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Abstract

In the global health emergency caused by coronavirus disease 2019
(COVID-19), efficient and specific therapies are urgently needed.Compared
with traditional small-molecular drugs, antibody therapies are relatively easy
to develop; they are as specific as vaccines in targeting severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2); and they have thus attracted
much attention in the past few months. This article reviews seven existing
antibodies for neutralizing SARS-CoV-2 with 3D structures deposited in
the Protein Data Bank (PDB). Five 3D antibody structures associated with
the SARS-CoV spike (S) protein are also evaluated for their potential in
neutralizing SARS-CoV-2. The interactions of these antibodies with the S
protein receptor-binding domain (RBD) are compared with those between
angiotensin-converting enzyme 2 and RBD complexes. Due to the orders
of magnitude in the discrepancies of experimental binding affinities, we in-
troduce topological data analysis, a variety of network models, and deep
learning to analyze the binding strength and therapeutic potential of the
14 antibody–antigen complexes. The current COVID-19 antibody clinical
trials, which are not limited to the S protein target, are also reviewed.
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1. INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) has rapidly spread around the world. By March 16, 2021,
more than 121 million individuals were infected, and 2.7 million fatalities had been reported.
Currently, there are no specific drugs available (8). Traditional drug discovery involves a long and
costly process, requiringmore than 10 years on average to put a drug on themarket.Vaccine devel-
opment typically takes more than one year. In contrast, developing potent SARS-CoV-2-specified
antibodies that are produced from blood B cells in response to and counteracting SARS-CoV-2
antigens is a relatively less time-consuming and more efficient strategy for combating the ongoing
pandemic (8, 31, 36, 49, 56, 65, 73, 74, 81, 85, 88).

Antibody, also called immunoglobulin (Ig), is a large, Y-shaped protein that typically consists of
two identical heavy chains and two identical light chains. A heavy chain can be separated into two
regions, a constant region and a variable region. Moreover, each light chain has two successive
domains, a constant domain and a variable domain. The two heavy and two light chains of an
antibody are connected through disulfide bonds within the constant region (52). An antibody
binds to the antigenic determinant (also called the epitope) through the variable regions in the tips
of the heavy and light chains. Each of these chains contains three complementarity-determining
regions (CDRs), which are located in the tips of each variable domain. Most of the differences
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among antibodies are generated within the CDRs, which determine the specificity of individual
antibodies.

Benefitting from the broad specificity of antibodies, antibody therapies have been proven to
be a promising way to fight cancer; autoimmune disease; neurological disorders; and infectious
viruses such as human immunodeficiency virus (HIV), Ebola virus, and Middle East respiratory
syndrome (MERS) coronavirus (12, 58, 76).Recently, several studies have shown that the convales-
cent plasma of SARS-CoV-2 patients, which contains neutralizing antibodies created by adaptive
immune responses, can effectively improve patient survival rates (7, 9, 59).However, plasma-based
therapeutics cannot be produced on a large scale. Therefore, seeking potent industrial-scale an-
tibody therapies has become one of the most feasible strategies to fight against SARS-CoV-2.
The spike (S) protein, a multifunctional molecular machine that binds to the human cell receptor
angiotensin-converting enzyme 2 (ACE2), is one important target of neutralizing antibodies and
the focus of therapeutic and vaccine design efforts (67).Many researchers have reported the bind-
ing affinities of SARS-CoV-2 S protein in complex with antibody candidates and ACE2.However,
these reported values may vary by two orders of magnitude for a given antibody due to different
experimental methods, conditions, calibrations, and human errors, which hinders the develop-
ment of antibody therapies for SARS-CoV-2. Therefore, the development of a unified paradigm
for ranking the potency of SARS-CoV-2 antibodies is a pressing need.

In this article, we review seven existing SARS-CoV-2 antibody therapeutic candidates from
the literature. As molecular structures are able to reveal the molecular mechanism of antibody–
antigen interactions, we only focus on the SARS-CoV-2 S protein antibodies that have 3D struc-
tures released in the Protein Data Bank (PDB). Since antibodies may directly compete with ACE2
for binding to the S protein receptor-binding domain (RBD), the structure and binding affinity
of ACE2 and S protein complexes have been studied to understand the efficiency of antibod-
ies. Moreover, since the S proteins of SARS-CoV and SARS-CoV-2 share 80% amino acid se-
quence identity (70), SARS-CoV S protein antibodies are potential candidates for the treatment
of COVID-19. Therefore, we review five existing SARS-CoV S protein antibodies and analyze
their binding affinities with the SARS-CoV-2 S protein. Furthermore, we employ topological
data analysis (TDA), artificial intelligence, and a variety of network models to address literature
controversy and provide a unified paradigm for ranking the potency of all antibodies. Finally, we
review the current clinical trials of COVID-19 antibody candidates.

2. AN OVERVIEW OF ANTIBODY STRUCTURES, FUNCTIONS,
AND THERAPIES

An antibody can be divided into different parts according to its functions. Specifically, the arms of
the Y-shaped protein contain sites that can recognize and bind to specific antigens. This region of
the antibody is called a fragment, antigen-binding (Fab) region and is composed of one constant
domain and one variable domain from each heavy and light chain of the antibody (52). Figure 1
illustrates the structure of the antibody. The variable domain (Fv) region is the most important
region for binding to antigens. On light and heavy chains, CDRs composed of three variable
loops of β-strands are responsible for binding to a specific antigen. The CDRs are incredibly
variable, allowing a large number of antibodies with slightly different tip structures, or antigen-
binding sites, to exist. Each of these variants can bind to a different antigen; thus, the enormous
diversity of antibody paratopes on the antigen-binding fragments allows the immune system to
recognize an equally wide variety of antigens (43). This antibody paratope diversity is generated
by random recombination events of a set of gene segments that encode different antigen-binding
sites (or paratopes), followed by random mutations in this area of the antibody gene to create

www.annualreviews.org • Review of COVID-19 Antibody Therapies 3

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

02
1.

50
:1

-3
0.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
 A

cc
es

s p
ro

vi
de

d 
by

 1
47

.9
2.

10
6.

66
 o

n 
07

/0
6/

21
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



F(ab' )2

Mercaptoethanol

Light chains

Heavy chains

Fc

Fab

Papain

Pepsin

Figure 1

A schematic illustration of an antibody. Abbreviations: Fab, fragment, antigen-binding; Fc, fragment,
crystallizable.

further diversity (16, 42). It has been estimated that humans generate approximately 10 billion
different antibodies (24). The base of the Y plays a role in modulating immune cell activity. This
region is named the fragment, crystallizable (Fc) region and is composed of two heavy chains.
The Fc region ensures that each antibody generates an appropriate immune response for a given
antigen by binding to a specific class of Fc receptors or other immune molecules. This process
activates different physiological effects, including recognition of opsonized particles; lysis of cells;
and degranulation of mast cells, basophils, and eosinophils (33, 80).

In addition to conventional antibodies, camelids also produce heavy-chain-only antibodies
(HCAbs). HCAbs, also referred to as nanobodies, contain a single variable domain (VHH) that
makes up the equivalent Fab of conventional immunoglobulinG (IgG) antibodies (29).This single
variable domain typically can acquire affinity and specificity for antigens comparable to those of
conventional antibodies.VHHs can easily be constructed intomultivalent formats and have higher
thermal stability and chemostability than do most antibodies (14, 17, 27, 40, 57, 68). Another ad-
vantage of VHHs is that they are less susceptible to steric hindrances than are large conventional
antibodies (25).

