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ABSTRACT

Prescribed burning (PB) is a prominent source of PM2.5 in the southeastern US and exposure 
to PB smoke is a health risk. As demand for burning increases and stricter controls are 
implemented for other anthropogenic sources, PB emissions tend to be responsible for an 
increasing fraction of PM2.5 concentrations. Here, to quantify the effect of PB on air quality, 
low-cost sensors are used to measure PM2.5 concentrations in Southwestern Georgia. The 
feasibility of using low-cost sensors as a supplemental measurement tool is evaluated by 
comparing them with reference instruments. A chemical transport model, CMAQ, is also 
used to simulate the contribution of PB to PM2.5 concentrations. Simulated PM2.5 concentra-
tions are compared to observations from both low-cost sensors and reference monitors. 
Finally, a data fusion method is applied to generate hourly spatiotemporal exposure fields 
by fusing PM2.5 concentrations from the CMAQ model and all observations. The results show 
that the severe impact of PB on local air quality and public health may be missed due to the 
dearth of regulatory monitoring sites. In Southwestern Georgia PM2.5 concentrations are 
highly non-homogeneous and the spatial variation is not captured even with a 4-km hor-
izontal resolution in model simulations. Low-cost PM sensors can improve the detection of 
PB impacts and provide useful spatial and temporal information for integration with air 
quality models. R2 of regression with observations increases from an average of 0.09 to 0.40 
when data fusion is applied to model simulation withholding the observations at the 
evaluation site. Adding observations from low-cost sensors reduces the underestimation of 
nighttime PM2.5 concentrations and reproduces the peaks that are missed by the simula-
tions. In the future, observations from a dense network of low-cost sensors could be fused 
with the model simulated PM2.5 fields to provide better estimates of hourly exposures to 
smoke from PB.

Implications: Prescribed burning emissions are a major cause of elevated PM2.5 concentrations, 
posing a risk to human health. However, their impact cannot be quantified properly due to 
a dearth of regulatory monitoring sites in certain regions of the United States such as 
Southwestern Georgia. Low-cost PM sensors can be used as a supplemental measurement tool 
and provide useful spatial and temporal information for integration with air quality model 
simulations. In the future, data from a dense network of low-cost sensors could be fused with 
model simulated PM2.5 fields to provide improved estimates of hourly exposures to smoke from 
prescribed burning.
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Introduction

Particulate matter, a major component of air pollution, 

is associated with increased incidences of cardiovascular 

and respiratory disease (Brook et al. 2004). In 2017, 2.94 

(95% uncertainty interval 2.50–3.36) million deaths 

worldwide (5.25% of total global mortality) were caused 

by exposure to outdoor PM2.5 (particulate matter with 

an aerodynamic diameter less than 2.5 μm) (Stanaway 

et al. 2018). In the US, PM2.5 is the environmental risk 

factor with the largest health burden and the sixth largest 

mortality risk overall (Cohen et al. 2017).

Wildland fires, including wildfire and prescribed burn-

ing, are a major source of PM2.5. 29% of PM2.5 emissions 

in the US comes from wildland fires according to the 2017 

US National Emissions Inventory (NEI) (EPA, 2017). 
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Prescribed burning is a land management tool practiced 

to reduce wildfire risks, control pest insects and disease, 

and recycle nutrients back to the soil. 14% of PM2.5 emis-

sions in the US and 26% in the southeastern US originate 

from prescribed burning. Georgia is one of the most 

active prescribed burning states in the Southeastern US 

with a total burned area around 1.25 million acres in 2017 

(NICC 2017). PM2.5 concentration increases significantly 

under the influence of fire smoke (Reisen et al. 2011). As 

stricter controls are implemented for anthropogenic 

sources, prescribed burning emissions will provide an 

even larger contribution to PM2.5 concentrations.

Rappold et al. (2017), based on model simulations, 

found that over 40% of Americans live in areas with 

a moderate or high contribution of wildland fires to 

ambient PM2.5 concentrations. Researchers have 

reported associations between fire smoke and respira-

tory morbidity (Dennekamp and Abramson 2011), car-

diovascular disease (Haikerwal et al. 2015) and 

additional premature deaths (Fann et al. 2018). 

