
Wepy: A Flexible Software Framework for Simulating Rare Events
with Weighted Ensemble Resampling
Samuel D. Lotz and Alex Dickson*

Cite This: ACS Omega 2020, 5, 31608−31623 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Here, we introduce the open-source software
framework wepy (https://github.com/ADicksonLab/wepy)
which is a toolkit for running and analyzing weighted ensemble
(WE) simulations. The wepy toolkit is in pure Python and as such
is highly portable and extensible, making it an excellent platform to
develop and use new WE resampling algorithms such as WExplore,
REVO, and others while leveraging the entire Python ecosystem.
In addition, wepy simplifies WE-specific analyses by defining out-
of-core tree-like data structures using the cross-platform HDF5 file
format. In this paper, we discuss the motivations and challenges for simulating rare events in biomolecular systems. As has previously
been shown, high-dimensional WE resampling algorithms such as WExplore and REVO have been successful at these tasks,
especially for rare events that are difficult to describe by one or two collective variables. We explain in detail how wepy facilitates
implementation of these algorithms, as well as aids in analyzing the unique structure of WE simulation results. To explain how wepy
and WE work in general, we describe the mathematical formalism of WE, an overview of the architecture of wepy, and provide code
examples of how to construct, run, and analyze simulation results for a protein−ligand system (T4 Lysozyme in an implicit solvent).
This paper is written with a variety of readers in mind, including (1) those curious about how to leverage WE rare-event simulations
for their domain, (2) current WE users who want to begin using new high-dimensional resamplers such as WExplore and REVO, and
(3) expert users who would like to prototype or implement their own algorithms that can be easily adopted by others.

1. INTRODUCTION
Biomolecular simulation is a valuable tool to gain insight into the
atomic-level mechanisms of biological systems. Molecular
processes such as ligand (un)binding, protein (un)folding,
protein−protein association/dissociation, conformational
changes, transport, and enzymatic reactions underlie the
functioning of all living organisms. Because the length scales
of these phenomena are too small to be observed experimentally
at atomic resolution, computer simulations have long attempted
to serve as a proxy. This application of molecular dynamics
(MD) has been limited by two factors: the accuracy of force
fields and available computational power. Despite huge
breakthroughs in both force fields1,2 and hardware,3−5 it is still
difficult to perform simulations of sufficient length to capture the
biomolecular processes of interest. For instance, the waiting
time for ligand-unbinding events of pharmacologically relevant
ligands can extend to tens of minutes or hours,6 while MD
trajectories are typically limited to microsecond timescales.
Thus, despite our knowledge (from experiment) that these
transitions occur readily at macroscopic timescales, the
occurrence of these events during a microsecond molecular
simulation can be seen as a “rare event”.
A series of algorithms have been developed called “enhanced

sampling” methods, which attempt to gain information about
long-timescale processes using only short-timescale simulations.
Many of these methods use perturbations to the system by either

applying biasing forces or increasing the system temperature.
This includes enhanced sampling methods such as replica
exchange,7 metadynamics,8−11 temperature-accelerated
MD,12,13 and umbrella sampling.14 These methods invoke an
assumption that the molecular systems are in equilibrium,
usually in the form of a canonical probability density function.
Additionally, although there are some approaches to approx-
imate rates based on biased simulations,8 this approach makes it
very difficult to recover full atomistic detail of transition-state
ensembles that govern the forward and backward rate constants
for a given transition.
There is thus a need for a method for accelerating the

simulation of rare-event processes that generate trajectories
using the unbiased Hamiltonian of interest. One such class of
methods is called “path sampling”, which are unique in that they
apply a sampling process over a collection of trajectories rather
than single conformations.15 Importantly, they do not require
modifications to the underlying dynamics model and provide

Received: August 12, 2020
Accepted: October 15, 2020
Published: December 2, 2020

Articlehttp://pubs.acs.org/journal/acsodf

© 2020 American Chemical Society
31608

https://dx.doi.org/10.1021/acsomega.0c03892
ACS Omega 2020, 5, 31608−31623

This is an open access article published under a Creative Commons Non-Commercial No
Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and
redistribution of the article, and creation of adaptations, all for non-commercial purposes.

D
ow

nl
oa

de
d

vi
a

14
7.

92
.1

06
.6

6
on

 Ju
ly

 6
, 2

02
1

at
 1

4:
44

:1
7

(U
TC

).
Se

e
ht

tp
s:

//p
ub

s.a
cs

.o
rg

/s
ha

rin
gg

ui
de

lin
es

 fo
r o

pt
io

ns
 o

n
ho

w
 to

 le
gi

tim
at

el
y

sh
ar

e
pu

bl
is

he
d

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Samuel+D.+Lotz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alex+Dickson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.0c03892&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?goto=supporting-info&ref=pdf
https://github.com/ADicksonLab/wepy
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/5/49?ref=pdf
https://pubs.acs.org/toc/acsodf/5/49?ref=pdf
https://pubs.acs.org/toc/acsodf/5/49?ref=pdf
https://pubs.acs.org/toc/acsodf/5/49?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c03892?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html

contiguous trajectories of transition paths. This makes them
suitable for studying all varieties of path-dependent observables
[e.g., (un)binding rates], as well as providing detailed atomistic
models of transition states. There are a variety of path-sampling
methods including transition path sampling (TPS),16−18

forward flux sampling (FFS),19 multilevel splitting,20 and
weighted ensemble (WE).15,21 Of these, WE has advantages in
which it does not in general require aMarkovian assumption or a
priori knowledge of full trajectories connecting two states to
start15,22 and does not require the definition of a progress
coordinate, which will be discussed further below. At the heart of
WE is a resampling process that uses a set of cloning and
merging operations among a set of parallel simulation replicas.
More formal definitions of resampling and WE are discussed in
Section 3.1 as well as in refs.15,22,23WE is a conceptually portable
method that can be applied to any field of study including
molecular biophysics,23−33 systems biology,34−41 telecommuni-
cations,42 and aerospace and engineering.43

Another benefit of WE is the flexibility of its framework,
allowing for resampling methods that avoid the predefinition of
progress coordinates and collective variables (CVs).20,44−46

Approaches involving CVs are typically limited to low-
dimensional representations (often ≤3), while WE-based
resamplers such as WExplore45 and REVO46 perform well in
high-dimensional spaces. High-dimensional adaptive resampling
algorithms have been especially successful in obtaining
preliminary rare-event simulations for systems with waiting
times well beyond what is typical.33,41,47−49 Notably, WExplore
simulations produced unbinding trajectories of a drug ligand
(TPPU) from its target (soluble epoxide hydrolase) that has an
experimentally determined mean first passage time of 11 min,
using less than 1 μs of simulation and a speedup of 109-fold.48a

WExplore and REVO have shown to be particularly useful for
discovering multiple pathways. Both algorithms were able to
discover multiple ligand dissociation pathways for the trypsin−
benzamidine system, which requires substantial rearrangement
of the loops comprising the trypsin ligand-binding pocket.46,47

In contrast, single and low-dimensional projections such as
reaction coordinates often constrict the search space to
particular paths, which precludes the discovery of alternative
paths (and transition states) between macrostates. Finding
multiple pathways can be particularly useful for applications
such as kinetics-based drug design when we want to understand
the structure of the ligand-binding transition state not only for a
particular ligand but also for closely related ligands. Finally,
adaptive algorithms such as WExplore and REVO (as well as the
history-augmented Markov state model WE method50) require
less upfront parametrization such as the definition of bin
boundaries.
Despite the advantages of high-dimensional adaptive WE

algorithms such as WExplore and REVO, their adoption has
been hindered for a number of reasons. First, the implementa-
tion of these resampling algorithms is complex and difficult to
implement correctly. Second, independent implementations of
WE algorithms lack interoperability of produced data and so are
difficult to compare. Third, the barrier to entry for other
researchers to write an implementation of the resampling
algorithm as well as progress metrics for their system of interest
is prohibitive.
Here, we introduce the open-source wepy software framework

for running WE simulations that attempts to address these
issues. We first describe a software and data architecture that
both reflect a simple mathematical formalism (described in 3.1)

and also decompose into multiple modular components. The
software architecture allows for reuse of vetted resampling
algorithm implementations written by researchers with domain-
specific progress metrics written by users. The data architecture
solves interoperability through the introduction of a general
purpose decision record design (described in the Appendix).
Wepy is implemented in the Python 3 programming language

and thus allows users to natively leverage a massive ecosystem
for scientific computing. Other benefits of a pure-Python
implementation are that it (1) increases portability between
platforms, (2) has a uniform interface that can be used as a
library and embedded into other software easily, and (3) only
requires knowledge of a single popular programming language
(Python), which if necessary has facilities for writing extremely
high performance code (e.g., numba,51 dask52). Currently, wepy
is tightly integrated with the OpenMM53 MD engine and
provides excellent support for running GPU MD simulations.
The architecture of wepy, however, is agnostic to the underlying
dynamics engine as well as to any particular parallel computing
strategy or framework. The wepy project also introduces a high-
performance single-file storage format and schema for cloning-
merging-type simulations implemented in HDF5.54b Use of
HDF5 also provides “out-of-core” data structures which allow
access to simulation data that do not fit entirely into computer
main memory. On top of this, an extensive interface [application
programmer interface (API)] is provided to make querying,
analysis, conversion to other formats of complex path
trajectories easy. Part of this interface is to support the intuitive
representation of WE trajectories which have been cloned and
merged as trees (referred to as “tree-like” data structures).
Although there are two other WE frameworks that have been

developed, these have different strengths and design goals. The
AWE-WQ23 system provides an implementation of the
accelerated weighted ensemble (AWE) along with a “Work
Queue”-distributed computing framework. However, AWE-WQ
is less flexible than wepy in that it solely implements AWE
simulations and is opinionated about the distributed computing
framework. The WESTPA55 software suite is a popular
implementation of many binning-based WE resamplers and
provides excellent support for running simulations on large
clusters of CPU cores and GPUs. It is implemented in Python
and typically run using a combination of UNIX-like shell scripts
and YAML configuration files. It shares many of the same
benefits of wepy discussed above including modularity and the
use of HDF5 files for simulation data. WESTPA however did not
satisfy our requirements because the architecture is oriented
around fixed-topology explicit binning approaches making
implementation of binless algorithms such as REVO46 difficult.
Additionally, we also favor the configuration-as-code approach
where simulation components are constructed in Python code.
In this paper, we first briefly describeWE, resampling, and rate

calculations along with a sketch of some of the adaptive
resamplers that motivated the construction of wepy. We then
introduce a mathematical formalism that provides an overview
of the design and architecture of the system followed by a
description of the major software components in wepy including
how to initialize, run, and analyze simulations. Finally, we
present an example ligand-unbinding scenario, using a
Lysozyme model system, along with concrete code examples
and explanations.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c03892
ACS Omega 2020, 5, 31608−31623

