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Abstract—Successive-cancellation decoding has gained much re-
newed interest since the advent of polar coding a decade ago. For
polar codes, successive-cancellation decoding can be accompli-
shed in time O(n log n). However, the complexity of successive-
cancellation decoding for other families of codes remains largely
unexplored. Herein, we prove that successive-cancellation decod-
ing of general binary linear codes is NP-hard. In order to establ-
ish this result, we reduce from maximum-likelihood decoding of
linear codes, a well-known NP-complete problem. Unlike maxim-
um-likelihood decoding, however, the successive-cancellation dec-
oding problem depends on the choice of a generator matrix. Thus
we further strengthen our result by showing that there exist codes
for which successive-cancellation decoding remains hard for every
possible choice of the generator matrix. On the other hand, we
also observe that polynomial-time successive-cancellation decod-
ing can be extended from polar codes to many other linear codes.
Finally, we show that every binary linear code can be encoded as
a polar code with dynamically frozen bits. This approach makes
it possible to use list-decoding of polar codes to approximate the
maximum-likelihood decoding performance of arbitrary codes.

Index Terms—coding theory, polar codes, successive-cancellation
decoding, computational hardness, maximum-likelihood decoding

I. INTRODUCTION

The class of polynomial-time problems, denoted by P, is de-
fined to be the set of all decision problems that can be solved,
in the worst case, in a number of steps that is polynomially
bounded by the length of their inputs. NP is the class of
decision problems which can be solved by a non-deterministic
Turing machine in a polynomially-bounded number of steps.
A problem is said to be NP-hard if every problem in NP
can be reduced to it by a deterministic Turing machine in a
polynomial time. In other words, NP-hard problems are at
least hard as the hardest problem in NP.

There are many interesting computational problems in the
field of coding theory with the hardness of many of which re-
maining open until today. Two fundamental problems, namely
maximum-likelihood decoding (MLD) and computation of the
weight distribution were shown to be NP-hard for the class of
binary linear codes by Berlekamp, McEliece, and van Tilborg
in 1978 [4] and was later extended to non-binary linear codes
in [3]. The classical hardness results in the coding theory
are centered mostly around ML decoding and computation of
the minimum distances. The successive-cancellation decoding
(SCD) has resurfaced behind the polar codes after their
discovery by Erdal Arıkan just over a decade ago [1]. But,

no hardness results were established for it until today. In this
paper, we prove that the SCD problem for linear codes is
also NP-hard. The default formulation of the SCD problem
depends on the given generator matrix. We show how to
modify the structure of polar codes in order to construct a
wider family of generator matrices for which SCD can be
implemented with a polynomial-time complexity.

The construction of polar codes were later generalized to
large-kernel polar codes, which are shown to have a superior
performance at finite block-lengths under SC decoding [7],
[12]. In fact, polar codes with sufficiently large kernels were
recently proven to have near-optimal scaling properties [11].
The SC decoding of large-kernel polar codes is based on an
efficient scheduling of SC decoding over individual kernels
within the code construction. While there are many binary
kernels for which low-complexity SC decoding algorithms
exist [6], [17], [19], no polynomial-time algorithm was known
to perform SC decoding of arbitrary kernels. The NP-hardness
of the SCD problem proves that no such algorithm exists in
general. The challenge of finding good polarization kernels
that can be SC decoded efficiently remains unsolved.

For the common communication channels, such as
binary additive white-Gaussian-noise channel (B-AWGN) and
binary symmetric channel (BSC), the problem of maximum-
likelihood decoding is equivalent to the minimum-distance
decoding. The decision problem that corresponds to the MLD
problem is usually formulated in terms of the distances and
stated as follows.

Problem: MLD-Linear
Input: An (n − k) × n matrix H over Fq , a target vector
y ∈ Fn

q , and an integer d > 0.
Question: Is there a vector x ∈ Fn

q of weight ≤ d, such that
Hxt = yt?