A better understanding of the contributions of pre-

scribed burning to air pollution and its impacts on 

public health is important, especially to the local popu-

lations affected by prescribed burning directly. High 

resolution exposure fields can be generated by fusing 

observation from monitoring sites with model simula-

tions, which provide the spatial information to the fields 

(Huang et al. 2018a). However, the sparse distribution of 

air quality monitoring sites limits the quality of the 

exposure fields. Deployment of inexpensive devices to 

measure ambient pollutant concentrations could pro-

vide better resolved spatial information and improve 

the accuracy of exposure fields to quantify prescribed 

burning’s impacts on air quality and public health.

Air quality sensors that are lower-cost, portable and 

easy-to-use have been widely used as a supplemental tool 

to measure ambient pollutant concentrations and to pro-

vide high-resolution data in near real-time (Cortez-Lugo 

et al. 2015; Valdés et al. 2012; Van Den Heuvel et al. 2018; 

West et al. 2016; Zamora et al. 2019). Previous research 

evaluating different types of low-cost PM sensors in both 

laboratory and field studies have shown varying perfor-

mance levels for the sensors against reference instruments 

(Gao, Cao, and Seto 2015; Han, Symanski, and Stock 

2017; Johnson et al. 2016, 2018; Kelly et al. 2017; Zheng 

et al. 2018). Gao, Cao, and Seto (2015) tested a low-cost 

sensor (Shinyei PPD42NS) in Xi’an, China and reported 

relatively good performance in high concentration, urban 

environments. Lower R2 values were obtained at lower 

ambient concentrations. Han, Symanski, and Stock 

(2017) evaluated another low-cost sensor (Dylos DC 

1700) and compared its measurements with those of an 

aerosol spectrometer measuring particle number 

concentrations, in an urban residential area of Houston, 

Texas. They reported a strong correlation between those 

two sets of measurements but also mentioned that relative 

humidity (RH) can significantly change the association 

between the low-cost sensor and the reference instru-

ment. When RH is larger than 60%, water uptake can 

increase the size of the particles, enhance their scattering 

coefficients, and, in the absence of dryers, significantly 

affect the performance of low-cost sensors. Zamora et al. 

(2019) also found that the accuracy of the sensors 

decreases when RH is larger than 50%.

Zheng et al. (2018) evaluated a low-cost PM sensor 

(Plantower PMS3003) in both low concentration suburban 

regions (Durham and Research Triangle Park, North 

Carolina) and a high concentration urban location 

(Kanpur, India). Low-cost sensor performance improved 

as ambient PM2.5 increased. They also pointed out that β- 

attenuation monitors (BAM) may not be ideal for testing 

low-cost PM sensors at low concentrations because of poor 

signal-to-noise ratio in low concentrations with short real- 

time averaging periods. Fewer studies used low-cost sensors 

in the field of wildland fire, but those studies also show that 

low-cost sensors have better performance in high concen-

tration environments. Kelleher et al. (2018) developed 

a low-cost PM2.5 sampler and evaluated its performance 

as a smoke-monitoring tool in Colorado during 

a prescribed burning activity period. The comparison 

between the low-cost sampler and reference instrument 

(BAM) showed good agreement (R2 = 0.92). Gupta et al. 

(2018) deployed a low-cost air quality monitor network in 

California to quantify the impact of wildfires during 

October 2017. The performance of the sensors varied with 

PM2.5 levels; however, between 15 and 50 μg/m3, the nor-

malized bias with respect to reference instruments was 

nearly constant around 35%. Holder et al. (2020) evaluated 

three types of low-cost PM sensors and provided 

a correction equation to improve their performance in 

detecting the fire impact. Delp and Singer (2020) provided 

smoke-specific adjustment factors for several monitors 

housing other models of Plantower PMS sensors in com-

parison to reference instruments during wildfires in 

California and Utah. Sayahi, Butterfield, and Kelly (2019) 

evaluated similar Plantower PMS sensors by comparing 24- 

hour average PM2.5 measurements with those from 

a collocated tapered element oscillating microbalance 

(TEOM) in Salt Lake City, Utah and reported R2 values of 

0.65–0.90 in spring and during the wildfire season. Landis 

et al. (2021) evaluated several low-cost sensors during wild-

land fire events as part of a sensor challenge, and found that 

while raw sensor accuracies are low, regression calibration 

improves the accuracies of the sensors significantly.