31609

http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c03892?ref=pdf

2. ALGORITHMS

2.1. Weighted Ensemble Algorithm. The WE algorithm
is a general strategy for simulating rare or long-timescale events
in stochastic systems.21 Its fundamental features are as follows. A
set of trajectories are propagated forward in time in a parallel
fashion, each one assigned a statistical weight (p). Periodically,
the trajectories are “resampled” to rebalance the computational
effort toward lower-probability regions. This is done by cloning
trajectories in sparsely populated, lower-probability regions, and
merging together trajectories in overpopulated, higher-proba-
bility regions. To maintain proper statistics, the weight of a
cloned trajectory is divided among its progeny, and the weights
of merged trajectories are summed and given to the resulting
trajectory. Here, we refer to this process as “resampling”.
It was shown by Zhang et al.44 that this is a statistically exact

process in that ensemble averages were obtained with WE
converge to those of the underlying distribution (e.g., the
canonical distribution) in the limit of large sampling, regardless
of the particular resampling function. One of the first strategies
for resampling is a simple binning of trajectories along a progress
coordinate. Trajectories are then cloned in under-represented
bins and merged in over-represented bins until the count in each
bin is equal to a target value. However, because of the
combinatorial explosion for tessellating high-dimensional search
spaces with uniform bins, algorithms such as WExplore and
REVO were developed to effectively leverage the WE algorithm
for processes that take place in inherently high-dimensional
spaces.
2.2. WExplore Resampler. The main problem with

defining bins in a high-dimensional space is that the number
of bins needed to cover the space scales exponentially with the
dimensionality of a space. This number of bins is proportional to
the overall computational effort of the simulation, as a target
number of trajectories are to be run in each bin. The WExplore
algorithm was developed by Dickson and Brooks to circumvent
this difficulty.45 The key is to construct a set of hierarchical
regions: a small set of large regions that tile the entire space,
which are each subdivided by a set of smaller regions, which are
in turn subdivided by even smaller regions. In the WExplore
resampler, these regions are Voronoi polyhedra that are defined
by points (called “images”) in a high-dimensional space. In order
to assign a trajectory to a region, we must measure the distance
from that trajectory state to each image. The trajectory is then
assigned to the region with the closest image. More information
on this algorithm can be found in the original paper.45

In a typical WExplore simulation, we start with only a single
image and define new images as they are visited by the set of
trajectories. A new image is defined when a trajectory in the
ensemble reaches a new region of space, or more precisely, when
the distance to the closest image is greater than a critical value.
The list of critical values (dmin = (d1, d2, ..., dn)) thus control the
sizes of the regions at each level of the hierarchy and are
parameters of the WExplore resampler. As the set of images
grows over the course of the simulation, the WExplore
resampling function (denoted below) can change with each
resampling step.
2.3. REVOResampler.AlthoughWExplore presents a viable

means of indexing tessellations of high-dimensional spaces,
there are still some behaviors related to the construction of
regions that are nonoptimalmost notably, the discontinuous
behavior related to reaching new levels of the hierarchy for the
first time. For this reason, a new resampling algorithm was

recently proposed which avoids the construction of sampling
regions altogether. In the REVO algorithm (resampling of
ensembles by variation optimization), an objective quantity
called the “trajectory variation” (denoted, V) is used to guide the
merging and cloning process.33,46 We calculate V before and
after each proposed merging and cloning operation and execute
only the operations that cause V to increase.
The variation is given by

V
d X X

d
X X

(,)
() ()

i j

i j
i j

0

i

k
jjjjj

y

{
zzzzz∑ ∑ ϕ ϕ=

α

(1)

where d(Xi, Xj) represents the distance between trajectories i
and j and ϕ(X) is a function that describes the importance of
individual trajectories. The exponent α allows us to balance the
relative strength of the distances and the importance functions,
and the d0 value does not affect resampling but serves to keep the
variation function unitless. On the whole, the variation function
increases as the ensemble of trajectories gets further apart.
The importance functions can be defined to take the

probabilistic weight of the trajectories into account

X p C() logi iϕ = + (2)

where C is a constant. This has the effect of prioritizing not only
a broad ensemble of trajectories but one where the highest
weighted trajectories are distributed as far as possible from each
other. This strategy can minimize the error in the calculation of
observables that depend on the weights of rare trajectories, such
as transition rates.

2.4. Calculating Transition Rates Using Boundary
Conditions. The wepy software supports the construction of
nonequilibrium ensembles to calculate transition rates. In this
technique,56−58 a set of history-dependent ensembles are
defined using a set of “basins”. For instance, if we are studying
ligand-binding transition pathways, then the basins will be the
“bound” and the “unbound” states. The unbinding ensemble is
then defined as the set of trajectories that have most recently
visited the bound state. When a trajectory from the unbinding
ensemble enters the unbound state, it transitions to the binding
ensemble. In a typical wepy simulation, we can initialize
trajectories in a given basin and use boundary conditions that
terminate trajectories that enter the opposite basin. The weights
of these trajectories are used to calculate a transition flux
(probability per unit time), which is used to calculate a rate
constant (e.g., kon or koff). These trajectories are then “warped”
back to the initial state, retaining the same statistical weight.

3. DESIGN AND ARCHITECTURE
3.1. Formalism. Let us first define ensemble resampling

simulations in general. First, we define an ensemble to be a finite
multiset of walkers, w, of size N

W w i N, for 0, 1, ...,i= { } =

where a walker is a set of two elements: a probabilistic weight, p,
and a state, X

w p X(,)i i i=

An ensemble of walkers defines a probability distribution,
P(X), and must be normalized such that

p 1
i N

i
0

∑ =
< <

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c03892
ACS Omega 2020, 5, 31608−31623

31610

http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c03892?ref=pdf

There are at least two steps in an ensemble resampling
simulation: propagating dynamics and resampling. We can also
introduce a third step for the so-called boundary conditions that
allow for running nonequilibrium simulations and calculation of
rate constants. An ensemble resampling simulation process,
(for “apparatus”), is made up of three components: a runner
function , a boundary condition function , and a resampling
function .

(, ,)=

The dynamics can be any stochastic dynamical process such as
MD, Monte Carlo simulations, and so forth. Formally, a runner
function has the form

X X()τ[] → ′

where τ[] is a stochastic function such that multiple
evaluations of an input state X might not yield identical X′s
and τ is the number of steps of propagation. Although acts
independently on each walker state X, it is convenient to write it
as

W W()τ[] → ′

The resampling function, , maps an ensemble,W, to another
ensemble W′ along with an updated resampling function ′

W W() (,)→ ′ ′

The walkers in this new ensemble must satisfy these
constraints

W

W

X p i N
N

X w w

p

State

(,): 0, 1, ...
where is a postive integer

() for in

1

i i

i j j

i N
i

0

∑

′ = { ′ = ′}
′

⊆ { }

′ =
< < ′ (3)

In words, W′ consists of walkers with states chosen from the
states of the W ensemble. Note that these constraints are
necessary but not sufficient to ensure that the sampled
ensembles are consistent with the cloning and merging process
in the WE algorithm.
The updated resampler ′ allows for algorithms that take into

account history dependence. Thus, a resampling function

W W() (,)→ ′

is said to be stateless and does not take into account any walker
history.
Although more commonly stateless, boundary conditions and

runners also have equivalent history-dependent definitions

W W

W W

() (,)

() (,)τ

→ ′ ″

[] → ′ ″

These functions typically utilize an application strategy that
follows

W W

W W

W W

() (,)

() (,)

() (,)n n n n

0 0 1 1

1 1 2 2

1 1

∂

→

→

→− −

To simplify this, we write it as

W W()n
n0 →[]

Similarly, a single cycle of simulation is the application of the
three components of the apparatus (, ,)τ= [] to an
initial ensemble, W0

W W

W W

W W

()

()

()

0

1

τ[] → ′

′ → ″

″ →

This interleaved application of apparatus components can be
simplified to

W W() (,)0 1→ ′

where (, ,)′ = ′ ′ ′ which can easily adopt the notation
mentioned above for n cycles applied to the initial walkers

W W()n
n0 →[]

A final useful construct is the snapshot which is the complete
state of a simulation

W(,)=

3.2. Software Components. In this section, we describe
concretely the software components that make up the wepy
framework and how they are integrated. We begin by describing
the simulation manager, which implements the apparatus
described above and handles the reporting of output to the user.
We then discuss some unique features ofWE algorithms that can
lead to challenges during data analysis and tools provided by
wepy that make this analysis easier.

3.2.1. Building and Running Simulations. To run
simulations, we need two things: an ensemble of initial walkers
and a simulation manager. A simulation manager is an object
that contains all of the apparatus necessary to move the walkers
forward.
The flowchart in Figure 1 describes the functioning of a

simulation manager acting on a set of initial walkers. First, the
input walkers have their states propagated by the runner, which
can be any sort of dynamics engine. The initial release of wepy
supports OpenMM as an MD engine, as well as experimental
support for other engines such as NAMD. Because the runner
propagation is typically extremely compute-intensive, we also
provide another work mapper component, which can be
customized for different computing environments. Wepy
includes a serial implementation that can be used for testing
on a single core or device, as well as two additional work
mappers that use the python built-in multiprocessing module
that are suitable for simulations using hardware on a single node.
Because the work mapper has been factored out of the
implementation of the runner itself, these mappers will work
for all different MD engines with little modification.
After propagation by the runner, each walker is tested by the

boundary condition function to see if it has met the criteria. If
any walker satisfies the boundary condition, the function is free
to modify the state of those walkers; this is called a warping
event. In addition to the new walkers, a set of warping records
are produced that describe how the warping event(s) occurred.
These records are then made available for generating the final
data structure and any other report that requests them. In wepy,
two kinds of warping events are recognized: continuous and
discontinuous. A discontinuous warping event is one where
dynamical variables of the walker are modified, for example,

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c03892
ACS Omega 2020, 5, 31608−31623

31611

http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c03892?ref=pdf

restarting walkers at the initial state after reaching a target state.
A continuous warping event is one in which none of those
dynamical variables are modified. This could be an auxiliary
attribute such as a “color” after a walker passes through some
boundary59 or none at all in which case only a record will be
produced.
After the boundary conditions are applied, the resampler

resamples the walkers. Again, a collection of records is produced
for the resampling; however, unlike the warping records, a
record for each walker is produced every cycle. These
resampling records contain critical information about the
lineages of walker states that is necessary for reconstructing
continuous trajectories. It is useful to use a diagram to depict the
histories of each walker as they pass through these stages in a
single cycle, an example of which we have shown in Figure 2.
Finally, at the end of a cycle, the walkers and records are passed
off to an arbitrary number of reporters which can record
whatever output is necessary or desired.
Although reporters can be customized for a particular

simulation, there are a number of useful reporters included
with wepy. The WepyHDF5 reporter generates HDF5 output
files, which are a major component of wepy and will be discussed
on their own later in relation to analysis. The rest of the reporters
are designed to give real-time insights to potentially long-

running simulations as well as to give an accessible summary of
the simulation results. The dashboard is an executive summary
of the simulation provided in a simple plaintext file that is
formatted in emacs org-mode that makes it easy to read a
potentially large output file in a hierarchical folding manner. The
walker ensemble reporter is for visualizing the current state of
the walkers that simply outputs a reference topology file and a
DCD trajectory file that can be used for visualizing in any of the
main 3D molecular visualization programs, while these snap-
shots of simulations show only transient information that they
are useful to indicate rough sketches of progress or for
debugging purposes. Finally, the resampling tree output will
generate a GEXF formatted XML file that shows the “family
tree” of all walkers in the simulation. This is useful for helping
understand both when and where resampling and warping
events are taking place. These reporters are provided only for
convenience as all of this information can be generated from
WepyHDF5 files.

