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Abstract

We summarize our recent work that uses machine learning techniques as a

complement to theoretical modeling, rather than a substitute for it. The key

concepts are those of the completeness and restrictiveness of a model. A the-

ory’s completeness is how much it improves predictions over a naive baseline,

relative to how much improvement is possible. When a theory is relatively

incomplete, machine learning algorithms can help reveal regularities that the

theory doesn’t capture, and thus lead to the construction of theories that make

more accurate predictions. Restrictiveness measures a theory’s ability to match

any data at all: An unrestrictive theory can be complete but very uninforma-

tive. We algorithmically quantify restrictiveness by measuring how well the

theory approximates randomly generated behaviors. Finally, we propose “al-

gorithmic experimental design” as a method to help select which experiments

to run.



1 Introduction

This survey summarizes our recent and ongoing work (Fudenberg, Gao, and Liang

2020; Fudenberg, Kleinberg, Liang, and Mullainathan 2019; Fudenberg and Liang

2019) on how to use machine learning techniques to evaluate and then improve theo-

ries. Black-box algorithms can generate better predictions than parametric theories,

but direct application of these methods generally does not yield an improved under-

standing into the behavior of interest. We demonstrate how black-box algorithms

can nevertheless contribute to this latter objective when used as a complement to

traditional modeling.

In Section 2, we define the “completeness” of a theory to be the fraction of achiev-

able prediction that it attains, benchmarked against the performance of a fully non-

parametric black box. We show by example how studying cases where a machine

learning algorithm predicts well, but the theory does not, can allow us to identify

new regularities that the theory has not yet captured. A theory that is very com-

plete for prediction of the actual data captures most of the important regularities

in the observed behavior. But if a theory can approximate most patterns of behav-

ior, then its ability to fit the actual data doesn’t speak to its relevance. In Section

3, we quantify the “restrictiveness” of a model class by measuring how well it ap-

proximates arbitrary behaviors. We illustrate our ideas with two classic prediction

problems from experimental economics—predicting certainty equivalents for binary

lotteries and predicting initial play in matrix games—and evaluate model classes in

these domains from the dual perspectives of completeness and restrictiveness.

Both of our proposed measures depend on the domain of “test cases” used to eval-

uate the model, which is generally a choice variable of the experimenter the collecting

data. In Section 4, we show how algorithms can help in designing new instances for

data collection, for example finding cases in which a given theory is likely to fail. Our

work here shows that machine learning techniques are useful not only for identifying

structure in given data, but can also be useful to experimenters in figuring out what

new data to acquire.

1.1 Prediction Problems

Let x be an observable feature vector taking values in a set X, and let y be an outcome

of interest taking values in Y . An analyst observes pairs zi = (xi, yi), where each xi

takes on a finite set of values that were selected by the analyst, e.g. which games

or lotteries to use in a laboratory experiment. We call any function f : X ! Y a
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model of y. We are interested in parametric model classes F⇥ = {f✓}✓2⇥, where ⇥ is

a finite-dimensional, closed, and compact set and f is continuous in ✓.

We evaluate predictions with a loss function, ` : Y ⇥ Y ! R, where `(y0, y) is

the error assigned to prediction of y0 when the realized outcome is y. The commonly

used loss functions mean-squared error and classification loss correspond to `(y0, y) =

(y0 � y)2 and `(y0, y) = (y0 6= y).

Definition. Let P denote the conditional distribution of y given x. The (expected)

prediction error for a given model f is the expected error on a new, out-of-sample, test

case: EP (f) = EP [`(f(x), y)]. The prediction error for a model class F⇥ is EP (f ⇤
⇥),

where f ⇤
⇥ = argminf2F⇥ EP (f) is the error-minimizing prediction rule from F⇥.

Typically, the conditional distribution P is not known, so these quantities need be

estimated from the data. For example, to evaluate the out-of-sample error EP (f ⇤
⇥) for

a model class F⇥, we would estimate its economic parameter ✓ from training data,

and test the trained model f✓ on new observations. We put aside details of estimation

for this survey, working with the theoretical quantities in the definition above, and

refer the interested reader to our papers.