In this paper, we evaluate the viability of using a low- 

cost sensor (Plantower PMS 3003) to capture fire 
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impacts on ambient PM2.5 concentrations by comparing 

low-cost sensor measurements with those of a reference 

instrument (BAM) in Southwestern Georgia. We also 

use the Community Multiscale Air Quality (CMAQ) 

(Byun and Schere 2006) model, a chemical transport 

modeling system, to simulate the PM2.5 concentrations 

and the Decoupled Direct Method (DDM) (Napelenok 

et al. 2006), a sensitivity analysis technique for comput-

ing sensitivity coefficients simultaneously, while air pol-

lutant concentrations are being computed), to provide 

added information of the impact of prescribed burning 

on the local air quality. A data fusion method has also 

been applied by combining hourly simulations from 

CMAQ and observations from the BAM and low-cost 

sensors to assess how well the data fused fields captures 

PM2.5 concentrations from fires, and to evaluate whether 

measurements from low-cost sensors could provide 

additional spatial and temporal information.

Materials and methods

Study area and low-cost sensor deployment

The study area includes Dougherty, Lee, and Worth 

Counties in Southwestern Georgia with a total popula-

tion of about 150,000 (1.5% of state total population) 

and a total area of 820,000 acres (2.14% of state area, 

3.3E+9 m2). The per capita incomes (in US dollars) for 

these counties are 19,210, USD 23,867 USD and 18,348 

USD respectively, lower than the national per capita 

income ($27,334) according to the 2010 American 

Community Survey (US Census Bureau 2015). 

Southwestern Georgia is one of the most active pre-

scribed burning areas in the US (Huang et al. 2018b). 

The annual total burn area of these three counties was 

around 75,000 acres in 2016 (5% of state total) (Huang 

et al. 2018b).

Three low-cost sensors were deployed at three high 

schools (Figure 1), Dougherty, Lee, and Worth County 

High Schools (DCHS, LCHS, WCHS), to measure the 

local PM2.5 concentrations starting on May 16, 2017. 

A fourth low-cost sensor was placed at Turner 

Elementary School in Albany, Georgia (Figure 1) on 

March 14, 2018 next to a Met-One BAM Monitor 

operated by the Environmental Protection Division 

(EPD) of the Georgia Department of Natural 

Resources. EPD measures PM2.5 at this site, which is 

the only one in the region, since 1991 (EPD, 2018). The 

low-cost sensors deployed at the four sites produced 

hourly data for periods of 3 to 12 months (Table 1). All 

four sensors were running during March 14–May 8, 

2018.

Figure 1. Locations of low-cost sensors and the Georgia Environmental Protection Division (EPD) monitoring site at Turner Elementary 
School in Albany, Georgia. The fourth low-cost sensor is collocated with EPD’s BAM.
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Low-cost sensor configuration and data correction

The low-cost PM sensor used for the field measurements 

in this study is the Plantower PMS 3003. The Plantower 

PMS 3003 low-cost sensor uses an optical method to 

measure PM1 (particulate matter with an aerodynamic 

diameter less than 1 μm), PM2.5, and PM10 (particulate 

matter with an aerodynamic diameter less than 10 μm). 

The light emitter is a Helium-Neon (He-Ne) laser and 

a photodiode perpendicular to the light source is used to 

measure the scattered light. An internal program calcu-

lates the mass concentration from the particle number 

concentration (number of pulses in the output waveform 

of the photodiode signal) and particle size (amplitude of 

the waveform of the photodiode output signal). The sen-

sor package used here is the same as one used in a number 

of previous studies around the world and is described 

elsewhere (Barkjohn et al. 2020; Lal et al. 2020; Zhang 

et al. 2019; Zheng et al. 2018). The enclosure is a light 

weight electrical box (20 × 10 × 7 cm) with an inlet hole 

that aligns with the Plantower PMS 3003 sensor. In addi-

tion to the low-cost PM sensor, enclosed in the box are 

a Sensirion SHT 15 RH and temperature sensor, 

a microcontroller, a high-precision real-time clock, an 

SD card adapter for data storage, and some other electro-

nic components. The package was zip tied in place and 

powered by plugging into an AC power source.

Kelly et al. (2017) conducted an evaluation of 

Plantower PMS 3003 in two settings: an ambient envir-

onment and a controlled wind-tunnel, with PM2.5 levels 

ranging up to 70 µg/m3 and 850 µg/m3, respectively. The 

study compared the low-cost sensor performance with 

regulatory-grade instruments and found that the low- 

cost PM sensor correlates well with those instruments; 

however, it indicated that additional measurements 

under variable ambient conditions are needed. Zheng 

et al. (2018) evaluated the same low-cost sensor 

(Plantower PMS 3003) in both low concentration 

(9–10 µg/m3 on average) suburban regions and a high 

concentration (> 35 µg/m3) urban location. The mea-

surements were compared against Federal Equivalent 

Methods (FEMs). The low-cost sensor performance 

was better when ambient PM2.5 was higher.