3.2.2. Data Format and Analysis. The WE algorithm is built
on branching trajectories: simulations that have a single starting
point may have multiple ending points. We call these kinds of
tree-like branching trajectories nonlinear and a diagram of the
difference between them and more traditional linear trajectories
can be seen in Figure 3. In wepy, we call a locally linear selection
of frames from the entire nonlinear dataset a trace. These are
shown in Figure 3 as the solid colored lines drawn next to the
frames they encompass. Nonlinear trajectories introduce
additional complexity and typically require modifications to
common time-dependent analyses.
First, visualizing a single linear trajectory requires a selection

step and the input of information. For instance, in Figure 3, the
single red and blue traces for the linear trajectories are trivial,
whereas there is some redundancy in the nonlinear trajectories
from the tree. In a nonlinear tree, we can choose a frame for
which we are interested in its history and recover its lineage as a
trajectory. These linear trajectories can then be exported to a
common format (e.g., CHARMM DCD) and visualized.
Second, state network models such as Markov State models

(MSMs) are a common method for representing and under-
standing large amounts of simulation data. This is a perfect

Figure 1. Diagram showing the components and flow of data for the
main simulation loop of the simulation manager. Dynamics are
performed in the runner component and parallelized onto the compute
nodes via the work mapper. The warping and resampling records are
shown in the data flow, which are serialized and saved using an HFD5
reporter. Other reporters can be defined to record simulation data,
which is indicated by the I/O elements.

Figure 2.Walker history schematic. The vertically stacked boxes are the
ensembles of walkers with labels below. The index of the “box” is the
walker index in that ensemble. The color of the circle inside the box
represents the state of the walker, where we treat white as the initial
state of the simulation. The jagged lines indicate propagation of the
walker state through the dynamics of the runner. The lines for the
boundary condition step indicate whether a warping event occurred,
where the dot indicates that a continuous warp occurred and the slash
indicates a discontinuous warp, in this case, returning the walker state to
the initial conditions. The lines in the resampling phase show cloning
andmerging, where a solid line indicates that a child inherits the state of
its parent and a dashed line indicates a transfer of weight to another
walker. In this example, w0 has cloned itself to produce two child
walkers while w1 has been “squashed” and its state forgotten. It is
“merged” and its weight was added to the resultant w2.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c03892
ACS Omega 2020, 5, 31608−31623

31612

https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c03892?ref=pdf

match for WE simulations, as the trajectory segments are
typically generated using unbiased dynamics. However, current
tools for constructing MSMs do not support construction of the
transition matrices from nonlinear trajectory trees. Fundamen-
tally, the problem involves avoiding the double-counting frames
when counting the transitions for lag times greater than our cycle
length (τ). A comparison for the solution for the nonlinear case
is compared to the linear case in Figure 3, which is implemented
in wepy.
Third, when calculating free energies of macrostates, the

weights of trajectory observations must be taken into account.
This simply amounts to doing weighted sums rather than counts
for macrostate bins and requires careful association of trajectory
frames to the instantaneous values of trajectory weights.
Finally, observations in different trajectories cannot be

assumed to be statistically independent. Take for example, a
set of observed warping events take place where a ligand
molecule reaches the threshold of unbinding for a receptor. Each
single instance contributes to the overall rate of unbinding
proportional to its weight via the Hill relation.15 However, the
calculation of macroscopic observable uncertainties (such as the
probability of an unbinding event) is complicated by the
duplication of single observations via cloning. The degree to
which two observations can be seen as “independent” depends
on the time point of their last common ancestor.
To deal with these fundamental differences in the abstract

structure of data generated by a WE simulation, wepy
implements a new mechanism for storing trajectory data. To
accomplish this, we have designed and implemented a storage
layer using the commonHDF5 format, which is suited to storing
large amounts of heterogeneous data. In this implementation, all
data results from a simulation are contained in a single
monolithic binary file. Although the data can be accessed with
any tool that supports HDF5, in wepy, we provide an extensive
API for creating, accessing, querying, processing, and trans-
forming the data at a useful semantic level.
In the WepyHDF5 format, we bundle together the three

critical and interdependent data pieces into a single file: walker
data (including weights and states), resampling data, and
boundary condition warping data. This combination is what
allows us to generate views of linear trajectories from nonlinear
data. The resampling data inform the parent-child relationships
between walkers and the warping data alerts to the presence of
discontinuities in dynamics of these walker lineages. These

primitives solve most of the major problems listed above for
dealing with nonlinear trajectories with tools provided in wepy.

4. RESULTS

In this section, we first discuss code examples on how to set up,
run (Section 4.1), and analyze (Section 4.2) a simulation for the
test system used in this paper: Lysozyme ligand unbinding in an
implicit solvent. We then describe all the parameters and details
about the simulations that were run, the results of which are
briefly discussed. This small experiment is shown to give an
example of the kinds of results and analysis that are typical for
wepy simulations.

4.1. Code for Running Simulations. Here, we give a brief
sketch of how these components were constructed and put
together into a simulation manager in a Python script. The
complete code is given in the Supporting Information. The
system and parameter choices will be discussed in Section 4.3.
We first need to set up our wepy runner for OpenMM, which

requires an OpenMM system and integrator objects. Using
OpenMM-Systems helper library (installed with wepy), we can
easily create a ready-to-go MD system.

The integrator can be constructed using the OpenMM
constructor

where the three arguments are the temperature, friction
coefficient, and dynamics time step, respectively. We can then
create a runner object that contains everything needed to
propagate the system, where the reference platform specifies a
cross-platform reference implementation on a CPU. Note that
our production simulations for this work were run with the
CUDA platform.

Figure 3. Nonlinear trajectory comparison. The black squares indicate single frames which are connected in time by the thin black lines. The larger
lines indicate a locally linear trajectory, here called a “trace”.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c03892
ACS Omega 2020, 5, 31608−31623

31613

http://pubs.acs.org/doi/suppl/10.1021/acsomega.0c03892/suppl_file/ao0c03892_si_001.zip
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c03892?ref=pdf

Second, we need to create the initial ensemble of walker

objects from which to start our simulations. We use a wepy

helper function gen_walker_state to generate state objects

directly from OpenMM systems.

init_state is a WalkerState object which can be put inside a

walker. Because we are using a Langevin integrator which has a

stochastic component (required by all WE simulations), we can

copy the same structure for all starting replicas. Each worker

manually has a weight assigned to them; in this case, it is a

uniform distribution.

Third, we construct a resampler to use. Both the WExplore

and REVO resamplers require a metric, which is a way of

measuring the distance between two walkers. Details regarding

the distance metrics are discussed in more detail in Appendix

6.2. For receptor ligand-based systems, there are distance

metrics already included in wepy:

where lig_idxs and bs_idxs are the atomic indices of the ligand

and the binding site in the system. A user can also easily make

their own distance metrics; a recipe for doing this is shown

below

The dependencies here are the distance base class and some
helper functions for performing geometric operations on arrays
from our custom library geomm. The distance object is created
in a similar way, except that we do not need the reference state
(which is needed in UnbindingDistance for performance
reasons):

Fourth, we construct the resampler that we are going to use.
Here, we create an instance of theWExploreResampler using the
distance and init_state objects that we created earlier as well as
some additional algorithm parameters (as discussed in Section
2.2)

Fifth, to set up a nonequilibrium ligand-unbinding simulation,
we will construct boundary conditions that capture walkers as
they cross into the unbound state. Wepy also comes with some

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c03892
ACS Omega 2020, 5, 31608−31623

31614

https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c03892?ref=pdf

built-in modules under receptor-based boundary conditions,
which we can import and parametrize as follows

where json_top is an internal JSON-based topology format in
wepy, more information on this is given in the supplemental
example script. Again, this is easy to customize for your
application; we show a simplified example of a custom boundary
condition below. The warp_walkers function computes the
minimum distance between the ligand and the receptor atoms
for each walker and if it exceeds a threshold, we “warp” it by
replacing that walker state with the initial bound state, while
keeping its weight constant.

Finally, we assemble these components into a simulation

manager

Once the simulation manager is constructed, all we need to do

now is to tell it to run. A simulation for 10 cycles, each having

10,000 steps per walker per cycle runs as follows

This returns the walkers at the end of the simulation along

with the final state of the runner, resampler, and boundary

conditions which are contained in the final_apparatus.

Another important component is the use of reporters. In

addition to the walkers and apparatus returned by the simulation

manager functions, wepy supports a plugin system to output

data as the simulation is progressing. In the following example,

we will show you how to use two different reporters: one for

creating the HDF5 files and another that produces a plaintext

dashboard file for every cycle to show the progress of long

running simulations in a high-level overview. If you have the

resampler and boundary conditions already constructed, it is

very simple to make the HDF5 reporter. This will work out of

the box but should likely be customized as the default is to save

all data, including the velocities, at each step.

The dashboard is composed of different sections for the

different components. There is a generic one that displays the

number of cycle runs, walker weights, and total simulation time,

and there are component-specific sections for information on

resampling, boundary conditions, and so forth.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c03892
ACS Omega 2020, 5, 31608−31623

31615

https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c03892?ref=pdf

These reporters are attached to the simulation manager at

creation time

As mentioned in Section 3.2.2, the HDF5 reporter is of
utmost importance and is a purpose-built fully featured storage
format implemented in HDF5. Saving your data in the HDF5
format will let you use an extensive API designed specifically for
manipulating WE data (the WepyHDF5 class in the wepy.hdf5
module) as well as allowing lower-level manipulations via
libraries such as h5py. Furthermore, a fairly comprehensive
analysis toolkit is made available in the wepy.analysis module.
This toolkit makes it easy to transform and structure data to
interoperate with other analysis toolkits such as scipy,60 dask,52

mdtraj,61 and gephi.62 In the next section, we show some
examples of how to leverage these tools to perform common
analyses and visualizations.

