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Topological representations of crystalline compounds for the
machine-learning prediction of materials properties
Yi Jiang1, Dong Chen1,2, Xin Chen1, Tangyi Li1, Guo-Wei Wei 2✉ and Feng Pan 1✉

Accurate theoretical predictions of desired properties of materials play an important role in materials research and development.
Machine learning (ML) can accelerate the materials design by building a model from input data. For complex datasets, such as
those of crystalline compounds, a vital issue is how to construct low-dimensional representations for input crystal structures with
chemical insights. In this work, we introduce an algebraic topology-based method, called atom-specific persistent homology
(ASPH), as a unique representation of crystal structures. The ASPH can capture both pairwise and many-body interactions and
reveal the topology-property relationship of a group of atoms at various scales. Combined with composition-based attributes,
ASPH-based ML model provides a highly accurate prediction of the formation energy calculated by density functional theory (DFT).
After training with more than 30,000 different structure types and compositions, our model achieves a mean absolute error of
61meV/atom in cross-validation, which outperforms previous work such as Voronoi tessellations and Coulomb matrix method
using the same ML algorithm and datasets. Our results indicate that the proposed topology-based method provides a powerful
computational tool for predicting materials properties compared to previous works.
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INTRODUCTION
Advances in materials science are typically slow and arduous1, and
thus is particularly challenging to meet the increased demand for
material characterization2. Because the number of possible
materials is estimated to be as high as a googol (10100)3, there
is an urgent need for innovative methods and techniques in
materials research. To accelerate the development of new
materials, high-throughput computing methods have been
proposed in recent years, especially the density functional theory
(DFT) which can predict the properties of both experimental and
hypothetical inorganic compounds4,5. The combination of both
experiments and computer simulations has proven to be a
powerful approach to reduce the time and cost of materials
design and has been widely used in Li-ion batteries, electro-
catalysis, thermoelectrics, and structural alloys. It has also
promoted the establishment of large and high-quality open
databases such as Materials Project (MP)6, Open Quantum
Materials Database (OQMD)7, the Automatic Flow of Materials
Discovery Library8, and MaterialGo9. While DFT approaches are
powerful, they are inefficient and prohibitively expensive for
heavier elements, strongly correlated electrons, and large
molecules. In addition, all physical methods, including DFT, are
not designed to deal with massive and diverse datasets in
materials sciences.
With the development of large databases and improved

algorithms, machine learning (ML) has emerged as a great
promising approach in the research of inorganic crystal structures
and molecules. It offers a revolutionary tool for rapidly estimating
the results of DFT calculations or experimental data by creating
prediction models from databases. ML algorithms aim to optimize
the generalization performance of models. ML might be generally
split into three main categories: supervised learning, unsupervised
learning, and reinforcement learning. During the process of
supervised learning, systems are exposed to large amounts of

labeled data to find the unknown function that can extrapolate
the result of unlabeled data. In contrast, unsupervised learning
tasks with identifying patterns in data and trying to looks for
unlabeled data that can be grouped by similarities. Reinforcement
learning aims to learn good policies for sequential decision
problems by optimizing a cumulative future reward signal10. ML
has been successfully applied to predict materials properties
including formation energy11–13, bandgap14–19, thermal conduc-
tivity20–22, and elastic modulus23–25. It can be used to create
atomic potential26,27, screen functional materials28–30, and analyze
complex reaction networks31.
Descriptors or features, as a pivotal ingredient of a ML model,

provide a representation of each molecule in a data set32. A poor
representation that is either unable to reduce the complexity of the
data or unable to maintain vital material information will inevitably
lead to large prediction errors. More specifically, descriptors in
materials science should capture the information that could
distinguish between different atomic and crystal environments33.
Several different strategies have already been proposed to extract
the quantitative representations of crystal materials. Potential
energy is predicted by the transformation of pairwise distance
models34, which only work for a fixed number of atoms and are not
unique under the permutation of atoms. Several models rely on
the dataset of compounds with the same stoichiometry or the
same structure11,35,36. However, to fully cover highly diverse
compositions and structures in crystal materials, a rotational,
transnational, and scale-invariant representation is needed to
empower ML models. Faber et al.37 proposed three generalized
Coulomb matrix (CM) approaches. One approach considers full
Coulomb interactions between two atoms in a lattice setting. The
second one models atomic electrostatic interactions in the unit cell
and its nearest neighbor environment. In the last approach, they
replace the Coulomb interaction by a periodicity potential with
respect to the lattice vectors. Their approaches achieved 0.37 eV/
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atom mean absolute error (MAE) in predicting the formation
energies of new structures. Schütt et al.38 constructed a ML model
to predict the density of states at the Fermi energy based on the
crystal representation called partial radial distribution function
which is invariant under translation, rotation, and the choice of the
unit cell. Ward et al.39 applied the standard random forest (RF) to
predict the formation energy based on features derived from
Voronoi tessellations to represent structural properties and atomic
properties. This model achieves an MAE of 80meV/atom in cross-
validation for a dataset of 435,000 formation energies. These
feature engineering-based ML models with structural descriptors
have achieved exceptional accuracy prediction. Xie et al.40

