of hind-
sight, so a more meaningful comparison is with our median 
RMSE of 0.42. We note that this RMSE would have placed 
fourth among the submissions to SAMPL6 [26].

Here we trained several ClassicalGSG models on molec-
ular features generated by atomic attributes from open-
source force fields. We find that MMFF94 ClassicalGSG 
models are slightly more accurate than CGenFF Classi-
calGSG models. Applying the MMFF94 logP predictor 
model trained on the OpenChem dataset to external test 

sets obtains excellent results throughout, at times achieving 
the best results acquired to date. An added benefit is that 
the MMFF94 ClassicalGSG models provide an end-to-end 
framework for predicting logP values using only SMILES 
strings as input and does not require any auxiliary stream 
files like the CGenFF models. It might be counter-intuitive 
that a force field developed in the 1990s [60, 61] would out-
perform a modern forcefield that is still being actively devel-
oped [54, 55]. We note here that pertinent features of force 
fields for predicting logP values are very different from 
those needed to conduct physically-meaningful molecular 
dynamics simulations. We suspect that the leading benefit 
of MMFF94 is its broad coverage of atom types describing 
the chemical features of small, organic molecules that are 

A B

C D

Fig. 4   The best fit lines for prediction sets. The experimental versus 
prediction values are shown in red circles as a scatter plot. The actual 
fit line is shown in orange. The dashed blue curve shows the best fit 

line. A predictions using DB1, B predictions using DB2, C predic-
tions using DB3, and D predictions using the DB4 training set
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relevant to logP . Differences in one-hot encodings of atom 
type would likely have a much stronger impact than improv-
ing predictions of partial charges, for example.

Our code is publicly available on GitHub https://​github.​
com/​ADick​sonLab/​Class​icalG​SG and our training and test 
sets are available in SDF format on Zenodo https://​doi.​
org/​10.​5281/​zenodo.​45609​67. The ClassicalGSG reposi-
tory contains two pre-trained logP predictors, one using 
MMFF94 and another one using CGenFF atomic attrib-
utes. Once the predictor is trained, values can be predicted 
extremely quickly. Predictions for a set of 1000 molecules 
can be made in about 150 seconds on an Intel i7 proces-
sor, without parallelization. The code provides modules for 

extracting GSG features and training NN models on new 
datasets.

As mentioned in our previous work [24] the Classi-
calGSG method is not specific to logP and could predict 
other molecular properties as well. We emphasize that pro-
gress in the field of molecular property prediction can be 
greatly accelerated by the free sharing of molecular prop-
erty datasets. Efforts such as OpenChem [23] that support 

Fig. 5   The logP predictions from our submissions to the SAMPL7 
challenge. The orange line shows the experimental values. The Clas-
sicalGSG predictions are shown as circles (DB1: blue, DB2: orange, 
DB3: green, DB4: red). The thick orange area shows the MAE inter-
val of 0.44, which is the lowest MAE of our submitted predictions 
(ClassicalGSG-DB2). Molecules are labeled with their molecule ID 
from SAMPL7 [27]

A B

Fig. 6   Results of ClassicalGSG models trained using open-source 
force field parameters. Error bars are computed over five indepen-
dently-trained models. These models are trained using the 2D struc-
ture information and using all the scattering moments with the max-

imum wavelet scale (J) of 4. For each set of ClassicalGSG models 
trained using these force field parameters we show A the average 
RMSE, and B the average r2

Table 5   Sets of parameters used to evaluate MMFF94 ClassicalGSG 
models on external test sets

Sets in square brackets denote all the GSG parameter values used 
for generating the molecular features. For scattering operators, “z” 
denotes the zeroth order operator (Eq. 3), “f” is first order (Eq. 4), and 
“s” is second order (Eq. 5)

Parameter Values

Max. wavelet scale (J) [4, 5, 6, 7, 8]
Scattering operators [(z, f), (z, s), 

(f, s), (z, 
f, s)]

Table 6   The log P prediction results from MMFF94 force field param-
eters for external test set

GSG parameters Performance results

Max. wave-
let scale

Scattering 
operators

Test set name RMSE r
2 MAE

7 (f, s) FDA 0.53 0.93 0.27
7 (z, f, s) Star 0.44 0.93 0.29
5 (z, f) NonStar 0.74 0.89 0.59
7 (z, f) Huuskonen 0.35 0.94 0.18
5 (z, f, s) SAMPL6 0.29 0.87 0.23

https://github.com/ADicksonLab/ClassicalGSG
https://github.com/ADicksonLab/ClassicalGSG
https://doi.org/10.5281/zenodo.4560967
https://doi.org/10.5281/zenodo.4560967
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the sharing of methods and datasets will be useful catalysts 
for methods development. Publicly available data sources 
for properties such as intestinal permeability, pKa values, 
intrinsic clearance rates ( CLint ) and serum protein binding 
fractions would similarly be great catalysts for the develop-
ment of accurate predictors of pharmacokinetic effects.

Supplementary Information  The online version of this article at 
https://​doi.​org/​10.​1007/​s10822-​021-​00400-x.
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