In immune systems, antibodies are generated and secreted by B cells, usually differentiated
B cells, including plasma cells and memory B cells (Figure 2). Antibodies have two physical forms,
a membrane-bound form called the B-cell receptor (BCR), which is found to attach to the surface
of B cells, and a soluble form that moves freely in the blood plasma.The BCR facilitates the activa-
tion and subsequent differentiation of B cells into either plasma cells or memory B cells. The acti-
vation of B cells has two mechanisms: T cell–dependent (TD) activation and T cell–independent
(TI) activation (44). In TD activation, once a BCR binds a TD antigen, the antigen is taken up
into the B cell through receptor-mediated endocytosis, degraded, and presented to T helper (TH)
cells as peptide pieces in complex with major histocompatibility complex-II (MHC-II) molecules
on the cell membrane (2).TH cells recognize and bind theseMHC-II–peptide complexes through
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Antibody
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SARS-CoV-2

Figure 2

A schematic illustration of antibody therapy. Abbreviations: ACE2, angiotensin-converting enzyme 2;
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

their T cell receptor (TCR). Following TCR–MHC-II–peptide binding, T cells express the sur-
face protein CD40L, as well as cytokines such as IL-4 and IL-21. These signals promote B cell
proliferation, immunoglobulin class switching, somatic hypermutation, and guide differentiation.
Upon receipt of these signals, B cells are activated (13). In TI activation, T cells are absent, and
B cells receive signals from recognition and binding of a common microbial constituent to Toll-
like receptors (TLRs) or extensive cross-linking of BCRs to repeated epitopes on a bacterial cell
(44). TI activation is rapid, but antibodies generated from it tend to have a lower affinity and are
also less functionally versatile than those from TD activation (44). After being activated, B cells
can be differentiated into plasma cells or memory B cells to generate and secrete antibodies.Mem-
ory B cells can even survive in a human body for years to remember the same antigen and trigger
a fast response upon future exposure (4).

Antibodies protect our health in four ways: First, their Fab regions can bind to pathogens
and thus prevent pathogens from entering or damaging cells; second, they trigger the removal
of pathogens by macrophages and other cells via coating of the pathogen; third, they cause the
destruction of pathogens by stimulating other immune responses such as a complement pathway
(53); and last, antibodies can also lead to vasoactive amine degranulation against certain types of
antigens such as helminthic antigens and allergens (33).

The antibody mechanism enlightens the development of vaccines and antibody therapies. A
vaccine is typically made of weakened or killed forms of a microbe, its toxins, or one of its surface
proteins that resemble a disease-causing microorganism. These forms cannot cause an infection,
but the immune system still regards them as foreign objects and produces antibodies in response.
After the threat has passed, most of the antibodies will break down, but memory B cells remain
and remember the antigens in the vaccine.

Antibody therapies were developed in the 1970s, following the discovery of the structures of an-
tibodies and the development of the hybridoma technology that provided the first reliable source
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of monoclonal antibodies (mAbs) (5, 38). Rather than being extracted from convalescent patient
plasma, mAbs are made from identical immune cells that are all clones of a unique parent cell;
thus, they can have a monovalent affinity to the same epitope. As a result, the most significant ad-
vantage of mAbs over conventional small-molecule drugs is their high specificity, which facilitates
precise action (32). A second advantage is their long half-life, which allows infrequent dosing (41).
Third, molecular engineering technologies have enabled the structure of mAbs to be fine-tuned
for specific therapeutic actions and to minimize immunogenicity (28, 46, 51, 69), thus enhancing
their safety. This is reflected in mAbs’ approval rate of approximately 20%, compared to 5% for
new small-molecule entities (54, 55). Finally, mAbs can be developed in a short time period, e.g.,
5–6 months (37). Currently, mAbs have already established their therapeutic and prophylactic ef-
ficacy against cancer; autoimmune disease; neurological disorders; and infectious viruses such as
HIV, Ebola virus, and MERS coronavirus (12, 58, 76). However, there are adverse effects, mostly
related to immunomodulation, and therapeutic mAbs (32), such as antibody-dependent enhance-
ment (66) and cytokine storm (11), can be associated with infection.

3. SARS-CoV-2 ANTIBODY THERAPEUTIC CANDIDATES

Both SARS-CoV and SARS-CoV-2 belong to lineage B of the Betacoronavirus genus and have
four structural proteins, known as the S, envelope, membrane, and nucleocapsid proteins (84,
89). The nucleocapsid protein holds the single-stranded RNA genome. Together, the membrane,
S, and envelope proteins create the viral envelope (83). The S protein, which forms homotrimers
protruding from the viral surface,mediates the entry of coronaviruses into host cells when it binds
with ACE2 (67).More specifically, the S protein comprises two functional subunits: the S1, which
is responsible for binding to the host cell receptor, and the S2, which promotes the fusion of the
virus and cellular membranes (71, 72).

ACE2 is a single-pass transmembrane protein with its active domain exposed on the cell surface
and is expressed in lungs and many other tissues (30). ACE2 serves as the main cell entry point for
SARS-CoV, SARS-CoV-2, and some other coronaviruses (73). Notably, the equilibrium dissoci-
ation constant (Kd) of the binding between ACE2 and the S protein is significantly increased in
SARS-CoV-2 compared to SARS-CoV (65, 70). Moreover, SARS-CoV-2 may also use basigin to
assist in cell entry (75). Therefore, SARS-CoV-2 is more infectious than SARS-CoV.

Antibody therapy is a promising means of fighting COVID-19. Figure 2 provides a schematic
illustration of antibody therapy for COVID-19. Notably, neutralizing monoclonal antibodies
(mAbs) isolated from convalescent patient memory B cells provides an effective intervention for
SARS-CoV-2 due to the safety, scalability, and therapeutic effectiveness of these antibodies (7, 9,
59). As the S protein mediates host cell entry, it is the target of neutralizing antibodies and the
main focus of therapeutic and vaccine design efforts (67).

Antibodies can target different SARS-CoV-2 S protein positions. Although a potent N-
terminal domain (NTD) antibody has been reported (10), most known antibodies target the
SARS-CoV-2 S-protein RBD. Table 1 provides a summary of SARS-CoV-2 and SARS-CoV
S-protein RBDs in complex with existing antibodies and ACE2 structures. The structures, func-
tions, and properties of these complexes are analyzed below.

As summarized inTable 1, 12 mAbs targeting the SARS-CoV-2 or SARS-CoV S-protein RBD
have been reported that have their 3D experimental complex structures available in the PDB. Ac-
cording to Pinto et al. (49), the most promising is S309, which shows almost equal neutraliza-
tion potency against SARS-CoV and SARS-CoV-2. Pinto et al. state that 19 out of 24 residues
of the S309 epitope are strictly unchanged from SARS-CoV and SARS-CoV-2, and the other
five residues are conservatively or semiconservatively substituted (49). However, some other re-
searchers are still concerned about the claimed cross-effectiveness against both SARS-CoV and

6 Chen et al.
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Table 1 A summary of monoclonal antibodies targeting the SARS-CoV-2 or SARS-CoV S protein with the 3D exper-
imental structures of their complexes available in PDB

Protein or antibody Target Kd (nM) / Method PDB ID Resolution (Å)
ACE2 SARS-CoV-2 RBD 1.2 / BLI (70) 6M0J (39) 2.45

34.6 / BLI (82)
15.2 / BLI (65)

S309 SARS-CoV-2 RBD IgG = 0.104 Fab = 1.98 / BLI (49) 6WPS, 6WPT (49) 3.10, 3.70
CR3022 SARS-CoV-2 RBD IgG = 6.28 / BLI (65) 6W41 (88) 3.08

IgG < 0.1 Fab = 115 / BLI (88)
CB6 SARS-CoV-2 RBD IgG = 2.49 / SPR (60) 7C01 2.85
P2B-2F6 SARS-CoV-2 RBD IgG = 5.14 / SPR (36) 7BWJ (36) 2.85
B38 SARS-CoV-2 RBD IgG = 70.1 / SPR (85) 7BZ5 (85) 1.84
H11-D4 SARS-CoV-2 RBD NA 6Z43 3.30
BD23 SARS-CoV-2 RBD NA 7BYR (8) 3.84
ACE2 SARS-CoV RBD 5.0 / BLI (70) 3D0G 2.80

325.8 / BLI (82)
1.70 / BLI (61)

CR3022 SARS-CoV RBD IgG < 0.1 Fab = 1 / BLI (88) NA NA
S309 SARS-CoV RBD IgG = 0.12 Fab = 1.81 / BLI (49) NA NA
m396 SARS-CoV RBD IgG = 0.005 Fab = 20 / BLI (50) 2DD8 (50) 2.30
S230 SARS-CoV RBD IgG = 0.06 / BLI (73) 6NB6 (73) 4.30
VHH-72a SARS-CoV RBD IgG = 1.15 / SPR (81) 6WAQ (81) 2.20
80R SARS-CoV RBD IgG = 1.59 / BLI (61) 2GHW (34) 2.30
F26G19 SARS-CoV RBD Fab = 26 / SPR (47) 3BGF (47) 3.00

aThe binding affinity of VHH-72 with the SARS-CoV-2 RBD is Fab = 54 nM.
Abbreviations: ACE2, angiotensin-converting enzyme 2; BLI, biolayer interferometry; Fab, fragment, antigen-binding; NA, not applicable; PDB, Protein
Data Bank; RBD, receptor-binding domain; S, spike; SARS-CoV, severe acute respiratory syndrome coronavirus; SPR, surface plasmon resonance.