proposed another idea to construct features by crystal graph
convolutional neural network, which is invariant for unit cell
choices and achieves a high prediction accuracy of DFT calcula-
tions on many properties. However, neural networks are well-
known “black box” and involve too many parameters. After
intensive training, the final predictors are hard to interpret
physically. In contrast, topology considers the global connectivity
of various components in a space and studies isolated entities,
rings, and higher dimensional faces within the space41. It turns out
that traditional topology gives rise too much geometric reduction
to provide useful description of crystal structures42. Persistent
homology, however, is able to bridge geometrical shape analysis
and topological characterization by embedding multiscale geo-
metric information into topological invariants43. It generates a
nested family of topological spaces by varying a filtration
parameter, which results in topological invariants of various
dimensions, namely, isolated components, circles, and cavities,
corresponding to Betti-0, Betti-1, and Betti-2, respectively.
Molecule-level persistent homology neglects chemical and biolo-
gical properties, element-specific persistent homology has been
proposed to retain crucial biological information44–46. This method
has been applied to represent organic molecular and biomolecular
properties44–46. The successful application in biomolecules moti-
vates us to utilize persistent homology to represent crystal
compounds for predicting their physical properties.
In this work, we propose a enhanced approach for predicting

properties of crystalline materials using a topological representa-
tion derived from persistent homology. The direct application of
persistent homology without considering atomic diversity and
crystal periodicity is not suitable for crystal property predictions.
Therefore, we introduce atom-specific persistent homology (ASPH)
to extract atom-specific crystal information for representing crystal
structures in ML. ASPH offers a variety of atom-specific topological
fingerprints in the crystal cell and adapts this representation to
periodic systems. In this work, we employ a large dataset from
Inorganic Crystal Structure Database (ICSD)47 and OQMD to
compare our proposed method against existing methods in the
literature (i.e., Voronoi tessellations and CM) via cross-validation.
Combined with composition-based attributes, our method
achieved excellent results with the mean absolute error as low

as 61 meV/atom. Moreover, to understand the limitations of our
topology-based ML method, we analyze the outliers with large
errors in our predictions with respect to DFT calculations. We
explore the types of compounds that are more likely to cause
large deviations in our predictions.

RESULTS AND DISCUSSION
General performance
In Table 1, we compare the performance of the proposed
topology-based method with those of Voronoi tessellations39

and Coulomb Matrix-based method in the literature37 using the
same machine learning algorithm and the same set of hyperpara-
meters. The scatter plots of the predictions and performance for
different prediction methods are shown in Fig. 1. ASPH refers to
the method using topological invariants Betti-0, Betti-1, and Betti-
2. Similarly, Betti-0 ASPH only use Betti-0 for feature generations.
The coefficients of determination (R2), the root mean squared
error (RMSE), and the mean absolute error (MAE) for tenfold cross-
validations repeated 20 times are given for various methods. An
MAE of 61 meV/atom is achieved by ASPH combined with
composition-based features, whose performance is better than
those of Voronoi tessellations and CM modified by sine matrix
approximation. Our mean prediction error is also lower than the
error of DFT approximation to experimentally measured formation
enthalpies. Moreover, we find that the MAE from Betti-0 ASPH is
slightly larger than the one from ASPH. We found that it is
necessary to add topological invariants Betti-1 and Betti-2 to
feature because they can capture the many-body interactions and
reflect the symmetry of crystal structure. To better illustrate our
findings, we consider a highly symmetrical structure NaCl in Fig. 2.
With the radius of filtration increasing, when there is only one
component, which means all atoms in neighbor are in connection,
all 1-simplex in the point cloud directly turn into 3-simplex.
Therefore, there is no Betti-1 in its point cloud. In addition to that,
we find that if using only Betti-0 representations, we can also
achieve good performance. Apart from having a lower MAE, the
model created by our method has a better result on R2 and RMSE
as well. Overall, for our method, predicted values of 28195 (88.3%)
materials are within 25% of the DFT-calculated values, and only 53
(0.17%) predicted values have errors over 1 eV/atom. In contrast,
for Voronoi tessellations and CM-sine, 27,948 and 22,404 predicted
values are within 25% accuracy of computed values while 66 and
315 predicted values have errors over 1 eV/atom, respectively.
Supplementary Fig. S1 shows the learning curves of multiple
model prediction performance with respect to the training size. It
indicates that topological attributes provide important informa-
tion about the crystal materials and improve accuracy compared
with composition-only features. Moreover, our model prediction
accuracy is higher than other methods as the amount of the
training data increases. Because the topological properties provide
unique information when there are multiple structures with
the same composition.