1.2 Examples

We illustrate our methodologies using two examples from the economics literature.

Example 1 (Risk Preferences). We consider the problem of predicting certainty equiv-

alents for lotteries, i.e. the certain payment that an individual considers equivalent

to the lottery’s random payment. We use a data set from Bruhin, Fehr-Duda, and

Epper (2010) of the reported certainty equivalents (across di↵erent subjects) for a

set of 25 binary lotteries over positive prizes. The feature space X is the set of 25

unique tuples x = (z, z, p) describing the binary lotteries, where z > z � 0 are the

two prizes, and p is the probability of z. The outcome to be predicted is a given

subject’s certainty equivalent for a given lottery, so Y = R. We use mean-squared

error as the loss function, so the optimal prediction is the average certainty equivalent

in the data.

The economic model that we evaluate is the three-parameter version of Cumulative

Prospect Theory suggested by Goldstein and Einhorn (1987) and Lattimore, Baker,

and Witte (1992). The parameter vector here is ✓ = (↵, �, �), and the associated

model is f✓(z, z, p) = w(p)v(z)+(1�w(p))v(z), where w(p) = (�p�) / (�p� + (1� p)�)

with � � 0 and � � 0 is a nonlinear probability weighting function, and v(z) = z↵

with ↵ � 0 is a value function for money.
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Example 2 (Predicting Play in Games). Our second example is predicting how people

will play the first time they encounter a new simultaneous-move game. We use a data

set of play in 3 ⇥ 3 normal-form games constructed by Wright and Leyton-Brown

(2014) from six previous papers. The feature space X is the set of 86 unique payo↵

matrices x 2 R18. The outcome to be predicted is the action that is chosen by the

row player in a given instance of play, so Y = {a1, a2, a3}. We use misclassification

rate as our loss function, so the optimal prediction is the modal action.

The economic model that we evaluate is the Poisson Cognitive Hierarchy Model

(PCHM), which supposes that there is a distribution over players of di↵ering levels

of sophistication: The level-0 player randomizes uniformly over his available actions,

while the level-1 player best responds to level-0 play (Nagel 1995; Stahl and Wilson

1994, 1995). Camerer, Ho, and Chong (2004) defines the play of level-k players, k � 2,

to be the best response to a perceived distribution over (lower) opponent levels, which

is a Poisson distribution with rate parameter ⌧ (truncated at k and re-normalized).

The parameter ⌧ is the only free parameter in this model.

2 Completeness

2.1 Definition

In Fudenberg, Kleinberg, Liang, and Mullainathan (2019), we define the “complete-

ness” of a model class as the amount that it improves predictions over a naive rule,

compared to the best achievable improvement given the available features. We nor-

malize in this way because in many cases there is residual variation in the outcome

y after conditioning on the features x , and so perfect prediction is not achievable by

any model that makes predictions using the feature set X. The mapping from X to

Y that minimizes prediction error is

f ⇤(x) = argmin
y02Y

EP [`(y0, y) | x] . (1)

For example, if the outcome y is real-valued, and the loss function is mean-squared

error, then f ⇤ assigns to each feature vector x its conditional mean.

To interpret the prediction error of a model class, it is useful to distinguish between

two sources of error. The irreducible error in the prediction problem is the error

EP (f ⇤) = EP [`(f ⇤(x), y)] of the ideal rule on a new test observation. This is a

bound on how well any model could perform. In addition, there can be error due

to the specification of the class: If F⇥ leaves out an important regularity, then the
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prediction error of the best model from this class, EP (f ⇤
⇥) may be substantially higher

than the irreducible error, EP (f ⇤).

These two sources of prediction error have very di↵erent implications for how to

generate better predictions. If the model’s prediction error is substantially higher than

the irreducible error, it may be possible to identify new regularities and incorporate

them into new models that improve prediction given the same feature set. Conversely,

if the model’s prediction error is close to the irreducible error for the current feature

set, the priority should be to identify additional features that will allow for better

predictions.

