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ABSTRACT

Prescribed burning (PB) is a prominent source of PM, 5 in the southeastern US and exposure
to PB smoke is a health risk. As demand for burning increases and stricter controls are
implemented for other anthropogenic sources, PB emissions tend to be responsible for an
increasing fraction of PM, s concentrations. Here, to quantify the effect of PB on air quality,
low-cost sensors are used to measure PM, s concentrations in Southwestern Georgia. The
feasibility of using low-cost sensors as a supplemental measurement tool is evaluated by
comparing them with reference instruments. A chemical transport model, CMAQ, is also
used to simulate the contribution of PB to PM, 5 concentrations. Simulated PM, 5 concentra-
tions are compared to observations from both low-cost sensors and reference monitors.
Finally, a data fusion method is applied to generate hourly spatiotemporal exposure fields
by fusing PM, s concentrations from the CMAQ model and all observations. The results show
that the severe impact of PB on local air quality and public health may be missed due to the
dearth of regulatory monitoring sites. In Southwestern Georgia PM, ;s concentrations are
highly non-homogeneous and the spatial variation is not captured even with a 4-km hor-
izontal resolution in model simulations. Low-cost PM sensors can improve the detection of
PB impacts and provide useful spatial and temporal information for integration with air
quality models. R of regression with observations increases from an average of 0.09 to 0.40
when data fusion is applied to model simulation withholding the observations at the
evaluation site. Adding observations from low-cost sensors reduces the underestimation of
nighttime PM, s concentrations and reproduces the peaks that are missed by the simula-
tions. In the future, observations from a dense network of low-cost sensors could be fused
with the model simulated PM, s fields to provide better estimates of hourly exposures to
smoke from PB.

Implications: Prescribed burning emissions are a major cause of elevated PM, 5 concentrations,
posing a risk to human health. However, their impact cannot be quantified properly due to
a dearth of regulatory monitoring sites in certain regions of the United States such as
Southwestern Georgia. Low-cost PM sensors can be used as a supplemental measurement tool
and provide useful spatial and temporal information for integration with air quality model
simulations. In the future, data from a dense network of low-cost sensors could be fused with
model simulated PM, s fields to provide improved estimates of hourly exposures to smoke from
prescribed burning.
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Introduction

Particulate matter, a major component of air pollution,
is associated with increased incidences of cardiovascular
and respiratory disease (Brook et al. 2004). In 2017, 2.94
(95% uncertainty interval 2.50-3.36) million deaths
worldwide (5.25% of total global mortality) were caused
by exposure to outdoor PM, 5 (particulate matter with

an aerodynamic diameter less than 2.5 um) (Stanaway
et al. 2018). In the US, PM, ;5 is the environmental risk
factor with the largest health burden and the sixth largest
mortality risk overall (Cohen et al. 2017).

Wildland fires, including wildfire and prescribed burn-
ing, are a major source of PM, 5. 29% of PM, 5 emissions
in the US comes from wildland fires according to the 2017
US National Emissions Inventory (NEI) (EPA, 2017).
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Prescribed burning is a land management tool practiced
to reduce wildfire risks, control pest insects and disease,
and recycle nutrients back to the soil. 14% of PM, 5 emis-
sions in the US and 26% in the southeastern US originate
from prescribed burning. Georgia is one of the most
active prescribed burning states in the Southeastern US
with a total burned area around 1.25 million acres in 2017
(NICC 2017). PM, 5 concentration increases significantly
under the influence of fire smoke (Reisen et al. 2011). As
stricter controls are implemented for anthropogenic
sources, prescribed burning emissions will provide an
even larger contribution to PM, 5 concentrations.

Rappold et al. (2017), based on model simulations,
found that over 40% of Americans live in areas with
a moderate or high contribution of wildland fires to
ambient PM,s concentrations. Researchers have
reported associations between fire smoke and respira-
tory morbidity (Dennekamp and Abramson 2011), car-
diovascular disease (Haikerwal et al. 2015) and
additional premature deaths (Fann et al. 2018).
A better understanding of the contributions of pre-
scribed burning to air pollution and its impacts on
public health is important, especially to the local popu-
lations affected by prescribed burning directly. High
resolution exposure fields can be generated by fusing
observation from monitoring sites with model simula-
tions, which provide the spatial information to the fields
(Huang et al. 2018a). However, the sparse distribution of
air quality monitoring sites limits the quality of the
exposure fields. Deployment of inexpensive devices to
measure ambient pollutant concentrations could pro-
vide better resolved spatial information and improve
the accuracy of exposure fields to quantify prescribed
burning’s impacts on air quality and public health.

