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ABSTRACT. Persistent homology (PH) is one of the most popular tools in topo-
logical data analysis (TDA), while graph theory has had a significant impact
on data science. Our earlier work introduced the persistent spectral graph
(PSG) theory as a unified multiscale paradigm to encompass TDA and geo-
metric analysis. In PSG theory, families of persistent Laplacian matrices
(PLMs) corresponding to various topological dimensions are constructed via a
filtration to sample a given dataset at multiple scales. The harmonic spectra
from the null spaces of PLMs offer the same topological invariants, namely
persistent Betti numbers, at various dimensions as those provided by PH, while
the non-harmonic spectra of PLMs give rise to additional geometric analysis
of the shape of the data. In this work, we develop an open-source software
package, called highly efficient robust multidimensional evolutionary spectra
(HERMES), to enable broad applications of PSGs in science, engineering, and
technology. To ensure the reliability and robustness of HERMES, we have val-
idated the software with simple geometric shapes and complex datasets from
three-dimensional (3D) protein structures. We found that the smallest non-
zero eigenvalues are very sensitive to data abnormality.
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1. Introduction. As a branch of discrete mathematics, graph theory focuses on
the relations among vertices or nodes (0-simplices), edges (1-simplices), faces (2-
simplices), and their high-dimensional extensions. Benefiting from the capability
of graph formulations that encode inter-dependencies among constituents of ver-
satile data into simple representations, graph theory has been regarded as the
mathematical scaffold in the study of various complex systems in biology, ma-
terial science, physical infrastructure, and network science. However, traditional
graphs only represent the pairwise relationships between entries. Therefore, hy-
pergraphs, a generalization of graphs that describe the multi-way relationships of
mathematical structures have been developed to capture the high-level complexity of
data [2,6]. Mathematically, graphs and hypergraphs are intrinsically related to the
simplicial complexes, which have broader use in computational topology. Moreover,
many other areas such as algebra, group theory, knot theory, spectral graph the-
ory (SGT), algebraic topology (AT), and combinatorics are closely related to graph
theory. Among them, the applications of SGT have been driven by various real-life
problems in chemistry, physics, and life science in the past few decades [37,41].

In its early days, the spectral graph theory studied the properties of a graph
by its graph Laplacian matrix and adjacency matrix. Later on, developments in
the spectral graph theory involve some geometric flavor. The explicit constructions
of expander graphs rely on studying the eigenvalues and isoperimetric properties
of graphs. The discrete analog of Cheeger’s inequality for graphs in Riemannian
geometry is related to the study of manifolds [11]. Specifically, an eigenvalue of
the Laplacian of a manifold is related to the isoperimetric constant of the manifold,
which motivates the study of graphs by employing manifolds. Benefiting from the
increasingly rich connections with differential geometry, the spectral graph theory
has entered a new era [13]. One of the critical developments is the Laplacian on
a compact Riemannian manifold in the context of the de Rham-Hodge theory [26,
48]. The harmonic part of the Hodge Laplacian spectrum contains the topological
information, whereas the non-harmonic part of the Hodge Laplacian spectrum offers
additional geometric information for shape analysis [12]. Indeed, the connectivity
of a graph/topological space can be revealed from topological invariants. It is
well-known that the number of the eigenvalues in the harmonic spectra of gth-
order persistent Laplacian represents the dimension of persistent g-cohomology of
a graph [22,24,44], which builds the connection between spectral graph theory and
algebraic topology.

Homology and cohomology are key concepts in the algebraic topology, which
were developed to analyze and classify manifolds according to their cycles. The
traditional homology is genuinely metric-independent, indicating that the geomet-
ric information is barely considered [25]. Therefore, for practical computation, a
new branch of algebraic topology named persistent homology (PH) [9,20,49] is im-
plemented to create a sequence of topological spaces characterized by a filtration
parameter, such as the radius of a ball or the level set of a real-valued function.
As the most important realization of topological data analysis (TDA) [7,15,17],
topological persistence has had great success in computational chemistry [28, 42]
and biology [8,14,29,40,46]. For instance, the superior performance of using PH
features of protein-drug complexes in the free energy prediction and ranking at
D3R Grand Challenges, a worldwide competition series in computer-aided drug de-
sign [38], was a remarkable success for TDA. Additionally, a weighted persistent
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homology is proposed as a unified paradigm for the analysis of the biomolecular
data system [32].

Recently, we have introduced persistent spectral graph (PSG) theory to bridge
persistent homology and spectral graph theory [44,44]. The PSG theory extends
the persistence notion or multiscale analysis to algebraic graph theory. A family of
spectral graphs induced by a filtration overcome the difficulty of using traditional
spectral graph theory in analyzing graph structures with a single geometry, giving
rise to persistent spectral analysis (PSA). Additionally, the evolution of the null
space dimension of the persistent Laplacian matrix (PLM) over the filtration of-
fers the topological persistence. Therefore, PSG theory provides simultaneous TDA
and PSA. Specifically, by varying a filtration parameter, a series of gth-order persis-
tent Laplacians (or g-persistent Laplacian) provide persistent spectra. Notably, the
persistent harmonic spectra of 0-eigenvalues span the null space of the ¢-th order
persistent Laplacian and fully recover the persistent ¢-th Betti numbers or persis-
tent barcodes [10] of the associated persistent homology. Specifically, the number
of 0-eigenvalues of gth-order persistent Laplacian reveals the number of g-cocycles
for a given point-cloud dataset. Moreover, the additional geometric shape infor-
mation of the data will be unveiled in the non-harmonic spectra. For example,
the spectral gap (the difference between the moduli of the first two smallest eigen-
values of a Laplacian) reveals the energy difference/density changes between the
ground state and first excited state of a system/dataset. Additionally, the B-factor
prediction performance can be significantly improved by using the non-harmonic
spectra involved in the prediction model, as discussed in [44]. Recently, the the-
oretical properties and algorithms of PSGs have been further studied [31] and the
application of PSG methods to drug discovery has been reported [33] . The de
Rham-Hodge theory counterpart, called evolutionary de Rham-Hodge theory, has
also been formulated [12].

Currently, many open-source packages have been developed for the applications
of persistent homology, including Ripser [4], Dionysus [35], Gudhi [39], Perseus [34],
DIPHA [5], Javaplex [1], CliqueTop [23], DioDe [36], Hera, Eirene, and “TDA”
package in R [21]. These packages are able to construct a family of complexes with
the point clouds data as input and calculate its corresponding Betti numbers, which
are equivalent to the harmonic spectra of the persistent Laplacian. However, there
is no software package for simultaneous TDA and PSA. While we developed the
theoretical part of the persistent spectral graph in 2019, we have not constructed
an efficient and robust software yet.

The objective of the present work is to provide the first open-source package,
dubbed highly efficient robust multidimensional evolutionary spectra (HERMES),
for evaluating both the harmonic and non-harmonic spectra of persistent Laplacian
matrices, which enable broad and convenient applications of the PSG method. In
the present release, we consider an implementation in both alpha complexes [19] and
Vietoris—Rips complexes. To verify the reliability of HERMES, 15 complicated 3D
structures of proteins as well as two fullerene structures are used to calculate the
spectra of gth-order persistent Laplacians for ¢ = 0,1, 2. Moreover, as a validation,
the persistent harmonic spectra generated by HERMES are compared with those
obtained from Gudhi and DioDe. Furthermore, with the use of the spectra of PLMs,
molecular data abnormality detection is also discussed. In a nutshell, HERMES
provides a powerful tool in various applications such as drug discovery, protein
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flexibility analysis, and complex protein structures analysis. It can be potentially
applied to various fields where persistent homology has had success.