4.2. Code for Analysis and Visualizations. 4.2.1. Proba-
bility Distributions. One of the most common ways to visualize
simulation data is to project structural data to a small number of
dimensions and then plot this as a probability distribution. In
practice, free-energy profiles are computed by binning the
projection domain and then computing the weighted histogram
over those bins by summing the weights of the samples in those
bins. The bin values are then normalized to get a probability
distribution, which is then transformed by −ln(p) to get a free
energy-like value. Typically, the term free energy refers to
probability distributions over equilibrium ensembles. However,
for convenience, here, we refer to probability distributions
transformed as described as “free energy” or more specifically
“nonequilibrium free energy” even if the underlying ensemble is
not necessarily an equilibrium one. In a single linear MD

Figure 4. Series of −log(p) distributions for ensemble simulation groups at different time points. The time shown in the bottom right of each panel is
the total amount of sampling across all replicas in the ensemble.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c03892
ACS Omega 2020, 5, 31608−31623

31616

https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c03892?ref=pdf

trajectory, the frames are equally weighted, but in an ensemble of

walkers in WE, the weights of each frame can be different and

vary over time. As such, the trajectory coordinate data are

associated with the weights in the wepy HDF5 file.
Here, we show how to create 1D free-energy profiles for each

experimental group projected onto the ligand RMSD relative to

the bound pose (see Figure 4). The process is to first compute

the ligand RMSD for all of the simulation frames as an

“observable” and then to compute the free-energy profiles which

can be plotted with a tool such as matplotlib.63

To compute the ligand RMSD observable, we open the file

with the WepyHDF5 API in Python

Then, we define a function for computing RMSD that will be

mapped over all of the data

We then apply the function to the data

where the second argument asks to retrieve the relevant data

from each frame, which here is just the positions. This also saves

the observable into the database as the field “lig-rmsd”. By

default, the calc_rmsd_observable function is applied in serial.

In wepy, we also provide a distributed version which can connect

to a dask cluster server for distributed parallelism on large

computing clusters (see documentation).
Now, we can create the free-energy profile for this observable.

One intermediate step, although, is to use another representa-

tion called the “contig tree”, which makes combining multiple

contiguous simulations (such as when a simulation is restarted)

much easier to analyze. Construction of a contig tree requires

(1) a dataset, (2) a “decision” (used internally by the resampler

see Appendix 6.1 for more details), and optionally (3) the

boundary condition class that was used for the simulation if any.

With the contig tree constructed, we can then feed it to the
profiler, bin the domain, and calculate the free energies for each.

A line plot of fe against bin is shown for each simulation type
in Figure 4 and discussed in Section 4.4.1.

4.2.2. Visualizing Ligand-Unbinding Events. To make rate
estimates for a process or to analyze the transition path
ensemble, we need an efficient way to examine the pathways
from one basin to another. There are tools in wepy to help
analyze this kind of boundary condition data, which we call the
“warping” records. The data for all the warping events can be
found in the HDF5 and are accessed through either the
WepyHDF5 object or the ContigTree. Here, we can make a
pandas data frame table for run 0, which can easily be exported to
any number of formats.

Each row of this table contains the index, weight, and point in
time that the event took place.
To get trajectories from these warping events to the starting

structure, we use the following functions on a Contig object
which is a single simulation from a ContigTree

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c03892
ACS Omega 2020, 5, 31608−31623

31617

https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c03892?ref=pdf

On the first line, we first generate a linearized Contig from the
ContigTree which is necessary for traversal. Then, we open a
context for the contig to open the HDF5 file where we can then
access the simulation data. We then query for a “trace” of all
frames in which a warping event occurred as the warp_trace.
From each of these events, we then produce the individual
histories (“lineages”) of that walker to the initial state. For this
example, we only choose to look at one of these, which is set as
lineage_trace. We now want to actually retrieve the simulation
data to be able to visualize and perform analysis on it. To do this,
we use the lineage trace and choose which attributes we want.
For this example, we get only the positions and box vectors
because our purpose is to generate visualizations. Now that we
have the trace_fields for this trajectory, we can easily convert to
an mdtraj object which can then be used to save the trajectory to
a file format visualization software can read.
4.3. Simulating Lysozyme Ligand Unbinding. To

showcase the use of wepy for performing simulations of rare
events in real systems, we simulate the small-molecule p-xylene
unbinding from the T4 lysozyme L99A mutant protein, which
we refer to henceforth as “lysozyme”. Lysozyme is a common
model system for ligand-unbinding studies both experimentally
and computationally.64 Lysozyme-unbinding pathways have
been simulated through a variety of enhanced and brute-force
methods.65−68 Here, we simulate lysozyme interacting with the
p-xylene ligand in an implicit solvent where the event of interest,
ligand unbinding, is not trivial to observe but is still tractable
with straightforward MD simulations.
The system was prepared in an OBC GBSA implicit solvent,

using Amber ff96 for the protein force field and a GAFF and
AM1-BCC parametrization of the ligand. A Langevin integrator
was used with a 2 fs time step, a temperature of 300 K, and a
friction coefficient of 1 ps−1. Here, we determine a target p-
xylene residence time in an implicit solvent using a total of 3.385
μs of straightforward MD simulation, where p-xylene is
“warped” back to the binding site upon unbinding a total
number of 11 times. This resulted in an unbinding rate of 3.25
μs−1, which we use as a target rate for comparison with both WE
simulations and trajectory ensembles using wepy without
resampling. The test groups that were simulated are as follows:
ensemble of 48 walkers with no resampling, that is,
straightforward (SF group); ensemble of 48 walkers with the
REVO resampler (REVO group); ensemble of 48 walkers with
the WExplore resampler (WExplore group).
For each group, four independent simulations were run, each

for a total sampling time (summation across all replicas of
ensemble) of 1 μs. All simulations used the same boundary
condition criterion, which is that the minimum of all ligand−
protein interatomic distances is greater than 1.0 nm. Boundary
conditions are checked at the end of every cycle, which was τ =
20 ps for every group. The WE simulations (REVO and
WExplore) employed the following parameters: a minimum
walker weight of 10−12 and a maximum walker weight of 5.0 ×
10−1. Both REVO and WExplore used the UnbindingDistance,
where the distance between two walker structures is computed
as the distance between their ligands after alignment of their
binding sites to the initial starting structure. This is included in
wepy and has been used with success in other ligand release
simulations.28,33,47−49

For the WExplore simulation, the same parameters from
previous publications28,47,48 were used; four region hierarchy
levels with cutoffs d = 10, 5, 3.5, and 2.5 Å with a maximum of 10
subregions per parent region. For REVO,46 the following

parameters were used: a characteristic distance of 1 Å, a merge
distance of 2.5 nmc, and a distance exponent of 4, and we use the
weight-based importance function, as described in eq 2.

4.4. Analysis of Simulation Results. 4.4.1. Probability
Distributions. Figure 4 shows a series of plots of free energies of
each simulation group projected onto the RMSD of the ligand to
the starting pose as a function of aggregate simulation time.
Again, the “free energies” here are more accurately the negative
logarithm of the nonequilibrium probability distributions
because we are warping unbound walkers back to the starting
position. Accordingly, we see a local free-energy minimum at
RMSD close to 0 Å but no corresponding minimum in the
unbound state.
REVO and WExplore reach much larger ligand RMSD values

than the straightforward (SF) simulations. Both WExplore and
REVO observed close to 5 nm RMSD values at 0.052 μs (Figure
4B), whereas SF has only reached ligand RMSD values of around
1.7 nm. The probability of large RMSD states tends to be
underestimated early on, as can be seen by comparison between
panel A and B and the final estimates in panel D.
By the end of the simulations (Figure 4D), all the profiles are

very similar between the different groups until around 4 nm. The
curves for WExplore and REVO beyond that are noisy because
of the difficulty in reaching very large distances (e.g., 7 nm)
without reaching the unbinding boundary condition. In general,
note that early time predictions of WE free-energy profiles can
differ significantly from equilibrium free-energy profiles. These
should instead be viewed as direct estimates of a conditional
time-dependent probability distribution: P(x, t|x0, t0), or the
probability of being at a point x and time t, given that we began at
point x0 at time t0. Although we expect these to converge to
equilibrium probabilities only for t → ∞, we can often learn
valuable information from the tails of these distributions.
We note that a peculiar artifact in this system is that the p-

xylene ligand sticks strongly to the surface of lysozyme, and
breaking out of the binding pocket was much easier than leaving
the surface of the protein. This likely explains high-variance
ligand RMSD values above 4 nm and performance could be
improved by incorporating the latter process (leaving the
surface) more directly into the distance metric that governs the
resampling process.

4.4.2. Unbinding Events and Trajectories.A primary interest
in the study of rare events in nonequilibrium systems is to
understand the kinetics of transition paths. Although we can use
a variety of simulation methods to estimate the rate constants
associated with events, it can be much more difficult to obtain
accurate data on the actual mechanistic determinants of these
rates. Primarily, this is the structural details of transition states,
but all structures along a path can potentially be useful for design
purposes. Transition paths obtained with path sampling
methods, such as WE, are especially meaningful because the
Hamiltonian is unperturbed throughout the sampling process.
Here, we show how wepy can easily obtain and analyze
continuous, unbiased trajectories of ligand unbinding.
Table 1 shows that both REVO andWExplore outperform the

SFmethods in terms of the absolute number of unbinding events
that are observed. More important, although, is that the initial
times of the first observations for REVO andWExplore aremuch
faster than the SF ensemble simulations. All replicates for REVO
and WExplore simulations have exit points within the first 100
ns, while the first among SF simulations takes about 3 times as
long (at 300 ns) and is highly variable among replicates. The
slowest SF simulation does not observe an unbinding event until

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c03892
ACS Omega 2020, 5, 31608−31623

31618

http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c03892?ref=pdf

around 700 ns. This highlights the utility of high-dimensional
resamplers such as WExplore and REVO for generating
observations of rare events with a more modest investment of
computing power. In Figure 5, we show structures along the first

unbinding paths generated by the SF and REVO simulations.
From this, we can see that the REVO simulation (panel B) takes
a much shorter, more directed path to unbinding compared to
the SF one (panel A). The ligand in the SF simulation can be
seen to move around to multiple other locations on the surface
of the protein before ultimately unbinding.