We define the completeness of a model class to be the ratio of the reduction

in prediction error (over a selected naive model fnaive) that it achieves compared

to the best possible reduction, which is to the irreducible error. We set the näıve

prediction for a lottery’s certainty equivalent to be its expected value, and we set the

näıve prediction of initial play to be a uniform distribution over the available actions.

Definition. The completeness of model class F⇥ is

EP (fnaive)� EP (f ⇤
⇥)

EP (fnaive)� EP (f ⇤)
. (2)

The following table reports completeness measures for the two economic model

classes and the corresponding prediction tasks described in Section 1.1.

Risk Preferences Initial Play

Error Completeness Error Completeness

Naive Benchmark 98.32 0% 0.66 0%

(4.00) (0.02)

Economic Model 64.92 95% 0.40 76%

(4.49) (0.02)

Irreducible Error 61.64 100% 0.32 100%

(3.00) (0.03)

Table 1: We report the completeness of the CPT and PCHMmodels in their respective

prediction tasks.

We find that CPT is nearly complete, achieving 91% of the feasible reduction

in prediction error,while its absolute level of prediction error is 67.38. The PCHM
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achieves 76% of the achievable reduction, which is good, but leaves room for improve-

ments that capture additional regularities. We note additionally that the best PCHM

model on this data set is the simpler 0-parameter Level-1 model, which predicts the

action that is a best response to uniform play.

2.2 Improving Completeness

To identify additional regularities in initial play, we trained a bagged decision tree

algorithm to predict play in the same data (Fudenberg and Liang 2019). This algo-

rithm led to a further improvement in predictive accuracy. We then examined the

14 (out of 86) games where play was predicted correctly by our algorithm, but not

by level-1/PCHM. Each of these games had an action whose average payo↵s closely

approximated the level-1 action, but which led to lower variation in possible payo↵s.

Players were more likely in the data to choose this “almost” level-1 action than the

actual level-1 action.

One explanation for this behavior is that players maximize a concave function

over game payo↵s, as if they are risk averse. This led us to add a single parameter ↵

to the level-1 model, so that the prediction is the level-1 action when dollar payo↵s

u are transformed under f(u) = u↵. The performance of this model, called level-

1(↵), weakly improved upon the decision tree ensemble, which shows that atheoreti-

cal prediction rules fit by machine learning algorithms can help researchers discover

interpretable and portable extensions of existing models.

3 Restrictiveness

The high completeness of CPT and level-1(↵) suggest that these models capture many

of the regularities in the data. But because each of these model classes has free pa-

rameters that are chosen to maximize fit, one explanation for the high completeness

measures is simply that these model classes are flexible enough to accommodate any

pattern of behavior.1 We would thus like to distinguish high completeness because

a model class includes most of the functions from X ! Y from high complete-

ness because the model class includes the “right” regularities, namely those that are

observed in actual data. In Fudenberg, Gao, and Liang (2020), we propose an algo-

1
Although there are “representation theorems” that characterize which data are consistent with

a general CPT specification, the empirical content for the 3-parameter functional form is not known,

and the same is true for the PCHM.
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rithmic method for quantifying the restrictiveness of a model class, which allows us

to separate these cases.

Our strategy is to generate random mappings f : X ! Y from a set FM of

“permissible mappings”—for example, all mappings of certainty equivalents that are

consistent with the property that people prefer more money to less—and evaluate

how well these mappings can be approximated using the model class F⇥. The more

mappings from FM that can be approximated by a model class, the less restrictive

that class is. To operationalize our measure, we define restrictiveness relative to a

distribution µ on FM chosen by the analyst, where we interpret µ as the analyst’s

prior over the space of mappings. (One natural option would be a uniform prior.)

Formally, for any two mappings f and f 0, define d(f, f 0) = EPX (l(f(x), f
0(x)) to be

the (average) distance between their outcomes. If f 0 describes the actual relationship

between the features x and the outcome y, and the distance between f and f 0 is

large, then predictions using the model f will (in expectation) lead to large errors.