2. Method. As a powerful and versatile data representation that encodes inter-
dependencies among constituents, graph theory has widely spread applications in
various fields such as molecular sciences, engineering, physics, biology, algebra,
topology, and combinatorics. In this section, we first briefly review the concepts of
simplex, simplicial complex, chain complex, Delaunay complex, and alpha complex
in topology, which can be regarded as generalizations of a graph into its higher-
dimensional topological counterparts. Then, we review the gth-order Laplacian for
simplicial complexes, which is a generalization of the graph Laplacian in graph
theory. The topological and geometric information of a single configuration can
be evaluated from the spectra of the gth-order Laplacian. Moreover, built upon
these concepts, we will discuss persistent spectral graph [44,44] for the analysis of
topological invariants and geometric measurements of high-dimensional datasets.
Instead of analyzing the spectra for only one configuration, the persistent spectral
graphs can analyze a series of topological and geometric changes, which enriches
the set of available representations for high-dimensional datasets.

2.1. Topological concepts. In this section, we give a concise review of simplex,
simplicial complex, and chain complex to provide essential background for persistent
spectral graphs. More details can be found in the literature [9,20,49].

Simplex. A g-simplex denoted as o, is the convex hull of g+1 affinely independent
points in R™, having dimension dim(o,) = ¢. For example, a vertex is a 0-simplex,
an edge is a 1-simplex, a triangle is a 2-simplex, and a tetrahedron is a 3-simplex.
We call the convex hull of each non-empty subset of ¢ + 1 points a face of o, and
each of its corner points is also called one of its vertices.

Simplicial complex. A set of simplices is a simplicial complex denoted as K if
the following conditions are satisfied:

(1) If all faces of any simplex in K are also in K, and
(2) The non-empty intersection of any two simplices in K is a common face of
the two simplices.
The dimension of simplicial complex K is defined as dim(K) = max{dimo, : o, €
K}.

Chain complez. A g-chain is a formal sum of ¢-simplices in simplicial complex K
with Zy coefficients. The set of all g-chains has a basis which the set of g-simplices
in K, thus forming a finitely generated free abelian group denoted as C,(K). The
boundary operator is a group homomorphism defined by 9, : Cy(K) — Cy_1(K) to
relate the chain groups. More specifically, denoting g-simplex as oy = [vg, v1, - - , Vq]
by its vertices v;, the boundary operator is defined through its action on the basis,

q
9904 = Z(_l)laé—r (1)
i=0
Here, 03_1 = [vg, -+, Ui, -+ , Vg is the (¢g—1)-simplex with v; omitted. The follow-
ing sequence of chain groups connected by boundary operators is a chain complex
(defined as a set of abelian groups connected by homomorphisms such that the
composite of any two consecutive homomorphisms is zero, 00441 = 0.)

Og42 Og+1 o2 Oq—1
RO (K) TE OY(K) % Oy (K) 2= - -
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2.2. Combinatorial Laplacians. Combinatorial Laplacians [18] offer both spec-
tral analysis and topological analysis [24]. One central role played by the chain
complex associated with a simplicial complex is to define its ¢g-th homology group
(H, = ker 9,/1m 044+1), which is a topological invariant of the simplicial complex.
The dimension of H, is denoted by 3, = dim H,, the ¢g-th Betti number, which,
roughly speaking, measures the number of g-dimensional holes in the simplicial
complex, or the geometric object tessellated into the simplicial complex.

A dual chain complex can be defined on any chain complex through the adjoint
operator of 9, defined on the dual spaces CY(K) = C;(K). The g-coboundary
operator 5 : C41(K) — C9(K) is defined as:

5"t (cg) = W (9ey), (2)

where wi™! € C97Y(K) is a (q—1)-cochain, which is a homomorphism mapping a
chain to the coefficient group, and ¢, € Cy(K) is a g-chain. The homology of the
dual chain complex is often called cohomology.

If we denote by B, the matrix representation of a g-boundary operator with
respect to the standard basis for Cy(K) and Cy—1(K), the number of rows and the
number of columns in B, correspond to the number of (¢ — 1)-simplices and that of
g-simplices in K, respectively. Moreover, the matrix representation of g-coboundary
operator is denoted Bg.

In de Rham-Hodge theory, homology and cohomology are often studied through
their correspondences to the g-combinatorial Laplacian operator, defined as the
linear operator A, : C1(K) — CY(K) as follows,

Ay = 0g41041 + 050y, (3)

~

where the isomorphism C'?(K) = C,(K) is assumed, where each g-simplex is mapped
to its own dual, i.e., the isomorphism keeps the coefficients of chains and cochains
in the standard simplicial basis. Correspondingly, the matrix representation of A,
is the gth-order Laplacian, which is denoted L4 (K),

Ly(K) = By1Byyy + By By (4)

Assume the number of g-simplices existing in K to be N, then L£,(K) is an
NyxNg-matrix. Since the gth-order Laplacian L£,(K) is symmetric and positive
semi-definite, its spectrum consists of only real and non-negative eigenvalues. We
denote the spectrum of £4(K) as

Spec(Ly(K)) = {A1,q,A2,q5 " AN, g}

The multiplicity of zero in the spectrum (also called the harmonic spectrum) reveals
the topological information §,, whereas the non-harmonic spectrum encodes further
geometric information. The correspondence between the multiplicity of zero spectra
of £4(K) and the gth Betti number defined in the homology is an important result
in de Rham-Hodge theory, [12,26, 48]

By = dimker 9; — dimim 9y41 = dimker £,(K) = #0 eigenvalues of L,(K). (5)

Intuitively, By represents the number of connected components in K, 5, reveals the
number of 1D noncontractible loops or circles in K, and fs shows the number of
2D voids or cavities in K.
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2.3. Persistent spectral graphs. Both topological and geometric information
can be derived from analyzing the spectra of gth-order Laplacian. However, the
information is restricted to those pieces contained in the connectivity of the sim-
plicial complex. A single simplicial complex produces insufficient information for
practical problems such as feature extraction for machine learning analysis. To
enrich the spectral information, persistent spectral graph (PSG) is proposed by cre-
ating a sequence of simplicial complexes induced by varying a filtration parameter,
which is inspired by persistent homology as well as our earlier multiscale graph
Laplacians [45].

First, we consider a filtration of simplicial complex K which is a nested sequence
of subcomplexes (K)}Z, of the final complex K:

(D:KOQKngQQ"'gKnL:K~ (6)

For each subcomplex Ky, we denote its corresponding chain group to be Cy(Ky),
and the g-boundary operator will be denoted by 9} : Cy(K;) — Cy_1(K;). As
conventionally done, we define Cy(K;) for ¢ < 0 as the zero group {0} and 9} as a
zero map. ' If 0 < ¢ < dim K, then

q
0 (aq) = Z(q)la;_l, Vo, € Ky, (7)
with o4 = [vg, -+ ,v,) being any g-simplex, and O’é_l = [vo, -+, Ui, -+ , V4] being

the (¢—1)-simplex constructed by removing v; . The adjoint operator of 83 is the
coboundary operator 3};* : C1"Y(K;) — C(K;), which can be regarded as a map
from Cy_1(K;) to Cy(K,;) through the isomorphisms C?(K,;) = C,(K;) between
cochain groups and chain groups.