SARS-CoV-2 (74). Notably, two experimental structures of the S309 and SARS-CoV-2 S-protein
complex have been released, one having a closed conformation of the S protein and the other
having an open conformation. The binding affinity of the S309 and S-protein RBD complex is
not sensitive to closed or open conformations (49) of the S protein.

CR3022 is another potentially potent antibody that may bind to both SARS-CoV and SARS-
CoV-2 (65, 88). It has also been shown that, compared with m396, a SARS-CoV-specific antibody,
CR3022 has a significantly stronger binding signal to SARS-CoV-2.However, its affinity to SARS-
CoV-2 is much weaker than its affinity to SARS-CoV (88). It has also been suggested that CR3022
can only access the open conformation of the S-protein RBD (88).

Other promising SARS-CoV-2 antibodies includeCB6 andP2B-2F6,which are specific human
mAbs extracted from convalescent COVID-19 patients (36, 60).VHH-72 cross-reacts with SARS-
CoV-2 and SARS-CoV S proteins, but its binding affinity to SARS-CoV-2 is much lower than that
to SARS-CoV (81). B38 also shows direct competition with ACE2 in binding to the SARS-CoV-2
S protein (85).

3.1. Three-Dimensional Structure Alignment

All of the available 3D structures of the SARS-CoV-2 S-protein RBD in complex with antibod-
ies are aligned to ACE2. Figures 3 and 4 show the alignment of SARS-CoV-2 and SARS-CoV
antibodies, respectively. The PDB IDs of these complexes can be found in Table 1.

www.annualreviews.org • Review of COVID-19 Antibody Therapies 7
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CR3022

RBD

S309
P2B-2F6

H11-D4

BD23

ACE2

B38

CB6

Figure 3

The alignment of the available 3D structures of the SARS-CoV-2 S-protein RBD in binding complexes with
antibodies, as well as with ACE2. Abbreviations: ACE2, angiotensin-converting enzyme 2; RBD,
receptor-binding domain; S, spike; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

As shown in Figure 3, the antibodies CB6, B38, H11-D4, and P2B-2F6 have their epitopes
overlapping with the ACE2 binding site, suggesting that their bindings are in direct competition
with that of ACE2. Theoretically, this direct competition reduces the viral infection rate. For an
antibody with a strong binding ability, it will directly neutralize SARS-CoV-2 without the need
for antibody-dependent cell cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis

RBD

VHH-72

m396

F26G19

ACE2

80R

S230

Figure 4

The alignment of the available 3D structures of the SARS-CoV S-protein RBD in binding complexes with
antibodies, as well as with ACE2. Abbreviations: ACE2, angiotensin-converting enzyme 2; RBD,
receptor-binding domain; S, spike; SARS-CoV, severe acute respiratory syndrome coronavirus.
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(ADCP) mechanisms. However, the binding sites of epitopes of S309 and CR3022 are far from
that of ACE2, leading to the absence of binding competition (49, 65). One study shows that the
ADCC and ADCP mechanisms contribute to the viral control conducted by S309 in infected
individuals (49). Research indicates that CR3022 neutralizes the virus in a synergistic fashion (63).

Figure 4 shows that, on the SARS-CoV RBD, the epitopes of antibodies S230, 80R, F26G19,
and m396 overlap with that of ACE2. VHH-72 locates slightly away from the ACE2 binding
site but still sterically clashes with the ACE2 binding. They all lead to binding competition that
neutralizes the virus.

3.2. Alignment of Antibody and ACE2 Epitopes on Spike Protein 2D Sequences

Figure 5 highlights the contact regions of antibodies and ACE2 epitopes on SARS-CoV-2 RBD
or SARS-CoVRBD 2D sequences.Consistent with the 3D alignment, with the exception of S309,
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Figure 5

Illustration of the contact positions of antibody and ACE2 epitopes with SARS-CoV-2 and SARS-CoV S-protein RBDs on RBD 2D
sequences. The proteins in the structures of 6M0J, 6WPS, 6W41, 7C01, 7BWJ, 7BZ5, 6Z43, and 7BYR are in complexes with the
SARS-CoV-2 S protein, while the proteins in the structures of 3D0G, 2DD8, 6NB6, 6WAQ, 2GHW, and 3BGF are in complexes with
the SARS-CoV S protein. Abbreviations: ACE2, angiotensin-converting enzyme 2; RBD, receptor-binding domain; S, spike;
SARS-CoV, severe acute respiratory syndrome coronavirus.
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CR3022, andVHH-72, all of the antibodies have epitopes overlappingwith the ACE2 binding site,
especially the residues from 486 to 505 of the SARS-CoV-2 RBD (corresponding to the residues
472 to 491 of the SARS-CoV RBD). Although the VHH-72 epitope residues do not overlap with
the ACE2 binding site, VHH-72 occupies parts of the space of the ACE2 binding site, which
disrupts ACE2 binding with the RBD. Therefore, VHH-72 also has a competitive binding ability
against ACE2. Figure 5 also shows that these epitope residues have many mutations from the
SARS-CoV-2 RBD to the SARS-CoV RBD, which could explain why most of the antibodies lack
cross-reaction to both SARS-CoV-2 and SARS-CoV.We return to this below.

4. EXPERIMENTAL PITFALLS IN MEASURING THE AFFINITY
OF ANTIBODY BINDING WITH S-PROTEIN RECEPTOR
BINDING DOMAIN

Table 1 clearly shows the discrepancies in reported experimental Kd values for ACE2 in com-
plexes with the SARS-CoV-2 S protein [i.e., 1.2 nM (70), 15.2 nM (65), and 34.6 nM (82)]. More-
over, a 191-fold difference in magnitude has been reported in experimental Kd values for the
ACE2 and SARS-CoV S protein complex [i.e., 5.0 nM (70), 325.8 nM (82), and 1.70 nM (61)].

The inconsistency in experimental values is not isolated. The experimental Kd values for
CR3022 binding with the SARS-CoV-2 S-protein RBD have been reported as 6.28 nM (65) and
<0.1 nM (88). This level of discrepancy in reported experimental values makes it impossible to
select antibody candidates appropriately.

As shown inTable 1, two binding assay techniques are used to measure Kd values of antibody–
antigen interactions.The discrepancies in Kd values for CR3022 are based on biolayer interferom-
etry (BLI) measurements. BLI detects the surface changes on biosensor tips induced by protein–
protein association and dissociation by analyzing the interference pattern of white light reflected
from the surface. BLI results are sensitive to biosensor preparation, stability of the light source,
temperature control, calibration, and human errors (62). Surface plasmon resonance (SPR) has
also been employed for determining the Kd values of antibody and RBD complexes, as shown in
Table 1. This method detects the reflectivity change induced by molecular adsorption, such as
that of polymers, DNA, or proteins, using changes in reflection angles. Similarly, SPR is also sen-
sitive to the preparation of conjugated antigens, stability of the light source, temperature control,
calibration, and human errors (1). The widespread inconsistency in reported antibody and S pro-
tein binding affinities motivated us to carry out the computational analysis of existing antibody–S
protein complexes described below.

5. COMPUTATIONAL ANALYSIS OF ANTIBODY–SARS-CoV-2
INTERACTIONS

To create a unified assessment and ranking of S-protein RBD binding complexes with antibodies
and ACE2, we utilize TDA, graph theory, network models, and machine learning to analyze the
3D complexes presented in Table 1. We also evaluate the potential of repurposing SARS-CoV
antibodies for SARS-CoV-2 using the topology-based network tree (TopNetTree) model (77).