Note that the input to the MLD-Linear can be equivalently
described with the generator matrix G instead of H . Further-
more, the choice of G or H does not change the outcome.
But, this is not the case for the SCD problem. In fact, not
only the solution but also the hardness of the problem depend
on the choice of the generator matrix. The solution to the SCD
problem also depends on the channel parameters such as flip
probability in BSC(p), which is why it cannot be described in
terms of just the minimum distances. Let u, x, and y denote
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the uncoded information vector, the transmitted codeword, and
the received vector respectively, i.e. u → x → y. We leave
further details to the next section. For now, let us state the
binary SCD problem for a given generator matrix as follows.

Problem: SCD-Linear
Input: A k×n matrix G over F2, an index i ∈ [k], a target
vector y ∈ Fn

2 , a frozen vector ui−11 ∈ Fi−1
2 , and a flip

probability 0 < p < 1/2.
Question: P(y, ui−11 |ui = 0) ≶ P(y, ui−11 |ui = 1) ?

The generator matrix in the SCD-Linear problem is fixed in
the input. However, there are many different generator matrices
that can generate the same linear code. It is possible for the
SCD-Linear problem to be hard for some choices of G and
not so difficult for a different choice of G that generates the
same linear code. A natural question follows: How hard is the
SCD-Linear problem if we relax the constraint on G and let
the solution choose from the ensemble of all generator matrices
for the given linear code? Such an ensemble can be described
by all generator matrices such as G that satisfy HGt = 0 for
a given parity-check matrix of the code. Let us formally state
this problem as follows.

Problem: Ensemble SCD-Linear
Input: A (n− k)× n matrix H over F2, an index i ∈ [k],
a target vector y ∈ Fn

2 , a frozen vector ui−11 ∈ Fi−1
2 , and a

flip probability 0 < p < 1/2.
Output: A k × n generator matrix G over F2 such that
HGt = 0 and the corresponding bit: P(y, ui−11 |ui = 0) ≶
P(y, ui−11 |ui = 1).

The Ensemble SCD-Linear problem is a computational
problem in contrast to the SCD-linear decision problem since
the output contains not only the a bit that corresponds to
the probability comparison but also a k × n generator matrix
G. However, in term of the hardness, the Ensemble SCD-
Linear problem is computationally easier than the SCD-
Linear problem as the machinery is allowed to generator
matrix that makes the computation simpler. In other words,
the NP-hardness of Ensemble SCD-Linear results in SCD-
Linear being NP-hard, but the reverse is not true. We will
show that the Ensemble SCD-Linear problem is also NP-
hard, which is a stronger result than what was discussed
earlier.

A. Our contributions

In this paper, we prove that both SCD-Linear and Ensemble
SCD-Linear problems are NP-hard. We describe an easier
version of the SCD-Linear problem that can be stated in terms
of the minimum Hamming distances and no longer depends
on the flip probability (p) of the underlying communication
channel. We show this problem is also NP-hard. Our proofs are
based on polynomial reductions of the MLD problem to these
problems. We also show that, as a corollary of SCD-Linear
being NP-hard, the bit-wise maximum a posteriori probability
(MAP) decoding problem is also NP-hard.

We also utilize some variations of conventional polar
codes, namely large-kernel polar codes and polar codes with
dynamically-frozen values, to design multiple families of non-
singular n × n generator matrices for which SCD-Linear
algorithms with polynomial-time complexity exist.

B. Related work

Since the seminal work of Berlekamp et al in 1978, the com-
plexity of MLD of general linear codes has been extensively
studied. It was shown in [5], [14] that the problem remains
hard even if the code is known and unlimited preprocessing is
allowed. In [2], the MLD-Linear was shown to be NP-hard to
even approximate within a constant factor. The problem was
proven not to be fixed-parameter tractable in [9]. Berlekamp et
al also conjectured that the problem of finding the minimum
distance (MD-Linear) is also NP-hard. It was later proved
to be true in [20] and the results were strengthened in a
series of papers including [8], [10]. The maximum-likelihood
decoding of a few specific families of error-correction codes
such as product codes [3] and Reed-Solomon codes [13] are
also shown to be NP-hard. To the best of our knowledge, this
question has not been answered for any other common family
of error-correction codes. However, in [15] it was observed
through simulations that the list decoding of polar codes with
moderate list sizes can effectively perform ML decoding. It
remains open to show if the MLD decoding of polar codes is
NP-hard or not.