Air quality sensors that are lower-cost, portable and
easy-to-use have been widely used as a supplemental tool
to measure ambient pollutant concentrations and to pro-
vide high-resolution data in near real-time (Cortez-Lugo
et al. 2015; Valdés et al. 2012; Van Den Heuvel et al. 2018;
West et al. 2016; Zamora et al. 2019). Previous research
evaluating different types of low-cost PM sensors in both
laboratory and field studies have shown varying perfor-
mance levels for the sensors against reference instruments
(Gao, Cao, and Seto 2015; Han, Symanski, and Stock
2017; Johnson et al. 2016, 2018; Kelly et al. 2017; Zheng
et al. 2018). Gao, Cao, and Seto (2015) tested a low-cost
sensor (Shinyei PPD42NS) in Xi’an, China and reported
relatively good performance in high concentration, urban
environments. Lower R* values were obtained at lower
ambient concentrations. Han, Symanski, and Stock
(2017) evaluated another low-cost sensor (Dylos DC
1700) and compared its measurements with those of an
aerosol spectrometer measuring particle number

concentrations, in an urban residential area of Houston,
Texas. They reported a strong correlation between those
two sets of measurements but also mentioned that relative
humidity (RH) can significantly change the association
between the low-cost sensor and the reference instru-
ment. When RH is larger than 60%, water uptake can
increase the size of the particles, enhance their scattering
coeflicients, and, in the absence of dryers, significantly
affect the performance of low-cost sensors. Zamora et al.
(2019) also found that the accuracy of the sensors
decreases when RH is larger than 50%.

Zheng et al. (2018) evaluated a low-cost PM sensor
(Plantower PMS3003) in both low concentration suburban
regions (Durham and Research Triangle Park, North
Carolina) and a high concentration urban location
(Kanpur, India). Low-cost sensor performance improved
as ambient PM, 5 increased. They also pointed out that -
attenuation monitors (BAM) may not be ideal for testing
low-cost PM sensors at low concentrations because of poor
signal-to-noise ratio in low concentrations with short real-
time averaging periods. Fewer studies used low-cost sensors
in the field of wildland fire, but those studies also show that
low-cost sensors have better performance in high concen-
tration environments. Kelleher et al. (2018) developed
a low-cost PM, 5 sampler and evaluated its performance
as a smoke-monitoring tool in Colorado during
a prescribed burning activity period. The comparison
between the low-cost sampler and reference instrument
(BAM) showed good agreement (R* = 0.92). Gupta et al.
(2018) deployed a low-cost air quality monitor network in
California to quantify the impact of wildfires during
October 2017. The performance of the sensors varied with
PM, 5 levels; however, between 15 and 50 pg/m3, the nor-
malized bias with respect to reference instruments was
nearly constant around 35%. Holder et al. (2020) evaluated
three types of low-cost PM sensors and provided
a correction equation to improve their performance in
detecting the fire impact. Delp and Singer (2020) provided
smoke-specific adjustment factors for several monitors
housing other models of Plantower PMS sensors in com-
parison to reference instruments during wildfires in
California and Utah. Sayahi, Butterfield, and Kelly (2019)
evaluated similar Plantower PMS sensors by comparing 24-
hour average PM,s measurements with those from
a collocated tapered element oscillating microbalance
(TEOM) in Salt Lake City, Utah and reported R* values of
0.65-0.90 in spring and during the wildfire season. Landis
etal. (2021) evaluated several low-cost sensors during wild-
land fire events as part of a sensor challenge, and found that
while raw sensor accuracies are low, regression calibration
improves the accuracies of the sensors significantly.

In this paper, we evaluate the viability of using a low-
cost sensor (Plantower PMS 3003) to capture fire



impacts on ambient PM, 5 concentrations by comparing
low-cost sensor measurements with those of a reference
instrument (BAM) in Southwestern Georgia. We also
use the Community Multiscale Air Quality (CMAQ)
(Byun and Schere 2006) model, a chemical transport
modeling system, to simulate the PM, 5 concentrations
and the Decoupled Direct Method (DDM) (Napelenok
et al. 2006), a sensitivity analysis technique for comput-
ing sensitivity coefficients simultaneously, while air pol-
lutant concentrations are being computed), to provide
added information of the impact of prescribed burning
on the local air quality. A data fusion method has also
been applied by combining hourly simulations from
CMAQ and observations from the BAM and low-cost
sensors to assess how well the data fused fields captures
PM, 5 concentrations from fires, and to evaluate whether
measurements from low-cost sensors could provide
additional spatial and temporal information.

