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Abstract—The imbalance of a binary word refers to the absolute dif-
ference between the number of ones and zeros in the word. Motivated
by applications in DNA-based data storage and the success of polar
codes, we study the problem of reducing imbalance in the codewords
of a polar code. To this end, we adapt the technique of Mazumdar,
Roth, and Vontobel by considering balancing sets that correspond to
low-order Reed-Muller (RM) codes. Such balancing sets are likely to
be included as subcodes in polar codes.

Specifically, using the first-order RM code, we show that any mes-
sage can be encoded into a length-n polar codeword with imbalance
at most o(n) in O(n log n)-time. We then reduce the imbalance even
further using two methods. First, we constrain the ambient space X
and analyze the imbalance that the first-order RM code can achieve
for words in X. We demonstrate that for codelengths up to 128, the
first-order RM code achieves zero imbalance for appropriate choices
of X that sacrifice only a few message bits. Second, we augment the
balancing set by considering higher order RM codes. We give a simp-
le recursive upper bound for the guaranteed imbalance of RM codes.
We also prove that the second-order RM code RM(2, m) balances all
even-weight words for m < 5, while the RM code of order m — 3
balances all even-weight words for m > 5.

I. INTRODUCTION

The imbalance of a binary word x refers to the absolute
difference between the number of ones and the number of zeros
in x. A word is balanced if its imbalance is at most one and a
code is balanced if all its codewords are balanced. Due to their
applications in various recording systems, balanced codes have
been extensively studied (see [1] for a survey).

Coupled with recent progress in the biotechnology industry,
DNA macromolecules are emerging as a next-generation data
storage medium with its unprecedented density, durability and
replication efficiency [2]. This has rekindled interest in balanced
codes. Specifically, a DNA string comprises four bases or letters:
A, C, T and G, and a string is GC-rich (or GC-poor) if a high (or
low) proportion of the bases corresponds to either G or C. Since
GC-rich or GC-poor DNA strings are prone to both synthesis and
sequencing errors [3], [4], we aim to reduce the difference with
the number of G and C and the number of A and T on every
DNA codeword. This requirement is equivalent to reducing the
imbalance of a related binary word.

To further reduce errors, we equip our balanced codes with
error-correcting capabilities and previous constructions of bal-
anced error-correcting codes can be found in [5]-[10]. We
highlight a few techniques that transform known linear error-
correcting codes into balanced ones. In [8], Weber er al. take
two input codes of distance d: a linear code and a short balanced
codebook, and constructs a long balanced code of distance d.
Later, Chee et al. [9] remove the need of a short codebook and
construct balanced error-correcting codes from cyclic codes.

Of significance to our work is the technique of Mazumdar et
al. [7]. At a high level, Mazumdar et al. consider a linear code C
of length n and write it as a direct sum of two linear subspaces
C’ and B, in other words, C = C’ @ B. Here, B is chosen so that
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coding scheme, the codewords are of the form x + b, where x
belongs to C’ and b is its corresponding balancing word. In the
same paper, the authors demonstrated that a random subcode B
of dimension (3/2)logn + o(logn) is a balancing set with high
probability. However, verifying that B is indeed a balancing set
remains computationally difficult.

In this paper, we apply the technique of Mazumdar et al. [7] to
a beautiful and important class of codes, the polar codes. Invented
by Arikan [11], polar codes achieve capacity for many channels
with low encoding and decoding complexities. Recently, they
are being adopted in 5G standard [12] and have been adapted
for insertion and deletion channels [13], [14]. Given this appeal,
we study efficient means of transforming messages into balanced
polar codewords while retaining the low complexities of the polar
encoding and decoding algorithms.

We remark that techniques to adapt polar codes for processes
with memory or constrained systems were studied by Sasoglu [15]
and Shuval and Tal [16]. However, it is unclear whether the
framework in these works can be used efficiently here.