C. Paper outline

The channel model is given in Section II. In the same section,
we prove the NP-hardness of the SCD-Linear and Ensemble
SCD-Linear problems. In Section III, we give a brief overview
of the polar codes, which we modify in order to introduce
multiple families of generator matrices for which SCD-Linear
can be solved in polynomial-time.

II. SUCCESSIVE-CANCELLATION DECODING IS HARD

A. Channel model

Let us recall the notation from the previous section, where
u ∈ Fk

2 denotes the uncoded information vector. The en-
coded vector is given by x = uG, where G is a k × n
generator matrix. The received vector y is generated by
passing x through n independent copies of a BSC(p). The
goal in the successive-cancellation decoding is to decode
u1, u2, . . . , uk one-by-one. Therefore, at step i, the values of
u1, . . . , ui−1 are known to the decoder. To be consistent with
the polar coding literature, we refer to these values as the
frozen values. We can now model the i-th bit-channel during
SC decoding as depicted in Figure 1. The channel input is a
binary variable ui ∈ F2 and the values for uj , j ∈ [k] \ {i}
are drawn independently and uniformly at random. The output
of the channel is given by (ui−11 , yn1 ) ∈ Fn+i−1

2 . For a given
frozen vector ui−11 , define the linear cosets C(i)0 and C(i)1 as

C(i)t , {x|x = uk1G, ui = t, uki+1 ∈ Fk−i
2 }, ∀t ∈ {0, 1}. (1)
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Fig. 1. The channel model for the i-th bit-channel during SD decoding of
a code generated by a k × n generator matrix G, transmitted over n i.i.d.
copies of a BSC(p). The values of u1, . . . , ui−1 are known to the decoder.

Then, the decision problem in SCD-Linear becomes equiva-
lent to ∑

x∈C(i)0

P(x)P(y|x) ≶
∑

x∈C(i)1

P(x)P(y|x). (2)

However, all of the codewords in C(i)1 (for t = 0, 1) are
transmitted with equal probabilities. So,

P(x)P(y|x) =
1

2k−1
pdH(y,x)(1− p)n−dH(y,x), (3)

where dH(y,x) denotes the Hamming distance between y and
x. This allows us to further simplify the decision problem in
SCD-Linear as∑

x∈C(i)0

qdH(y,x) ≶
∑

x∈C(i)1

qdH(y,x), (4)

where q , p/(1− p) < 2p < 1. It is clear that if p→ 0, then
q → 0 as well. This becomes important in the next section,
where we prove the hardness of the SCD-Linear problem.

B. Hardness proofs

Let us first clarify the range for which p takes values from
since it is an input to both of the SCD-Linear and Ensemble
SCD-Linear problems. Note that the size of the other elements
in the input is given by poly(n). In order to keep the
asymptotic order of the input size, it suffices to limit p to
the set of fractional numbers given by

{ ν
2m
|ν ∈ N, ν < 2m, for some m = poly(n)}. (5)

Next, we point out that for small values of p such as p =
2−poly(n), both sides of (4) become dominated by the terms
with the smallest powers since

|C(i)t | ≤ 2n−1 ⇒ qdmin > |C(i)t |qdmin+1, for all q ≤ 2−n. (6)

This fact allows us to focus on a special case of the SCD-
Linear problem, which is equivalent to a decision problem
that no longer depends on the flip probabilities and can be
stated as the following.

Problem: SC-Distance
Input: A k×n matrix G over F2, an index i ∈ [k], a target
vector y ∈ Fn

2 , and a frozen vector ui−11 ∈ Fi−1
2 .

Question: dH(y, C(i)0 ) ≶ dH(y, C(i)1 ) ?

The notation dH(y, C) denotes the minimum Hamming
distance between y and the elements in C. While leaving the
details to the full version of this paper, we point out that the
SC-Distance problem is also an special case of the Nearest-
Coset problem, where the two cosets are a linear shift of each
other. It is possible to show that the SC-Distance problem is
equally as hard as the Nearest-Coset problem and at least
as hard as the Nearest-Codeword problem. Here, we take
a simpler route. According to (1), we have C(i)1 = gi + C(i)0 ,
where gi is the i-th row in G. Given that G is an arbitrary
binary matrix, we deduce that C(i)0 and C(i)1 can respectively
be an arbitrary linear coset and an arbitrary linear shift of
it. In the following we prove that the MLD-Linear problem
can be polynomially reduced to the SC-Distance problem
which establishes the latter to be NP-hard. Given that the
SC-Distance problem is a special case of the SCD-Linear
problem, our proof also establishes the NP-hardness of the
SCD-Linear problem.