Similar to the persistent homology, a sequence of chain complexes can be defined
as below:

0g+1 9 93 a1 9
1 1 1 1 1
Cqul :* Cq ;*\ :* Cy :* Co :* 071:{0}
8;+1 6; 85 8% 63
N N N N
a2 a2 a2 a2 a2
2 q+1 2 q 2 2 1 2 0 2
Cq+1 : Cq = ... = C(f = = 071:{0}
a2* 92* a2* a2* a2*
q+1 q 2 1 0
N N N N
Ot o 25" o o
mLoEm= O == . == O = O == ™ ={0}
q+1 s——— q A — s——— 1 A S— 0 A S— —1
am* om* om* am* am*
q+1 q 2 1 0

(8)

For simplicity, we use C; to denote the chain group Cy(Ky).
Next, we introduce persistence to the Laplacian spectra. We define the subset of
CLP whose boundary is in C_; as C};”, assuming the natural inclusion map from

t t+p
Cyq to C 7,

CLP = {B e CLP | 9LHP(B) € CL_,}. )

1We define the boundary matrix Bé for the boundary operator 36 as a zero matrix. The number
of columns of Bf is the number of O-simplices in K, the number of rows will be 1.
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On this subset, one may define the p-persistent g-boundary operator denoted by
opp . CL» — Cf_,. Tts corresponding adjoint operator is (357)* : C}_; — CLP,
again through the identification of cochains with chains. We then define the g-order
p-persistent Laplacian operator Afl’p : C}; — C; associated with the filtration as

Ay =, (34,) + 0 0 (10

The matrix representation of Agvf’ in the simplicial basis is

L£q7 = B (B + (BY)" By, (11)

t,p .. : . : t,p
where B/, is the matrix representation of 9,7, .

We denote the spectrum of L? as
tp 1, t,
Spec(LyP) = {\7h, Agh, - - ,)\Ng,q},

where N, (f = dim Cé is the number of ¢-simplices in K}, and the eigenvalues are listed
in the ascending order. Thus, the smallest non-zero eigenvalue of ﬁfl’p is denoted
as )\g’f;. We may recognize the multiplicity of zero in the spectrum of EZJ’ as the
qth order p-persistent Betti number Bé’p , which counts the number of (independent)
g-dimensional holes in K that still exists in K4 ,. The relation can be observed in

BYP = dimker 0}, — dimim 3,7, = dimker L}” = #0 eigenvalues of LLP.  (12)

In this paper, we focus on the 0,1, 2th-order persistent Laplacians, which depict
the relations among vertices, edges, triangles, and tetrahedra, as we target 3D real-
world applications.

For instance, given a set of vertices V' = {vg,v1, -+ ,0n,-1} , No embedded in
R3, we consider a nested family of simplicial complexes that may be created for a
positive real number a. Denoting the simplicial complex generated for o by K.,
the traditional gth-order Laplacian is just a special case of gth-order O-persistent
Laplacian at K,

a a,0 a,0 a a
£ =By (By)" + (B3)" By (13)
The spectrum of 5370 is simply associated with a snapshot of the filtration,

Spec(Ly %) = (AT, A5+ Ao }- (14)
Correspondingly, the g-th O-persistent Betti number Bf;’o = B¢. In addition to
the traditional homology information, and persistent homology information, our
proposed persistent spectral graph theory, through the nonzero eigenvalues in the
spectrum of the persistent Laplacian operator, provide richer spatial information
induced by varying the filtration parameters. Thus it provides a powerful tool to
encode high-dimensional datasets into various topological and geometric features in
a coherent fashion.?

2In this work, we use notations (Cz’p, 52’;7, Ag’p, Eé’p, and Bé’p instead of (Cf;rp, 52“’, Afler, £f1+p,
and B;‘HH used in Ref. [44].
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2.4. Delaunay triangulation and alpha shape. In this section, we provide the
details on a practical construction of filtration for persistent spectral graph theory
based on the alpha complex. The alpha complex can be regarded as a simplicial
complex, which is a homotopy equivalent to the nerve of balls around data points.
Its geometric realization built as the union of convex hulls of points in each simplex
is called the alpha shape. The alpha shape was first proposed in 1983, which
defined the shape associated with a finite set of points in the plane controlled by
one parameter [19].

In the following, we first describe how to construct the alpha shape, and then
provide some necessary concepts for the implementation of the alpha complex in
PSG theory. Let P be a finite set of points in gD Euclidean space RY (¢ = 2 or 3
in most applications), and a be a positive real number. Denote an open ball with
radius « as an alpha ball (a-ball). We say that an a-ball is empty if it contains no
point of P, and the alpha hull (a-hull) of P is the set of points that do not belong
to any empty a-ball. For any subset T' C P with size |T| = k+ 1,0 < k < ¢,
the geometric realization of k-simplex op is the convex hull of T. We say that a
k-simplex o is a-exposed if there exists an empty a-ball b such that T'= 0b N P
for 0 < k < ¢ — 1. Denoting the collection of a-exposed k-simplices as Fj, , for
0 < k < g — 1, the alpha shape (a-shape) of P is the polytope whose boundary
consists of the k-simplices in F}, . The alpha complex is just the simplicial complex
that is the collection of the simplices in the alpha shape.

There are two structures that are closely related to the alpha shape and helpful
in efficient implementation of alpha shape and alpha complex. One is the Voronoi
diagram [43] and the other is its dual structure, the Delaunay tessellation [16]. The
latter is the alpha complex for sufficiently large «, e.g., when « is greater than
the diameter of P. Thus, the Delaunay tessellation is the final complete simplicial
complex in the filtration that we use.

For a given set of points P = {p1,p2, - ,pn} C RY, the Voronoi cell V; of a point
p; € P contains all of the points for which p; is the closest among all the points in
P?

Vi={z eR"| |z —pil <llz—psll, Vp; € P} (15)
The Voronoi diagram of P is the set of Voronoi cells, which is defined as
VorP ={V; | Vie {1,2,--- || P|}}. (16)

The Delaunay tessellation for a given set P in general position (i.e., no ¢+ 1 ponits
are in a (g—1)-D linear subspace, and no ¢+ 2 points share the same circumsphere)
is the dual simplicial complex to the Voronoi diagrams. For instance, a Delaunay
tessellation for a given set P in 2D is a triangulation DT(P) such that no point
in P is inside the circumcircle of any triangle in DT(P) [3,30]. A formal way to
define the Delaunay tessellation is to use the nerve of the collection of Voronoi cells
(Nrv(VorP)), which can be expressed as

DT(P) = Nrv(VorP) = {J C {1,2,...|P|} | [ Vi #0}, (17)
i€J

under the condition that the points in P are general position. Note that, in practice,

a set of points that are not in general position can be symbolically perturbed to
general position.