Materials and methods
Study area and low-cost sensor deployment

The study area includes Dougherty, Lee, and Worth
Counties in Southwestern Georgia with a total popula-
tion of about 150,000 (1.5% of state total population)
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and a total area of 820,000 acres (2.14% of state area,
3.3E+9 m?). The per capita incomes (in US dollars) for
these counties are 19,210, USD 23,867 USD and 18,348
USD respectively, lower than the national per capita
income ($27,334) according to the 2010 American
Community Survey (US Census Bureau 2015).
Southwestern Georgia is one of the most active pre-
scribed burning areas in the US (Huang et al. 2018b).
The annual total burn area of these three counties was
around 75,000 acres in 2016 (5% of state total) (Huang
et al. 2018b).

Three low-cost sensors were deployed at three high
schools (Figure 1), Dougherty, Lee, and Worth County
High Schools (DCHS, LCHS, WCHS), to measure the
local PM, 5 concentrations starting on May 16, 2017.
A fourth low-cost sensor was placed at Turner
Elementary School in Albany, Georgia (Figure 1) on
March 14, 2018 next to a Met-One BAM Monitor
operated by the Environmental Protection Division
(EPD) of the Georgia Department of Natural
Resources. EPD measures PM, 5 at this site, which is
the only one in the region, since 1991 (EPD, 2018). The
low-cost sensors deployed at the four sites produced
hourly data for periods of 3 to 12 months (Table 1). All
four sensors were running during March 14-May 8,
2018.

Locations of Monitoring Site and Sensors
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Figure 1. Locations of low-cost sensors and the Georgia Environmental Protection Division (EPD) monitoring site at Turner Elementary
School in Albany, Georgia. The fourth low-cost sensor is collocated with EPD’s BAM.
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Table 1. Low-cost sensor location and measurement dates.

Distance from EPD site

Low-cost Sensor Location Measurement Dates (km)
Dougherty Comprehensive High School (DCHS) May 16, 2017 — June 20, 2018 1
Worth County High School (WCHS) May 16, 2017 - May 08, 2018 25
Lee County High School (LCHS) May 16, 2017 — July 27, 2017; March 14, 2018 — April 20, 2018 18

EPD site at Turner Elementary School (Albany)

March 14, 2018 - June 20, 2018 -

Low-cost sensor configuration and data correction

The low-cost PM sensor used for the field measurements
in this study is the Plantower PMS 3003. The Plantower
PMS 3003 low-cost sensor uses an optical method to
measure PM; (particulate matter with an aerodynamic
diameter less than 1 pm), PM, 5 and PM,, (particulate
matter with an aerodynamic diameter less than 10 um).
The light emitter is a Helium-Neon (He-Ne) laser and
a photodiode perpendicular to the light source is used to
measure the scattered light. An internal program calcu-
lates the mass concentration from the particle number
concentration (number of pulses in the output waveform
of the photodiode signal) and particle size (amplitude of
the waveform of the photodiode output signal). The sen-
sor package used here is the same as one used in a number
of previous studies around the world and is described
elsewhere (Barkjohn et al. 2020; Lal et al. 2020; Zhang
et al. 2019; Zheng et al. 2018). The enclosure is a light
weight electrical box (20 x 10 x 7 cm) with an inlet hole
that aligns with the Plantower PMS 3003 sensor. In addi-
tion to the low-cost PM sensor, enclosed in the box are
a Sensirion SHT 15 RH and temperature sensor,
a microcontroller, a high-precision real-time clock, an
SD card adapter for data storage, and some other electro-
nic components. The package was zip tied in place and
powered by plugging into an AC power source.

Kelly et al. (2017) conducted an evaluation of
Plantower PMS 3003 in two settings: an ambient envir-
onment and a controlled wind-tunnel, with PM, 5 levels
ranging up to 70 ug/m?> and 850 pg/m?, respectively. The
study compared the low-cost sensor performance with
regulatory-grade instruments and found that the low-
cost PM sensor correlates well with those instruments;
however, it indicated that additional measurements
under variable ambient conditions are needed. Zheng
et al. (2018) evaluated the same low-cost sensor
(Plantower PMS 3003) in both low concentration
(9-10 pg/m> on average) suburban regions and a high
concentration (> 35 pg/m® urban location. The mea-
surements were compared against Federal Equivalent
Methods (FEMs). The low-cost sensor performance
was better when ambient PM, 5 was higher.