II. PRELIMINARIES

Let x be a binary word of length n. We use wt(x) and p(x) to
denote its weight and imbalance, respectively. We have that

p(x) = [2wt(x) — nl. (1)

We also regard x as a vector in . For a subset X C F3, we
use span(X) to denote the linear span of vectors in X. Given two
vectors x and y, we let wt(x N y) denote the number of indices
where both x and y are one, and we have the observation:

wt(x +y) = wt(x) + wt(y) — 2wt(x N y). (2)

We use (x,y) to denote the dot product of x and y over Fy
and we have that wt(x Ny) = (x,y) (mod 2).

A. Polar Codes

The polarization kernel matrix Gy is given by [1 {]. For m > 2,
set n = 2™ Then the polar transformation matrix G,, is an nxn
matrix, recursively defined by

Gp— 0
G2 | :
|:Gm—1 Gm—1:|

We index the rows of G,, with words in Z = FZ* and list
them in bit-reversal order. To define a polar code, we pick a set
F C Z of frozen indices and a frozen syndrome f € IF';'. Then
the polar code defined by F and f is the linear code C(F,f) £
{xG,, : x|5 = f}. The index set J £ 2 \ F corresponds to the
information indices and k = |J| measures the bits of information
that the polar code C(&,f) can transmit.

Specifically, given a message m € F5, we can efficiently
encode m to a polar codeword ¢ £ enc(m) in O(nlogn) time.
On the other hand, suppose that the noisy word ¢ is received.
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O(nlogn) time and recover the message m with hig% probability.
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Now, the choice of J is channel dependent and typically, the
frozen syndrome f is chosen to be the all zero word. When
f = 0, the polar code C(J,0) is simply the linear span of the
rows with indices in J. In this case, we simply write this linear
span as span(J). For certain choices of frozen indices, the polar
code C(F,0) corresponds to the ubiquitous class of Reed-Muller
(RM) codes [17, Ch. 13]. Specifically, if J, is the set of indices
whose weight are at most 7, then C(&,,0) defines the class of
Reed-Muller code of order m — r — 1, or RM(m — r — 1,m)
in short. Equivalently, if J,,_, denote the set of indices whose
weight is at least m — r, we have that span(J,,—,) = RM(r, m).
RM codes have been studied extensively and recently, Abbe and
Ye demonstrated that the RM codes share similar polarization
behaviour as polar codes [18].

In the next subsection, we pick a subset B from the information
set J for the purposes of reducing the imbalance of codewords.
Specifically, we reduce the number of information bits to k' =
n — |F| — |B] so that a k’-bit message m’ is encoded to a polar
codeword ¢ with small imbalance p(c).

B. Linear Balancing Sets

We discuss the technique ala Mazumdar et al. [7] in the context
of polar codes. As before, we fix a set of frozen indices J and a
frozen syndrome f. Let k = n — |F| and we have the polar code
C(F,f) with a corresponding pair of encoding enc : F§ — F%
and decoding dec : F§ — F% algorithms.

We pick a set of balancing indices B so that FNB = & and
let B be the linear span of the rows corresponding to B. We then
set k' 2 k — |B| and in this balancing encoding scheme, we
transmit k’-bit messages (instead of k-bit). Consider m' € F’gl.
We first insert |B| = k—k’ zeros to m’ at positions corresponding
to B and compute the corresponding encoding ¢’. Next, we find
a balancing vector b € B so that the corresponding imbalance
w(c’ +b) is minimized. Then we transmit the word ¢ = ¢’ + b.

To decode a noisy word ¢, we simply apply the polar-decoding
algorithm and find the k-bit vector m = dec(c). The desired
message m’ is then the &'-prefix of m. So, if m is successfully
decoded under the original polar coding scheme, we also suc-
cessfully recover our message m’'. Therefore, in this encoding
/ decoding scheme, provided that we can find b efficiently, we
retain the low encoding and decoding complexities and more
importantly, the performance guarantees of polar codes.

It remains to understand how small the imbalance u(c¢’ +b) is.
To do so, we define the guaranteed imbalance as the quantity

A . /
w(X,B) = max (Il}gé}u(c + b)) :
where X is some subset F5. When X = 5, we simply write
wu(B), instead of u(F3,B).

In this paper, we are interested in imbalance guarantees, or
equivalently, determining upper bounds for u(X,B) for various
choices of X and B. Before stating our results, we discuss
differences with the original scheme of Mazumdar et al. [7].