Next, we introduce the mathematical description of the construction of alpha

complex through the union of balls centered at points in P, which is essentially a

van der Waals surface for atoms positioned at P with the same radius «. For a
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Figure 1. Illustration of Voronoi diagram, Delaunay triangulation, and
Non-Delaunay triangulation. Left chart: The Voronoi diagram and its
dual Delaunay triangulation. The points set is P = {AB,C,D,E} and
the Delaunay is defined as DT(P). The blue lines tessellate the plane
into Voronoi cells. The red circle are the circumcircles of triangles in
DT(P). Right chart: A Non-Delaunay triangulation. Vertices E and
D are in the green circumcircles, implying the right chart is an example
of Non-Delaunay triangulation.

given set of points P = {p1,p2, -+ ,pn} in R? and a positive real number «, we can
denote the closed ball centered at p; as B;(a) = p; + aB?, where B? is a gD unit
ball around the origin. The union of these balls can be expressed as

U(a) ={xz € R? | Ip; € Ps.t. ||z —pi] <a}. (18)

To ensure that we obtain a subcomplex of the Delaunay tessellation, we intersect
B;(a) with its corresponding Voronoi cell,

Ri(e) = Bi(a) N V. (19)

It can be observed that U(a) = Up,epR;i(a), so the R;’s is a covering of U(a). The
alpha complex K, is the simplicial complex representing the nerve of this covering,

Ko ={J C{1,2,|P} | [ Rila) #0}. (20)
icJ

The equivalence to the original definition can be readily checked. The union of
all simplices in the alpha complex forms the alpha shape. Figure 1 illustrates the
Voronoi diagram, Delaunay triangulation, and non-Delaunay triangulation. The
point set is P = {A,B,C,D,E}, and the blue lines in the left chart of Figure 1 separate
the plane into the Voronoi cells. The red circles are the empty circumcircles for
triples of points in P. We can notice that no four points are on the same red circle,
which satisfies the uniqueness condition for constructing the Delaunay triangulation.
In the right chart of Figure 1, the green circumcircle of ACD contains E and the
green circumcirlce of AEC contains D, indicating that those two triangles do not
belong to the Delaunay triangulation.

Figure 2 illustrates the standard filtration of alpha complexes. The top left
figure is the Delaunay triangulation of six 2D points A, B, C, D, E, and F. With
an ever-growing radius « centered at these points, a family of sub-complexes of the
Delaunay triangulation can be constructed. Figure 3 shows the persistence barcode
of these 6 points. It can be seen that when o = 0.2, all six points are disconnected,
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indicating that 6 O-cycles (connected components) existed, which matches with
Figure 3, where there are a total of 6 bars when o = 0.2. With the radius «
continually increasing, a 1-cycle will be formed, and the associated alpha shape are
shown in the bottom left chart of Figure 2. One can notice that in Figure 3, when
a = 0.6, ﬁf"o = 1. When « reaches 0.83, the 1-cycle disappears and Bf’o =0 as
shown in the bottom left panel of Figure 2. Table 1 and Table 2 show how we
construct the gth-order persistent Laplacian £f1’p and calculate the harmonic (5;*” )
and non-harmonic persistent spectra of Lg’p from the simplicial complexes Ky o to
KO.G and K0,6 to KO.G'

Delaunay triangulation Alpha = 0.20
3 31
Ko
2.54 2.54
24 2+
A A
1.54 1.54 °
TR 3 I ;
0.5+ 0.5+ F
C D ‘
0 04 . .
-0.5 -0.5
_l A T T T T T _l A T T T T T
-1 0 1 2 3 -1 0 1 2 3
Alpha = 0.60 Alpha = 1.00
3 3
Ko Ko
2.5+ 2.5+
2 24
A A
1.54 A 1.54
1] I? E ] B E
0.5+ 0.5+
&
0+ . 0+
-0.5+ -0.5+
_1 L T T T T T _1 L T T T T T
-1 0 1 2 3 -1 0 1 2 3

Figure 2. Illustration of 2D Delaunay triangulation, alpha shapes, and
alpha complexes for a set of 6 points A, B, C, D, E, and F. Top left:
The 2D Delaunay triangulation. Top right: The alpha shape and alpha
complex at filtration value a = 0.2. Bottom left : The alpha shape and
alpha complex at filtration value a = 0.6. Bottom right: The alpha
shape and alpha complex at filtration value a = 1.0. Here, we use dark
blue color to fill the alpha shape.
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Figure 3. The persistent barcode for a set of points as illustrated in
Figure 2 that are generated from Gudhi and DioDe.

2.5. Vietoris—Rips complex. Vietoris-Rips complex is an abstract simplicial com-
plex. It is commonly used in various applications. For a given set of points
P = {p1.p2,- -+ ,pn} in a metric space and a real value r > 0, a k-simplex o, =
[pio, -+ ,pix] is in the Vietoris-Rips complex if and only if B(pi;,) N B(p;; ) #

0,vj,5 € [0, k.
3. Implementation.

3.1. Construction of alpha shape. Recall that, given a set of points, the al-
pha shape with any o value is a subcomplex of Delaunay tessellation. Thus, to
construct the filtration of alpha complexes, it is necessary to first compute the
complete simplicial complex through the Delaunay tessellation formed by the set
of points. A number of efficient implementations is available in existing software
packages. Our implementation employs the Computational Geometry Algorithms
Library (CGAL), an efficient and robust software package for many commonly used
calculations. We then assign each simplex ¢ with an alpha value a,. Finally, the
alpha shape given at an « value «y is constructed by union of convex hulls of all the
simplices o satisfying a, < ag, which naturally forms the nerve of balls centered
at the given points truncated by the Voronoi regions, i.e., the corresponding alpha
complex.

We illustrate our implementation with point sets P in 3D, as it is the most
common use scenario. We also assume that all the points are in general positions,
which means that no 4 points of P lie on the same plane and no 5 points of P lie on
the same sphere. Given a simplex o, which can be a point, an edge, a triangle or a
tetrahedron, denote the open ball bounded by its minimal circumsphere as B,. The
simplex o is called Gabriel ( [27]) if B, NP = (. Note that for vertices (0-simplices)
the circumradius is considered 0. The above discussion can be directly adapted
for 2D implementation by replacing circumsphere with circumcircle and omitting
tetrahedra.
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Table 1. The matrix representation of g-boundary operator and its gth-
order persistent Laplacian with corresponding dimension, rank, nullity, and
spectra from alpha complex Ko.¢ — Ko.s.

q g=0 g=1 q=2
ABBCCDDEEF DF AE an oF
A[-10 0 0 0 0 —1 BC 0
B|1-10 00 0 0 P 0
BY® [clo 1 -100 0 0 DE 1 /
D[0 0 1 -10-10 EF 1
E[0 0 0 1-10 1 DF e
FLO O 0 0 1 1 0 AE o
ABBCCDDEEF DF AE DEF
AB[ 0
Ar=10 0 0 0 0 -17 ol o
B|1-10 0 0 0 0
0.6 ABCDEF clo 1-1000 0] CP|oO
! [000000] Dlo o 1-10-10 EE .
E|l0 00 1-10 1| ol 7
FLo oo o0 1 1 0] ol
9 210 0 -1 0 2 -10 0 0 0 1
-12-10 0 0 0
-12 -10 0 0
012 -10 0 0 -12 —-10 —-10
L£9:6:0 0 0 -1 3 —1-1 0 0-13 001 3]
00 0 0 3 0 -1
-10 0 —-13 —1
00 0 —1-12 0 0-10 0 3 0
1 0 0 1 —-10 2
Bo%° 1 1 0
dim(£3:%°) 6 7 1
rank([,g'e’o) 5 6 1
nullity (£5%°) 1 1 0
Spec(£9®°) {0,1,1.5858, 3,4, 4.4142} {0,1,1.5858, 3,3, 4,4.4142} {3}

The filtration parameter « for every simplex o can be defined as follows. If
the simplex is Gabriel, the filtration value is the corresponding circumradius (for
efficiency, we actually store its square) because the corresponding ball can be con-
sidered as an empty a-ball touching all its vertices. If the simplex is not Gabriel,
the filtration value is the minimum of all the filtration values of the cofaces of o
that contain the points making the simplex non-Gabriel. When « value reaches
that number, we will have an empty a-ball making the simplex a-exposed.