Choosing an appropriate correction method is very
important for using the low-cost sensor data. Here, we

used the following approach. First, before deployment to
Albany, we collocated all of the sensors with a TEOM at an
urban background research site (Jefferson Street in Atlanta,
approximately 250 km north-northwest of Albany) for
seven days. We used the information from this collocation
to determine the variability among the sensors. We
repeated this procedure for five days after data collection
in Albany to account for any drift due to aging. The inter-
sensor variability was negligibly small while the drift due to
aging was slightly larger. Then, we tried two different types
of correction on the low-cost sensor data. In the first one,
we performed a linear regression between EPD’s BAM and
the collocated low-cost sensor at the Albany site (Figure
Sla). We applied the linear relationship obtained from this
regression to correct the data from all of the low-cost
sensors. In the second one, we corrected the low-cost sensor
data for changes in relative humidity (RH) as recom-
mended by Zheng et al. (2018). For this, we used
a correction factor (CF) of the form

RH?

CF = b
T T RE

(1)

where RH is 6-hour average RH data from a regional
airport near Albany, and a and b are best-fit parameters
obtained from the regression of RH and the ratio of raw
PM, s measurement from the low-cost sensor to PM, 5
from the collocated BAM at the Albany EPD site (Figure
S1b). The data from all low-cost sensors were corrected
through division by CF.

Air quality simulation

We focus our analysis on the March 8-15, 2018 period,
which includes the National Ambient Air Quality
Standard (NAAQS) exceedance for PM, s (daily PM, 5
concentration > 35 pg/m’) on March 10. The daily total
burn area in the twelve counties surrounding the moni-
tors on that day and the previous day are larger than 7,000
acres (Figure 2). Also, from March 13 to 15 (Figure 2d),
the daily total burn area is larger than 5,000 acres
each day. It is possible that those fires had a severe impact
on air quality but the impact was missed in the observa-
tions by the BAM and the low-cost sensors. In order to
evaluate the performance of low-cost sensors during the
exceedance day and the feasibility of chemical transport
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Figure 2. (a) Daily total burn area at the three low-cost sensor deployed (Dougherty, Lee, Worth) and nine surrounding counties
according to the Georgia Forestry Commission (GFC) permit database and daily average PM, s concentration from the BAM at Albany
(red); Permitted burns at the three low-cost sensor deployed counties (blue) and nine surrounding counties (gray) on b) March 9, c)
March 10 and d) March 13, 2018. Red circles represent fires larger than 150 acres, orange circles represent fires larger than 50 acres and
smaller than 150 acres; yellow circles represent fires smaller than 50 acres; Green circles represent low-cost sensors and the black star

represents the Albany EPD site.

models to capture the temporal and spatial variations of
the fire impact, an eight-day period (March 08-15) was
simulated using Weather Research and Forecasting
(WRF) model version 3.6 (WRF Model V3.6 2019),
a mesoscale numerical weather prediction model, and
CMAQ version 5.0.2, which is equipped with DDM.
The impacts of prescribed burning emissions on PM, 5
are calculated by CMAQ-DDM as the first-order sensitiv-
ities of concentrations to those emissions. The model
configurations are the same as in the HiRes2 air quality
forecasting system (Huang et al. 2020; Odman et al. 2018).
The prescribed burning emissions are calculated by using
the BlueSky framework (Larkin et al. 2009) according to

the burn area information from the Georgia Forestry
Commission’s (GFC) burn permit database. The fuel
map in BlueSky is from the Fuel Characteristic
Classification System (FCCS) (McKenzie et al. 2007).
The computer program Consume 3.0 (Joint Fire Science
Program 2009) was used to calculate fuel consumption in
BlueSky. All fires are assumed to start at 11:00 local time
and last 3 hours. Other emission sources’ data were pro-
cessed by Sparse Matrix Operator Kernel Emissions
(SMOKE) (Carolina Environmental Program 2013)
based on the 2011 National Emissions Inventory (NEI)
(US EPA, 2019). The grid used by both WRF and CMAQ
has a horizontal resolution of 4 km over Georgia and
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surrounding areas as the innermost nest of a grid system
that has 36-km resolution over the contiguous US and 12-
km resolution over the eastern US. It has 13 vertical layers
starting with a 20-m height at the ground and expanding
with altitude until approximately 20 km.