(a) B need not be a balancing set in strictest sense. As mentioned
in the introduction, to reduce errors in DNA data storage, it
suffices to have DNA strings with small GC-imbalance. Therefore,
instead of requiring ©(B) = 0, we focus on finding a set B so
that ;(B) = o(n). We loosely refer to B as a balancing set.

(b) X need not be the whole space F4. In the balancing encodin
scheme, we are only required to reduce the imbalance of the

m n|log|Xi| p(X1,Bm) |log|Xa| p(X2,Bm) | log|Xs| u(Xs,Bm)
2 4 3 0 - - - -
3 8 7 0 - - - -
4 16 15 4 14 0 - -
5 32 31 <4 30 0 - -
6 64 63 8 62 <4 ~ 50 0
7 128 127 <8 126 <8 =~ 112 0
8 256 255 16 254 < 12| =238 <8
9 512 511 < 20 510 < 20| =492 < 16
10 1024 1023 32 1022 < 28 | =~ 1002 <24

TABLE I: Guaranteed imbalance u(X,B,,) for various choices of X.
words in the polar code C(F,f). In other words, it suffices to
determine u(C(F,f),B). However, as the choice of F and f
is channel dependent, it is tedious to determine the guaranteed
imbalance for all possibilities. Instead, we determine (X, B)
for a large space X that is likely to contain C(F,f). Then the
guaranteed imbalance p(C(F,f),B) is simply upper bounded
by p(X,B). Furthermore, we consider spaces X that are easily
described by the polar transformation matrix. Specifically, for the
spaces X considered in this paper, either we have X = C(F*, f*)
for some choice of frozen indices or we provide an efficient
mapping of messages into X C C(F*,f*) using the polar trans-
formation matrix G,,,. These descriptions allow one to incorporate
the balancing technique into the polar encoding. In all cases, the
indices in set F* have weight at most two and thus, are very
likely to belong to an arbitrary frozen set J.

(c) B corresponds to the linear space spanned by rows of Gp,.
This requirement is specific to polar codes and allows one to
simply read off the original message m’ from the vector obtained
from polar decoding. Also, as with the point (b), we study
balancing sets that are likely to be not frozen.

C. Our Contributions

In this paper, we focus on a family of balancing sets. For
m > 2and 1 < r < m — 1, we let B, ,, be the set of
indices with weight between m — r and m — 1 (inclusive), and
set B, ,, = span(B, ). Since Jy—r = B, U 1™, we have
that RM(r,m) = B,,, & span(1™). In other words, B, ,, is
closely related to the Reed-Muller codes and we make use of
certain combinatorial properties of the latter to derive estimates
on guaranteed imbalance. Furthermore, when r is fixed, it can
be shown that the rows or channels corresponding to B, ,, are
“good” asymptotically; thus they are likely to be part of the in-
formation indices. We omit the details for lack of space.

In Section III, we study the special case where r = 1. Here, we
simply write B,,, and B,,, instead of B, ,,, and B, ,,, respectively.
Our first result states that u(B,,) < v/n = o(n). Since |B,,| =
m = logn, this means that we can significantly reduce the
imbalance of all codewords by sacrificing only log n information
bits. Also, we show that we can find the corresponding codeword
with the smallest imbalance in O(nlogn) time.

Even though the proportion of imbalance vanishes to zero
with codelength, the imbalance is relatively high for small code
lengths. Hence, in Section IV, we focus on attention of certain
constrained spaces X and analyse the corresponding guaranteed
imbalances. Specifically, we show that for appropriate choices of
X, we can achieve zero imbalance for m < 7 or n < 128. We
summarize our results in Table 1.