Proof of SC-Distance ∈ NP-hard. Let us start with a binary
linear code C that is described by a k × n generator matrix
in Fn

2 denoted by G. Let g1,g2, . . . ,gk denote the rows in G
and define C(i) as

C(i) , span〈gi,gi+1, . . . ,gk〉, ∀i ∈ [k]. (7)

Further, let y be the received vector and denote the set of its
nearest codewords in C by

Sy , {x|x ∈ C, dH(y,x) = dH(y, C)}. (8)

In the following, we show how one can find an element in
Sy by employing the algorithmic solution to the SC-Distance
problem (oracle) in k steps. In step 1, we ask the SC-Distance
oracle to find out about

dH(y, C(2)) ≶ dH(y,g1 + C(2)), (9)

where a tie is broken with a coin flip. For simplicity, assume

dH(y, C(2)) ≥ dH(y, g1 + C(2)). (10)

This means that at least one of the nearest codewords to y
belongs to the linear coset g1 + C(2). In other words,

Sy ∩ (g1 + C(2)) 6= ∅. (11)

Note that we have so far reduced the size of our search for
elements in Sy in half. We can repeat the same method in each
step: In step i, we start from a linear shift of C(i) denoted by
a + C(i) for which we know that Sy ∩ (a + C(i)) 6= ∅. Then,
we ask the SC-Distance oracle about

dH(y, a + C(i+1)) ≶ dH(y, a + gi + C(i+1)), (12)

which allows us to cut the search size for an element in Cy
once again. We continue by updating the shift vector a as

anew ←− aold or anew ←− aold + gi, (13)

according to the inequality direction in (12). Upon finishing
the k-th step, the search size is reduced to only one codeword,
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which gives a solution to the MLD-Linear problem for the
linear code C. Given that the number of steps is upper bounded
by n, we proved that the MLD-Linear problem, which is
known to be NP-hard [4], can be polynomially reduced to the
SC-Distance problem. Therefore, the SC-Distance problem
is also NP-hard.

The importance of each step is to reduce the search size in
half. The choice of the generator matrix has no significant role.
In fact, we can achieve the same if the SC-Distance problem
is relaxed to make the comparison for a generator matrix of its
choice. This is similar to the relaxation that transformed the
SCD-Linear problem to the Ensemble SCD-Linear problem.
Let us state this computational problem as the following.

Problem: Ensemble SC-Distance
Input: A (n− k)× n matrix H over F2, an index i ∈ [k],
a target vector y ∈ Fn

2 , and a frozen vector ui−11 ∈ Fi−1
2 .

Output: A k × n generator matrix G over F2 such that
HGt = 0 and the corresponding bit: dH(y, C(i)0 ) ≶
dH(y, C(i)1 ).

It is easy to observe that the Ensemble SC-Distance
problem is equivalent to a special case of the Ensemble
SCD-Linear problem that corresponds to the flip probability p
being sufficiently small. So, in order to prove that Ensemble
SCD-Linear is NP-hard it suffices to show that Ensemble
SC-Distance is NP-hard. Fortunately, the Ensemble SC-
Distance problem is NP-hard for the same reason that SC-
Distance was: given a received vector y and a code C of
dimension k, one can find a nearest codeword of y in C
by employing the Ensemble SC-Distance oracle in k many
steps, where each step reduces the search size in half.

Corollary 1. The Ensemble SCD-Linear problem is also
NP-hard.

The bit-wise MAP decoding problem is similar to the SC
decoding problem in the sense that the outputs in both depend
on the choice of the generator matrix for the given linear code.
Let us state the MAP decoding problem as

Problem: MAP-Linear
Input: A k×n matrix G over F2 and a target vector y ∈ Fn

2 .
Output: P(y|ui = 0) ≶ P(y|ui = 1) for all i ∈ [k]

Note that for any i ∈ [k], we can use column permutations
to transform the MAP-Linear problem to a special case of the
SCD-Linear problem where i = 1. However, the SCD-Linear
problem for i = 1 is as hard as the general case where i ∈ [k],
which is shown to be NP-hard. Hence, we have the following.

