
Learning to Recognize Semantically Similar Program
Statements in Introductory Programming Assignments
Mayur Sunil Jawalkar

Rochester Institute of Technology
mj8628@rit.edu

Hadi Hosseini
Pennsylvania State University

hadi@psu.edu

Carlos R. Rivero
Rochester Institute of Technology

crr@cs.rit.edu

ABSTRACT
With the continuously increasing population of students enrolling
in introductory programming courses, instructors are facing chal-
lenges to provide timely and qualitative feedback. Automated sys-
tems are appealing to address scalability issues and provide person-
alized feedback to students. Many of the current approaches fail
to handle flexible grading schemes and low-level feedback regard-
ing (a set of) program statements. The combination of program
static analysis in the form of program dependence graphs and ap-
proximate graph comparisons is promising to address the previous
shortcomings. Current techniques require pairwise comparisons of
student programs that does not scale in practice. We explore tech-
niques to learn models that are able to recognize whether an unseen
program statement belong to a semantically-similar set of program
statements. Our initial results on a publicly-available introductory
programming assignment indicate that it is possible to assign with
high accuracy an individual program statement to some of the pop-
ular semantically-similar sets, and a large proportion is covered
with these, which suggests feedback provided by instructors can
be automatically propagated to other student programs.

KEYWORDS
Introductory Programming, CS1/CS2, Assessment, Program Depen-
dence Graph, Structural Graph Clustering

1 INTRODUCTION AND BACKGROUND
The interest in computer science has originated an unprecedented
growth in the number of novice programming learners [1]. Using
traditional methods to provide feedback to such large numbers of
students is becoming unmanageable [1]. Current approaches for
assisting instructors with providing feedback to students in pro-
gramming assignments mainly focus on its automation [3]; how-
ever, very few support an active role for the instructor [3]. On one
hand, instructors tend to provide feedback on a smaller criteria that
can be refined while grading a given assignment [2], a.k.a. holistic
grading, which is not supported by existing approaches. On the
other hand, instructors have very limited customization opportu-
nities, so the feedback students receive is internally decided by
each approach [3]. However, instructors possess more contextual
information that should be reflected in the feedback. Furthermore,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE ’21, March 13–20, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8062-1/21/03.
https://doi.org/10.1145/3408877.3439599

different instructors may consider certain aspects of the feedback
more important than others [2].

Marin and Rivero [4] presented a technique to cluster program
statements that are semantically similar, for instance, a Java pro-
gram can read a number n from the standard input as follows:
n = s.nextInt(), n = Integer.parseInt(b.readLine()) and
n = s.nextShort() (assuming that s is a Scanner and b is a
BufferedReader). All these individual statements can be clustered
together and be labeled as “Reading n from input” since they have
similar semantics but not necessarily the same syntax. These clus-
ters are promising to overcome the previous shortcomings (holistic
grading and feedback customization). Unfortunately, the technique
requires pairwise comparisons among student programs to discover
clusters of individual program statements.

2 METHODS AND RESULTS
We explore the use of machine learning in recognizing whether
an unseen program statement belongs to a cluster of semantically-
similar program statements. Assuming that clusters have been an-
notated with feedback to be delivered to students, such feedback
can be automatically propagated if a program statement belongs
to a cluster. We exploit a previous technique [4], which relies on
program dependence graphs,1 to compute statement clusters over
a subset of 750 Java programs of the Flipping Game.2

This technique discovers 74 clusters of program statements that
are semantically similar. Using this as a ground truth, we exploit
different features of an individual statement to learn a model to clas-
sify said statement as part of the discovered statement clusters. Our
initial results show that, for the popular top-10 statement clusters,
our accuracy is high (roughly 90% or more), which suggests that
our approach can be used to automatically propagate customized
feedback to many students programs based on few annotations.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 1915404.

REFERENCES
[1] Tracy Camp, Stuart H. Zweben, Duncan Buell, and Jane Stout. 2016. Booming

Enrollments: Survey Data. In SIGCSE. 398–399.
[2] Sue Fitzgerald, Brian Hanks, Raymond Lister, Renée McCauley, and Laurie Murphy.

2013. What are we thinking when we grade programs?. In SIGCSE. 471–476.
[3] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2019. A Systematic Literature

Review of Automated Feedback Generation for Programming Exercises. TOCE 19,
1 (2019), 3:1–3:43.

[4] Victor J. Marin and Carlos R. Rivero. 2019. Clustering Recurrent and Semantically
Cohesive Program Statements in Introductory Programming Assignments. In
CIKM. 911–920.

1https://github.com/victorjmarin/CIKM19/
2https://codeforces.com/problemset/problem/327/A

https://doi.org/10.1145/3408877.3439599
https://github.com/victorjmarin/CIKM19/
https://codeforces.com/problemset/problem/327/A

	Abstract
	1 Introduction and Background
	2 Methods and Results
	Acknowledgments
	References