Systematic errors analysis
To evaluate the scalability of our topological based model, we
analyze the absolute prediction error in the tenfold cross-
validations of our method for each compound in the dataset.
We select the 638 compounds with the highest 2% prediction
error values (i.e., above 0.336 eV/atom) to understand the set of
compounds that are difficult to be accurately predicted. From
Fig. 3a, it is clear that many of these compounds have positive
formation enthalpies, suggesting they are thermally unstable.
Therefore, the unstable compounds are most likely outliers and
their experimental values are subject to large errors. It is likely true
that the original DFT calculations were also unreliable for these
compound.

Table 1. The overall performance of formation enthalpy predictor
with different feature extraction method on cross-validation (CV) tasks.

Methoda R2 RMSE (eV/atom) MAE (eV/atom)

ASPH+ Compb 0.986 (0.000) 0.119 (0.000) 0.061 (0.000)

VT 0.983 (0.000) 0.129 (0.000) 0.067 (0.000)

ASPH 0.970 (0.000) 0.174 (0.000) 0.103 (0.000)

Betti-0ASPH 0.969 (0.000) 0.177 (0.000) 0.108 (0.000)

CM-sine 0.930 (0.000) 0.169 (0.000) 0.267 (0.000)

aThe average performance is reported and standard deviations are given in
square brackets.
bComp refers to composition-based attributes.

Y. Jiang et al.

2

npj Computational Materials (2021)    28 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;



We also found that compounds that contain elements that
occur less frequently in our dataset are more likely to appear in
the set with higher prediction errors. Figure 3b shows the
comparison of the probability of finding a given compound with
a specific element in dataset [P(Dataset)] and the ratio between
the probability of finding that element in the set of 2% highest
prediction errors [P(Worst)] and the probability of finding the

same element in our entire dataset. The least frequently
occurring elements in our dataset such as Pu, Re, Ta, and Eu,
have a higher probability to appear in the set with top 2%
highest prediction errors. From the above results, it is clear that
our model is less predictive for molecules having rarely
occurring elements in the database. This is true for ML-based
methods in general.

Fig. 1 Comparison of DFT-calculated formation enthalpy and predicted formation enthalpy (eV/atom) for different methods. a ASPH +
Comp, b Voronoi tessellations, c ASPH, d Betti-0 ASPH, and e CM-sine. The top and right subfigure is the distribution of calculated data from
ICSD and predicted data, respectively. f R2 results for different models. All prediction data are the average performance obtained from tenfold
cross-validations with 20 repetitions.
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There are three elements, N, C, and F, that occur frequently in
the entire dataset but are some of the worst predicted
compounds. In 638 compounds with high prediction errors, there
are 217 compounds that contain N, C or F. We found that these
elements occur in association with other rarely-occurring ele-
ments, such as IrN, TlF3, IrC4, which makes their accurate
predictions very difficult. Therefore, the [P(Worst)] of these three
elements will also be relatively high. Additionally, a few
compounds with element F have positive formation enthalpies
(3/1730) while other compounds contain element F have negative
formation enthalpies. Therefore, the predicted formation enthal-
pies of these three outlier compounds with element F are negative
and their absolute prediction errors are larger than 1 eV/atom.
AlPO4 (ICSD #162670) structure shown in Supplementary Fig.

S2 exhibits the worst prediction accuracy with an absolute
prediction error (APE) of 2.73 eV/atom. Compared with other
stereoisomerisms in our dataset, we find that most of DFT-
calculated formation enthalpy values are <−2.90 eV/atom while
there are two outliers with ΔHf=−0.24 eV/atom, −0.61 eV/atom
and APE = 2.73 eV/atom, 2.16 eV/atom, respectively. An illustra-
tion of DFT-calculated enthalpy values and the APE of AlPO4 is
shown in Supplementary Fig. S3. For similar reasons, BaTiO3

(ICSD #109327), BN (ICSD #27986), CaO (ICSD #261847), VS2 (ICSD
#68713), etc. also have high errors. From our analysis of their

failures, we conclude that our model does not give accurate
predictions of formation enthalpy values for stereoisomerisms
having a diverse formation enthalpy distribution. A possible
reason is that the procedure of processing topological informa-
tion is oversimplified so that ML algorithm does not do a good
job in differentiating stereoisomerisms.
Contrary to geometry that widely used in crystal structure

descriptors, topology is rarely implemented in quantitative
analysis of materials science. In this work, we propose atom-
specific persistent homology (ASPH) and apply it to material
science analysis via machine learning (ML) models. Unlike high-
level abstraction of conventional topology, the proposed ASPH
embeds multiscale geometric information into topological invar-
iants with chemical insights. It can effectively extract unique
features such as independent components, loops, and cavities.
More specifically, independent components are associated bond
lengths of pairwise interactions, while loops and cavities capture
many-body interactions.
Furthermore, our ASPH can deal with crystalline compounds

which have structural periodicity and elemental diversity. Exten-
sive experiment shows that our model provides a reliable
estimation of DFT calculations using around 30,000 training data
with diverse structural types and compositions. Moreover, it offers
a more accurate prediction in cross-validations than previous

