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ABSTRACT
With the continuously increasing population of students enrolling
in introductory programming courses, instructors are facing chal-
lenges to provide timely and qualitative feedback. Automated sys-
tems are appealing to address scalability issues and provide person-
alized feedback to students. Many of the current approaches fail
to handle flexible grading schemes and low-level feedback regard-
ing (a set of) program statements. The combination of program
static analysis in the form of program dependence graphs and ap-
proximate graph comparisons is promising to address the previous
shortcomings. Current techniques require pairwise comparisons of
student programs that does not scale in practice. We explore tech-
niques to learn models that are able to recognize whether an unseen
program statement belong to a semantically-similar set of program
statements. Our initial results on a publicly-available introductory
programming assignment indicate that it is possible to assign with
high accuracy an individual program statement to some of the pop-
ular semantically-similar sets, and a large proportion is covered
with these, which suggests feedback provided by instructors can
be automatically propagated to other student programs.
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1 INTRODUCTION AND BACKGROUND
The interest in computer science has originated an unprecedented
growth in the number of novice programming learners [1]. Using
traditional methods to provide feedback to such large numbers of
students is becoming unmanageable [1]. Current approaches for
assisting instructors with providing feedback to students in pro-
gramming assignments mainly focus on its automation [3]; how-
ever, very few support an active role for the instructor [3]. On one
hand, instructors tend to provide feedback on a smaller criteria that
can be refined while grading a given assignment [2], a.k.a. holistic
grading, which is not supported by existing approaches. On the
other hand, instructors have very limited customization opportu-
nities, so the feedback students receive is internally decided by
each approach [3]. However, instructors possess more contextual
information that should be reflected in the feedback. Furthermore,
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different instructors may consider certain aspects of the feedback
more important than others [2].

Marin and Rivero [4] presented a technique to cluster program
statements that are semantically similar, for instance, a Java pro-
gram can read a number n from the standard input as follows:
n = s.nextInt(), n = Integer.parseInt(b.readLine()) and
n = s.nextShort() (assuming that s is a Scanner and b is a
BufferedReader). All these individual statements can be clustered
together and be labeled as “Reading n from input” since they have
similar semantics but not necessarily the same syntax. These clus-
ters are promising to overcome the previous shortcomings (holistic
grading and feedback customization). Unfortunately, the technique
requires pairwise comparisons among student programs to discover
clusters of individual program statements.

2 METHODS AND RESULTS
We explore the use of machine learning in recognizing whether
an unseen program statement belongs to a cluster of semantically-
similar program statements. Assuming that clusters have been an-
notated with feedback to be delivered to students, such feedback
can be automatically propagated if a program statement belongs
to a cluster. We exploit a previous technique [4], which relies on
program dependence graphs,1 to compute statement clusters over
a subset of 750 Java programs of the Flipping Game.2

This technique discovers 74 clusters of program statements that
are semantically similar. Using this as a ground truth, we exploit
different features of an individual statement to learn a model to clas-
sify said statement as part of the discovered statement clusters. Our
initial results show that, for the popular top-10 statement clusters,
our accuracy is high (roughly 90% or more), which suggests that
our approach can be used to automatically propagate customized
feedback to many students programs based on few annotations.
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