Choosing an appropriate correction method is very 

important for using the low-cost sensor data. Here, we 

used the following approach. First, before deployment to 

Albany, we collocated all of the sensors with a TEOM at an 

urban background research site (Jefferson Street in Atlanta, 

approximately 250 km north-northwest of Albany) for 

seven days. We used the information from this collocation 

to determine the variability among the sensors. We 

repeated this procedure for five days after data collection 

in Albany to account for any drift due to aging. The inter- 

sensor variability was negligibly small while the drift due to 

aging was slightly larger. Then, we tried two different types 

of correction on the low-cost sensor data. In the first one, 

we performed a linear regression between EPD’s BAM and 

the collocated low-cost sensor at the Albany site (Figure 

S1a). We applied the linear relationship obtained from this 

regression to correct the data from all of the low-cost 

sensors. In the second one, we corrected the low-cost sensor 

data for changes in relative humidity (RH) as recom-

mended by Zheng et al. (2018). For this, we used 

a correction factor (CF) of the form 

CF ¼ a þ b
RH2

1 � RH
(1) 

where RH is 6-hour average RH data from a regional 

airport near Albany, and a and b are best-fit parameters 

obtained from the regression of RH and the ratio of raw 

PM2.5 measurement from the low-cost sensor to PM2.5 

from the collocated BAM at the Albany EPD site (Figure 

S1b). The data from all low-cost sensors were corrected 

through division by CF.

Air quality simulation

We focus our analysis on the March 8–15, 2018 period, 

which includes the National Ambient Air Quality 

Standard (NAAQS) exceedance for PM2.5 (daily PM2.5 

concentration > 35 µg/m3) on March 10. The daily total 

burn area in the twelve counties surrounding the moni-

tors on that day and the previous day are larger than 7,000 

acres (Figure 2). Also, from March 13 to 15 (Figure 2d), 

the daily total burn area is larger than 5,000 acres 

each day. It is possible that those fires had a severe impact 

on air quality but the impact was missed in the observa-

tions by the BAM and the low-cost sensors. In order to 

evaluate the performance of low-cost sensors during the 

exceedance day and the feasibility of chemical transport 

Table 1. Low-cost sensor location and measurement dates.

Low-cost Sensor Location Measurement Dates
Distance from EPD site 

(km)

Dougherty Comprehensive High School (DCHS) May 16, 2017 – June 20, 2018 1
Worth County High School (WCHS) May 16, 2017 – May 08, 2018 25
Lee County High School (LCHS) May 16, 2017 – July 27, 2017; March 14, 2018 – April 20, 2018 18
EPD site at Turner Elementary School (Albany) March 14, 2018 – June 20, 2018 –
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models to capture the temporal and spatial variations of 

the fire impact, an eight-day period (March 08–15) was 

simulated using Weather Research and Forecasting 

(WRF) model version 3.6 (WRF Model V3.6 2019), 

a mesoscale numerical weather prediction model, and 

CMAQ version 5.0.2, which is equipped with DDM. 

The impacts of prescribed burning emissions on PM2.5 

are calculated by CMAQ-DDM as the first-order sensitiv-

ities of concentrations to those emissions. The model 

configurations are the same as in the HiRes2 air quality 

forecasting system (Huang et al. 2020; Odman et al. 2018). 

The prescribed burning emissions are calculated by using 

the BlueSky framework (Larkin et al. 2009) according to 

the burn area information from the Georgia Forestry 

Commission’s (GFC) burn permit database. The fuel 

map in BlueSky is from the Fuel Characteristic 

Classification System (FCCS) (McKenzie et al. 2007). 

The computer program Consume 3.0 (Joint Fire Science 

Program 2009) was used to calculate fuel consumption in 

BlueSky. All fires are assumed to start at 11:00 local time 

and last 3 hours. Other emission sources’ data were pro-

cessed by Sparse Matrix Operator Kernel Emissions 

(SMOKE) (Carolina Environmental Program 2013) 

based on the 2011 National Emissions Inventory (NEI) 