Fig. 2 Illustration of persistence barcodes of NaCl crystal specific central-atom persistent homology. The central atom is Na with the
surrounding atom is Cl (a) and is Na (b), respectively. Charts from top to bottom are Betti-0, Betti-1, and Betti-2 barcodes, respectively. The
point cloud of each barcode is displayed.

Fig. 3 Analysis of ML model prediction error. a An illustration of the DFT-calculated formation enthalpies of various compounds and their
absolute prediction errors in 10-fold cross-validations. The red dashed line refers to the error value to which 98% of absolute prediction errors
are smaller or equal. The yellow dots indicate that the ML predicted values are less than those of the DFT while the blue dots are the opposite.
b An illustration of the occurrence probabilities of various elements in the whole dataset P(Dataset) vs. the ratios of their occurrence
probabilities in the set of 2% highest prediction errors [P(Worst)] over P(Dataset).
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methods do37,39. Its applicability extends to all space groups and a
great majority of elements. Finally, the success of this method
enables us to discover new materials with desirable properties
significantly faster and cheaper.

METHODS
Simplex and simplicial complex
Topological data analysis uses a simplices and simplicial complexes for the
description of complex shapes, which are mathematically and computa-
tionally easier to process than their original counterparts. A set of k+ 1
affinely independent points in Rk is a k-simplex denoted by σk which can
be represented by v0; v1; � � � ; vkf g and each vi is called a vertex of the
simplex. Specifically, a 0-simplex is a vertex, a 1-simplex is a line segment, a
2-simplex is a triangle and a 3-simplex is a tetrahedron, as shown in Fig. 4.
A subset of the k+ 1 vertices of a k-simplex with m+ 1 vertices forms a
convex hull in a lower dimension and is called an m-face of the k-simplex.
Anm-face is proper ifm < k. A simplicial complex is a set of simplices which
are convex hulls of affinely independent points. More specifically, a
simplicial complex is a finite collection of simplices X ¼ fσigi satisfying
that the intersection of any two simplices in X is either empty set or a
common face of the two and all the faces of a simplex in X is also in X. The
collection of all k-simplices in X is denoted Xk. The dimension of a simplicial
complex is the highest dimension of its simplices.

Homology
For a simplicial complex K, a k-chain ck of K is the sum of the form of
k-simplices in K, and k is not greater than dimension of K, and is defined as
ck= ∑αiσi where σi is the k-simplices and αi is coefficients. Generally, αi can
be set as elements of a field such as R, Q, or Zn . For simplicity, it is
commonly chosen to be Z2. The group of k-chains in K, denoted Ck, with
operation of modulo 2 addition can form an Abelian group ðCk ;Z2Þ. So we
can extend the definition of the boundary operator to chains, showed
in Eq. (1).

The boundary operator applied to a k-chain ck is defined as

∂kσk ¼
X

αi∂kσi ; (1)

where σi’s are k-simplices. The boundary operator is a map from Ck to Ck−1,
which is also named boundary map for chains. Note that operator ∂k
satisfies the property that ∂k∂kþ1 ¼ + for any (k+ 1)-simplex σ following
the fact that any (k− 1)-face of σ is contained in exactly two k-faces of σ.
The chain complex is defined as a sequence of chains connected by
boundary maps with decreasing dimensions and is represented as

� � �! CnðKÞ !∂n Cn�1ðKÞ !∂n�1 � � �!∂1 C0ðKÞ!∂0 0: (2)

In other words, through the application of two boundary operations, the
k-chain is mapped to an empty set ∂k∂kþ1 ¼ +, we can define k-cycle
group and k-boundary group which are the subgroups of Ck as kernel and
image of ∂k and ∂k+ 1, respectively,

Zk ¼ Ker ∂k ¼ c 2 Ck jc ¼ +f g; (3)

and

Bk ¼ Im ∂kþ1 ¼ c 2 Ck j9d 2 Ckþ1 : c ¼ ∂kþ1df g: (4)

where Zk is the k-cycle group and Bk is the k-boundary group. With the
aforementioned definitions, the k-homology group is defined to be the
quotient group of the k-cycle group modulo the k-boundary group,

Hk ¼ Zk=Bk : (5)

where Zk is the k-homology group. The kth Betti number is defined to be
rank of the k-homology group as βk= rank(Hk).