In Section V, we reduce the guaranteed imbalance by consider
B, ,, for » > 1. We derive a simple recursive upper bound for
(B, ) and demonstrate the B,,_3 ., is able to balance all even-
weight codewords for m > 5.
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Example 1. Let m = 4. So, n = 16 and the polar transformation
matrix G4 is given by

0000 1 0000000O0O0O0OO0OGO0O0 O
1000 |11 0000000O0CO0OO0COOO0CO
0100 (101 0000000OO0OOCOO0COO
1100 {1111 1000000000O0O0CO
0010 [10001000000OO0OCO0ODOCOO
1010 (11 001100000000O0O0
0110 (101 0101000000O00O00O0
1110 |11 1 1111100000000
0001 [1000000C0O0O10OO0ODO0OO0ODOCOO
1001 (110000001 10000O0CO0
0101 (101 0000010100O0O00O0
1101 |11 1 1000011110000
0011 (1000100010001 O0O00O0
1011 |11 00110011001100
0111 (101 0101010101010
1111 4111111111 111111 1

The row indices in B, are highlighted in blue. In Section III,
we show that the guaranteed imbalance 1(By4) is four, i.e. for
any word x € F%, we have u(x +b) < 4 for some b in By. For
example, if x = 0001000100011110, we can check that p(x +
b) = 4 for all b in By.

On the other hand, we consider the space Xo whose words are
of the form x;xy with both weights wt(x1) and wt(x2) odd. In
other words, Xy = C({0000,0001},(0,1)). Now, ' = 071071
belongs to Xy and it is not difficult to see that u(x’ + 1808) = 0.
Furthermore, in Section IV, for all x € X5, we show that it is
always possible to find b € B,,, so that u(x +b) = 0.

Finally, the row indices in By 4 (which include By) are
highlighted in either blue or magenta. In Section V, we show
that B, 4 balances all even-weight words, That is, if x has even
weight, then we can find b € By 4 such that u(x + b) = 0. For
instance, when x = 0001000100011110 as above, we can choose
b’ = 1%0'? € By 4 and check that p(x + b’) = 0.

ITI. 1(B,,) AND THE WALSH SPECTRUM

For m > 2, set n = 2™. Recall that B,,, is the set of indices
with weight exactly m — 1 and B,,, = span(B,,). In this section,
we derive an upper bound for p(B,,).

As mentioned earlier, span(B,, U {1"}) is equal to the first
order RM codes. Hence, since the covering radius of the latter
is at most (n — /n)/2 [19], it can be argued that u(B,,) is at
most y/n. There are many derivations of the upper bound for the
covering radius of RM(1,m) and we briefly outline one proof
that relies on the Hadamard transform and Walsh spectrum. The
proof illustrates certain combinatorial properties that we exploit
to reduce the imbalance in later sections.

Definition 2. For m > 2, set n = 2™. The Hadamard matrix
of order m is an integer-valued symmetric n X n matrix defined
by the following recursion. Set Hy = [} 1| and for m > 3,

A Hmfl Hmfl
Hm N Hmfl —IIm-1
the Walsh spectrum of x, denoted by W(x), to be the integer

vector Hmu9 Where u= ((_1)3“);”':1.

.Forx =z;25...2, € Fy, we define

From the definition of Hadamard matrices, we observe that
ui | _ [Hpui +Hyug
u?l H,ul — H,u?

Using (3) and standard divide-and-conquer techniques, we can
compute the Walsh spectrum efficiently.

H, [ 3)

Theorem 3 ([17, Ch. 14]). Let x € F5. Then the Walsh spectrunz702 Now, let j €

of x can be computed in O(nlogn) time.

The next theorem provides the connection between Walsh
spectrum and imbalances.

Theorem 4 ([17, Ch. 14]). Let x € F} and write the Walsh
spectrum of x as W(x) = (Wy,Wa,...,W,,). Then the n
absolute values in the Walsh spectrum |W;|, ¢ = 1,2,...,n,
correspond to the n imbalances p(x + b), b € B,.

Therefore, finding the smallest imbalance is equivalent to
determining the smallest absolute value in the Walsh spectrum
of x. To provide an upper bound for the smallest value, we
consider the square of the norm of W(x), in other words,
[[W(x)||? £ Y, W2. Since HZ, = nl,,, we have that

IW®)|)> = Wx)TW(x) = u"HLH,,u = nu’u =n’. (4)

Therefore, the average squared value in the Walsh spectrum is
n and so, the smallest absolute value is at most \/n. When m
is even, it can be shown that there exist words x with W(x) =
(v/n);—,. Thus the upper bound is essentially sharp.