5.1. Ranking of ACE2 and Antibodies

The prediction results and network descriptors are presented inTables 2 and 3 for SARS-CoV-2
complexes and SARS-CoV complexes, respectively. In Table 2, the complexes are ranked ac-
cording to their predicted binding affinities, �G, followed by flexibility–rigidity indexes (FRIs)
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Table 2 Graph network descriptor consisting of SARS-CoV-2 S-protein RBD, ACE2, and antibodies

CR3022 B38 CB6 ACE2 BD23 H11-D4 S309 P2B-2F6
PDB ID 6W41 7BZ5 7C01 6M0J 7BYR 6Z43 6WPS 7BWJ
�G −15.4 −14.7 −13.5 −11.9 −10.8 −10.3 −9.9 −9.6
R10 335 349 338 279 227 201 256 211
R8 134 138 132 105 106 82 97 82
S10 19.15 30.17 36.56 20.83 10.39 8.91 18.28 17.74
S8 11.69 12.39 13.36 16.60 5.49 4.41 7.04 5.97
d 0.070 0.069 0.072 0.072 0.069 0.077 0.071 0.074
ρ 0.0192 0.0190 0.0196 0.0185 0.0171 0.0190 0.0206 0.0196
〈L〉 13.69 14.26 13.75 13.85 14.80 13.59 13.86 13.98
〈Cb〉 0.0109 0.0111 0.0110 0.0113 0.0130 0.0113 0.0112 0.0117
〈Ce〉 0.052 0.050 0.052 0.051 0.053 0.054 0.054 0.053
〈Cs〉 1590955 2397825 2010826 2105421 813061 2248985 1387110 1562243
〈M〉 847509 1237464 1096771 1132331 413572 1239452 753625 855641
〈�〉 0.0192 0.0190 0.0196 0.0185 0.0171 0.0190 0.0206 0.0196

�G indicates the predicted binding affinity (kcal/mol) [the predictions are made using the Prodigy web server (87)]; R10 and R8 indicate the FRI with
η of 10 and 8, respectively; S10 and S8 indicate the summation of binding affinity changes (��G kcal/mol) by mutating RBD residues within 10 Å and
8 Å to any Cα of antibodies to glycine; d indicates edge density; ρ indicates degree heterogeneity; 〈L〉 indicates average path length; 〈Cb〉 indicates average
betweenness centrality; 〈Ce〉 indicates average eigencentrality; 〈Cs〉 indicates average subgraph centrality; 〈M〉 indicates average network communicability;
and 〈�〉 indicates average network communicability angle.
Abbreviations: ACE2, angiotensin-converting enzyme 2; FRI, flexibility–rigidity index; PDB, Protein Data Bank; RBD, receptor-binding domain; S, spike;
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Table 3 Graph network descriptor consisting of SARS-CoV S-protein RBD, ACE2, and antibodies

80R ACE2 VHH-72 m396 S230 F26G19
PDB ID 2GHW 3D0G 6WAQ 2DD8 6NB6 3BGF
�G −17.3 −11.5 −9.7 −9.4 −7.7 −6.7
R10 378 270 255 304 195 254
R8 157 101 103 119 72 101
S10 20.35 13.05 13.37 10.79 11.48 14.01
S8 8.92 1.56 7.49 6.47 8.09 7.84
d 0.070 0.070 0.074 0.073 0.078 0.072
ρ 0.0206 0.0187 0.0193 0.0186 0.0197 0.0190
〈L〉 13.35 12.91 13.46 12.90 12.96 12.63
〈Cb〉 0.0120 0.0108 0.0109 0.0113 0.0119 0.0113
〈Ce〉 0.053 0.053 0.053 0.054 0.054 0.056
〈Cs〉 2693776 1418662 1607217 2383597 3167175 1897873
〈M〉 1446506 730809 915061 1311299 1714397 1039376
〈�〉 0.0206 0.0187 0.0192 0.0186 0.0196 0.0190

�G indicates the predicted binding affinity (kcal/mol) [the predictions are made using the Prodigy web server (87)]; R10 and R8 indicate FRI with η of
10 and 8, respectively; S10 and S8 indicate the summation of binding affinity changes (��G kcal/mol) by mutating RBD residues within 10Å and 8Å
to any Cα of antibodies to glycine; d indicates edge density; ρ indicates degree heterogeneity; 〈L〉 indicates average path length; 〈Cb〉 indicates average
betweenness centrality; 〈Ce〉 indicates average eigencentrality; 〈Cs〉 indicates average subgraph centrality; 〈M〉 indicates average network communicability;
and 〈�〉 indicates average network communicability angle.
Abbreviations: ACE2, angiotensin-converting enzyme 2; FRI, flexibility–rigidity index; PDB, Protein Data Bank; RBD, receptor-binding domain; S, spike;
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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(45, 86), which have the highest covariance. They are computed based on all of the Cα atoms on
the RBD and all of the Cα atoms in antibodies or ACE2. The FRI Rη indicates the measurement
of geometric compactness and topological connectivity of protein–protein interactions (PPIs) at
each residue, such that the larger η is, the longer the range of pairwise influence will be. In compar-
ison with the predicted energy, a strong binding affinity corresponds to a large rigidity index. The
summation of binding affinity changes computed with the TopNetTree model (77) by modifying
the RBD residues to glycine (G) is presented; S10 and S8 stand for those residues within 10 Å and
8 Å, respectively, of any Cα of antibodies. The binding affinity change following each mutation to
glycine (G) is calculated by the TopNetTree model for PPIs (77), where a positive binding affinity
change ��G means a stronger binding affinity for the mutant and vice versa. Therefore, a sum-
mation of considered residues in the RBD with smaller values indicates a strong binding affinity
of the wild type.

The rest of the tables give the Cα-based complex analysis from multiple network descriptors,
including edge density (d), degree heterogeneity (ρ) (19), average path length (〈L〉) (79), average
betweenness centrality (〈Cb〉) (26), average eigencentrality (〈Ce〉) (3), average subgraph centrality
(〈Cs〉) (23), average network communicability (〈M〉) (21), and average network communicability
angle (〈�〉) (22). With the exception of the degree heterogeneity, which is calculated based only
on the RBD Cα atoms, descriptors are calculated from all Cα atoms on the RBD and antibody (or
ACE2) Cα atoms within 10 Å from any Cα atom on the RBD. The degree heterogeneity demon-
strates antibody or ACE2 influence on the RBD such that close degree heterogeneity numbers
would have similar impacts. For example, molecules B38 and H11-D4 have degree heterogeneity
values that are close to that of ACE2, as well as sharing the same receipt domain. The average
betweenness centrality (26) and average eigencentrality (3) values are correlated quite well to the
predicted binding affinities.

Table 3 shows the results of predictions and network descriptors for the SARS-CoV S-protein
complex. Again, the predicted binding affinities have high correlations to FRIs. For degree het-
erogeneity, m396 has a similar impact to ACE2. Molecule 80R (PDB 2GHW) has the highest
rigidity index both for η = 10 and η = 8, which indicates a more rigid complex structure between
80R and the RBD. In the comparison of SARS-CoV S-protein RBD and SARS-CoV-2 S-protein
RBD in Table 2, descriptors are close to each other except for the summation of binding affinity
changes, which includes more biological and chemical information than do the other rows. Thus,
the network structures for the SARS-CoV RBD and SARS-CoV-2 RBD complexes are similar.

5.2. Repositioning of SARS-CoV Antibody Candidates for SARS-CoV-2

In this section, we predict the binding affinities of SARS-CoV antibodies when they are applied
to SARS-CoV-2 neutralization using the TopNetTree model (77). Specifically, we compute the
binding affinity changes following the mutations from the SARS-CoV RBD to the SARS-CoV-2
RBD. These changes can be very significant. One study showed that a single mutation (V367F)
can lead to a 10-fold increase in IC50 for a particular antibody (56).