Filtration and persistent homology
Original homology is oversimplified for geometric analysis. Persistent
homology introduces the nested sequence of subcomplexes to describe
inclusive topological space which depends on a filtration parameter.
Specifically, the filtration process of a simplicial complex K as a nested

Fig. 4 Basic simplexes and simplicial complex construction in a given radius of filtration. a From top to bottom an example of a 0-simplex,
1-simplex, 2-simplex, and 3-simplex. b The construction of simplicial complex. There are one 0-simplex, six 1-simplexes, two 2-simplexes and
one 3-simplex.
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sequence of subcomplexes of K,

+ � K0 � K1 � � � � Kn ¼ K: (6)

Subcomplexes corresponding to various filtration parameters offer the
topological fingerprints of multiple scales. The kth persistent Betti numbers
βi;jk are ranks of kth homology groups of Ki that are alive and are defined as

βi;jk ¼ rankðHi;j
k Þ ¼ rank ZkðKiÞ= BkðKjÞ

\
ZkðKiÞ

� �� �
: (7)

These persistent Betti numbers are used as topological fingerprints in
machine learning studies of materials. There are different types of
simplicial complex constructions used in persistent homology. The
Vietoris–Rips (VR) complex used in this work is formed by all points in it
has pairwise distances no greater than a cutoff distance d in a given metric
space. The abstract property of the VR complex enables the construction of
simplicial complexes for correlation function-based metric spaces, which
models pairwise interaction of atoms with correlation functions instead of
spatial metrics.

Atom-specific persistent homology
Persistent homology only offers the global structural information which
cannot represent crystal structures with a wide range of chemical
compositions and structural complexity. We introduce atom-specific
persistent homology to embed atom-wise chemical information into
topological invariants. The essential idea is that, in a unit cell, there are only
a few atoms and each atom has its unique structural environment, which
defines its own topological fingerprints.
Taking the classic NaCl crystal as an example, one can choose either the

Na atom or the Cl atom as the atom of interest to generate atom-specific
topological fingerprints. For each choice, there are two types of
environments, namely Cl atoms or Na atoms. As a result, we have four
possible combinations, namely Na-Na, Na-Cl, Cl-Na, and Cl-Cl. Their atom-
specific point clouds are shown in Fig. 5.
In general, to capture element-level interactions, we consider the

combination of all element pairs P for the substance composition. Given a
specific composition, persistence barcodes are calculated as follows. The
element-specific pair Pβα;i represents a collection of pairs of atoms around
the ith central atom of element type α and surrounding atoms of element
type β, where α and β may be the same. First, expanding the unit cell so
that the distance between the boundary atoms and any atoms in the

original unit cell is smaller than the pre-defined cutoff radius rc. Then, for
the ith atom of interest in the unit cell, a point cloud consisting of all atoms
within a cutoff radius rc is selected

Rα;βi ðrcÞ ¼ frβj j k rαi � rβj k < rc; r
β
j ; r

α
i 2 Pβα;i ; 8j 2 1; 2; � � � ;Ng; (8)

where N is the number of atoms in pair Pβα;i . Given a point cloud, simplicial
complex, homology group, and persistence barcode are computed via
persistent homology. We compute the persistence barcodes by using
software package Ripser48. The persistence barcode pair of central atom Na
point cloud (Fig. 5b, c) is illustrated in Fig. 2. In the Betti-0 section of Na-Cl
barcode, the six bars ended at 2.84Å indicate that there are six nearest
neighbor atoms Cl around central atom Na. The other bars ended at 4Å
show that the distance between any other two nearest neighbor atoms is
4Å. There is no Betti-1 in this case because the distances between any two
components are the same, which reflects the high-level symmetry of the
structure.

Topological representations
The topological representations used in the machine-learning algorithms
are extracted from persistence barcodes computed by atom-specific
persistent homology. The cutoff radius rc used to generate the barcodes in
this paper is 12Å. We describe the procedure for generating topological
representations for crystalline compounds. The first step is to generate a
collection of atom-specific barcodes denoted by fBðPβα;i ;DÞg, where Pβα;i
was defined above, i goes through all atoms in the unit cell, α and β run
over all possible element types, and D denotes topological dimensions,
such as Betti-0, Betti-1, and Betti-2. Taking BaTiO3 as an example, we will
have Betti-0, Betti-1, and Betti-2 barcodes for each of five atoms in the unit
cell. The second step is to generate a collection of element-specific
barcodes denoted by fBðPβα;DÞg. This is done by combining together
atom-specific barcodes according to their element types. Using BaTiO3 as
an example, we will have Betti-0, Betti-1, and Betti-2 barcodes for each of
three element types. The third step is to characterize barcodes. In general,
for any bar in one barcode, it is important to keep track of its birth, the
death, and the persistent length, because this information is related to the
bond length, ring, or cavity size. However, for Betti-0 bars, since their birth
positions are uniformly 0, only the length of the bar needs to be recorded.
The last step is to obtain statistics for each element type of barcodes.
Therefore, for the element-specific barcodes of Betti-0 in BðPβα;DÞ, five
statistical quantities are calculated as the minimum, maximum, average,

Fig. 5 Illustration of atom-specific persistent homology point clouds. a the original crystal structure of NaCl with red atom being Cl and
yellow atom being Na. Four atom-specific point clouds are established by Na-Cl (b), Na-Na (c), Cl-Cl (d), and Cl-Na (e), respectively.