(US EPA, 2019). The grid used by both WRF and CMAQ 

has a horizontal resolution of 4 km over Georgia and 

Figure 2. (a) Daily total burn area at the three low-cost sensor deployed (Dougherty, Lee, Worth) and nine surrounding counties 
according to the Georgia Forestry Commission (GFC) permit database and daily average PM2.5 concentration from the BAM at Albany 
(red); Permitted burns at the three low-cost sensor deployed counties (blue) and nine surrounding counties (gray) on b) March 9, c) 
March 10 and d) March 13, 2018. Red circles represent fires larger than 150 acres, orange circles represent fires larger than 50 acres and 
smaller than 150 acres; yellow circles represent fires smaller than 50 acres; Green circles represent low-cost sensors and the black star 
represents the Albany EPD site.
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surrounding areas as the innermost nest of a grid system 

that has 36-km resolution over the contiguous US and 12- 

km resolution over the eastern US. It has 13 vertical layers 

starting with a 20-m height at the ground and expanding 

with altitude until approximately 20 km.

Data fusion

We applied a data fusion method that combines simula-

tions from CMAQ-DDM at 4 km resolution and obser-

vations from both the BAM at Albany EPD site and low- 

cost sensors to generate hourly spatiotemporal fields for 

exposure estimates. The method has been used to esti-

mate the daily PM2.5 and its components and gaseous 

fields for Georgia (Friberg et al. 2016) and North 

Carolina (Huang et al. 2018a). Details of the method 

can be found in previous publications (Friberg et al. 

2016; Huang et al. 2018a) and briefly summarized in 

the Supporting Information. The data fusion approach 

fuses the simulated fields with ground-level observa-

tions, so we expect to see strong agreement in the mod-

eled grid cells that include an observation.

We also conducted a location-based data withholding 

evaluation. Observations from one location (Albany 

EPD site, DCHS or WCHS) were withheld and data 

fusion was performed with observations from the two 

remaining locations. The withheld observations for that 

iteration were compared with the data-fused simulated 

values to evaluate the performance of the data fusion 

method and assess whether low-cost sensors could pro-

vide extra spatial and temporal information to improve 

the accuracy of exposure fields.

Results and discussion

Comparison of observations from low-cost sensors 

and BAM

Comparison between low-cost sensors and BAM using 

different correction methods

Daily PM2.5 observations from EPD’s BAM at the 

Albany site and collocated low-cost sensor show that 

the low-cost sensor captures the variations in the PM2.5 

levels (Figure S2). Daily PM2.5 concentrations using RH 

correction match better with BAM observations, espe-

cially at the peak concentrations. Comparison between 

the observations from BAM at Albany EPD site and 

daily PM2.5 measurements by the collocated low-cost 

sensor show that RH correction performs slightly better, 

with a higher R2 and slope and lower intercept (Figure 

S3). Since RH correction results in better low-cost sensor 

performance, the following discussion will focus on 

results obtained using RH correction only.

Time series of PM2.5 from low-cost sensors and BAM

Most of the hourly PM2.5 concentration peaks 

detected by EPD’s BAM at the Albany site are cap-

tured by the low-cost sensors (Figure S4). However, 

low-cost sensors are less sensitive to changes in PM2.5 

concentrations than the BAM, and record less varia-

tion [standard deviation (SD) of ~5 µg/m3; Table 2] 

than that of the BAM at Albany EPD site (SD = 

8.68 µg/m3). Differences in the observed peak levels 

between the BAM and the sensors other than at the 

Albany EPD site are likely due to the presence of 

small fire plumes, which can lead to a very hetero-

geneous PM2.5 field on scales of less than 1 km. 

Sometimes the narrow fire plumes would miss some 

of the sensors completely. The Albany low-cost sen-

sor observed elevated levels of PM2.5 on May 7, 2018 

(max of 36 µg/m3), though these were less than those 

observed by the BAM (max of 46 µg/m3) at Albany 

EPD site (Figure S5). On May 11, 2018, PM2.5 levels 

above 20 µg/m3 were detected by the BAM. The 

Albany low-cost sensor also observed high concentra-

tions during the same periods (8:00–11:00), but the 

peak hour from the Albany low-cost sensor (10:00) is 

two hours later than that from the BAM at 8:00 

(Figure S5). The low-cost sensors at Albany EPD 

site and DCHS both capture a peak > 40 µg/m3 on 

April 26; however, there are no valid values on 

that day from the BAM. Low-cost sensors may thus 

serve as a supplement for regulatory monitors in 

such instances.