We summarize our discussion in the following theorem.

Theorem 5. u(B,,) < |/n] = LQ’”/ 2|. Furthermore, we have
equality when m is even.

Remark 6. Here, we point out that the reduction in imbalance
is nontrivial. Assuming a symmetric channel, if a polar code is
properly designed, then each bit in a random codeword is either 0
or 1 with probability 1/2. Thus, Hoeffding’s inequality guarantees
that the probability that the imbalance of a random codeword
exceeding tn is at most 2¢=27  Now, taking ¢t = 1/y/n, we
have the probability that a random codeword has imbalance at
least /n is about about 2¢~2 2 0.27. In contrast, the method in
this section ensures all transmitted codewords have imbalance at
most /n and this comes with a small rate penalty of logn bits.

IV. REDUCING THE IMBALANCE FOR CERTAIN SPACES
In this section, we demonstrate that if we constrain the space
X, we are able to reduce the guaranteed imbalance. Our first result
makes use of the following lemma which is implied by (1).

Lemma 7. Let n =0 (mod 4). Then

ulx) = {g

Now, for m > 2, n is always divisible by four. Hence, if x has
even weight, it is necessary that its imbalance is divisible by four
and the following result is straightforward.

Theorem 8. Set X; = C({0}, (0)). Then u(Xy,B,,) < 4|/n/4]
Jorm > 2.

(mod 4),
(mod 4),

when wt(x) is even,
when wt(x) is odd.

Next, we consider a smaller space Xy C X; and show that the
guaranteed imbalance can be reduced further.
Theorem 9. Ser X, = C({0,0m711},(0,1)). If d(n) =
L(v/r = 2)/4], then (X2, B,,,) < 4(n) for m > 3.

Proof. Let x = miwa...zn € Xo. Set u; = ((—1)*7):;/?,
uy = ((=1)"), s, and WU = H,,_qu; for j € {1,2}.

It follows from the definition of X that both x1xs ... %, /2 and
T /241Tn/242 - - - Tn have odd weight. Therefore, Lemma 7 states
that both Walsh spectra W1 and W(? have entries congruent

to two modulo four.
gl,?}. We claim that strictly more than half

the entries in WU) have absolute values at most 45(n) + 2. We
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prove by contradiction. Suppose otherwise that half of the entries
in W) have absolute values strictly greater than 45(n)+2. Then

s n Vn—2 2op?
(46(n) +6)" > 1 (4( 1 —1) +6> =
However, (4) states that ||[W)||2 = (n/2)? = n?/4 and hence,
we obtain a contradiction.

As such, we have a common index 7 where the absolute values
of both Wi(l) and WZ-(Q) are at most 45(n) + 2. Since W(x) =
(WO + W WO — W) either W + W or W —

Wi(Q) has absolute value at most 46(n) + 2 — 2 = 46(n). 0

W2 >

n
4

Theorem 9 guarantees that (1(X2,B,,) = 0 for m € {4,5}. For
larger values of m, we consider another choice of constrained
space to reduce the guaranteed imbalance. For m > 5, we
consider the extended Hamming code H,, = RM(m — 2,m).
The constrained space X3 is defined as follows:

Xz £ {x1x2 1 25 € Hpno1, wi(x;) = 2 (mod 4) for j € {1,2}}. (5)

To analyse u(Xs,B,,), we consider the dual relation of H,,
with B,,, and consider the imbalances modulo eight.

Lemma 10. Let m > 5. If x € H,,, and b € B,,, then

4
0

mod 8),
mod 8),

when wt(x) =2 (mod 4),

(
( when wt(x) =0 (mod 4).

M(x+b)5{

Proof. From (2), we have that wt(x + b) = wt(x) + wt(b) —
2wt(x N'b). Since b € B,, C RM(1,m) and RM(1,m) is the
dual code for H,,, we have that (x,b) = 0 and so, 2wt(xNb) =
0 (mod 4). For m > 5, since wt(b) = 0 (mod 4), we have
wt(x + b) = wt(x) (mod 4). The lemma follows from (1). [

Therefore, for x1x2 € X3, the values in the Walsh spectra of
both x; and x5 are congruent to four modulo eight. Proceeding
in a similar manner as the proof of Theorem 9, we have the
following result on the guaranteed imbalance.