Y. Jiang et al.

6

npj Computational Materials (2021)    28 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



standard error, and the sum of the bar length. Moreover, for element-
specific barcodes of Betti-1 or Betti-2, we generate five statistical
quantities, i.e., the minimum, maximum, average, standard deviation,
and the sum for each of the birth, death, and persistent length. Therefore,
we have a total of 35 element-specific topological representations for each
element type. Additionally, we combine all atom-specific barcodes in the
unit cell, which leads to another 35 statistical representations. For BaTiO3,
we (3+ 1) × 35 (140) non-zero representations for BaTiO3. Since there are
80 possible element types in the entire dataset, our total number of
features is 2835 (i.e., 35 × 81). We set all representations to 0 for element
types that do not exist in the molecule of interest. The overall process of
element-specific representation generation is shown in Fig. 6. Basically,
ASPH are translational, and rotational invariant by design and is able to
reflect smooth changes due to perturbations in atomic positions (see
Supplementary Figs. S3 and S4).
In addition to topological information described by ASPH, composition-

based features are used in our method. These attributes are described in
work by Ward et al.49. It contains the stoichiometric attributes for the
fractions of element, elemental-property attributes based on statistics of
the elemental properties of all atoms in the crystal, electronic structure
attributes which are the average fraction of electrons from the s, p, d and f
valence shells between all present elements50, and ionic compound
attributes consist of differences in electronegativities between constituent
elements and whether it is possible to form an ionic compound if all
elements in common oxidation states.

Machine learning algorithm, dataset, and validation
The ASPH and composition features are used as machine learning features
to predict inorganic periodic solids formation enthalpies. For ML algorithm
selection, we choose to use gradient boosted regression trees (GBRT)51 to
test the accuracy, robustness, and efficiency of topological based features.
GBRT is able to combine a number of weak predictors to create a strong
model. The training of a GBRT model is done by adding one tree at a time
to reduce the lose function of the current model. In practice, different
randomly selected subsets of the training data and features are used for
each update of the model to reduce overfitting. Hyper-parameter
searching is done by the cross-validation judged by R2. The hyper-
parameters used in GBRT are: n_estimators= 300,000, learning_rate =
0.001, max_depth = 7, min_samples_split = 5, subsample = 0.85 and
max_features = sqrt. The ML models are built using scikit-learn software
(version 0.19.2)52. Our dataset includes 31912 compounds which primitive
cell size smaller than 40 atoms, covering the seven lattice systems and 80
elements (H-Pu, excluding noble gases, Tc, Pa, Pm, Po, At, Rn, Fr, Ra, and
Ac). Tenfold cross-validation of the data sets is used to verify the proposed
method. To address the robustness of the machine learning model, the
random splitting of data in tenfold cross-validation is repeated 20 times.
The median performance and the standard deviation of the performance
across repeated experiments are reported. The replication of Voronoi
tessellations and Coulomb Matrix are using Magpie, which is freely
available under an open-source license49.

DATA AVAILABILITY
The experimental data in this work is in the same Github repository as the code. The
structure data is obtained from ICSD47, and the DFT-calculated property data is from
OQMD7.

CODE AVAILABILITY
The code used to generate results in the manuscript is available under the Github
repo: https://github.com/PKUsamPHTeam/ASPH-Code.

Received: 22 June 2020; Accepted: 6 January 2021;

REFERENCES
1. Curtarolo, S. et al. The high-throughput highway to computational materials

design. Nat. Mater. 12, 191–201 (2013).
2. Isayev, O. et al. Universal fragment descriptors for predicting properties of inor-

ganic crystals. Nat. Commun. 8, 1–12 (2017).
3. Walsh, A. The quest for new functionality. Nat. Chem. 7, 274–275 (2015).
4. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. Mater. 136,

B864 (1964).
5. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and corre-

lation effects. Phys. Rev. 140, A1133 (1965).
6. Jain, A. et al. Commentary: the materials project: a materials genome approach to

accelerating materials innovation. Appl Mater. 1, 011002 (2013).
7. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and

discovery with high-throughput density functional theory: the open quantum
materials database (oqmd). JOM 65, 1501–1509 (2013).

8. Curtarolo, S. et al. Aflowlib. org: a distributed materials properties repository from
high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012).