Data fusion

We applied a data fusion method that combines simula-
tions from CMAQ-DDM at 4 km resolution and obser-
vations from both the BAM at Albany EPD site and low-
cost sensors to generate hourly spatiotemporal fields for
exposure estimates. The method has been used to esti-
mate the daily PM, s and its components and gaseous
fields for Georgia (Friberg et al. 2016) and North
Carolina (Huang et al. 2018a). Details of the method
can be found in previous publications (Friberg et al.
2016; Huang et al. 2018a) and briefly summarized in
the Supporting Information. The data fusion approach
fuses the simulated fields with ground-level observa-
tions, so we expect to see strong agreement in the mod-
eled grid cells that include an observation.

We also conducted a location-based data withholding
evaluation. Observations from one location (Albany
EPD site, DCHS or WCHS) were withheld and data
fusion was performed with observations from the two
remaining locations. The withheld observations for that
iteration were compared with the data-fused simulated
values to evaluate the performance of the data fusion
method and assess whether low-cost sensors could pro-
vide extra spatial and temporal information to improve
the accuracy of exposure fields.

Results and discussion

Comparison of observations from low-cost sensors
and BAM

Comparison between low-cost sensors and BAM using
different correction methods

Daily PM, s observations from EPD’s BAM at the
Albany site and collocated low-cost sensor show that
the low-cost sensor captures the variations in the PM, 5
levels (Figure S2). Daily PM, 5 concentrations using RH
correction match better with BAM observations, espe-
cially at the peak concentrations. Comparison between
the observations from BAM at Albany EPD site and
daily PM, s measurements by the collocated low-cost
sensor show that RH correction performs slightly better,
with a higher R* and slope and lower intercept (Figure
S3). Since RH correction results in better low-cost sensor
performance, the following discussion will focus on
results obtained using RH correction only.

Time series of PM, s from low-cost sensors and BAM
Most of the hourly PM,s concentration peaks
detected by EPD’s BAM at the Albany site are cap-
tured by the low-cost sensors (Figure S4). However,
low-cost sensors are less sensitive to changes in PM, 5
concentrations than the BAM, and record less varia-
tion [standard deviation (SD) of ~5 pg/m3; Table 2]
than that of the BAM at Albany EPD site (SD =
8.68 ug/m’). Differences in the observed peak levels
between the BAM and the sensors other than at the
Albany EPD site are likely due to the presence of
small fire plumes, which can lead to a very hetero-
geneous PM, s field on scales of less than 1 km.
Sometimes the narrow fire plumes would miss some
of the sensors completely. The Albany low-cost sen-
sor observed elevated levels of PM, s on May 7, 2018
(max of 36 pug/m’), though these were less than those
observed by the BAM (max of 46 pg/m’) at Albany
EPD site (Figure S5). On May 11, 2018, PM, 5 levels
above 20 pg/m® were detected by the BAM. The
Albany low-cost sensor also observed high concentra-
tions during the same periods (8:00-11:00), but the
peak hour from the Albany low-cost sensor (10:00) is
two hours later than that from the BAM at 8:00
(Figure S5). The low-cost sensors at Albany EPD
site and DCHS both capture a peak > 40 pg/m’ on
April 26; however, there are no valid values on
that day from the BAM. Low-cost sensors may thus
serve as a supplement for regulatory monitors in
such instances.

Daily trends of PM, s concentrations from low-
cost sensors and Albany EPD site show that the low-
cost sensors did not capture levels as high as the
BAM (Figure S6). On March 10, 2018, the BAM
recorded 50 pg/m® an exceedance of the 35 pg/m’
daily average PM,s NAAQS, and the concentration
of 36 pug/m’ from DCHS low-cost sensor, the closest
low-cost sensor to the Albany EPD site, also detected
the exceedance despite this value being 30% lower
than the BAM. However, this value is still the highest
value observed among the low-cost sensors during
the measurement period (Figure S6). Note that the
Albany low-cost sensor was not operational on
that day.

Table 2. Mean and standard deviation (SD) of hourly PM,s
concentrations from the BAM at the Georgia EPD monitoring
site in Albany and low-cost sensors during their measurement
periods (Table 1).