Theorem 11. Define X3 as in (5). If e(n) = | (/n —4)/8], then
w(Xs,B,,) < 8¢(n) for m = 6.

It remains to estimate the size of |X3|.

Proposition 12. |H,,| > 2"~™~2 — 27/2=1 Therefore,

2
|X3| 2 (277,/277?7,71 _ 271/471) (6)

The proof of Proposition 12 is technical and relies on certain
known properties of RM codes. First, we consider the span of
certain rows in the polar matrix G,,. For m > 2, define

Dy 2 {3<m+1>/27 if m is odd,

7
o1 U{z'l s wt(z') = m/2 — 1}, if m is even. M

It is straightforward to verify that |D,,| = 2™~ = n/2. Let
D,, = span(D,,). The next lemma states that I,,, is self-dual.

Lemma 13. D,, is a self-dual code.

Proof. When m is odd, D,,, is RM((m — 1)/2,m) and the latter
is known to be self-dual. When m is even, ID,,, is the direct sum
RM(m/2—1, m)®D’, where D' C RM(m/2,m). It is also known
that the dual of RM(m/2 — 1,m) is RM(m/2,m) [17, Ch. 13].

Now, to show that ID,,, is self-dual, we need to demonstrate
that (x,x’) = 0 for any vectors x, x’ in D,,,. We write x = u + v
and x' = o' +v' with u,u’ € RM(m/2 — 1,m) and v,v' € I

Then (x,x') = (u,u') + (u,0’) + (v,u’) + (v,v') = (v,7’). Note
that (u,u') = (u,v") = (v,u’) = 0 because of the duality of
RM(m/2 — 1,m) and RM(m/2,m). Next, since v = yy and
v’ =y'y’, we have that (v,v) = 2(y,y’) = 0. O

Proof of Proposition 12. Consider the set of binary words:
M2 {mlmg tmy € F;/Qimil \ {0}, mo € FS/271} .

For our proof, we present an injective map / encoding ¢ : M —
H,, such that wt(¢(mimz)) = 2 (mod 4). This then implies
the lower bound as |M| = 27/2-1(gn/2=m=1 _ 1) = gn-m=2 _
27/2=1 To compute ¢(m;ms), we proceed as follows. Recall J;
is the set of indices with weight < 1 and we set J = Z\(F1UD,,,).
Hence, |F1|=m+1, |J=n/2—m —1, |Dy| =n/2.

o Let x; be such that x;|5 = m; and x1|5,up,, = 0. Set
C1 £ x1Gn.

o Since x1|5 # 0, we have that ¢; ¢ D,,. Now, as D,, is
self-dual, there exists a row v with index in D,,, such that
(c1,v) = 1. Set j* be the smallest such index.

o Let x; be such that x5, \g;+3 = M2 and Xa|5, ugugj+} = O.
Set ¢o £ x5G,,.

o If wt(c; + ¢2) = 2 (mod 4), we return ¢; + c3. Note that
¢1 + ¢2 belongs to H,, as x1|5, = x2|5, = 0.

o If wt(c1+c2) =0 (mod 4), we return ¢; +c2+v. Since v €
D,, € H,,, the word c¢; +c2+v belongs to H,,, too. To check
its weight, recall that wt(c1+c2+v) = wt(c+c2)+wt(v)—
2wt((c14+c2)Nv). Now, wt(c;+¢2) = wt(v) =0 (mod 4).
Also, wt((c1+¢2)Nv) = (€1 + €2,0) = {¢1,v)+(c2,v) =1
(mod 2). Therefore, wt(c1 + ¢2 +v) =2 (mod 4).

To show injectivity, we consider ¢(m;ms) = ¢ and demon-
strate how to recover m; and ms from c. First, compute x = ¢G,,.
Since G,,,G,, = I,,, we have that x = ¢;+co or x = ¢1+¢c2+v. In
either case, x|; = m; and we can then figure out j*. Subsequently,
we have that x|p \j} = mo. O

The lower bound (6) can be improved as long as we have a
code D* satisfying certain properties. Specifically, we have the
following proposition and its proof follows from the proof of
Proposition 12 by replacing I,,, with D*. However, while [D*| <
27/2 it is unclear how to find D* efficiently.