9. Jie, J. et al. A new materialgo database and its comparison with other high-
throughput electronic structure databases for their predicted energy band gaps.
Sci. Chin. Technol. Sci. 62, 1423–1430 (2019).

10. Sutton, R. S. et al. Introduction to reinforcement learning, 135 (MIT press Cam-
bridge, 1998).

11. Faber, F. A., Lindmaa, A., Von Lilienfeld, O. A. & Armiento, R. Machine learning
energies of 2 million elpasolite (ABC2D6) crystals. Phys. Rev. Lett. 117, 135502
(2016).

12. Schmidt, J. et al. Predicting the thermodynamic stability of solids combining
density functional theory and machine learning. Chem. Mater. 29, 5090–5103
(2017).

13. Kim, K. et al. Machine-learning-accelerated high-throughput materials screening:
discovery of novel quaternary heusler compounds. Phys. Rev. Mater. 2, 123801
(2018).

14. Zhuo, Y., Mansouri Tehrani, A. & Brgoch, J. Predicting the band gaps of inorganic
solids by machine learning. J. Phys. Chem. Lett. 9, 1668–1673 (2018).

15. Lee, J., Seko, A., Shitara, K., Nakayama, K. & Tanaka, I. Prediction model of band
gap for inorganic compounds by combination of density functional theory cal-
culations and machine learning techniques. Phys. Rev. B 93, 115104 (2016).

16. Rajan, A. C. et al. Machine-learning-assisted accurate band gap predictions of
functionalized mxene. Chem. Mater. 30, 4031–4038 (2018).

Fig. 6 The construction process of BaTiO3 topological feature. First, compute all barcodes of the combinations formed by each atom in the
unit cell as a central atom and surrounded by various element types. The ASPH features are then generated from the statistics data of these
barcodes. Since the unit cell of BaTiO3 having three O atoms, the barcode data of this type in the figure is multiplied by three.

Y. Jiang et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2021)    28 

https://github.com/PKUsamPHTeam/ASPH-Code


17. Chen, C., Ye, W., Zuo, Y., Zheng, C. & Ong, S. P. Graph networks as a universal
machine learning framework for molecules and crystals. Chem. Mater. 31,
3564–3572 (2019).

18. Lu, S. et al. Accelerated discovery of stable lead-free hybrid organic-inorganic
perovskites via machine learning. Nat. Commun. 9, 1–8 (2018).

19. Jie, J. et al. Discovering unusual structures from exception using big data and
machine learning techniques. Sci. Bull. 64, 612–616 (2019).

20. Seko, A. et al. Prediction of low-thermal-conductivity compounds with first-
principles anharmonic lattice-dynamics calculations and bayesian optimization.
Phys. Rev. Lett. 115, 205901 (2015).

21. Seko, A., Hayashi, H., Nakayama, K., Takahashi, A. & Tanaka, I. Representation of
compounds for machine-learning prediction of physical properties. Phys. Rev. B
95, 144110 (2017).

22. Sosso, G. C., Deringer, V. L., Elliott, S. R. & Csányi, G. Understanding the thermal
properties of amorphous solids using machine-learning-based interatomic
potentials. Mol. Simul. 44, 866–880 (2018).

23. Furmanchuk, A., Agrawal, A. & Choudhary, A. Predictive analytics for crystalline
materials: bulk modulus. RSC Adv. 6, 95246–95251 (2016).

24. Evans, J. D. & Coudert, F.-X. Predicting the mechanical properties of zeolite fra-
meworks by machine learning. Chem. Mater. 29, 7833–7839 (2017).

25. Lu, Y., Chen, X., Zhao, C.-Z. & Zhang, Q. Machine learning towards screening solid-
state lithium ion conductors. Chin. J. Struct. Chem. 1, 2 (2020).

26. Takahashi, A., Seko, A. & Tanaka, I. Conceptual and practical bases for the high
accuracy of machine learning interatomic potentials: application to elemental
titanium. Phys. Rev. Mater. 1, 063801 (2017).

27. Hu, Q. et al. Neural network force fields for metal growth based on energy
decompositions. J. Phys. Chem. Lett 11, 1364–1369 (2020).

28. Butler, K. T., Frost, J. M., Skelton, J. M., Svane, K. L. & Walsh, A. Computational
materials design of crystalline solids. Chem. Soc. Rev. 45, 6138–6146 (2016).

29. Shi, S. et al. Multi-scale computation methods: their applications in lithium-ion
battery research and development. Chin. Phys. B 25, 018212 (2015).

30. Weng, M. et al. Identify crystal structures by a new paradigm based on graph
theory for building materials big data. Sci. Chin. Chem. 62, 982–986 (2019).

31. Ulissi, Z. W., Medford, A. J., Bligaard, T. & Nørskov, J. K. To address surface reaction
network complexity using scaling relations machine learning and dft calculations.
Nat. Commun. 8, 1–7 (2017).