Hourly Albany (BAM)  Albany = DCHS  LCHS  WCHS
Mean (ug/m?) 7.98 7.50 669  6.10 6.86
SD (ug/m’) 8.68 5.06 481 3.70 5.62




Comparisons of hourly and daily PM, s concentrations
between low-cost sensors and BAM

Figures S7 and Figure 3 demonstrate that low-cost sen-
sors underestimate the PM, 5 concentrations with respect
to the BAM observations at EPD’s Albany monitoring site
with linear regression slopes of less than 1. The low-cost
sensor at the EPD site has the largest R* (= 0.83) among
all four sensors. Note that this value is within the R* range
reported by Sayahi, Butterfield, and Kelly (2019) for
a similar sensor under comparable conditions. For the
DCHS low-cost sensor, which is the second closest low-
cost sensor to the monitoring site (1 km), the R* (= 0.72)
and slope (= 0.55) of the linear regressions of daily PM, 5
concentrations with the BAM observations at Albany
EPD site (Figure 3b) are the largest among the three
high school low-cost sensors. Lower R? values from com-
parisons with the LCHS and WCHS low-cost sensors do
not mean those low-cost sensor performances are not
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adequate. With increasing distance between the low-cost
sensors and EPD’s BAM at Albany monitoring site, mea-
sured concentrations are more likely to reflect impacts
from different fire plumes; therefore, those lower R®
values are expected. They show the spatial variation of
fire impact on PM, s concentrations and that a single
monitoring site may miss high concentrations in the area.

Both the hourly and daily PM,s concentration
regressions between the BAM and low-cost sensor at
the Albany EPD site have slopes less than 1 (Figure 3a,
S7a). In general, the observations of PM, 5 concentra-
tions from the low-cost sensor are higher than those
from the BAM below 10 pg/m® and lower for larger
concentrations. The comparisons between the BAM
and sensors at DCHS and WCHS with a cutoff at 95th
percentile of BAM observations (Figure S8) shows that
almost all the observations from DCHS and WCHS low-
cost sensors are below the diagonal line.

60 r

— 2. ’
e 10p8 6,55 +0.02_ 7
> Intercept: 2.5+ 0.2
= P

— 40 R4

o R4 0

2 7/

0

— 20

n

Q

5

3

3 oF, b.Dougherty

0 20 40 60

BAM (ug/m®)

B (e)]
o o

Low-cost Sensor (ug/ms)
N
o

o

0 20 40
BAM (ug/m®)

60

Figure 3. Comparisons of daily PM, s concentrations between low-cost sensors and the BAM at Georgia EPD site in Albany from May 16,
2017 to June 20, 2018: a) Albany sensor (no data before March 14, 2018); b) Dougherty Comprehensive High School (DCHS) sensor; c)
Worth County High School (WCHS) sensor (no data from May 09, 2018 to June 20, 2018); d) Lee County High School (LCHS) sensor (no
data from July 28, 2017 to March 13, 2018 and April 21, 2018 to June 20, 2018).
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Intercomparison between low-cost sensors

The R? values of linear regressions between low-cost
sensors are around 0.9 and the slopes are very close to
1 (Figure S9). As the distance between the low-cost
sensor at the Albany site and another sensor (DCHS,
LCHS, or WCHS) increases, R*> decreases. This is
a direct result of the spatial variation in prescribed
burning impact on PM,s concentrations. While
DCHS, which has the low-cost sensor closest to the
Albany EPD site, has the highest R* (0.98), WCHS, the
farthest low-cost sensor, has the lowest R* (0.90).

Air quality simulation results: PM,_ s concentrations
and fire contributions

The CMAQ simulations do not capture well the tem-
poral variation of PM, 5 concentrations detected by both
BAM and low-cost sensors (Figure S10). The high PM, 5
concentrations are mainly from fire impact (DDM
results). The following discussion will focus on two
periods: March 9-10 and March 13-14, 2018 to explain
possible reasons why the simulations do not agree with
observations.

On March 9, the simulation predicts the peak
concentration to be around 85 pg/m’, which is in
good agreement with the observed peak level, but the
observed occurs five hours earlier (Figure 4). This
mismatch in the time of occurrence may be due to
inaccurate starting time and duration of the fires in
the model. Recall all the fires in the CMAQ-DDM
model were assumed to start at11:00 and last 3 hours
in the simulation; however, permit records for
March 9 show fires approved to start in the afternoon
and end at night. However, the actual start time and
duration of fires are not known since no post-burn
information is available. Also, since there are hun-
dreds of fires during highly active burn days, it is
impossible to differentiate each fire and define
a specific start and end time. On March 10, the
observed PM, s peak at 10:00 (Figure 4a) may be
caused by a new fire starting early and located close
to the monitoring site. However, the simulation does
not have any fires starting before 11:00 and, since the
boundary layer is changing rapidly at 10:00, it is hard
to distinguish which fire causes the peak. The simu-
lation does not capture the exceedance of the 35 ug/
m’ daily PM, ;s NAAQS standard either. The large
difference between the observation and simulation at
the beginning hours of March 10 may be mainly
caused by simulated meteorology. The observed
wind speed is zero from 1:00 to 6:00 and then
again from 19:00 to 0:00; however, the WREF-
simulated wind speed is larger than 2 m/s during

the same periods (Figure 4c). A systematic bias that
leads to overestimated nighttime wind speed have
been reported in other applications of WRF (Garcia-
Menendez, Hu, and Odman 2013; McNider et al.
2018).