Figure 6 shows both predicted binding affinities of each SARS-CoV complex and predicted
binding affinities of each molecule with the SARS-CoV-2 RBD, which are calculated by accu-
mulating binding affinities of single mutations from SARS-CoV RBD to SARS-CoV-2 RBD and
adding the sum to the binding affinities of SARS-CoV complexes. Obviously, antibody 80R (PDB
2GHW) has the largest binding energy change in SARS-CoV ranking, as well as in SARS-CoV-2
ranking, among these SARS-CoV antibodies. Molecule VHH-72 (6WAQ) has a smaller binding
affinity than does ACE2 (3D0G) for the SARS-CoV RBD but an equivalent binding affinity for
the SARS-CoV-2 RBD. Molecules m396, S230, and F26G19 have weaker binding affinities after
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Figure 6

An illustration of the binding affinities of antibodies with SARS-CoV and SARS-CoV-2 RBDs. The
molecular names of these antibodies are 80R (2GHW) ACE2 (3D0G), VHH-72 (6WAQ), m396 (2DD8),
S230 (6NB6), and F26G19 (3BGF). Abbreviations: ACE2, angiotensin-converting enzyme 2; RBD,
receptor-binding domain; SARS-CoV, severe acute respiratory syndrome coronavirus.

modifying from the SARS-CoV RBD to the SARS-CoV-2 RBD. Finally, the binding affinity of
the SARS-CoV RBD with ACE2 following mutations to SARS-CoV-2 is slightly higher than
the binding affinity of the SARS-CoV RBD with ACE2, indicating that SARS-CoV-2 is more
infectious than SARS-CoV. This is consistent with experimental reports (70, 82).

Figures 7 and 8 show the binding affinity changes associated with individual mutations of the
SARS-CoV S-protein RBD,wheremore precise trends can be observed. InFigure 7, themolecule
80R has a similar trend to ACE2; both of them share the most receptive binding domain of the
SARS-CoV-2 S protein. In Figure 8, most of the binding affinity changes following mutations
in the receptor binding motif (RBM) of ACE2 are negative, which indicates stronger binding
affinities with the SARS-CoV RBD.

5.3. Network Analysis of Antibody–Antigen Complexes

Various network models have been employed to analyze the structure and function of the main
SARS-CoV and SARS-CoV-2 proteases (20).We utilize network models to illustrate interactions
between the binding complexes of the RBD of SARS-CoV or SARS-CoV-2 and antibodies or
ACE2.

In the microscopy of each single residue, the performances on the network models reveal the
similarities and differences between complexes. In Figure 9, the SARS-CoV RBD with ACE2
(PDB 3D0G), SARS-CoV-2 RBDwith ACE2 (PDB 6M0J), and SARS-CoV-2 RBDwith CR3022
(PDB 6W41) are listed and aligned; 6W41 has the strongest predicted binding affinity and the
largest deviation to 6M0J, as shown in Tables 2 and 3. It is interesting to observe that the do-
mains that have high rigidity index values are similar in all three complexes. In the comparison
of betweenness centralities of the three structures, although 3D0G has many large values, it has
the lowest average betweenness centrality among the structures, as shown in Tables 2 and 3.
Analogously to the rigidity index, all three complexes have the same regions of high individual
eigencentrality values and subgraph centrality values. Overall, the differences between 3D0G and
6M0J are quite small in the network analysis. However, the betweenness centrality reflects their
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Figure 7

Overall binding affinity changes following mutations of the S-protein RBD from SARS-CoV to SARS-CoV-2 for molecules 80R,
ACE2, and VHH-72. The x axis records the wild type to the mutant type at the specific residue position. The tan region marks the
RBM corresponding to ACE2. The height of each bar indicates the predicted binding affinity changes. A positive change indicates a
strengthening of binding. Abbreviations: ACE2, angiotensin-converting enzyme 2; PDB, Protein Data Bank; RBD, receptor-binding
domain; RBM, receptor-binding motif; S, spike; SARS-CoV, severe acute respiratory syndrome coronavirus.
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Figure 8

Overall binding affinity changes following mutations of S-protein RBD from SARS-CoV to SARS-CoV-2 for molecules m396, S230,
and F26G19. The x axis records the wild type to the mutant type at the specific residue position. The tan region marks the RBM
corresponding to ACE2. The height of each bar indicates the predicted binding affinity changes. A positive change indicates a
strengthening of binding. Abbreviations: ACE2, angiotensin-converting enzyme 2; PDB, Protein Data Bank; RBD, receptor-binding
domain; RBM, receptor-binding motif; S, spike; SARS-CoV, severe acute respiratory syndrome coronavirus.
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Figure 9 (Figure appears on preceding page)

Cα network analysis of three antibody–antigen complexes. Circles indicate antigen (spike-protein receptor-binding domain), and
squares represent antibody or angiotensin-converting enzyme 2. Columns list complexes 3D0G, 6M0J, and 6W41. Rows represent FRI,
betweenness centrality, eigencentrality, and subgraph centrality. Abbreviations: FRI, flexibility–rigidity index; PDB, Protein Data Bank.

difference such that a higher average value would indicate a stronger binding affinity. Moreover,
all three complexes coincidentally have similar regions of high values for network descriptors,
which suggests that this region would play a key role in PPIs.

6. CLINICAL TRIALS OF COVID-19 ANTIBODY THERAPEUTIC
CANDIDATES

Table 4 summarizes the currently ongoing clinical trials of COVID-19 antibody therapeutic can-
didates in the United States, China, and Europe. These data are collected from the National In-
stitutes of Health (NIH) (https://www.nih.gov/coronavirus), the European Medicines Agency
(EMA) (https://www.clinicaltrialsregister.eu/ctr-search/search?query=covid-19), and media
reports.

Notably, most of the current COVID-19 antibody therapeutic clinical trial candidates are
aimed at targets other than the S protein. These antibodies were initially developed for other dis-
eases and have been repurposed for treatingCOVID-19, and they could alleviate someCOVID-19
symptoms such as cytokine storm and inflammation instead of killing the virus directly.

Nonetheless, two antibody candidates under clinical trials target the S protein and block SARS-
CoV-2 entry into human cells. One of them is LY3819253, developed by Eli Lilly and Company
in the United States, which is in phase 2 clinical trials and already highlighted in The Scientist (90).
The other is JS016, developed by Junshi Biosciences in China (60), which is currently in phase 1
clinical trials.

7. MATERIAL AND METHODS

7.1. Sequences and Structures

All of the sequences and 3D structures that we used were downloaded from the PDB (https://
www.rcsb.org). The sequences were extracted from FASTA files, while 3D structures were ob-
tained from PDB files.

3D alignments and graphs were created using PyMOL (15). 2D sequence alignments were
calculated by ClustalW (https://www.genome.jp/tools-bin/clustalw) (64), and 2D alignment
graphs were generated by Jalview (78).

7.2. Topology-Based Network Tree Model for Protein–Protein Interaction
Binding Affinity Changes Upon Mutation

In this section, we describe the TopNetTree model, which predicts binding affinity changes fol-
lowing mutation ��G for PPIs (77). This method is based on structures regarded as topological
features and a supervised machine learning model, gradient boosting tree (GBT), and convolution
neural network (CNN). In Figure 10, the train and predicting processes are elucidated, involving
two major modules: topology-based feature generation and a CNN-assisted GBT model. In fea-
ture generation, the element-specific and site-specific persistent homology is the keymathematical
technique that can simplify the structural complexity of protein–protein complexes and translate
the biological information into topological invariants. The first step of the TopNetTree process
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Table 4 Summary of ongoing clinical trials of COVID-19 antibody therapeutic candidates

Antibody Manufacturer Target Trial location
Trial
phase Start date

Lanadelumaba Shire pKal Radboud University Medical
Center, Nijmegen, Netherlands

4 /

Octagama Pfizer Antibody mixture Sharp Memorial Hospital, San
Diego, California, United States

4 4/28/2020

Sarilumaba,b Regeneron
Pharmaceuticals
and Sanofi

IL-6 Assistance Publique—Hôpitaux de
Paris, Paris, France

3 3/25/2020

VA Boston Healthcare System,
Boston, Massachusetts, United
States

2 4/10/2020

Sirukumaba,b Janssen Biotech IL-6 Sanofi-Aventis Recherche et
Développement, Chilly-Mazarin,
France

3 3/26/2020

Loyola University Medical Center,
Maywood, Illinois, United States

2 4/24/2020

Canakinumaba,b Novartis IL-1β Novartis Investigative Site,
Glendale, California, United
States