32. Nguyen, D. D., Cang, Z. & Wei, G.-W. A review of mathematical representations of
biomolecular data. Phys. Chem. Chem. Phys. 22, 4343–4367 (2020).

33. Ghiringhelli, L. M., Vybiral, J., Levchenko, S. V., Draxl, C. & Scheffler, M. Big data of
materials science: critical role of the descriptor. Phys. Rev. Lett. 114, 105503
(2015).

34. Braams, B. J. & Bowman, J. M. Permutationally invariant potential energy surfaces
in high dimensionality. Int. Rev. Phys. Chem. 28, 577–606 (2009).

35. Oliynyk, A. O. et al. High-throughput machine-learning-driven synthesis of full-
heusler compounds. Chem. Mater. 28, 7324–7331 (2016).

36. Pilania, G. et al. Machine learning bandgaps of double perovskites. Sci. Rep. 6,
19375 (2016).

37. Faber, F., Lindmaa, A., von Lilienfeld, O. A. & Armiento, R. Crystal structure
representations for machine learning models of formation energies. Int. J.
Quantum Chem. 115, 1094–1101 (2015).

38. Schütt, K. T. et al. How to represent crystal structures for machine learning:
towards fast prediction of electronic properties. Phys. Rev. B 89, 205118 (2014).

39. Ward, L. et al. Including crystal structure attributes in machine learning models of
formation energies via voronoi tessellations. Phys. Rev. B 96, 024104 (2017).

40. Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an
accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120,
145301 (2018).

41. Kaczynski, T., Mischaikow, K. & Mrozek, M. Computational homology, vol. 157
(Springer Science & Business Media, 2006).

42. Wu, K., Zhao, Z., Wang, R. & Wei, G.-W. Topp–s: Persistent homology-based multi-
task deep neural networks for simultaneous predictions of partition coefficient
and aqueous solubility. J. Comput. Chem. 39, 1444–1454 (2018).

43. Zomorodian, A. & Carlsson, G. Computing persistent homology. Discrete Comput.
Geomet 33, 249–274 (2005).

44. Cang, Z. & Wei, G.-W. Integration of element specific persistent homology and
machine learning for protein-ligand binding affinity prediction. Int. J. Numer.
Method. Biomed. Eng. 34, e2914 (2018).

45. Cang, Z. & Wei, G.-W. Analysis and prediction of protein folding energy changes
upon mutation by element specific persistent homology. Bioinformatics 33,
3549–3557 (2017).

46. Cang, Z. & Wei, G.-W. Topologynet: topology based deep convolutional and
multi-task neural networks for biomolecular property predictions. PLoS Comput.
Biol. 13, e1005690 (2017).

47. Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. New developments in the
inorganic crystal structure database (icsd): accessibility in support of materials
research and design. Acta Crystallogr Section B: Struct Sci 58, 364–369 (2002).

48. Tralie, C., Saul, N. & Bar-On, R. Ripser. py: a lean persistent homology library for
python. J. Open Source Softw. 3, 925 (2018).

49. Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-purpose machine
learning framework for predicting properties of inorganic materials. npj Com-
putat. Mater. 2, 16028 (2016).

50. Meredig, B. et al. Combinatorial screening for new materials in unconstrained
composition space with machine learning. Phys. Rev. B 89, 094104 (2014).

51. Friedman, J. H. Greedy function approximation: a gradient boosting machine.
Ann. Stat. 29, 1189–1232 (2001).

52. Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res.
12, 2825–2830 (2011).

ACKNOWLEDGEMENTS
The research was financially supported by Soft Science Research Project of
Guangdong Province (2017B030301013), National Key R&D Program of China
(2016YFB0700600), and Shenzhen Science and Technology Research Grant
(ZDSYS201707281026184). The work of Guo-Wei Wei was supported in partial by
NSF Grants DMS1721024, DMS1761320, IIS1900473, NIH grants GM126189 and
GM129004, Bristol-Myers Squibb, and Pfizer.

AUTHOR CONTRIBUTIONS
Y.J. designed the project and carried out the experiment. Y.J., D.C., X.C., T.L., G.-W.W.,
and F.P. discussed the results, analyzed the data, and drafted the manuscript. G.-W.W.
and F.P. conceptualized the project and obtained funding.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41524-021-00493-w.

Correspondence and requests for materials should be addressed to G.-W.W. or F.P.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

Y. Jiang et al.

8

npj Computational Materials (2021)    28 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.1038/s41524-021-00493-w
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Topological representations of crystalline compounds for the machine-learning prediction of materials properties
	Introduction
	Results and discussion
	General performance
	Systematic errors analysis

	Methods
	Simplex and simplicial complex
	Homology
	Filtration and persistent homology
	Atom-specific persistent homology
	Topological representations
	Machine learning algorithm, dataset, and validation

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