The DCHS low-cost sensor and EPD’s Albany site
are located in two neighboring grid cells in the model
simulations. At 18:00 on March 9, the simulated PM, 5
concentrations at these two grid cells are almost the
same (~ 30 pg/m’). However, the observations from
EPD’s BAM at Albany (80 ug/m’) and low-cost sensor
(50 pg/m?) at DCHS are quite different. The simulation
does not capture this large spatial gradient in PM, 5
concentrations (Figure 4(a,Figure 4b)). On a different
note, the peak concentration at the Albany EPD site is
observed at 10:00 on March 10 (Figure 4a), while the
peak at DCHS occurs at 11:00 (Figure 4b). There may
be fires or lingering smoke nearby impacting the low-
cost sensors at DCHS.

For the WCHS low-cost sensor, the peak at 13:00
(Figure S11) on March 13, 2018 is caused by medium
size fires (51 to 150 acres) to the northwest, marked by
the orange circles in Figure 2d. There are several large
fires (> 150 acres) to the west and southwest; however,
their smoke plumes move to the southeast under north-
westerly winds and miss the Albany EPD site as well as
the DCHS low-cost sensor (Figure 5). The observations
at both locations are quite flat at low concentrations
from 11:00 to 16:00 (Figure S11). Meanwhile, the coun-
ties to the south, including parts of Dougherty County,
are severely affected by those large fires as shown in
Figure 5, but there are no observations in this area to
confirm this.

Data fusion and data withholding results

There is little correlation between observations and
CMAQ simulations at EPD site in Albany, DCHS and
WCHS (Figure 6a-c). Due to the nature of data fusion
method (i.e., observation values dominate at the grid cell
where the monitoring site is located), the strong correla-
tions between observations and data fusion results
(Figure 6d-f) are expected. The results of the data with-
holding evaluation show that low-cost sensors could
improve the accuracy of exposure fields compared to
raw CMAQ results, especially for the data withholding
test at Albany EPD site (Figure 6g) that uses observa-
tions from two low-cost sensors located at DCHS (1 km
away from the EPD site) and WCHS only. It shows an
increased R*> of 0.27 (Figure 6g) compared to 0.04
(Figure 6a) from CMAQ. The increase of R? is signifi-
cant (from 0.17 to 0.38) even at WCHS where data from
sites 25 km away are being fused. This evaluation shows
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that using low-cost sensors and applying the data fusion
method could improve the accuracy of estimated expo-
sure fields. Nevertheless, there is still a large fraction of
the variability that needs to be explained.

The temporal trends at the three locations (Figure
7) reflect similar trends that show how including
observations from low-cost sensors can improve the
accuracy of the final exposure fields. Using low-cost
sensor observations could decrease the

underestimation of prescribed burning impacts dur-
ing the night time of model simulations, which is
a systematic problem of the meteorological model
with overestimation of the nighttime wind speed.
Failure to predict the exceedance day on March 10
was mainly due to the night time underestimation of
PM, 5 concentrations. The data fusion as well as data
withholding results at Albany EPD site agree better
with the observations and capture the high level of
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Figure 5. Spatial fields of hourly PM, 5 concentrations on March 13 from 11:00 to 16:00: Georgia EPD site in Albany (white dot), DCHS

(green dot), WCHS (blue dot) and LCHS (red dot).

PM, 5 concentrations compared to CMAQ simula-
tions (Figure 7). The early morning and nighttime
results on March 10, March 11, March 14 and
March 15 all show similar improvements. The miss-
ing peaks also have been adjusted to get closer to the
observations by including observations from low-cost
sensors. For example, the peak concentration on
March 10 detected around 10:00at the Albany EPD
site was missed by the CMAQ simulation; however,
the data withholding result captures this peak,
although with a delay of one hour (Figure 7a). The
comparisons at DCHS and WCHS all show similar
findings that early morning and midnight underesti-
mations of PM, s concentrations and missing peaks
have been adjusted to be closer to observations.