5. DISCUSSION
5.1. Successes.Wepy is a useful and flexible implementation

of advanced WE simulations with a growing number of
applications.33,46,49,69 In our experience, wepy has been

particularly useful in three major ways. First, it has made the
prototyping of new methods very easy even for researchers with
little experience in programming or the Python language. The
initial goal of wepy was to simplify and modularize the original
implementation of the WExplore algorithm.45 Following this,
the REVO algorithmwas fully prototyped, tested, and eventually
used as a resampler for a variety of problems.33,46,69 This process
was made much simpler and faster by the sharing of the same
infrastructure that was already developed. In addition, the
binless nature of the REVO algorithm was actually conceived of
partly as a response to the abstractions formalized by wepy.
This highlights the second point: not only does wepy provide

useful software to perform simulations but it also provides a
common language with which researchers could communicate
with each other about their simulations. We have found the use
of diagrams such as Figures 1 and 2 to be valuable not only for
reasoning about our programs but also in explaining WE and
nonequilibrium simulations in general.
Finally, wepy has made the process of analyzing WE

simulations dramatically simpler. The biggest contribution
here is the support for out-of-core data structures (via the
HDF5 format) and expressive in-memory representations that
reflect the tree-like trajectory structures (i.e., WepyHDF5 and
ContigTree). Using this data structure, wepy also provides
facilities for easy analysis and visualization of “resampling trees”.
As mentioned in the Introduction (Section 1), a big asset to

the WE method is that the microscopic trajectories are
generated using the unbiased Hamiltonian. In wepy, we ensure
that these data can be fully leveraged however the user sees fit.
One major use case for these data is the construction of MSMs
with long lag times, which in turn can be used to predict steady-
state probabilities or identify transition states. Although not
mentioned here, wepy provides facilities for constructing
macrostate models [such as conformation state networks
(CSNs) and MSMs].
Others are encouraged to use, share components for, or even

contribute to wepy which is open source with an MIT license.
The source code is currently hosted on github (https://github.
com/ADicksonLab/wepy) and documentation is currently
available at https://adicksonlab.github.io/wepy. At the time of
publication, the 1.00 release of wepy has been made and has
been archived and given a persistent identifier from Zenodo.org
(DOI: 10.5281/zenodo.3973431).

5.2. Opportunities for Future Development. Although
wepy provides many essential and novel features, there are areas
for potential improvements that could make it even more widely
useful. Currently, it has not yet been integrated with major MD
engines such as GROMACS,70 CHARMM,71 Amber,72 and
Desmond,73 and there is currently only experimental support for
NAMD74 and ASE.75 We note that the architecture of some of
these engines makes it difficult to interface without going
through a UNIX-like system environment (a difficulty for all
software using these tools). We note that OpenMM allows for
the use of force fields native to each engine (e.g., CHARMM,
AMBER) to be used within it, so the issue is more about choice
of implementation rather than the content of the simulations.
Second, the priority for wepy developers has been on

implementing and prototyping new adaptive and high-dimen-
sional resampling algorithms rather than implementing standard
static binning methods or accelerated WE.23,59 Fortunately,
many of these methods are not complex to implement as
resampler objects in wepy and we hope that these will either be
included in future releases or as standalone libraries. We note

Table 1. Unbinding Events and Final Rate Estimates of
Simulations

group num warps

SF (numerical target) 11
SF (ensemble) 39
WExplore 486
REVO 4337

Figure 5. Ligand-unbinding trajectories. These 3D renderings of
lysozyme protein (from the trajectory seed structure) showing the
positions of the p-xylene ligand from the bound positions (red) to
unbound positions (blue). A cartoon representation of lysozyme is in
purple surrounded by a gray surface representation. Positions of the
ligand are shown for the first observed unbinding trajectory from each
of the two simulation groups shown at the end of each WE cycle (τ, i.e.,
every 20 ps). (A) Unbinding trajectory from the SF group (no
resampling). (B) Trajectory from the REVO group.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c03892
ACS Omega 2020, 5, 31608−31623

31619

https://github.com/ADicksonLab/wepy
https://github.com/ADicksonLab/wepy
https://adicksonlab.github.io/wepy
http://Zenodo.org
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c03892?ref=pdf

that a goal between WESTPA55 and wepy developers is to
enable a modular program design, where resampler objects
could be used interchangeably between the two WE
implementations.
Third, for protein and other macromolecular simulations,

wepy resorted to using an ad hoc serialization format in JSON for
molecular topologies (the schema of which was borrowed from
an internal representation in the mdtraj HDF5 implementa-
tion). In principle, wepy is agnostic to topology formats but in
practice, this is an extremely important component in building
simulations and performing analyses. Despite there being a large
number of software packages implementing in-memory
representations of molecular topologies, there are no formats
suitable for serialization and communication between software.
We encourage users to consider themerits of the JSON topology
used in wepy but by no means recommend it as a general
purpose standard nor do we wish it to become a de facto
standard.
Finally, although the use of an HDF5 based file format has

proven to be a good choice for many reasons, it is currently not
supported natively by any molecular visualization software.
Thus, trajectories must be converted and duplicated into
separate files with a supported format (a simple task using the
integration with the mdtraj library). In our work flows, we treat
these files as temporary intermediates; however, this can bloat
the necessary disk space needed and cause some time delays
when (re)generating them.We note, although, that visualization
tools could benefit immensely by adopting a random-access
format such as HDF5 which would allow for visualizing single
trajectories which do not fit in memory, a problemwe frequently
encounter when attempting to view very long trajectories.

■ APPENDIX: CREATING AND DEVELOPING
RESAMPLERS

As mentioned in Section 3.1, resamplers can do whatever they
want as long as they satisfy the constraints given in eq 3. There is
thus great flexibility in wepy for advanced users who wish to
design new resampling algorithms. However, in practice, not
much is developed in a vacuum and much of the functionality
between resamplers can be shared. Here, we describe two core
abstractions that are provided by wepy to aid in design and
construction of resamplers: decision classes and distance
metrics. These two components are the foundations for the
two high-dimensional resamplers provided in wepy, WExplore,
and REVO, in addition to other in-progress research resamplers.

6.1. Decision Classes
The first useful abstraction we identify is the decision class
(denotedD). We would like to report on the resampling process
such that there is no loss of information. Although this is not
completely necessary and resamplers have the privilege of not
divulging how they resampled a given ensemble of walkers, it is
rather useful to know post hoc. Indeed, if we do not have
information on how an ensemble of walkers was derived from a
former one, then we have no way of connecting them together
for visualization or analysis.
One way to represent the resampling process that satisfies

these requirements is to model a resampling process as a set of
discrete actions applied to each walker. We then require that the
resampler generates an action record for every walker in a single
applicative step

W W A() (, ,)→ ′ ′

where is the resampler,W is the set of walkers, and A is a list of
the actions ai that were applied to each walker i, where n is the
number of walkers in W

A a a a(, , ...)n0 1 1= −

In order to support more general situations, we allow for this
“net” action record to be described as a set of microactions that
when applied successively, k times, yield the net action record: A
= (A0, A1, ... Ak−1). This structure was chosen because it supports
a multipass iterative approach without losing any information.
For single-pass approaches, we can use a set of microactions with
size one, that is, A = (A0). However, the net action record, A , is
all that is needed when analyzing ancestries and for this
discussion we can ignore the microactions.
This representation is quite general as it leaves the structure

and content of the individual action records ai unspecified. The
decision class adds structure to these records by regarding each
action record as a decision that was made regarding the fate of a
walker. Minimally, this simply means defining a set of decision
types (or symbols) and choosing one for each walker.
As an example, for the canonical WE cloning and merging use

case, we choose the decision symbols: “CLONE”, “MERGE”,
“SQUASH”, and “NOTHING”. Here, “CLONE” indicates to
make a copy of the walker, “MERGE” indicates that the state of
this walker will be kept and weight from a selection of the
“SQUASH” walkers will be donated to it, and “NOTHING”
indicates that no action will be taken for this walker. The
definition of these symbols is implemented as a Python Enum
that assigns an integer value to each symbol (useful for efficient
storage). To encode the meanings of these symbols in a
resampler, a decision class uses twomethods: action and parents.
The action method can be seen by expanding the previous

application of the resampling function into a two-step process

W

W W

A

A

() (,)

action (,)D

→ ′

→ ′

The clone-merge decision class in wepy covers most use cases
and allows for multiple clones from a single walker. In addition
to the decision symbol, it also requires an additional list of
indices indicating the other walkers they target. For “CLONE”,
the target indices are the locations (and thus implicitly reveal the
number of clones) that the newly minted walkers will occupy.
For “SQUASH”, the target indicates which “MERGE” walker it
will donate its weight to. Target indices for “MERGE” and
“NOTHING” designate the index of the surviving walker. It is
up to the resampler to ensure the integrity and consistency of
these records.
As an example, the action record A from the resampling step

of Figure 2 would take the form

A ((CLONE, (0, 1)), (SQUASH, 2), (MERGE, 2),

(NOTHING, 3))

=

This decision class is the only one supported in wepy
currently, although others are currently under investigation.
The parent function is a function which allows for the

recovery of the lineage of walkers

A p p pparents () (, , ...,)D n0 1 1→ ′−

where pi is the index of the walker inW that is the parent of the
walker i in W′ and n′ is the number of walkers in W′. For the
example mentioned above, the parents would be (0, 0, 2, 3).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c03892
ACS Omega 2020, 5, 31608−31623

31620

http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c03892?ref=pdf

Resamplers can then be equipped with decision classes both
in order to aid in generating the records of resampling and
identifying the decision protocol that it adheres to. These both
reduce the amount of code a resampler must implement but
reifies an interface such that multiple components can identify a
resampler as having certain properties. Reification of the
decision class drastically improves the serializability of WE
simulation data and thus the interoperability. This can be seen in
the straightforward representations of these records into the
HDF5 storage format as a simple table of values.
6.2. Distance Metrics
The goal of any resampler in a WE simulation is to refocus
computational effort toward walkers that are deemed to be more
valuable than others for accomplishing a particular research
objective. In both WExplore and REVO, a central object is the
distance metric, which is used to compare walkers to each other
(in the case of REVO) or to compare walkers to a set of “images”
that are constructed over the course of the simulation (in the
case of WExplore). Using a distance allows us to focus on
walkers that are different from the others, which can increase our
odds of breaking out of deep free-energy minima. Note that
distance metrics are more general than projection onto
collective variables, which is the basis of many other enhanced
sampling methods (including other applications of the WE
method). For more detailed arguments for the use of distance
metrics beyond those made here, we refer to refs.76,78