3.2. Implementation details for alpha shape. To ensure the valid calculation
of the filtration parameter for non-Gabriel simplices, the filtration value are always
computed from the highest dimension (tetrahedra) down to 0 (vertices). We ini-
tialize the filtration value for all the simplices to be positive infinity. For dimension
k, we iterate through each k-simplex. If the current filtration value o2 is positive
infinity, we assign the filtration value as the square of the corresponding circumra-
dius. Then, we check every (k—1)-dimensional face 7 in do. If the circumsphere
of 7 enclosed the other vertex of ¢ in the interior, it is not Gabriel, and does not
correspond to an empty a-ball. In this case, a? is assigned to o2 if a, > a.

With this procedure, we ensure that «a, for every simplex o corresponding to the

filtration value « is a-exposed to an empty a-ball. In other words, we ensure that
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Table 2. The matrix representation of g-boundary operator and its gth-order persistent
Laplacian with corresponding dimension, rank, nullity, and spectra from alpha complex
Koz — Kos-

q =0 =1 =2
AB BC CD DE EF DF AE
A[-1 0 o0 0 0 0 -1
B i -1 0 o0 0 0 0
Bo204 c 0 1 -1 0 0 0 0 / /
D o 0o 1 -1 0 -1 0
E 0 0 0 1 —1 0 1
F o 0 o 0 1 10
0.2 A B CDE F
By [0 0 0 0 0 O / /
2 -1 0 0o -1 0
-1 2 -1 0o 0 0
0.2,0.4 0 —1 2 —1 [0} 0
Eq 0 0 —1 3 —1 -1 / /
-1 0o o -1 3 -1
o 0o o0 -1 -1 2
32.2,0.4 1 / /
dim(£)20-4) 6 / /
rank(£2'2’0'4) 5 / /
nullity (£9-2:0-4) 1 / /
Spec(£9-2:0-4) {0,1,1.5858, 3,4, 4.4142} / /
for each simplex represented by its vertex index set J C {1,2,...,|P|} is in the nerve

of R;’s, which are the intersections R; = V; N B; of Voronoi cells V;’s and balls B;’s
around the points p;’s.

3.2.1. Boundary operator construction. With «, assigned, we sort the k-simplices
with increasing filtration parameter value. This allows us to construct a single
boundary operator Bg° (the matrix representation of 0;°) for the entire filtration,
which is that of the Delaunay tessellation. For any given «, we can read of the top
left block of the full boundary matrix B;°, i.e.,

(B;“)ij = (B;’O)ij, VI<i< NS 1<j<Ng, (21)

where N;* is the number of g-simplices in the alpha complex with the filtration
parameter . Alternative, we can consider the N*x N ° projection matrix P* from

the Delaunay tessellation to the alpha complex, (P;‘)ij = 6;; (1 on the diagonal

and 0 elsewhere), with which we have BS = Py B (Py)™.

3.2.2. Persistent boundary operator. The construction of p-persistent boundary ma-

trix BgP (the representation of operator dg? is more involved than reading off BJ°.
We first construct the projection matrix PP from an+p to CP. Then, the

p-persistent boundary matrix can be assembled as Bg"P = quilBgo(IPg’p)T.

To construct the projection matrix, we first note that it is the projection to the
kernel of an operator that measures the difference between the boundary opera-
tor mapped onto C’g‘ff’ and the boundary restricted to Cg ,, Diffy"? = (I;ff —
RyP)TBytP, where RP = Pt (Pe)T P (PytP)T is the restriction from CgP
to C¢ and I8P is the identity matrix on C+?.

Instead of storing a dense matrix, we propose to use a procedural representation

involving the inverse of persistent Laplacians with gauge ( [47]) to reduce the storage
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as well as speed up the computation. More specifically, we construct the projection
matrix as follows

o « = P Fa, e cat) 4
PoP = I0HP — (Diff, )" (Lgh) "' Diff, (22)

where (L;”"))~" can be implemented through rank deficiency fixing in [47], and the
restricted operator DNiﬁZ’p is defined below. Note that this sparse linear equation
solving approach is essentially the graph version of the harmonic extension described
in Ref. [48].

The reason that the projection matrix can be defined this way is that starting
from an arbitrary element w, € C¢*P, we can modify it into w, — (Diffy )T f, 1 €
CgP, where f,; is nonzero only in the difference complex Cl(T+, — T.,), the clo-
sure of the difference between T,,, and T;,. Denoting any chain f on the difference
complex as f and any operator B on it as B“?, and the Bg*p(Bg"p)qu_l = Bg"pd)q.
Noticing that fq,l is determined up to a gauge transform fq_1 — (Bgf’l)qu,g for
some (¢ — 2)-chain gq—2 in Cl(Th4p — Tw), we introduce the gauge fixing term
B f—1 = 0, which leads us to the sparse linear system L Pf, 1 = DNiFfZ’pwq
where the Diff operator is the above operator projected to the difference complex.
Note that fixing the rank deficiency of persistent Laplacians (in the difference com-
plex) is computationally efficient as its kernel dimension is far smaller than that of
the corresponding boundary or coboundary operators.

3.2.3. Persistent spectrum computation. The g-order p-persistent Laplacian oper-
ators can then be implemented by direct evaluation of L3P = B.¥ (By)" +
(B;‘)TB(‘;. Their spectra can be evaluated through any off-the-shelf sparse matrix
eigensolver.

Thus, the dimension of the null space of Ly is number of p-persistent connected
components. The dimension of the null space of L{"" is number of p-persistent
handles or tunnels. Similarly, the dimension of the null space of Ly is the number
of p-persistent cavities.

3.3. Implementation details for Vietoris—Rips complex. The Vietoris—Rips
complex at different filtration values is also considered in HERMES. Following
the definition of the Vietoris—Rips complex, the implementation is straightforward.
However, due to large number of simplices, the calculation of non-harmonic spec-
tra of PLMs LfZ’p can be resource-intensive. Therefore, we may set a maximum
cutoff distance for the filtration » and an upper limit for persistent p for practical
applications.

4. Validation. We construct the alpha complex at different filtration values from
the finite cells of a Delaunay tessellation from the Computational Geometry Algo-
rithms Library (CGAL). Moreover, the Vietoris—Rips complex at different filtration
values is also constructed in the HERMES. Gudhi and DioDe are two of the most
frequently applied open-source libraries that are able to compute the Betti numbers
(harmonic persistent spectra) based on CGAL, while Ripser is based on the blazing
fast C++ Ripser package. Asshown in [44], the O-persistent gth Betti numbers ﬂé’O
at filtration parameter ¢ is the number of zero eigenvalues of gth-order 0-persistent
Laplacian ££°:

By = dim(C)) — ramk(£{’) = dim ker £}, (23)


https://doc.cgal.org/latest/Manual/packages.html
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Figure 4. The 3D structures of Cz¢ and Cgo. (a) C2o molecule. A total
of 12 pentagon rings can be found in Cao. (b) Cgo molecule. 12 pentagon
rings and 20 hexoagon rings form the structure of Cgo

where t = « if we choose to construct alpha complex, and t = r if we choose to
construct Vietoris—Rips complex.

In fact, ﬁfz’o counts the number of g-cycles in alpha complex K; that persists
in K;. Although Gudhi and DioDe can calculate the number of zero eigenvalues,
the non-harmonic persistent spectra also play an important role in applications as
shown in our earlier work [44]. Therefore, we developed an open-source package
HERMES, which not only tracks the topological changes from the persistent Betti
numbers but also derives the geometric changes from the non-harmonic spectra of
persistent Laplacians. In the following, we compare the Betti numbers Bg’p that
are calculated from HERMES with the Betti numbers that are derived from Gudhi
and DioDe on a set of 2D and 3D points, aiming to validate the robustness and
accuracy of HERMES.