Conclusion

The sparsity of air quality monitors limits our ability to
understand air pollution dynamics, evaluate air quality
models, assess potential health impacts of air pollution
and identify the most effective strategies to improve air
quality and protect public health. The shortage of mon-
itoring sites in Southwestern Georgia is of particular
importance because of the widespread use of prescribed
burning and its influence on local air quality and public
health. As shown here, low-cost PM sensors can poten-
tially be used to detect prescribed burning impacts and
may provide additional spatial and temporal

information that may be missed by model simulations.
Further, they can provide supplemental information on
air quality when regulatory monitors fail or when there
is a lack of monitors in a given location. However, low-
cost sensor collocation with regulatory monitors is
important and still needs further investigation to
answer questions such as which data correction
method should be used. Collocation at a distant site
with a different level and mixture of PM, s may result in
poor low-cost sensor performance. In our case, using
an RH correction factor in a linear-regression equation
with measurements from a reference instrument at
a local site improved the accuracy of the sensor mea-
surements. Lack of any mid-study correction check is
a limitation of our study.

Because of the highly non-homogeneous distribu-
tion of PM, 5 concentrations in Southwestern Georgia,
particularly when fire plumes are present, spatial gra-
dients cannot be captured even with a 4-km resolution
model simulation. 1-km (or finer) resolution together
with better knowledge of start and end times of the
burns are needed to improve simulations. However, the
accuracy of the fire impact simulation is highly depen-
dent on accurate modeling of the meteorology. The
systematic high bias of wind speed at nighttime in the
WRF model makes it harder to capture the temporal
variation and level of pollution. Uncertainties in wind
speed and wind direction limit the accuracy of the
simulations.



200
R% 0.04
Slope: 0.12 £ 0.04 F
. /
150 Intercept: 7.3 +1.3 b=,
— 7
& /
15 a
> R4
3 7/
‘0’ 100 d
< /',
= 7
o iy 7
+ /
50 ¥ }: T

o+, + o+

+ 7 +

M

0 +

0 50 100 150
3
OBS (ug/m
200 )
R% 0.82
Slope: 0.57 + 0.02 p
L, d
150 Intercept: 3.68 + 0.6 %

DF (ug/m®)
g

50

0 50 100 150
3
OBS /m
. (ng/m”)
R%0.27
Slope: 0.33 + 0.04
4 4
150 Intercept: 8.81 £ 1.3 P
7
— ’/
™ 4
E
2100 v
T
=

100
OBS (ug/m®)

150

JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION

825

100 v 100 ~
R%0.17 R%0.17 s
Slope: 0.31 £ 0.05 / Slope: 0.38 + 0.06 /
80 Intercept: 5.3 1.1 e 80 Intercept: 6.9+ 1.2 R
C
100
OBS (ug/m®) OBS (ug/m®)
100 , 100 ,
R% 0.87 R 0.85 ~
Slope: 0.80 + 0.02 4 Slope: 1.09 + 0.03 5 7
80 Intercept: 3.31% 0.5 Iy 80 Intercept: 1.44 + 0.7 P f
+ /0
“c 60
kS
EL
(VS L
L 40
200 4
e f
0
0 20 40 60 80 100 0 20 40 60 80 100
OBS (ug/m®) OBS (ug/m®)
100 5 100 =
R%0.35 R%0.38 el
Slope: 0.51 + 0.05 e Slope: 0.67 + 0.06 7
80 Intercept: 7.34 + 1.1 /’ 801 Intercept: 7.29 + 1.2 ,/
/o +
—~ K4 —~
“g 60 P “€ 60
> +/’ >
=5 7 =
+
ae £ T 4ol
: : %ﬁ;’.i .
20 o+ PEE™ 20t
B T .
£+ l h I
0 0
20 40 60 80 100 0 20 40 60 80 100

OBS (ug/m®)

OBS (ug/m®)
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linear regression trendlines.

The application of a data fusion method that include
observations from low-cost sensors can improve the accu-

racy of exposure fields for hourly PM, 5 concentrations.
Adding observations from low-cost sensors reduces the

underestimation of nighttime PM, 5 concentrations and
reproduces the peaks that are missed by the simulations.
Here, alimited number of sensors placed at convenient sites
showed that there is room for improvement. We recom-
mend fusing model simulations with observations from
a well-designed, dense network of low-cost sensors for
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