Distance metrics are defined as independent objects in wepy
that can be used to build resamplers, boundary conditions, or for
analysis. These can be defined very generally and need not be
Euclidean. One example is the characterization of molecular
conformations by a “string” of booleans indicating the presence
or absence of secondary structure features or intermolecular
interactions. Although this does not form a vector space, it is still
able to be compared using metrics based on Jaccard distances
such as the Tanimoto distance which is frequently used in
chemoinformatics for comparing molecular structure features.
In fact, there is a great diversity of nonvector space distance
metrics that could be used to express the goal of a simulation:

• Root-mean square metrics such as molecular RMSD,79

• Mahalanobis distance for characterizing protein surfa-
ces,80

• Hausdorff distances for characterizing shapes from
continuous topologies, and

• network/graph structure Wiener index for characterizing
network/graph structures again used in chemoinforma-
tics.81

Distance metrics have a simple and uniform abstraction that is
mathematically well-studied. Generally, a distance metric can be
defined as a function, d, that maps two states, Xi and Xj, in a
metric space, J, to a single positive real number77,82

d X X d d(,) ; : ,i j ij
J J  = →

An example of a simple wepy distance metric is given in Figure
6. The necessary details of this are that the class inherits from the
distance superclass and that it implements a method called
image. With this implementation, we are free to run simulations
with either WExplore or REVO because they both support this
interface.
In practice, distance metrics should be defined to reflect the

goals of a particular simulation. This meshes well with the wepy
implementation as one can use any external library available in
the vast Python ecosystem. We highlight, for instance, that the

scipy.spatial library provides over 20 different general purpose
distance metrics at the time of writing.60 Furthermore, more
molecular focused analysis tools such as MDTraj,61 MDAnal-
ysis,83 ProDy,84 and our own geomm can be leveraged for
constructing more complex distance metrics.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.0c03892.

Example folder with included data and scripts to generate
and analyze the data presented above; plaintext README
file with instructions for wepy installation and for the
running the scripts and examples; and for more up-to-date
information and examples, consult the wepy documenta-
tion at https://github.com/ADicksonLab/wepy (ZIP).

■ AUTHOR INFORMATION
Corresponding Author

Alex Dickson − Department of Biochemistry & Molecular
Biology and Department of Computational Mathematics,
Science and Engineering, Michigan State University, East
Lansing 48824, Michigan, United States; orcid.org/0000-
0002-9640-1380; Email: alexrd@msu.edu

Author
Samuel D. Lotz − Department of Biochemistry & Molecular
Biology, Michigan State University, East Lansing 48824,
Michigan, United States; orcid.org/0000-0001-6159-
615X

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.0c03892

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
ARD acknowledges support from the National Science
Foundation grant DMS 1761320 and the National Institutes
of Health grant R01GM130794.

■ ADDITIONAL NOTES
aThe computationally determined mean first passage time
however was 42 s.

Figure 6. Code for a wepy distance metric class that implements a 2-
dimensional Euclidean distance.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c03892
ACS Omega 2020, 5, 31608−31623

31621

https://pubs.acs.org/doi/10.1021/acsomega.0c03892?goto=supporting-info
https://github.com/ADicksonLab/wepy
http://pubs.acs.org/doi/suppl/10.1021/acsomega.0c03892/suppl_file/ao0c03892_si_001.zip
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alex+Dickson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-9640-1380
http://orcid.org/0000-0002-9640-1380
mailto:alexrd@msu.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Samuel+D.+Lotz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-6159-615X
http://orcid.org/0000-0001-6159-615X
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c03892?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c03892?ref=pdf

bA thorough description of this format can be found in the
documentation for the wepy project https://github.com/
ADicksonLab/wepy.
cThe large value chosen here allowed overly dissimilar walkers in
the ensemble to be merged. We expect that a smaller value for
this quantity could improve REVO performance, for example,
2.5 Å.

■ REFERENCES
(1) Levitt, M.; Warshel, A. Computer simulation of protein folding.
Nature 1975, 253, 694.
(2) McCammon, J. A.; Gelin, B. R.; Karplus, M. Dynamics of folded
proteins. Nature 1977, 267, 585.
(3) Stone, J. E.; Hardy, D. J.; Ufimtsev, I. S.; Schulten, K. GPU-
accelerated molecular modeling coming of age. J. Mol. Graph. Model.
2010, 29, 116−125.
(4) Shaw, D. E.; Deneroff, M. M.; Dror, R. O.; Kuskin, J. S.; Larson, R.
H.; Salmon, J. K.; Young, C.; Batson, B.; Bowers, K. J.; Chao, J. C.; et al.
Anton, a Special-purposeMachine forMolecular Dynamics Simulation.
Commun. ACM 2008, 51, 91−97.
(5) Moore, G. E. Cramming more components onto integrated
circuits. Electronics 1965, 38, 114.
(6) Lu, H.; Tonge, P. J. Drug-target residence time: critical
information for lead optimization. Curr. Opin. Chem. Biol. 2010, 14,
467−474.
(7) Hansmann, U. H. E. Parallel tempering algorithm for conforma-
tional studies of biological molecules.Chem. Phys. Lett. 1997, 281, 140−
150.
(8) Tiwary, P.; Parrinello, M. FromMetadynamics to Dynamics. Phys.
Rev. Lett. 2013, 111, 230602.
(9) Barducci, A.; Bonomi, M.; Parrinello, M. Metadynamics. Wiley
Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1, 826−843.
(10) Casasnovas, R.; Limongelli, V.; Tiwary, P.; Carloni, P.; Parrinello,
M. Unbinding kinetics of a p38 MAP kinase type II inhibitor from
metadynamics simulations. J. Am. Chem. Soc. 2017, 139, 4780−4788.
(11) Limongelli, V.; Bonomi,M.; Parrinello, M. Funnel metadynamics
as accurate binding free-energy method. Proc. Natl. Acad. Sci. U.S.A.
2013, 110, 6358−6363.
(12) Maragliano, L.; Vanden-Eijnden, E. A temperature accelerated
method for sampling free energy and determining reaction pathways in
rare events simulations. Chem. Phys. Lett. 2006, 426, 168−175.
(13) Abrams, C. F.; Vanden-Eijnden, E. Large-scale conformational
sampling of proteins using temperature-accelerated molecular dynam-
ics. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 4961−4966.
(14) Torrie, G. M.; Valleau, J. P. Nonphysical sampling distributions
in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput.
Phys. 1977, 23, 187−199.
(15) Zuckerman, D.M.; Chong, L. T.Weighted Ensemble Simulation:
Review of Methodology, Applications, and Software. Annu. Rev.
Biophys. 2017, 46, 43−57.
(16) Pratt, L. R. A statistical method for identifying transition states in
high dimensional problems. J. Chem. Phys. 1986, 85, 5045−5048.
(17) Bolhuis, P. G.; Dellago, C.; Chandler, D. Sampling ensembles of
deterministic transition pathways. Faraday Discuss. 1998, 110, 421−
436.
(18) van Erp, T. S.; Moroni, D.; Bolhuis, P. G. A novel path sampling
method for the calculation of rate constants. J. Chem. Phys. 2003, 118,
7762−7774.
(19) Allen, R. J.; Warren, P. B.; ten Wolde, P. R. Sampling Rare
Switching Events in Biochemical Networks. Phys. Rev. Lett. 2005, 94,
018104.
(20) Ceŕou, F.; Guyader, A. Adaptive multilevel splitting for rare event
analysis. Stoch. Anal. Appl. 2007, 25, 417−443.
(21) Huber, G. A.; Kim, S. Weighted-ensemble Brownian dynamics
simulations for protein association reactions. Biophys. J. 1996, 70, 97−
110.
(22) Aristoff, D. Analysis and Optimization of Weighted Ensemble
Sampling. ESAIM: Math. Modell. Numer. Anal. 2018, 52, 1219.

(23) Abdul-Wahid, B.; Feng, H.; Rajan, D.; Costaouec, R.; Darve, E.;
Thain, D.; Izaguirre, J. A. AWE-WQ: Fast-Forwarding Molecular
Dynamics Using the Accelerated Weighted Ensemble. J. Chem. Inf.
Model. 2014, 54, 3033−3043.
(24) Adelman, J. L.; Grabe,M. Simulating rare events using a weighted
ensemble-based string method. J. Chem. Phys. 2013, 138, 044105.
(25) Rojnuckarin, A.; Livesay, D. R.; Subramaniam, S. Bimolecular
Reaction Simulation Using Weighted Ensemble Brownian Dynamics
and the University of Houston BrownianDynamics Program. Biophys. J.
2000, 79, 686−693.
(26) Zhang, B. W.; Jasnow, D.; Zuckerman, D. M. Efficient and
verified simulation of a path ensemble for conformational change in a
united-residue model of calmodulin. Proc. Natl. Acad. Sci. U.S.A. 2007,
104, 18043−18048.
(27) Saglam, A. S.; Chong, L. T. Highly Efficient Computation of the
Basal kon using Direct Simulation of Protein-Protein Association with
Flexible Molecular Models. J. Phys. Chem. B 2016, 120, 117−122.
(28) Dickson, A.; Lotz, S. D. Ligand Release Pathways Obtained with
WExplore: Residence Times and Mechanisms. J. Phys. Chem. B 2016,
120, 5377−5385.
(29) Dickson, A.; Mustoe, A. M.; Salmon, L.; Brooks, C. L., III
Efficient in silico exploration of RNA interhelical conformations using
Euler angles and WExplore. Nucleic Acids Res. 2014, 42, 12126.
(30) Adelman, J. L.; Grabe, M. Simulating Current-Voltage Relation-
ships for a Narrow IonChannel Using theWeighted EnsembleMethod.
J. Chem. Theory Comput. 2015, 11, 1907−1918.
(31) Zwier, M. C.; Pratt, A. J.; Adelman, J. L.; Kaus, J. W.; Zuckerman,
D. M.; Chong, L. T. Efficient Atomistic Simulation of Pathways and
Calculation of Rate Constants for a Protein-Peptide Binding Process:
Application to the MDM2 Protein and an Intrinsically Disordered p53
Peptide. J. Phys. Chem. Lett. 2016, 7, 3440−3445.
(32) Feng, H.; Costaouec, R.; Darve, E.; Izaguirre, J. A. A comparison
of weighted ensemble andMarkov state model methodologies. J. Chem.
Phys. 2015, 142, 214113.
(33) Dixon, T.; Lotz, S. D.; Dickson, A. Predicting ligand binding
affinity using on- and off-rates for the SAMPL6 SAMPLing challenge. J.
Comput.-Aided Mol. Des. 2018, 32, 1001−1012.
(34) Allen, R. J.; Frenkel, D.; tenWolde, P. R. Simulating rare events in
equilibrium or nonequilibrium stochastic systems. J. Chem. Phys. 2006,
124, 024102.
(35) Morelli, M. J.; ten Wolde, P. R.; Allen, R. J. DNA looping
provides stability and robustness to the bacteriophage switch. Proc.
Natl. Acad. Sci. U.S.A. 2009, 106, 8101−8106.
(36) Donovan, R. M.; Tapia, J.-J.; Sullivan, D. P.; Faeder, J. R.;
Murphy, R. F.; Dittrich, M.; Zuckerman, D. M. Unbiased Rare Event
Sampling in Spatial Stochastic Systems Biology Models Using a
Weighted Ensemble of Trajectories. PLoS Comput. Biol. 2016, 12,
No. e1004611.
(37) Donovan, R. M.; Sedgewick, A. J.; Faeder, J. R.; Zuckerman, D.
M. Efficient stochastic simulation of chemical kinetics networks using a
weighted ensemble of trajectories. J. Chem. Phys. 2013, 139, 115105.
(38) Tse, M. J.; Chu, B. K.; Roy, M.; Read, E. L. DNA-binding kinetics
determines the mechanism of noise-induced switching in gene
networks. Biophys. J. 2015, 109, 1746−1757.
(39) Daigle, B. J., Jr; Roh, M. K.; Gillespie, D. T.; Petzold, L. R.
Automated estimation of rare event probabilities in biochemical
systems. J. Chem. Phys. 2011, 134, 01B628.
(40) Roh, M. K.; Daigle, B. J., Jr; Gillespie, D. T.; Petzold, L. R. State-
dependent doubly weighted stochastic simulation algorithm for
automatic characterization of stochastic biochemical rare events. J.
Chem. Phys. 2011, 135, 234108.
(41) Tse, M. J.; Chu, B. K.; Gallivan, C. P.; Read, E. L. Rare-event
sampling of epigenetic landscapes and phenotype transitions. PLoS
Comput. Biol. 2018, 14, No. e1006336.
(42) Villeń-Altamirano, M.; Villeń-Altamirano, J. RESTART: a
straightforward method for fast simulation of rare events. Proceedings
of Winter Simulation Conference, 1994; pp 282−289.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c03892
ACS Omega 2020, 5, 31608−31623