Corollary 2. The MAP-Linear problem is also NP-hard.

III. CONNECTIONS TO POLAR CODES

So far, we showed that one cannot devise an SC decoding
algorithm that runs in polynomial-time for arbitrary generator
matrices. Note that it is possible to add n− k additional rows
on the top of any k×n generator matrix and make it an square

matrix and the SC decoding of the original generator matrix
will be contained within the SC decoding of the extended n×n
matrix. However, this statement does not remain true if any of
added n−k rows are placed after or in between the rows of the
original generator k × n generator matrix, which is ironically
the case for polar codes. With that in mind, we limit the scope
of our investigation from this point forward only to the n×n
non-singular binary matrices and introduce a few families of
n×n generator matrices, for which some polynomial-time SC
decoding algorithms exist.

A. A primer on polar Codes

The polarization theory is based on a simple linear transforma-
tion of a binary-input channel that includes many Kronecker
products of a binary matrix K, called the polarization kernel,
with itself. The generator matrix of conventional polar codes,
as introduced by Arıkan in [1], is given by

G = K
⊗(log n)
2 , where K2 =

[
1 0
1 1

]
. (14)

As a result, most of the polar bit-channels, denoted by W (i)
n

for i ∈ [n] become either really good or really bad, where
the goodness can be described in terms of the capacity, bit-
error probability, or the Bhattacharyya parameter. Moreover,
the ratio of the good channels tend to the symmetric capacity
of the underlying communication channel as n becomes large.
The encoder equation of polar codes is given by x = uG,
where u is an uncoded length-n binary vector. The k raw
information bits are placed on those coordinates of u that
correspond to the best k bit-channels. The values of the
remaining ui’s are frozen and known to the decoder. Let F
denote the set of indices that corresponds to the frozen values.
At the decoder, the values of ui for i ∈ [n] \ F are revealed
one-by-one according to the following rule:

ui = arg max
t

P(y, ui−11 |ui = t). (15)

The butterfly-like structure of polar encoder allows one to
compute the probabilities in (15) with O(n log n) computa-
tional complexity. We refer the interested readers to [1] for
more details.

B. Large-kernel polar codes

Soon after discovery of polar codes, Korada, Şaşoğlu, and
Urbanke [7] showed that the 2× 2 kernel in the conventional
polar codes can be replaced with any binary non-singular `×`
matrix and the capacity achieving theorems will hold as long
as the ` × ` kernel cannot be transformed into an upper-
triangular matrix via column permutations.

Since then, many articles has been published in pursuit
of finding alternative polarization kernels with better error
performance. However, near all of these large-kernel polar
codes are far from practical implementation due to an in-
creased decoding complexity that attributes to the complexity
of SC decoding within each kernel. In fact, the computational
complexity of the only known SC decoding algorithm for
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large-kernel polar codes with arbitrary `×` kernels is given by
O(2`n log n). On the other hand, the NP-hardness of SCD-
Linear, as demonstrated earlier, shows that there is no efficient
SC decoding algorithm for when ` grows faster than Θ(log n).
The polar coding diagram for large kernels consists of log` n
polarization layers, where each layer contains n/` kernels. The
capacity-achieving results hold true mainly for the case where
all these (n/`) log` n kernels are the same. But, they do not
have to be the same for the SC decoding to be efficient. Hence,
the total number of n×n generator matrices with polynomial-
time SC decoding complexity that are constructed through this
method is asymptotically lower-bounded by exp

(
cn(log n)2

log log n

)
,

for any fixed c > 0.

C. Polar codes with dynamically frozen values

The frozen values among ui, i = 1, 2, . . . , n are known to the
decoder. For symmetric channels, the performance of polar
codes under SC decoding does not depend on these values and
hence are usually set to be all-zero. However, it was shown
in [16], that this is not the case for other decoding methods
such as the list decoder in [15], which essentially matches the
ML decoding performance for sufficiently large list sizes.