4.1. Validation on fullerene structures. In this section, we will validate the
correctness of HERMES with simple systems such as Cop and Cgg molecules with
known persistent Betti numbers [46] for Rips complex. Moreover, the persistent
Betti numbers for alpha complex are also included in this section.

Cs9 molecule. Cog molecule is the smallest member of the fullerene family, which
has a dodecahedral cage structure as illustrated in Figure 4 (a). Both Cy and
Cgo have the molecular symmetry of the full icosahedral point group I,. Figure 5
illustrates the persistent Betti numbers for Rips complex 85, 709 and g5 %
(green curves) and the smallest non-zero eigenvalue Ay* %% X799 “and A5 (yel-
low curves) of C20 that are computed from HERMES. Similarly, Figure 6 illustrates
the persistent Betti numbers for alpha complex S ,0-05. f’0'05, and S5 ,0.05 (green
curves) and the smallest non-zero eigenvalue A5°% A®%% and A3*% (yellow
curves) of C30 that are computed from HERMES.

Note that although the Rips complex and the alpha complex have similar Betti-0
and Betti-1 patterns, their Betti-2 patterns differ from each other over the filtration
range. Additionally, the non-harmonic spectra of the Rips complex and the alpha
complex differ much from each other. Moreover, the non-harmonic spectra of the
Rips complex appear to carry more information than those of the alpha complex.

Cso molecule. Cgy molecule is a well-known structure that also called buckmin-
sterfullerene. A total of 12 pentagon rings and 20 hexagon rings consist of Cgp.
Figure 4 (b) shows the 3D structure of and Cg. Figure 7 and Figure 8 demonstrate
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Figure 5. Illustration of the harmonic spectra (for Rips complex)

0:0-05 1 51:0-05 “and B5°%° (green curves from top chart to bottom chart)
and the smallest non-zero eigenvalue Ay% % A7%% and A\;*% (yellow
curves from top chart to bottom chart) of Czo molecule (the bottom left
chart in Fig. 9) at different filtration values « calculated from HERMES.
Here, the z-axis represents the radius filtration value r (unit: A), the
left-y-axes represents the number of zero eigenvalues of £S’O'O5, E;’O'Os,
and ﬁI’O'OE’ from top to bottom, and the right-y-axes represents the first

non-zero eigenvalue of £5% % £7°% “and £5%° from top to bottom.

the 0.05-persistent Betti numbers for rips complex and alpha complex, respectively.
Figure 5 - Figure 8 indicate the capacity of HERMES for the direct calculation of
the persistent spectra of LI:? and LGP (p > 0).

4.2. Validation on proteins. In this section, we further validate HERMES us-
ing 15 proteins. Their Protein Data Bank (PDB) IDs of these proteins are 1CCR,
1INKO, 1008, 10PD, 1QTO, 1R7J, 1V70, 1W2L, 1WHI, 2CG7, 2FQ3, 2HQK,
2PKT, 2VIM, and 5CYT. The 3D structures of these 15 proteins can be down-
loaded from the PDB). Here, only the alpha carbon atoms are considered in our
calculations. The harmonic spectra of HERMES are compared with the persistent
Betti numbers of Gudhi and DioDe. Figure 9 illustrates the network structures of 15
proteins. For each protein, color at atomic positions represents the normalized diag-
onal values of the accumulated Oth-order 0-persistent Laplacians: m (ﬁg)jj,
N0/
with £0 = za [lg’o. Here, the filtration « goes from V1.5 A to V10 A with the
step size of 0.01 A. Figure 10 depicts the persistent Betti numbers ﬂ(‘;’o (blue curve)
of PDB ID 5CYT that are calculated from Gudhi, DioDe, and HERMES, together
with the smallest non-zero eigenvalue )\?70 (red curve) that are obtained only from
HERMES.


https://www.rcsb.org/
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Figure 6. Illustration of the harmonic spectra (for alpha complex)

00005130095 “and B59%% (green curves from top chart to bottom chart)
and the smallest non-zero eigenvalue A3°%%% %% % “and A\3%% (yellow
curves from top chart to bottom chart) of Cz¢ molecule (the bottom left
chart in Fig. 9) at different filtration value « calculated from HERMES.
Here, the z-axis represents the radius filtration value o (unit: A), the
left-y-axes represents the number of zero eigenvalues of £8"0‘05, ﬁ?’o'%,
and E’f“o'os from top to bottom, and the right-y-axes represents the first

non-zero eigenvalue of £5°% £3°% ‘and £5° from top to bottom.

It can be seen that all of these three packages return exactly the same persistent
Betti numbers, suggesting that the calculation of our package HERMES is reliable.
Additionally, the values of smallest non-zero eigenvalues )\Oa’o and )\f’o increase
around 1.86 A, indicating the dramatic topological changes at this point. Similarly,
with the increment of the «, the curve of )\3’0 also records the topological and
geometric changes at a specific filtration value. The use of non-harmonic spectra
for biophysical modeling was described in our earlier work [44].

To be noted, HERMES can also deal with the gth-order p-persistent Laplacians

LaP. Figure 11 illustrates the persistent Betti numbers Be0o, 5 and g0

(green curves) and the smallest non-zero eigenvalue Ay**°, \$°*° and A5 (yellow
curves) of 5CYT that are computed from HERMES, demonstrating the capacity
of HERMES for the direct calculation of the persistent spectra of L£g*? (p > 0).

Compared with the middle chart of Figure 10, the 3y 0-5 in the middle chart of
Figure 11 is always smaller than ﬂf"o at the same filtration . Moreover, the )\?’0'5
also goes up around 1.86 A, which has the same behavior as Xf’o. Similar behaviors
can be also observed from the bottom charts of Figure 10 and Figure 11.
Furthermore, HERMES can be used to detect the abnormality of a protein struc-

ture. Figure 12 (a) shows a 3D secondary structure of PDB 1008, where the balls
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Figure 7. Tllustration of the harmonic spectra 5%, 5%, and

5599 (blue curves from top chart to bottom chart) and the smallest
non-zero eigenvalue \y°%°, AT%% and A% (red curves from top chart
to bottom chart) of Cgg molecule (the bottom left chart in Fig. 9) at
different filtration value « calculated from HERMES. Here, the z-axis
represents the radius filtration value a (unit: A), the left-y-axes rep-
resents the number of zero eigenvalues of £5%%, £7%% and £]%
from top to bottom, and the right-y-axes represents the first non-zero
eigenvalue of £5%% £7%% "and £5°% from top to bottom.

represent the alpha carbon atoms. The light blue, purple, and orange colors rep-
resent helix, sheet, and random coils of PDB ID 1008. Figure 12 (b) depicts its
harmonic spectra Bf;’o (blue curve) and the smallest non-zero eigenvalue )\2"0 (red

curve). Notably, two unusual onset of 0 and By 0 are detected when a << 1.9 A,
indicating something is wrong with the structure data. Usually, the distance be-
tween the two alpha carbon atoms is around 3.8 A. By examining the structure
of PDB 1008, we found that two pairs of alpha carbon atoms in PDB 1008 have
abnormal distances as marked with black frames. The distance of alpha carbon
atoms in the upper box is 2.914 A and that in the lower box is 2.996 A, which are
too short. The plots of the other proteins can be found in the Appendix. Similar
structural defects were detected for PDB IDs 1V70, 2HQK, 2PKT, and 2VIM.