Proposition 14. Suppose that D* is a maximal linear subcode
of H,, whose words have weight divisible by four. That is, if
¢ € H,, \ D* then there is a word in span(D* U {c}) whose
weight is not divisible by four. Then the number of words in H,,
is at least 2"~™2 — |D*| /2.

V. REDUCING THE IMBALANCE USING B, ,,, FOR 7 > 1
In this section, instead of constraining the space X, we re-

duce the guaranteed imbalance by augmenting the balancing
set. Specifically, we provide upper bounds for the guaranteed
imbalance for B,,, when r > 1. Now, since RM(r,m) =
B, ., ®span(1™) and p(x) = p(x+1"), we have that u(B,.,,) =
w(RM(r,m)). Hence, it suffices to compute the guaranteed im-
balance for RM codes and this is convenient as RM codes have
many well-known properties.
First, we have the following recursive upper bound.

Proposition 15. (B, 11 pmt1) < p(Brm).

3i)’roof. We show that p(RM(r+1,m+1)) < pu(RM(r,m)). Let x
e a binary word of length n whose imbalance is to be reduced.
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In other words, if we write u(RM(r,m)) = po, our task is to find
b € RM(r 4+ 1,m + 1) such that u(x + b) < po.

If wt(x) = n/2, then pu(x) = 0 < uo and we choose b = 0.
Otherwise, we have that wt(x+b) ¢ {0,n} forallb € By ,,,41 C
RM(r + 1,m + 1). We compute the Walsh spectrum of x. Again,
if p(x + b) = 0 for some b € By ,,,+1, we simply choose the
corresponding b.

Hence, in the worst case, wt(x + b) ¢ {0,n/2,n} for all b €
B4 jnt1. Since there are (n + 1) —3 = n — 2 possible weights
and the number of words in B; ,,11 is 2m+l — . we must
have wt(x + a) = wt(x + b) for some a,b € By ,,11. Using
the automorphism group of the RM codes [17, Ch. 13], we can
assume that

a= 0n/41n/41n/40n/4, and,b = 1n/40n/41n/40n/4

Now, we divide x into four blocks of equal length (i.e. n/4)
and let w; denote the weight of the ith block for ¢ € {1,2,3,4}.
Since wt(x + a) = wy +wg + (n — we — w3), and wt(x +b) =
wy + wy + (N — w1 — ws), we have that wy = wo.

We then consider ¢ = 17/4037/4 ¢ Bo m+1 € RM(r+1,m+1)
and check that the number of ones in the first n/2 coordinates
of x + ¢ is exactly (n/4 — wy) + wy = n/4. In other words, the
prefix of length n/2 of x + ¢ has zero imbalance.

Let x’ be the suffix of x of length n/2. Since u(RM(r,m)) =
o, we can find d in RM(r,m) such that pu(x’' + d) < p. Since
RM(r+1,m+1) = {(m,u+7v) : u € RM(r +1,m),v €
RM(r,m)} [17, Ch. 13], the word Od belongs to RM(r+1, m~+1).
Therefore, if we choose the balancing word to be ¢+0d € RM(r+
1,m + 1), then the resulting imbalance u(x + ¢ + 0d) = p(x +
¢)+ (¥ +d) < o, as desired. O

We apply Proposition 15 recursively to obtain the next result.
Corollary 16. ;i(B,.,,) < |20~ "HD/2| for 1 <r <m.

An immediate consequence of Corollary 16 is that 1(Bg 4) < 2.
Recall that X is the set of all words with even weight and it
is now immediate that ;(X;, B3 4) = 0. In other words, B3 4 or
RM(2, 4) balances all words of even weight. The next proposition
states that RM(2, 5) also balances all words of even weight.

Proposition 17. ;i (Xq,B24) = 1 (Xq,B25) = 0.

We defer the proof to the next subsection where we allude to
certain geometric properties of RM codes. Nevertheless, a direct
consequence of Propositions 15 and 17 is the following corollary.