31622

https://github.com/ADicksonLab/wepy
https://github.com/ADicksonLab/wepy
https://dx.doi.org/10.1038/253694a0
https://dx.doi.org/10.1038/267585a0
https://dx.doi.org/10.1038/267585a0
https://dx.doi.org/10.1016/j.jmgm.2010.06.010
https://dx.doi.org/10.1016/j.jmgm.2010.06.010
https://dx.doi.org/10.1145/1364782.1364802
https://dx.doi.org/10.1016/j.cbpa.2010.06.176
https://dx.doi.org/10.1016/j.cbpa.2010.06.176
https://dx.doi.org/10.1016/s0009-2614(97)01198-6
https://dx.doi.org/10.1016/s0009-2614(97)01198-6
https://dx.doi.org/10.1103/physrevlett.111.230602
https://dx.doi.org/10.1002/wcms.31
https://dx.doi.org/10.1021/jacs.6b12950
https://dx.doi.org/10.1021/jacs.6b12950
https://dx.doi.org/10.1073/pnas.1303186110
https://dx.doi.org/10.1073/pnas.1303186110
https://dx.doi.org/10.1016/j.cplett.2006.05.062
https://dx.doi.org/10.1016/j.cplett.2006.05.062
https://dx.doi.org/10.1016/j.cplett.2006.05.062
https://dx.doi.org/10.1073/pnas.0914540107
https://dx.doi.org/10.1073/pnas.0914540107
https://dx.doi.org/10.1073/pnas.0914540107
https://dx.doi.org/10.1016/0021-9991(77)90121-8
https://dx.doi.org/10.1016/0021-9991(77)90121-8
https://dx.doi.org/10.1146/annurev-biophys-070816-033834
https://dx.doi.org/10.1146/annurev-biophys-070816-033834
https://dx.doi.org/10.1063/1.451695
https://dx.doi.org/10.1063/1.451695
https://dx.doi.org/10.1039/a801266k
https://dx.doi.org/10.1039/a801266k
https://dx.doi.org/10.1063/1.1562614
https://dx.doi.org/10.1063/1.1562614
https://dx.doi.org/10.1103/physrevlett.94.018104
https://dx.doi.org/10.1103/physrevlett.94.018104
https://dx.doi.org/10.1080/07362990601139628
https://dx.doi.org/10.1080/07362990601139628
https://dx.doi.org/10.1016/s0006-3495(96)79552-8
https://dx.doi.org/10.1016/s0006-3495(96)79552-8
https://dx.doi.org/10.1051/m2an/2017046
https://dx.doi.org/10.1051/m2an/2017046
https://dx.doi.org/10.1021/ci500321g
https://dx.doi.org/10.1021/ci500321g
https://dx.doi.org/10.1063/1.4773892
https://dx.doi.org/10.1063/1.4773892
https://dx.doi.org/10.1016/s0006-3495(00)76327-2
https://dx.doi.org/10.1016/s0006-3495(00)76327-2
https://dx.doi.org/10.1016/s0006-3495(00)76327-2
https://dx.doi.org/10.1073/pnas.0706349104
https://dx.doi.org/10.1073/pnas.0706349104
https://dx.doi.org/10.1073/pnas.0706349104
https://dx.doi.org/10.1021/acs.jpcb.5b10747
https://dx.doi.org/10.1021/acs.jpcb.5b10747
https://dx.doi.org/10.1021/acs.jpcb.5b10747
https://dx.doi.org/10.1021/acs.jpcb.6b04012
https://dx.doi.org/10.1021/acs.jpcb.6b04012
https://dx.doi.org/10.1093/nar/gku799
https://dx.doi.org/10.1093/nar/gku799
https://dx.doi.org/10.1021/ct501134s
https://dx.doi.org/10.1021/ct501134s
https://dx.doi.org/10.1021/acs.jpclett.6b01502
https://dx.doi.org/10.1021/acs.jpclett.6b01502
https://dx.doi.org/10.1021/acs.jpclett.6b01502
https://dx.doi.org/10.1021/acs.jpclett.6b01502
https://dx.doi.org/10.1063/1.4921890
https://dx.doi.org/10.1063/1.4921890
https://dx.doi.org/10.1007/s10822-018-0149-3
https://dx.doi.org/10.1007/s10822-018-0149-3
https://dx.doi.org/10.1063/1.2140273
https://dx.doi.org/10.1063/1.2140273
https://dx.doi.org/10.1073/pnas.0810399106
https://dx.doi.org/10.1073/pnas.0810399106
https://dx.doi.org/10.1371/journal.pcbi.1004611
https://dx.doi.org/10.1371/journal.pcbi.1004611
https://dx.doi.org/10.1371/journal.pcbi.1004611
https://dx.doi.org/10.1063/1.4821167
https://dx.doi.org/10.1063/1.4821167
https://dx.doi.org/10.1016/j.bpj.2015.08.035
https://dx.doi.org/10.1016/j.bpj.2015.08.035
https://dx.doi.org/10.1016/j.bpj.2015.08.035
https://dx.doi.org/10.1063/1.3522769
https://dx.doi.org/10.1063/1.3522769
https://dx.doi.org/10.1063/1.3668100
https://dx.doi.org/10.1063/1.3668100
https://dx.doi.org/10.1063/1.3668100
https://dx.doi.org/10.1371/journal.pcbi.1006336
https://dx.doi.org/10.1371/journal.pcbi.1006336
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c03892?ref=pdf

(43) Morio, J.; Balesdent, M. Estimation of Rare Event Probabilities in
Complex Aerospace and Other Systems: A Practical Approach; Woodhead
Publishing, 2015.
(44) Zhang, B. W.; Jasnow, D.; Zuckerman, D. M. The “weighted
ensemble” path samplingmethod is statistically exact for a broad class of
stochastic processes and binning procedures. J. Chem. Phys. 2010, 132,
054107.
(45) Dickson, A.; Brooks, C. L. WExplore: hierarchical exploration of
high-dimensional spaces using the weighted ensemble algorithm. J.
Phys. Chem. B 2014, 118, 3532−3542.
(46) Donyapour, N.; Roussey, N. M.; Dickson, A. REVO: Resampling
of ensembles by variation optimization. J. Chem. Phys. 2019, 150,
244112.
(47) Dickson, A.; Lotz, S. D. Multiple ligand unbinding pathways and
ligand-induced destabilization revealed by WExplore. Biophys. J. 2017,
112, 620−629.
(48) Lotz, S. D.; Dickson, A. UnbiasedMolecular Dynamics of 11 min
Timescale Drug Unbinding Reveals Transition State Stabilizing
Interactions. J. Am. Chem. Soc. 2018, 140, 618−628.
(49) Dickson, A. Mapping the Ligand Binding Landscape. Biophys. J.
2018, 115, 1707−1719.
(50) Copperman, J.; Zuckerman, D. Accelerated estimation of long-
timescale kinetics by combining weighted ensemble simulation with
Markov model ”microstates” using non-Markovian theory. 2019,
arxiv:1903.04673. http://arxiv.org/abs/1903.04673.
(51) Contributors, N. Numba. 2020, https://github.com/numba/
numba (accessed March 17, 2020).
(52) Contributors, D. dask. 2020, https://github.com/dask/dask
(accessed March 17, 2020).
(53) Eastman, P.; Friedrichs, M. S.; Chodera, J. D.; Radmer, R. J.;
Bruns, C. M.; Ku, J. P.; Beauchamp, K. A.; Lane, T. J.; Wang, L.-P.;
Shukla, D.; et al. OpenMM 4: A Reusable, Extensible, Hardware
Independent Library for High Performance Molecular Simulation. J.
Chem. Theory Comput. 2013, 9, 461−469.
(54) Folk, M.; Cheng, A.; Yates, K. HDF5: A file format and I/O
library for high performance computing applications. Proceedings of
Supercomputing, 1999; pp 5−33.
(55) Zwier, M. C.; Adelman, J. L.; Kaus, J. W.; Pratt, A. J.; Wong, K. F.;
Rego, N. B.; Suaŕez, E.; Lettieri, S.; Wang, D. W.; Grabe, M.; et al.
WESTPA: An Interoperable, Highly Scalable Software Package for
Weighted Ensemble Simulation and Analysis. J. Chem. Theory Comput.
2015, 11, 800−809.
(56) Dickson, A.;Warmflash, A.; Dinner, A. R. Separating forward and
backward pathways in nonequilibrium umbrella sampling. J. Chem.
Phys. 2009, 131, 154104.
(57) Vanden-Eijnden, E.; Venturoli, M. Exact rate calculations by
trajectory parallelization and tilting. J. Chem. Phys. 2009, 131, 044120.
(58) Suaŕez, E.; Lettieri, S.; Zwier, M. C.; Stringer, C. A.;
Subramanian, S. R.; Chong, L. T.; Zuckerman, D. M. Simultaneous
Computation of Dynamical and Equilibrium Information Using a
Weighted Ensemble of Trajectories. J. Chem. Theory Comput. 2014, 10,
2658−2667.
(59) Costaouec, R.; Feng, H.; Izaguirre, J.; Darve, E. Analysis of the
accelerated weighted ensemble methodology. Conference Publications
2013, 171−181.
(60) Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.;
Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientic
Computing in Python. Nature Methods 2020, 17, 261−272.
(61) McGibbon, R. T.; Beauchamp, K. A.; Harrigan, M. P.; Klein, C.;
Swails, J. M.; Hernańdez, C. X.; Schwantes, C. R.; Wang, L.-P.; Lane, T.
J.; Pande, V. S. MDTraj: A Modern Open Library for the Analysis of
Molecular Dynamics Trajectories. Biophys. J. 2015, 109, 1528−1532.
(62) Bastian, M.; Heymann, S.; Jacomy, M. Gephi: an open source
software for exploring and manipulating networks. International AAAI
Conference on Weblogs and Social Media, 2009; Vol. 8, pp 361−362.
(63) Hunter, J. D. Matplotlib: A 2D graphics environment. Comput.
Sci. Eng. 2007, 9, 90−95.