Although our package provides additional geometric information by calculating
the non-harmonic spectra of gth-order persistent Laplacians, there are two limi-
tations of HERMES. First, the construction of the Vietoris—Rips complex is the
primary bottleneck in the calculation of non-harmonic spectra of persistent Lapla-
cian matrices (PLMs). Additionally, the input format of HERMES is point cloud
data. Other input formats, such as pairwise distances, point cloud with van der
Waals radii, and volumetric density are not supported. These limitations will be
addressed in our future implementation.



HERMES: PERSISTENT SPECTRAL GRAPH SOFTWARE 85

,0.05
Bo

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

a,0.05
N
o

1

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.0 A —

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Figure 8. Tllustration of the harmonic spectra 85°%, 83 and

55799 (green curves from top chart to bottom chart) and the smallest
non-zero eigenvalue Ag"%%, X&%% “and A$°% (yellow curves from top
chart to bottom chart) of Cgp molecule (the bottom left chart in Fig.
9) at different filtration value « calculated from HERMES. Here, the
z-axis represents the radius filtration value a (unit: A)7 the left-y-axes
represents the number of zero eigenvalues of £5°%°, £5%% and £
from top to bottom, and the right-y-axes represents the first non-zero
eigenvalue of £3°%, £59% "and £5%° from top to bottom.

5. Conclusion. While spectral graph theory has had tremendous success in data
science to capture the geometric and topological information, it is limited by rep-
resenting a graph structure at a given characteristic length scale, which hinders its
practical application in data analysis. Motivated by the persistent (co)homology in
dealing with a given initial data by constructing a family of simplicial complexes
to track their topological invariants, and the multiscale graphs by creating a set of
spectral graphs aiming to extract rich geometric information, we proposed persis-
tent spectral graph (PSG) theory as a unified multiscale paradigm for simultaneous
geometric and topological analysis [44]. PSG theory has stimulated mathematical
analysis and algorithm development [31], as well as applications to drug discov-
ery [33], and protein flexibility analysis [44].

To enable broad and convenient applications of the PSG method, we present an
open-source software package called highly efficient robust multidimensional evo-
lutionary spectra (HERMES). For a given point-cloud dataset, HERMES creates
persistent Laplacian matrices (PLMs) at various topological dimensions via a fil-
tration. The spectrum of PLMs includes harmonic parts and non-harmonic parts.
It turns out that the harmonic part spans the kernel spaces of PLMs and car-
ries the full topological information of the dataset. As a result, HERMES delivers
the same topological data analysis (TDA) as does persistent homology. The non-
harmonic part of PLMs provides valuable geometric analysis of the shape of data



86 R. WANG, R. ZHAO, E. RIBANDO-GROS, J. CHEN, Y. TONG AND G. W. WEI

Figure 9. The alpha carbon network plots of 15 proteins: PDB IDs
1CCR, 1INKO, 1008, 10PD, 1QTO, 1R7J, 1V70, 1W2L, 1WHI, 2CG7,
2FQ3, 2HQK, 2PKT, 2VIM, and 5CYT from left to right and top to
bottom. The color represents the normalized diagonal element of the
accumulated Laplacian at each alpha carbon atom.

at various topological dimensions. The smallest non-zero eigenvalues are found to
be very sensitive to data abnormality. In the present HERMES, both the alpha
complex and the Vietoris—Rips complex are implemented. Due to the potentially
large number of simplicies, the eigenvalue problem of persistent Laplacian for the
Vietoris—Rips complex becomes memory-intensive for large systems. This difficulty
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Figure 10. Illustration of the harmonic spectra Bs"o (blue curve) and
the smallest non-zero eigenvalue A\;"° (red curve) of PDB ID 5CYT (the
bottom left chart in Fig. 9) at different filtration value o when ¢ = 0, 1, 2.
The ﬂg"o are calculated from Gudhi, DioDe, and HERMES, and )\2"0
are obtained only from HERMES. Here, the z-axis represents the radius
filtration value a (unit: A), the left-y-axis represents the number of zero
eigenvalues of [,g’o, and the right-y-axis represents the first non-zero
eigenvalue of E;"’O. Note that the harmonic spectra from three methods
are indistinguishable.

may be overcome with approximate eigenvalue solvers. We will continue improving
the efficiency of HERMES. HERMES has been extensively validated for its accu-
racy, robustness, and reliability by standard test datasets and a large number of
complex protein structures, including comparison with Gudhi and DioDe.