Corollary 18. 1 (Xy,B,,—3m,m) =0 for m > 5.
Now, for all m > 2, define the quantity
p(m) £ min{r : u (X1,B,,,,) = 0}. )

That is, p(m) is the smallest value r such that B,. ,,, balances all
even-weight words. The results of the paper state that

p(2) =p3) =1, p(4) = p(5) =2, 1 < p(m) < m — 3 for m > 6.
For m > 4, we ran computer simulations and it seems that

B, ., is always able to balance an even-weight word. Hence, we
make the following conjecture.

Conjecture. p(m) = 2 for all m > 4.

A. Proof of Proposition 17

In this subsection, we show that RM(2, 5) balances all words o
even weight. To do so, we recall certain classical characterizations

of RM codewords. Fix m > 2 and index the codewords in
RM(r,m) with F3*. For X C FJ', we use ¢(X) to denote the
binary word whose support is exactly X. In other words, if
c(X) = (ca)acry, we have that cq = 1 if and only if @ € X.

Lemma 19 ([17, Ch. 13]). If X C 3 is an affine space with
dimension at least m — r, then ¢(X) belongs to RM(r, m).

Using this characterization, the next lemma tells us when a
word in RM(1,m) is able to balance a certain even-weight word.

Lemma 20. Let X C F3* with | X| even. If U is a linear space
of dimension m — 1 such that (U N X| = |X|/2, then c(U) €
RM(1, m) balances ¢(X).

The next lemma follows from the covering radius of RM(2, 5).

Lemma 21 ([19]). For x € X, there exists ¢ € RM(2,5) such
that wt(x + ¢) € {0,2,4,6}.

We are now ready to show that RM(2,5) balances all words
of even weight. Our broad strategy is as follows.

e Let X be the support of the word to be balanced. From

Lemma 21, it suffices to assume that | X| € {0,2,4,6}.

o To apply Lemma 20, we find a four-dimensional linear space
U such that |U N X| = |X|/2. In most cases, this is always
possible and in what follows, we simply state the space U
and omit the detailed verification of the intersection size.
When it is not possible to find U, we modify X so that
Lemma 20 is applicable.

e We assume that X contains 0. Otherwise, we can shift it
using the automorphism group of RM(2, 5). Also, the vectors
a, B, v, 8, and € are assumed to be linearly independent.

We consider the following cases according to the size of X.

o If | X| =0, we pick any four-dimensional space U.

o If | X| = 2, then X = {0,a}. Pick the three-dimensional
space U such that & ¢ U. For example, we can set U =
span({B,7,4,€}).

o When |X| = 4, we have the following two cases. If the
rank of X is two, then X = {0,a,8,a + B} and we pick
U = span({a, 7, 8, €}). If the rank of X is three, then X =
{0,, 8,7} and we pick U = span({a + 8,v,d,€}).

o When |X| = 6, we have the following four cases.

(i) If the rank of X is three, we pick a three-dimensional
space V that contains X. So, ¢(V') belongs to RM(2,5)
and ¢(V) + ¢(U) has weight two. We then proceed as
before to balance the word ¢(V) + ¢(U).

(i) Suppose that the rank of X is four and X =
{0,a,8,7,0,a + B + v + 8}. Here, we set V =
span({e, B,€}) and so, ¢(V) belongs to RM(2,5). Let
X' be the support of ¢(X) + ¢(X) and here, |X'| =
8. Now, if we pick the four-dimensional space U =
span({a, B,7,6}), then | X' N U| = 4. Therefore,
Lemma 20 states that ¢(X’)+¢(U) = ¢(X)+¢(V)+¢(U)
is balanced.

Suppose that the rank of X is four and X contains
{0,a, B,7,8} with the sixth vector not equal to the sum
of the five nonzero vectors. Then we may assume that
the sixth vector is 8 + f(v,d)} where f(v,6) is a linear
combination of 4 and 4, not involving . In this case, we
pick U = span({a + 8,v,6,€}).

If the rank of X is five, then X = {0,a, ,v,d,€} and
we pick U = span({a + B, +1,6,€}).

(iii)

(iv)
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