3 4/30/2020

Novartis Pharma GmbH,
Nürnberg, Germany

3 4/29/2020

IFX-1b InflaRx C5a InflaRx GmbH, Jena, Germany 3 3/29/2020
Lenzilumaba Humanigen GM-CSF Mayo Clinic, Phoenix, Arizona,

United States
3 4/30/2020

Mylotargb Celltech and Wyeth CD33 UK Research and Innovation,
United Kingdom

3 5/5/2020

Ravulizumabb Alexion
Pharmaceuticals

C5 Alexion Europe SAS,
Levallois-Perret, France

3 5/7/2020

Tocilizumaba,b Roche IL-6 Queen’s Medical Center,
Honolulu, Hawaii, United States

3 6/1/2020

F. Hoffmann-La Roche Ltd., Basel,
Switzerland

3 4/6/2020

Avdoralimabb Innate Pharma C5a Assistance Publique—Hôpitaux de
Marseille, Marseille, France

2 4/23/2020

Bevacizumabb Genentech VEGF-A Fundación para la Investigación
Biomédica de Córdoba,
Córdoba, Spain

2 4/24/2020

CERC 002a Cerecor LIGHT Cape Fear Valley Medical Center,
Fayetteville, North Carolina,
United States

2 6/9/2020

Clazakizumaba Bristol Myers Squibb
and Alder Bio-
pharmaceuticals

IL-6 Cedars-Sinai Medical Center, Los
Angeles, California, United
States

2 4/24/2020

Gimsilumaba Eisai Inc. GM-CSF UCLA Ronald Reagan Medical
Center, Los Angeles, California,
United States

2 4/12/2020

IC14a Scripps Research CD14 University of Washington, Seattle,
Washington, United States

2 7/2020

(Continued)
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Table 4 (Continued)

Antibody Manufacturer Target Trial location
Trial
phase Start date

Infliximaba Janssen Biotech TNFα Tufts Medical Center, Boston,
Massachusetts, United States

2 6/1/2020

Leronlimaba CytoDyn CCR5 University of California, Los
Angeles, California, United
States

2 4/1/2020

LY3127804a Eli Lilly and
Company

Ang2 NorthShore University
HealthSystem, Evanston,
Illinois, United States

2 4/20/2020

LY3819253a Eli Lilly and
Company

S protein Cedars-Sinai Medical Center, Los
Angeles, California, United
States

2 6/13/2020

Mavrilimumaba MedImmune GM-CSF Cleveland Clinic Health System,
Cleveland, Ohio, United States

2 5/20/2020

MSTT1041Aa Genentech ST2 eStudySite-Chula Vista-PPDS,
Chula Vista, California, United
States

2 6/2/2020

Nivolumabb Bristol Myers
Squibb

PD-1 Centre Léon Bérard, Léon, France 2 4/1/2020

Otilimaba,b MorphoSys GM-CSF GSK Investigational Site, Saint
Louis Park, Minnesota, United
States

2 5/28/2020

GlaxoSmithKline Research
Development Ltd., Brentford,
United Kingdom

2 5/20/2020

Siltuximabb EUSA Pharma IL-6 Fundació Clínic per a la Recerca
Biomèdica, Barcelona, Spain

2 4/7/2020

SNDX-6352a Syndax
Pharmaceuticals

CSF-1R HonorHealth, Scottsdale, Arizona,
United States

2 5/30/2020

ARGX-117b Argenx C2 Argenx BV, Zwijnaarde, Belgium 1 4/21/2020
TJ003234a / GM-CSF GW Medical Faculty Associates,

Washington, District of
Columbia, United States

1 4/11/2020

JS016c Junshi Biosciences S protein Huashan Hospital, affiliated with
Fudan University, Shanghai,
China

1 6/7/2020

aSee https://clinicaltrials.gov/ct2/results?recrs=ab&cond=covid-19&term=&cntry=US&state=&city=&dist=.
bSee https://www.clinicaltrialsregister.eu/ctr-search/search?query=covid-19.
cSee https://www.globenewswire.com/news-release/2020/06/07/2044620/0/en/Junshi-Biosciences-Announces-Dosing-of-First-Healthy-Volun
teer-in-Phase-I-Clinical-Study-of-SARS-CoV-2-Neutralizing-Antibody-JS016-in-China.html.

uses aCNNas a preprocessingmodel to extract topological features.AssemblingCNN-pretrained
features and other features, the GBT model predicts PPI binding affinity changes. Other features
such as chemical and physical information that have not been absorbed into topological features
can improve the proposed model’s predicting ability (for more details, see 77).
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Figure 10

An illustration of the TopNetTree model (77). Protein structure shown in the plot is an antibody (PDB 7BZ5) (blue indicates heavy
chain, orange indicates light chain) and SARS-CoV-2 S-protein RBD (green) complex.H0 are the 0-dimensional topological input
features for the machine learning model. Abbreviations: PDB, Protein Data Bank; RBD, receptor-binding domain; S, spike; SARS-CoV,
severe acute respiratory syndrome coronavirus.

7.2.1. Topology-based feature generation of protein–protein interactions. Persistence ho-
mology is the key mathematical theory behind topology-based feature generation. As a subtopic
of algebraic topology, persistence homology is built on the simplicial complex and filtration on
discrete data sets under various settings. For example, the set of atoms in PPIs forms the discrete
data set. When building the constructions, a variety of simplicial complexes are built on point
clouds such that the Vietoris-Rips (VR) complex and alpha complex are widely used (18); this
applied to our approach. After a simplicial complex is set up, the topological invariants of the
point-cloud data set can be identified and are enumerated by counting the numbers referred to
as Betti-0 (H0), Betti-1 (H1), and Betti-2 (H2) for components, rings, and cavities of the data set,
respectively. Obviously, the complex protein–protein structure is simplified to its geometric and
topological characteristics for data features, while redundant and uninformative features or cal-
culations are fully abandoned. Moreover, making filtration dependent on the simplicial complex
turns the 3D point-cloud data set of PPIs into topological bar codes, which record the birth and
death of each topological invariant. The topological features simplify the PPI complex in many
directions. However, it is also essential to have better construction to reflect different biological
or chemical properties. Various subsets for PPI complex constructions are defined as follows:

1. Am: atoms of the mutation site;
2. Amn(r): atoms in the neighborhood of the mutation site within a cut-off distance rÅ;
3. AAb(r): antibody atoms within rÅ of any atoms of antigen;
4. AAg(r): antigen atoms within rÅ of any atoms of antibody; and
5. Aele(E): atoms in the system that has atoms of element type E.

Therefore, the distance matrix is defined based on atom sets such that it excludes the interactions
in the same set. For interactions between atoms ai and aj in set A and/or set B, the modified
distance is defined as

Dmod(ai, a j ) =
{

∞, if ai, a j ∈ A, or ai, a j ∈ B,
De(ai, a j ), if ai ∈ A and a j ∈ B, 1.
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where De(ai, aj) is the Euclidian distance between ai and aj. Then, the persistence homology can
be constructed to be element and site specific.

If one has atomic coordinates, then one can carry out their topological analysis and analysis of
their properties via simplices and simplicial complexes. A set of k+ 1 affinely independent points,
v0, v1, v2, . . . , vk in R

n, is a k-simplex denoted σ i, such that a 0-, 1-, 2-, or 3-simplex in geometry
representation is a vertex, an edge, a triangle, or a tetrahedron, respectively. The finite collection
of the simplex is a simplicial complex K = {σ i}, which is true if a subset (also called a face) τ of
a k-simplex σ i of K is also in K, τ ⊆ σ i and σ i � K imply τ � K, and the nonempty intersection
of any two simplices in K is a face of both. Furthermore, a k-chain is a finite formal sum of all
simplices in K,

∑
i αiσ

k
i , where αi is a coefficient in Zp, and p is a chosen prime number. The set of

all k-chains of the simplicial complex K equipped with an algebraic field forms an Abelian group
Ck(K ,Zp).