Let i ∈ F correspond to a frozen index. [16] suggested to
set the value of ui as a linear combination of bits in {uj}i−1j=0

instead of a pre-determined fixed value, i.e.

∀i ∈ F : ui =
∑
j<i

αi,juj , (16)

and hence comes the name dynamically frozen values. This
definition was later extended in [18] to include uncoded
information bits as well. Note that by precoding the length-n
vector u with a non-singular upper-triangular matrix neither
the performance of the code under SC decoding nor its
computational complexity would change. To understand why,
let G be an n× n non-singular matrix. Further, let An be the
upper-triangular precoding matrix, where

A−1n =


1 b1,2 · · · b1,n−1 b1,n
0 1 · · · b2,n−1 b2,n
...

...
. . .

...
...

0 0 · · · 1 bn−1,n
0 0 · · · 0 1

 . (17)

Then, the overall encoding relation would be given by x =
uAnG. Let v = uAn denote the precoded vector that serves
as the input to the polar encoder and y be the received vector.
The SC decoder for matrix G is capable of computing

P(y, vi−11 |vi = 0) ≶ P(y, vi−11 |vi = 1) (18)

for any index i ∈ [n] and any length-(i − 1) vector vi−11 ∈
Fi−1
2 corresponding to the values of v that are decoded so far.

However, there exists a one-to-one map between {u1, . . . , ui}
and {v1, . . . , vi} for any i ∈ [n] that is given by

ui = vi +

i−1∑
j=1

bj,ivj , (19)

which allows us to simply map the probabilities in (18) already
computed by the SC decoder of G to the P(y, vi−11 |vi = t)
for all values of i ∈ [n] and ∈ F2. This is equivalent
to SC decoding of the overall generator matrix, AnG. The
total number of generator matrices with polynomial-time SC
decoding complexity that can be generated according to this
transformation is hence given by 2

n(n−1)
2 .

So far, we modified polar codes to construct generator
matrices for which we can implement SC decoding with
polynomial-time complexity. But, what can be said about
arbitrary generator matrices? Can we use polar codes to reduce
the complexity of SC decoding in general? Let G be a k × n
generator matrix of a (n, k) linear code C. Considering that the
generator matrix of polar codes is non-singular, there exists a
unique k × n matrix M such that

G = MK⊗ logn
2 . (20)

The matrix M is not necessarily upper-triangular. In fact, it is
not even necessarily an square matrix. However, we can apply
a set of elementary row operations on both sides of (20) to
arrive at G′ = M ′K⊗ logn

2 , where M ′ is in the reduced row
echelon form. Note that G′ is also a valid generator matrix
for C. Let I denote the set of coordinates of those columns in
M ′ that contain the leading 1s (and zeros everywhere else).
As an example, we have I = {1, 2, 4} for

M ′example =

1 0 × 0 × × × ×
0 1 × 0 × × × ×
0 0 × 1 × × × ×

 . (21)

The interesting observation in here is that the encoding relation
for G′, which is given by x = uG′ can be emulated by a
polar encoder for K⊗ logn

2 with dynamically frozen values,
where the uncoded information bits are placed on coordinates
in I. In other words, every linear code can be encoded as a
polar code with dynamically frozen bits. On the contrary, the
successive-cancellation decoding problem of an arbitrary code
with a k × n generator matrix is not necessarily equivalent
to the successive-cancellation decoding of its corresponding
n × n generator matrix, G′, due to the reasons explained in
the beginning of this section. But it is expected; otherwise, we
would have had P=NP.

On the other hand, the list decoding of polar codes [15] is
shown, through simulations, to be able to approximate the
maximum-likelihood decoding of conventional polar codes
with reasonable list sizes. Moreover, the list decoding algo-
rithm of polar codes can be easily extended to the polar codes
with dynamically frozen bits. Based on the fact that every
linear code can be encoded as a polar code with dynamically
frozen bits, we can utilize the list decoding algorithm to
approximate the maximum-likelihood decoding performance
of arbitrary codes. We can also use the same method to
generate a lower-bound for the maximum-likelihood decoding
performance of arbitrary codes, which would improve as the
list size increases. We leave the investigation on computational
complexity of these methods for future studies.
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