Appendix A. Supplementary figures. Figure 13 shows the harmonic spectra
(under the construction of Vietoris-Rips complex) 7° (¢ = 0,1,2) of Cgo with
shifting one of its atoms’ position. It can be seen that an abnormality of distance
between atoms are detected when the radius 7 is around 1.38A. Figure 14 - Figure 26
illustrate the harmonic spectra (under the construction of alpha complex) ﬁg"o
(g =0,1,2) of PDB IDs 1CCR, 1INKO, 10PD, 1QTO, 1R7J, 1V70, 1W2L, 1WHI,
2CG7, 2FQ3, 2HQK, 2PKT, and 2VIM at different filtration value « calculated
from Gudhi, DioDe, and HERMES.
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Figure 11. Tllustration of the harmonic spectra 5%, 5°%°, and g5°-°
(green curves from top chart to bottom chart) and the smallest non-
zero eigenvalue A5 A% and A\3%° (yellow curves from top chart
to bottom chart) of PDB ID 5CYT (the bottom left chart in Fig. 9)
at different filtration value « calculated from HERMES. Here, the z-
axis represents the radius filtration value o (unit: A), the left-y-axes
represents the number of zero eigenvalues of £5%°, £3%° and £
from top to bottom, and the right-y-axes represents the first non-zero
eigenvalue of £5°°, £5°%% and £5°° from top to bottom.
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Figure 12. (a) The 3D secondary structure of PDB ID 1008. The
blue, purple, and orange colors represent helix, sheet, and random coils
of PDB ID 1008. The ball represents the alpha carbon of PDB ID
1008. (b) Illustration of the harmonic spectra B5°° (blue curve) and
the smallest non-zero eigenvalue A\3°° (red curve) of PDB ID 1008 at
different filtration value o when ¢ = 0,1,2. The Bg"o are calculated
from Gudhi, DioDe, and HERMES, and )\2"0 are calculated only from
HERMES. Here, the z-axis represents the radius filtration value « (unit:
A), the left-y-axis represents for the number of zero eigenvalue of £5°,
and the right-y-axis represents for the non-zero eigenvalues of 52"0. Note
that the harmonic spectra from three methods are indistinguishable.
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Figure 13. [Illustration of the harmonic spectra 85°, B5°, and B5°
(blue curves from top chart to bottom chart) and the smallest non-zero
eigenvalue A\7°, A7°, and A5® (red curves from top chart to bottom
chart) of Cgo molecule with one atom shifted (the bottom left chart in
Fig. 9) at different filtration value « calculated from HERMES. Here,
the z-axis represents the radius filtration value a (unit: A), the left-y-
axes represents the number of zero eigenvalues of £5°, £7°, and £]°
from top to bottom, and the right-y-axes represents the first non-zero
eigenvalue of £5°, £7° and £5° from top to bottom.
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Figure 14. Illustration of the harmonic spectra 5(‘1’“0 (blue curve) and
the smallest non-zero eigenvalue A\3*° (red curve) of PDB ID 1CCR at
different filtration value o when ¢ = 0,1,2. The ﬂg’o are calculated
from Gudhi, DioDe, and HERMES, and /\q“’o are obtained only from
HERMES. Here, the z-axis represents the radius filtration value o (unit:
A), the left-y-axis represents the number of zero eigenvalues of EZ“O, and
the right-y-axis represents the first non-zero eigenvalue of llf;’o. Note
that the harmonic spectra from three methods are indistinguishable.
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Figure 15. Illustration of the harmonic spectra 85"° (blue curve) and
the smallest non-zero eigenvalue A" (red curve) of PDB ID INKO at
different filtration value o when ¢ = 0,1,2. The Bg’o are calculated
from Gudhi, DioDe, and HERMES, and X;’O are obtained only from
HERMES. Here, the z-axis represents the radius filtration value « (unit:
A), the left-y-axis represents the number of zero eigenvalues of E;"’O, and
the right-y-axis represents the first non-zero eigenvalue of Eg"o. Note
that the harmonic spectra from three methods are indistinguishable.
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Figure 16. Illustration of the harmonic spectra 85"° (blue curve) and
the smallest non-zero eigenvalue AJ*° (red curve) of PDB ID 10PD at
different filtration value o when ¢ = 0,1,2. The Bg"o are calculated
from Gudhi, DioDe, and HERMES, and )\;‘"0 are obtained only from
HERMES. Here, the z-axis represents the radius filtration value o (unit:
A), the left-y-axis represents the number of zero eigenvalues of E;“’O, and
the right-y-axis represents the first non-zero eigenvalue of CZ"O. Note
that the harmonic spectra from three methods are indistinguishable.
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Figure 17. Illustration of the harmonic spectra 85"° (blue curve) and
the smallest non-zero eigenvalue A" (red curve) of PDB ID 1QTO at
different filtration value o when ¢ = 0,1,2. The Bg’o are calculated
from Gudhi, DioDe, and HERMES, and X;’O are obtained only from
HERMES. Here, the z-axis represents the radius filtration value « (unit:
A), the left-y-axis represents the number of zero eigenvalues of E;"’O, and
the right-y-axis represents the first non-zero eigenvalue of Eg"o. Note
that the harmonic spectra from three methods are indistinguishable.
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Figure 18. Illustration of the harmonic spectra 85"° (blue curve) and
the smallest non-zero eigenvalue )\Z“O (red curve) of PDB ID 1R7J at
different filtration value o when ¢ = 0,1,2. The Bg"o are calculated
from Gudhi, DioDe, and HERMES, and )\;‘"0 are obtained only from
HERMES. Here, the z-axis represents the radius filtration value o (unit:
A), the left-y-axis represents the number of zero eigenvalues of E;“’O, and
the right-y-axis represents the first non-zero eigenvalue of CZ"O. Note
that the harmonic spectra from three methods are indistinguishable.
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Figure 19. Illustration of the harmonic spectra 85"° (blue curve) and
the smallest non-zero eigenvalue )\2“0 (red curve) of PDB ID 1V70 at
different filtration value o when ¢ = 0,1,2. The Bg’o are calculated
from Gudhi, DioDe, and HERMES, and X;’O are obtained only from
HERMES. Here, the z-axis represents the radius filtration value « (unit:
A), the left-y-axis represents the number of zero eigenvalues of E;"’O, and
the right-y-axis represents the first non-zero eigenvalue of Eg"o. Note
that the harmonic spectra from three methods are indistinguishable.
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Figure 20. Illustration of the harmonic spectra 85°° (blue curve) and
the smallest non-zero eigenvalue )\f]"’o (red curve) of PDB ID 1W2L at
different filtration value o when ¢ = 0,1,2. The Bg"o are calculated
from Gudhi, DioDe, and HERMES, and )\;‘"0 are obtained only from
HERMES. Here, the z-axis represents the radius filtration value o (unit:
A), the left-y-axis represents the number of zero eigenvalues of E;“’O, and
the right-y-axis represents the first non-zero eigenvalue of CZ"O. Note
that the harmonic spectra from three methods are indistinguishable.
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Figure 21. Illustration of the harmonic spectra 85"° (blue curve) and
the smallest non-zero eigenvalue )\q“’o (red curve) of PDB ID 1WHI at
different filtration value o when ¢ = 0,1,2. The Bg’o are calculated
from Gudhi, DioDe, and HERMES, and X;’O are obtained only from
HERMES. Here, the z-axis represents the radius filtration value « (unit:
A), the left-y-axis represents the number of zero eigenvalues of E;"’O, and
the right-y-axis represents the first non-zero eigenvalue of Eg"o. Note
that the harmonic spectra from three methods are indistinguishable.
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Figure 22. Illustration of the harmonic spectra 85°° (blue curve) and
the smallest non-zero eigenvalue A$"° (red curve) of PDB ID 2CG7 at
different filtration value o when ¢ = 0,1,2. The Bg"o are calculated
from Gudhi, DioDe, and HERMES, and )\;‘"0 are obtained only from
HERMES. Here, the z-axis represents the radius filtration value o (unit:
A), the left-y-axis represents the number of zero eigenvalues of E;“’O, and
the right-y-axis represents the first non-zero eigenvalue of CZ"O. Note
that the harmonic spectra from three methods are indistinguishable.
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Figure 23. Illustration of the harmonic spectra 85"° (blue curve) and
the smallest non-zero eigenvalue A3*° (red curve) of PDB ID 2FQ3 at
different filtration value o when ¢ = 0,1,2. The Bg’o are calculated
from Gudhi, DioDe, and HERMES, and X;’O are obtained only from
HERMES. Here, the z-axis represents the radius filtration value « (unit:
A), the left-y-axis represents the number of zero eigenvalues of E;"’O, and
the right-y-axis represents the first non-zero eigenvalue of Eg"o. Note
that the harmonic spectra from three methods are indistinguishable.
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Figure 24. Illustration of the harmonic spectra 85"° (blue curve) and
the smallest non-zero eigenvalue A\J"° (red curve) of PDB ID 2HQK at
different filtration value o when ¢ = 0,1,2. The Bg"o are calculated
from Gudhi, DioDe, and HERMES, and )\;‘"0 are obtained only from
HERMES. Here, the z-axis represents the radius filtration value o (unit:
A), the left-y-axis represents the number of zero eigenvalues of E;“’O, and
the right-y-axis represents the first non-zero eigenvalue of CZ"O. Note
that the harmonic spectra from three methods are indistinguishable.
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Figure 25. Illustration of the harmonic spectra 85"° (blue curve) and
the smallest non-zero eigenvalue )\Z“O (red curve) of PDB ID 2PKT at
different filtration value o when ¢ = 0,1,2. The Bg’o are calculated
from Gudhi, DioDe, and HERMES, and X;’O are obtained only from
HERMES. Here, the z-axis represents the radius filtration value « (unit:
A), the left-y-axis represents the number of zero eigenvalues of E;"’O, and
the right-y-axis represents the first non-zero eigenvalue of Eg"o. Note
that the harmonic spectra from three methods are indistinguishable.
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Figure 26. Illustration of the harmonic spectra 85"° (blue curve) and
the smallest non-zero eigenvalue /\Z"O (red curve) of PDB ID 2VIM at
different filtration value o when ¢ = 0,1,2. The Bg"o are calculated
from Gudhi, DioDe, and HERMES, and )\;‘"0 are obtained only from
HERMES. Here, the z-axis represents the radius filtration value o (unit:
A), the left-y-axis represents the number of zero eigenvalues of E;“’O, and
the right-y-axis represents the first non-zero eigenvalue of CZ"O. Note
that the harmonic spectra from three methods are indistinguishable.
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