(64) Baase, W. A.; Liu, L.; Tronrud, D. E.; Matthews, B. W. Lessons
from the lysozyme of phage T4. Protein Sci. 2010, 19, 631−641.
(65) Wang, Y.; Papaleo, E.; Lindorff-Larsen, K. Mapping transiently
formed and sparsely populated conformations on a complex energy
landscape. eLife 2016, 5, No. e17505.
(66) Nunes-Alves, A.; Zuckerman, D. M.; Arantes, G. M. Escape of a
Small Molecule from Inside T4 Lysozyme by Multiple Pathways.
Biophys. J. 2018, 114, 1058−1066.
(67) Schiffer, J. M.; Feher, V. A.; Malmstrom, R. D.; Sida, R.; Amaro,
R. E. Capturing invisible motions in the transition from ground to rare
excited states of T4 lysozyme L99A. Biophys. J. 2016, 111, 1631−1640.
(68) Miao, Y.; Feher, V. A.; McCammon, J. A. Gaussian accelerated
molecular dynamics: Unconstrained enhanced sampling and free
energy calculation. J. Chem. Theory Comput. 2015, 11, 3584−3595.
(69) Dixon, T.; Uyar, A.; Ferguson-Miller, S.; Dickson, A. Membrane-
mediated ligand unbinding of the PK-11195 ligand from the
translocator protein (TSPO). bioRXiv 2020, 1.
(70) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.
E.; Berendsen, H. J. C. GROMACS: fast, flexible, and free. J. Comput.
Chem. 2005, 26, 1701−1718.
(71) Brooks, B. R.; Brooks, C. L.; Mackerell, A. D.; Nilsson, L.;
Petrella, R. J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.;
et al. CHARMM: The biomolecular simulation program. J. Comput.
Chem. 2009, 30, 1545−1614.
(72) Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. S.;
Cheatham, T. E., III; DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P.
AMBER, a package of computer programs for applying molecular
mechanics, normal mode analysis, molecular dynamics and free energy
calculations to simulate the structural and energetic properties of
molecules. Comput. Phys. Commun. 1995, 91, 1−41.
(73) Bowers, K. J.; Chow, D. E.; Xu, H.; Dror, R. O.; Eastwood, M. P.;
Gregersen, B. A.; Klepeis, J. L.; Kolossvary, I.; Moraes, M. A.; Sacerdoti,
F. D. Scalable algorithms for molecular dynamics simulations on
commodity clusters. SC’06: Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, 2006; p 43.
(74) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.;
Villa, E.; Chipot, C.; Skeel, R. D.; Kale,́ L.; Schulten, K. Scalable
molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781−
1802.
(75) Larsen, A. H.; Mortensen, J. J.; Blomqvist, J.; Castelli, I. E.;
Christensen, R.; Dułak, M.; Friis, J.; Groves, M. N.; Hammer, B.;
Hargus, C. The atomic simulation environment − a Python library for
working with atoms. J. Phys.: Condens. Matter 2017, 29, 273002.
(76) Samet, H. Foundations of Multidimensional and Metric Data
Structures; Morgan Kaufmann, 2006.
(77) Chav́ez, E.; Navarro, G.; Baeza-Yates, R.; Marroquín, J. L.
Searching in metric spaces. ACM Comput. Surv. 2001, 33, 273−321.
(78) Skala, M. Measuring the Difficulty of Distance-Based Indexing.
String Processing and Information Retrieval; Springer: Berlin, Heidelberg,
2005; pp 103−114.
(79) Theobald, D. L. Rapid calculation of RMSDs using a quaternion-
based characteristic polynomial. Acta Crystallogr., Sect. A: Found. Adv.
2005, 61, 478−480.
(80) Ofran, Y.; Rost, B. Analysing Six Types of Protein-Protein
Interfaces. J. Mol. Biol. 2003, 325, 377−387.
(81) Gao, W.; Farahani, M. R.; Imran, M.; Kanna, M. R. R. Distance-
based topological polynomials and indices of friendship graphs.
SpringerPlus 2016, 5, 1563.
(82) Mao, R.; Miranker, W. L.; Miranker, D. P. Pivot selection:
Dimension reduction for distance-based indexing. J. Discrete Algorithm.
2012, 13, 32−46. , Best Papers from the 3rd International Conference
on Similarity Search and Applications (SISAP 2010)
(83) Michaud-Agrawal, N.; Denning, E. J.; Woolf, T. B.; Beckstein, O.
MDAnalysis: A toolkit for the analysis of molecular dynamics
simulations. J. Comput. Chem. 2011, 32, 2319−2327.
(84) Bakan, A.; Meireles, L. M.; Bahar, I. ProDy: Protein Dynamics
Inferred fromTheory and Experiments. Bioinformatics 2011, 27, 1575−
1577.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c03892
ACS Omega 2020, 5, 31608−31623

31623

https://dx.doi.org/10.1063/1.3306345
https://dx.doi.org/10.1063/1.3306345
https://dx.doi.org/10.1063/1.3306345
https://dx.doi.org/10.1021/jp411479c
https://dx.doi.org/10.1021/jp411479c
https://dx.doi.org/10.1063/1.5100521
https://dx.doi.org/10.1063/1.5100521
https://dx.doi.org/10.1016/j.bpj.2017.01.006
https://dx.doi.org/10.1016/j.bpj.2017.01.006
https://dx.doi.org/10.1021/jacs.7b08572
https://dx.doi.org/10.1021/jacs.7b08572
https://dx.doi.org/10.1021/jacs.7b08572
https://dx.doi.org/10.1016/j.bpj.2018.09.021
http://arxiv.org/abs/1903.04673
https://github.com/numba/numba
https://github.com/numba/numba
https://github.com/dask/dask
https://dx.doi.org/10.1021/ct300857j
https://dx.doi.org/10.1021/ct300857j
https://dx.doi.org/10.1021/ct5010615
https://dx.doi.org/10.1021/ct5010615
https://dx.doi.org/10.1063/1.3244561
https://dx.doi.org/10.1063/1.3244561
https://dx.doi.org/10.1063/1.3180821
https://dx.doi.org/10.1063/1.3180821
https://dx.doi.org/10.1021/ct401065r
https://dx.doi.org/10.1021/ct401065r
https://dx.doi.org/10.1021/ct401065r
https://dx.doi.org/10.3934/proc.2013.2013.171
https://dx.doi.org/10.3934/proc.2013.2013.171
https://dx.doi.org/10.1038/s41592-019-0686-2
https://dx.doi.org/10.1038/s41592-019-0686-2
https://dx.doi.org/10.1016/j.bpj.2015.08.015
https://dx.doi.org/10.1016/j.bpj.2015.08.015
https://dx.doi.org/10.1109/mcse.2007.55
https://dx.doi.org/10.1002/pro.344
https://dx.doi.org/10.1002/pro.344
https://dx.doi.org/10.7554/elife.17505
https://dx.doi.org/10.7554/elife.17505
https://dx.doi.org/10.7554/elife.17505
https://dx.doi.org/10.1016/j.bpj.2018.01.014
https://dx.doi.org/10.1016/j.bpj.2018.01.014
https://dx.doi.org/10.1016/j.bpj.2016.08.041
https://dx.doi.org/10.1016/j.bpj.2016.08.041
https://dx.doi.org/10.1021/acs.jctc.5b00436
https://dx.doi.org/10.1021/acs.jctc.5b00436
https://dx.doi.org/10.1021/acs.jctc.5b00436
https://dx.doi.org/10.1101/2020.01.21.914127
https://dx.doi.org/10.1101/2020.01.21.914127
https://dx.doi.org/10.1101/2020.01.21.914127
https://dx.doi.org/10.1002/jcc.20291
https://dx.doi.org/10.1002/jcc.21287
https://dx.doi.org/10.1016/0010-4655(95)00041-d
https://dx.doi.org/10.1016/0010-4655(95)00041-d
https://dx.doi.org/10.1016/0010-4655(95)00041-d
https://dx.doi.org/10.1016/0010-4655(95)00041-d
https://dx.doi.org/10.1002/jcc.20289
https://dx.doi.org/10.1002/jcc.20289
https://dx.doi.org/10.1088/1361-648x/aa680e
https://dx.doi.org/10.1088/1361-648x/aa680e
https://dx.doi.org/10.1145/502807.502808
https://dx.doi.org/10.1107/s0108767305015266
https://dx.doi.org/10.1107/s0108767305015266
https://dx.doi.org/10.1016/s0022-2836(02)01223-8
https://dx.doi.org/10.1016/s0022-2836(02)01223-8
https://dx.doi.org/10.1186/s40064-016-3271-5
https://dx.doi.org/10.1186/s40064-016-3271-5
https://dx.doi.org/10.1016/j.jda.2011.10.004
https://dx.doi.org/10.1016/j.jda.2011.10.004
https://dx.doi.org/10.1002/jcc.21787
https://dx.doi.org/10.1002/jcc.21787
https://dx.doi.org/10.1093/bioinformatics/btr168
https://dx.doi.org/10.1093/bioinformatics/btr168
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c03892?ref=pdf