A boundary operator �k : Ck → Ck − 1 for a k-simplex σ k is homomorphism defined as

∂kσ
k =

k∑
i=0

(−1)i{v0, v1, . . . , v̂i, . . . , vk},

where {v0, v1, . . . , v̂i, . . . , vk} is a (k − 1)-simplex excluding vi from the vertex set. An important
property of the boundary operator,�k − 1�k = ∅, follows from the fact that boundaries are bound-
aryless. Moreover, the kernel of the boundary operator is Zk = ker�k = {c � Ck��kc = ∅}, whose
elements are called k-cycles; the kth boundary group is the image of �k + 1 denoted as Bk = im
�k + 1 = {�k + 1c�c � Ck + 1}. The algebraic construction to connect a sequence of complexes by
boundary maps is called a chain complex:

· · · ∂i+1−→ Ci(X )
∂i−→ Ci−1(X )

∂i−1−→ · · · ∂2−→ C1(X )
∂1−→ C0(X )

∂0−→ 0,

and the kth homology group is the quotient group defined by Hk = Zk/Bk. Obviously, boundary
operators imply Bk ⊆ Zk ⊆ Ck. The Betti numbers are defined by the number of basis in kth ho-
mology groupHk, which counts k-dimensional holes. For example, Betti-0, β0 = rank(H0) reflects
the number of connected components; Betti-1, β1 = rank(H1) reflects the number of loops; and
Betti-2, β2 = rank(H2) reveals the number of voids or cavities. Together, the set of Betti numbers
{β0, β1, β2, . . .} indicates the intrinsic topological property of a system. Computational boundary
operators directly work on the distance matrices generated on different atom groups, and the Betti
number can be calculated by counting the number of zero eigenvalues of corresponding boundary
operators.

The model is interested in the evolution of a simplicial complex and in tracking topological
characteristics that vary as the simplicial complex changes such that each object (the atomic set
of a PPI complex) can be classified and represented as a machine learning feature. In persistent
homology, a filtration of a topology spaceK is a nested sequence of subspaces {Kt}t = 0, . . . ,m ofK such
that ∅ = K 0 ⊆ K 1 ⊆ K 2 ⊆ ��� ⊆ Km = K. Considering the complex group in this sequence, we can
have a sequence of chain complexes by homomorphisms,C∗(K 0) → C∗(K 1) → ��� → C∗(Km), and
a corresponding homology sequence,H∗(K 0) → H∗(K 1) → ��� → H∗(Km). The p-persistent kth
homology group of K t is defined as Ht,p

k = Ztk/(B
t+p
k

⋂
Ztk ), where B

t+p
k = im∂k+1(Kt+p). Thus, the

homology group reveals that the homology classes of Kt persist until Kt+p. In the filtration process,
the persistent homology bar codes recording the birth and death of topological invariants can be
generated along the spacial changing of radius on the point-cloud data set. The machine learning
feature vectors, as a consequence, can be constructed from these sets of filtration bar code intervals.

The filtration parameter interval is discretized into bins, which can model the behavior of bar
codes in each bin (6). Thus, these bins are packaged as features for advanced machine learning
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algorithms directly. Then, the number of persistence intervals is counted for each bin to record
birth events and death events. Three feature vectors (H0, H1, and H2) are generated for each
topological bar code for the machine learning method. The Betti-0 (H0) bar code is obtained
from the VR filtration, and the Betti-1 (H1) and Betti-2 (H2) bar codes are obtained from alpha
complex filtration,where Betti-1 and Betti-2 bar codes are sparser andmore stable than the Betti-0
bar codes.Thus, the Betti-0 bar code is incorporated into CNNmodels, and the Betti-1 and Betti-
2 bar codes are for GBT training. Intuitively, features generated by binned bar code vectorization
can reflect the structure of the protein–protein complex and its biological and chemical properties,
such as the strength of atom bonds or van der Waals interactions. Meanwhile, the statistics of bar
lengths, birth values, and death values, such as maximum, minimum, mean, etc., can be set as
features for the machine learning process.

7.2.2. Machine learning models. Predicting the binding affinity changes following mutations
for PPIs is very challenging due to the complex data set and different 3D structures. To overcome
this challenge, one can use a hybrid machine learning algorithm that integrates a CNN and GBT
to predict the binding affinity changes. The vectorizedH0 bar code feature is converted into con-
cise features by the CNNmethod. Then, CNN-trained features are combined with the rest of the
features as the full feature set to train a GBT module for a robust predictor with effective control
of overfitting.

CNN is considered to be the most successful architecture as a class of deep neural networks.
CNN is a regularized case of a multilayer connected neural network. Each neuron is connected
locally to the next convolution layer neurons, and the weights are shared in different locations. In
TopNetTree,CNN is an intermediatemodel that applies vectorizedH0 features into a higher-level
abstract feature for the GBTmethod. GBT is an ensemble method that builds a powerful module
for regression and classification problems as weak learners. The method sums the weak learners
to eliminate the overall error based on the assumption that each learner is likely to make different
mistakes. According to the current prediction error on the training data set, the ensemble method
is built on a decision tree structure. GBT with topological features (TopGBT) is relatively robust
against hyperparameter tuning and overfitting and is suitable for a moderate number of features.
Our work uses the GBT package provided by scikit-learn (v. 0.23.0) (48).

Finally,TopNetTree follows a process (Figure 10) in which a supervised CNNmodel is trained
for extracting high-level features from H0 bar codes, where the PPI ��G is a label. Then, the
flattened layer neural outputs of CNN are ranked according to their importance in a GBTmodel.
Based on the importance, the whole set of features consists of an ordered subset of CNN-trained
features, high-dimensional topological bar codes, H1 and H2, and auxiliary features for the final
GBTmodel. As for the parameters, an optimal parameter setting with the best result of the 10-fold
evaluation is selected from the experiments with different parameter settings.

7.2.3. Cross-validation of TopNetTree. The TopNetTree method is trained on the SKEMPI
2.0 data set (35), which has 4,169 variants in 319 different complexes. A set S8338 with 8,338
variants was derived from the SKEMPI 2.0 data set by setting the reversemutation energy changes
to the negative values of the original energy changes. To address the reliability of the TopNetTree
method, we performed a 10-fold cross-validation on the SKEMPI 2.0 data set with the Pearson
correlation coefficients Rp, Kendall’s τ , and the root mean square error (RMSE) being 0.98, 0.89,
and 0.37 kcal/mol, respectively. As shown inTable 5, these metrics are based on the average of 10
10-fold cross-validations, which indicates that TopNetTree is well trained. The performance test
of 10-fold cross-validation on a data set gives Rp = 0.84, τ = 0.60, and RMSE =1.06 kcal/mol,
which is the same level of accuracy as the best results in the literature (77).
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Table 5 Ten-fold cross-validation of TopNetTree on the SKEMPI 2.0 data set

Rp τ RMSE (kcal/mol) Rp τ RMSE (kcal/mol)
Fold 1 (Train) 0.981 0.884 0.366 Fold 6 (Train) 0.983 0.904 0.353
Fold 1 (Test) 0.835 0.595 1.065 Fold 6 (Test) 0.836 0.594 1.064
Fold 2 (Train) 0.982 0.902 0.360 Fold 7 (Train) 0.983 0.904 0.356
Fold 2 (Test) 0.839 0.600 1.061 Fold 7 (Test) 0.838 0.594 1.060
Fold 3 (Train) 0.982 0.887 0.366 Fold 8 (Train) 0.979 0.878 0.392
Fold 3 (Test) 0.837 0.595 1.068 Fold 8 (Test) 0.840 0.596 1.061
Fold 4 (Train) 0.981 0.880 0.369 Fold 9 (Train) 0.982 0.902 0.362
Fold 4 (Test) 0.841 0.596 1.059 Fold 9 (Test) 0.838 0.596 1.069
Fold 5 (Train) 0.982 0.906 0.365 Fold 10 (Train) 0.982 0.886 0.367
Fold 5 (Test) 0.839 0.594 1.062 Fold 10 (Test) 0.835 0.596 1.064
Average (Train) 0.982 0.893 0.366
Average (Test) 0.838 0.596 1.063

Abbreviation: RMSE, root mean square error.