Further define d(F⇥, f) = inff 02F⇥ d(f 0, f) to be the distance between f and the

closest model in F⇥, so that d(F⇥, f)/d(fnaive, f) is a normalized distance between

F⇥ and f , relative to the naive prediction rule introduced in Section 2. The model

classes that we study nest the associated naive rule, so d(F⇥, f)  d(fnaive, f). Thus

the normalized distance lies between 0 and 1 on any prediction problem.

The restrictiveness of model class F⇥ is then defined to be the average normalized

distance between random mappings f (drawn according to distribution µ on FM)

and the model class F⇥.

Definition. The restrictiveness of model class F⇥ is r := Eµ


d(F⇥, f)

d(fnaive, f)

�
.

Larger r corresponds to a more restrictive model: If r = 1, then the model class

fails to improve upon the naive model for most maps f , which implies that F⇥ is very

restrictive. If r = 0, then F⇥ includes all models from the permissible set FM, so

it is completely unrestrictive. Below we report a histogram of normalized distances

between CPT and level-1(↵) and 2000 random mappings of lotteries or games to

certainty equivalents or modal actions respectively.
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Figure 1: Left: Distribution of normalized distances between CPT and random map-

pings; Right: Distribution of normalized distances between level-1(↵) and random

mappings.

The estimated restrictiveness of CPT is 0.25, so that in expectation CPT approxi-

mates a randomly selected mapping between binary lotteries and certainty equivalents

four times as well as the naive model does. In contrast, the restrictiveness of level-

1(↵) is 0.91, meaning that the level-1(↵) model class barely improves upon a naive

model for approximating random mappings between games and initial play. Since

the level-1(↵) model is a substantially more restrictive theory than CPT, its high

completeness is suggestive that it more precisely captures the observed regularities.

4 Algorithmic Experimental Design

Our completeness and restrictiveness measures both depend on the underlying marginal

distribution PX over the feature space. Although we expect the conditional distribu-

tion P (y | s) to be a fixed distribution describing the dependence of the outcome on

the specified set of features, the marginal distribution on X is a choice variable for

the experimenter. For example, we used a data set of certainty equivalents for the

set of binary lotteries selected by Bruhin, Fehr-Duda, and Epper 2010, and we used

observations of initial play for in 3⇥3 matrix games that had been chosen by di↵erent

teams of authors with di↵erent purposes in mind. Such data necessarily presents an

incomplete picture, but it isn’t feasible to run experiments on all lotteries or 3 ⇥ 3

games. The idea of algorithmic experimental design is to use machine learning to

determine which test cases in X would be most informative.

In Fudenberg and Liang 2019, we used this approach to select which 3⇥ 3 games

to include in a new experiment. Our goal was to identify games where behavior

was likely to depart from the level-1(↵) model, as this data could then allow us to
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discover further regularities in play. We trained a machine learning algorithm to

predict the frequency of the level-1(↵) action, and then selected games that achieved

low predicted frequencies according to this algorithm. This approach is related in

spirit to adversarial machine learning (Huang et al. 2011) and generative adversarial

networks (Goodfellow et al. 2014) in that we are generating instances to trick the

level-1(↵) model, although our goal is to design new instances for data collection

instead of refining predictions for a given data set.

We experimentally elicited play on these “algorithmically-generated” games on

the platform Mechanical Turk, and found that the frequency of level-1(↵) play is

indeed low in these games. In keeping with our desire for interpretable conclusions,

we did not simply look for the best black-box algorithm on our new data set. Instead,

we developed a hybrid approach: We identified two models, each of which fit some of

the data reasonably well, and trained a decision tree to predict which model would

perform better on which games. This hybrid model outperformed its two constituent

models, and studying the optimal assignment of games to models shed light on when

the level-1(↵) model is outperformed by an equally simple alternative model.

5 Conclusion

As we have shown, machine learning and associated algorithmic techniques can aid

in the improvement of economic theories. When theories are incomplete, machine

learning can help researchers identify regularities that are not captured by existing

models and then develop new theories that predict better. Conversely, when a theory

is highly complete, algorithmic techniques can show whether this is simply due to

the theory’s ability to fit any possible data, or whether the good fit results from the

theory describing behaviors in the real world. Finally, algorithmic techniques can also

help researchers choose which experiments to run.
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