7.3. Graph Network Analysis

Graph networks represent interactions between pairs of units in biomolecular systems. The quan-
tity of unique characteristics of the networks can be measured for descriptions and comparisons
of different networks. When the PPIs are considered as networks, each descriptor evaluates the
network properties and measures how proteins connect. For instance, a fixed domain of S-protein
RBD and antibodies forms a network, where residues from 320 to 518 on SARS-CoV and residues
from 329 to 530 on SARS-CoV-2 are considered in terms of Cα atoms. As discussed above, inter-
action subsets or similar subsets for Cα of each amino acid are defined as follows:

1. CAb(r): antibody Cα atoms within r Å of any Cα of the antigen, where r = ∞ is for all Cα

atoms on the antibody, and
2. CAg(r): antigen Cα atoms within r Å of any Cα of the antibody, where r = ∞ is for all Cα

atoms on the antigen.

With these definitions, network descriptors are defined below.

7.3.1. Flexibility–rigidity index. The FRI is a great tool to illustrate the elasticity between
atoms for molecular interaction prediction (45, 86). The molecular rigidity index is defined as a
summation of all the atomic rigidity index μη,i as

Rη =
NAB∑
i=1

μη,i =
NAB∑
i=1

NAG∑
j=1

e−
( ‖ri−r j‖

η

)2
, 2.

where ri are atom positions; NAB and NAG are the numbers of atoms of antibody and antigen, re-
spectively; and r= ∞ for all Cα atoms such that CAb(∞) and CAg(∞). The molecular rigidity index
is used to describe the behavior of the dynamics and elastostatics of the biomolecular elasticity,
where η controls the influence range between atoms. In PPIs, the elasticity between antibody and
antigen, especially long-range impacts, is studied by calculating the FRI of the network consisting
of Cα atoms.

7.3.2. Degree heterogeneity. The degree heterogeneity is an index that evaluates the hetero-
geneity of a network on different distribution (19). The degree distribution ki is the number of ith
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nodes that have ki connections to other nodes. Therefore, the degree heterogeneity reflects the
distributions of a network on different impacts, which is defined as

ρ =
Ne∑
i=1

Ne∑
j=i+1

(k−1/2
i − k−1/2

j )2. 3.

In this case,Ne represents the number of edges. In our case, we study two networks consisting of
all Cα atoms in CAg(∞), where one network consists of Cα atoms from the SARS-CoV RBD, and
the other consists of Cα atoms from the SARS-CoV-2 RBD. The degree heterogeneity illustrates
the impacts of ACE2 or antibodies on these networks.

The rest of the descriptors are built on the network consisting of Cα atoms from CAg(∞) and
CAb(10).

7.3.3. Edge density. The edge density is defined as

d = 2Ne

Nv (Nv − 1)
, 4.

where Ne is the number of edges, and Nv is the number of vertices for Cα atoms from CAg(∞)
and CAb(10). The edge density is also called the average degree centrality. For a complete network
in which each every pair of network vertices is connected, the edge density is equal to one. A
noncomplete network has an edge density smaller than one.With the same number of residues in
the RBD for each PPI, a higher edge density stands for a firm connection between the RBD and
ACE2 or antibodies.

7.3.4. Average path length. The characteristic path length indicates the typical separation be-
tween two vertices in the network. It was used to study infectious disease spread in the so-called
small-world networks (79).The shortest path distance d(i, j) is defined as the shortest path between
the corresponding pairs of vertices i and j. In PPIs, the path length between two atoms reflects
how ACE2 or antibodies connect to the RBD. The average path length is defined as

〈L〉 = 1
Nv (Nv − 1)

Nv∑
i=1

Nv∑
j=i+1

d(i, j) 5.

for Cα atoms from CAg(∞) and CAb(10). In this case,Nv represents the number of vertices.

7.3.5. Average betweenness centrality. The concept of betweenness centrality illustrates com-
munications in a network (26). The betweenness centrality of a vertex vk is given as

Cb(vk ) =
Nv∑
i=1

Nv∑
j=i+1

gi j (vk )/gi j , 6.

and the average betweenness centrality is given as

〈Cb〉 = 1
Nv

Nv∑
k=1

Cb(vk ), 7.

where gij(vk) is defined as the number of geodesics linking vertex vi and vj that pass vk, and gij
considers all the paths between vi and vj.Nv indicates the number of vertices.

24 Chen et al.

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

02
1.

50
:1

-3
0.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
 A

cc
es

s p
ro

vi
de

d 
by

 1
47

.9
2.

10
6.

66
 o

n 
07

/0
6/

21
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



7.3.6. Average eigencentrality. The eigenvector centrality represents the elements of the
eigenvector Vmax with respect to the largest eigenvalue of the adjacency matrix A(3). It describes
the probability of starting at and returning to the same point for infinite-length walks. Thus, the
average eigenvector centrality is

〈Ce〉 = 1
Nv

Nv∑
i=1

ei, 8.

where ei are elements of Vmax. The average eigenvalue centrality stands for the average impact
spread of vertices beyond its neighborhood for an infinite walk.

7.3.7. Average subgraph centrality. The following descriptors are built on the exponential of
the adjacency matrix, E = eA. The average subgraph centrality is defined as

〈Cs〉 = 1
Nv

Nv∑
k=1

E(k, k), 9.

which indicates that the vertex participates in all subgraphs of the graphs (20, 23). In this case,
E(k, k) indicates the element located at the kth row and kth column. Subgraph centrality is the
summation of weighted closed walks of all lengths starting and ending at the same node. The long
path length has a small contribution.

7.3.8. Average communicability and average communicability angle. The final two descrip-
tors are average communicability, given as

〈M〉 = 2
Nv (Nv − 1)

Nv∑
i=1

Nv∑
j=i+1

E(i, j), 10.

and average communicability angle, given as

〈�〉 = 2
Nv (Nv − 1)

Nv∑
i=1

Nv∑
j=i+1

θ (i, j), 11.

where θ (i, j) = arccos
(

E(i, j)√
E(i,i),E( j, j)

)
, and E is the exponential of the adjacency matrix. The average

communicability measures how much two vertices can communicate by using all of the possible
paths in the network, where the shorter path has more weight (20, 21). The average communica-
bility angle evaluates the efficiency of two vertices passing impacts to each other in the network
with all possible paths (20, 22).

8. CONCLUSION

Developing effective therapies for combating COVID-19 caused by SARS-CoV-2 has become a
vital task for human health and the world economy. Although designing new anti-SARS-CoV-2
drugs is of paramount importance, traditional drug discovery might take many years. Effective
vaccines typically require more than a year to develop. Therefore, a more efficient strategy in
fighting COVID-19 is to look for antibody therapies, which is a relatively easier technique com-
pared to the development of small-molecule drugs or vaccines. The search for possible antibody
drugs has attracted increasing attention in recent months. Moreover, CDRs, which are located
in the tip of the antibody, determine the specificity of antibodies and make antibody therapies a

www.annualreviews.org • Review of COVID-19 Antibody Therapies 25

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

02
1.

50
:1

-3
0.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
 A

cc
es

s p
ro

vi
de

d 
by

 1
47

.9
2.

10
6.

66
 o

n 
07

/0
6/

21
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



promising way to fight COVID-19. Above, we analyze the structure, function, and therapeutic po-
tential of seven SARS-CoV-2-neutralizing antibody candidates that have 3D structures available
in the PDB. In a comparative study, we also review five antibody 3D structures associated with
SARS-CoV, as well as two ACE2 3D structures, one associated with SARS-CoV-2 and the other
with SARS-CoV. All antibody and ACE2 structures form complexes with viral S proteins. The
multiple-order-of-magnitude discrepancies in reported experimental binding affinities for these
complexes motivate us to carry out a systematic computational analysis of these 14 complexes.
Using computational topology, machine learning, and wide class network models, we put all of
the complexes on an equal footing to evaluate binding and interactions. Additionally, we evaluate
the repositioning potentials of five SARS-CoV antibodies for treating COVID-19 by predicting
their binding affinity changes following the mutations from SARS-CoV to SARS-CoV-2 at the
S-protein RBD. Finally, we summarize all of the currently ongoing clinical antibody trials for
COVID-19, which have many targets, including the S protein. In a nutshell, we provide a review
of existing antibody therapies for COVID-19 and introduce many theoretical models to rank the
potency and analyze the properties of antibodies.

9. SUPPORTING MATERIAL

Supporting materials are available in the Supplemental Appendix. Notably, the Supplemental
Appendix includes an analysis of antibodies that became available after the acceptance of this
review.
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