Daily trends of PM2.5 concentrations from low- 

cost sensors and Albany EPD site show that the low- 

cost sensors did not capture levels as high as the 

BAM (Figure S6). On March 10, 2018, the BAM 

recorded 50 µg/m3, an exceedance of the 35 µg/m3 

daily average PM2.5 NAAQS, and the concentration 

of 36 µg/m3 from DCHS low-cost sensor, the closest 

low-cost sensor to the Albany EPD site, also detected 

the exceedance despite this value being 30% lower 

than the BAM. However, this value is still the highest 

value observed among the low-cost sensors during 

the measurement period (Figure S6). Note that the 

Albany low-cost sensor was not operational on 

that day.

Table 2. Mean and standard deviation (SD) of hourly PM2.5 

concentrations from the BAM at the Georgia EPD monitoring 
site in Albany and low-cost sensors during their measurement 
periods (Table 1).

Hourly Albany (BAM) Albany DCHS LCHS WCHS

Mean (µg/m3) 7.98 7.50 6.69 6.10 6.86
SD (µg/m3) 8.68 5.06 4.81 3.70 5.62
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Comparisons of hourly and daily PM2.5 concentrations 

between low-cost sensors and BAM

Figures S7 and Figure 3 demonstrate that low-cost sen-

sors underestimate the PM2.5 concentrations with respect 

to the BAM observations at EPD’s Albany monitoring site 

with linear regression slopes of less than 1. The low-cost 

sensor at the EPD site has the largest R2 (= 0.83) among 

all four sensors. Note that this value is within the R2 range 

reported by Sayahi, Butterfield, and Kelly (2019) for 

a similar sensor under comparable conditions. For the 

DCHS low-cost sensor, which is the second closest low- 

cost sensor to the monitoring site (1 km), the R2 (= 0.72) 

and slope (= 0.55) of the linear regressions of daily PM2.5 

concentrations with the BAM observations at Albany 

EPD site (Figure 3b) are the largest among the three 

high school low-cost sensors. Lower R2 values from com-

parisons with the LCHS and WCHS low-cost sensors do 

not mean those low-cost sensor performances are not 

adequate. With increasing distance between the low-cost 

sensors and EPD’s BAM at Albany monitoring site, mea-

sured concentrations are more likely to reflect impacts 

from different fire plumes; therefore, those lower R2 

values are expected. They show the spatial variation of 

fire impact on PM2.5 concentrations and that a single 

monitoring site may miss high concentrations in the area.

Both the hourly and daily PM2.5 concentration 

regressions between the BAM and low-cost sensor at 

the Albany EPD site have slopes less than 1 (Figure 3a, 

S7a). In general, the observations of PM2.5 concentra-

tions from the low-cost sensor are higher than those 

from the BAM below 10 µg/m3 and lower for larger 

concentrations. The comparisons between the BAM 

and sensors at DCHS and WCHS with a cutoff at 95th 

percentile of BAM observations (Figure S8) shows that 

almost all the observations from DCHS and WCHS low- 

cost sensors are below the diagonal line.

Figure 3. Comparisons of daily PM2.5 concentrations between low-cost sensors and the BAM at Georgia EPD site in Albany from May 16, 
2017 to June 20, 2018: a) Albany sensor (no data before March 14, 2018); b) Dougherty Comprehensive High School (DCHS) sensor; c) 
Worth County High School (WCHS) sensor (no data from May 09, 2018 to June 20, 2018); d) Lee County High School (LCHS) sensor (no 
data from July 28, 2017 to March 13, 2018 and April 21, 2018 to June 20, 2018).
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Intercomparison between low-cost sensors

The R2 values of linear regressions between low-cost 

sensors are around 0.9 and the slopes are very close to 

1 (Figure S9). As the distance between the low-cost 

sensor at the Albany site and another sensor (DCHS, 

LCHS, or WCHS) increases, R2 decreases. This is 

a direct result of the spatial variation in prescribed 

burning impact on PM2.5 concentrations. While 

DCHS, which has the low-cost sensor closest to the 

Albany EPD site, has the highest R2 (0.98), WCHS, the 

farthest low-cost sensor, has the lowest R2 (0.90).

Air quality simulation results: PM2.5 concentrations 

and fire contributions

The CMAQ simulations do not capture well the tem-

poral variation of PM2.5 concentrations detected by both 

BAM and low-cost sensors (Figure S10). The high PM2.5 

concentrations are mainly from fire impact (DDM 

results). The following discussion will focus on two 

periods: March 9–10 and March 13–14, 2018 to explain 

possible reasons why the simulations do not agree with 

observations.

On March 9, the simulation predicts the peak 

concentration to be around 85 µg/m3, which is in 

good agreement with the observed peak level, but the 

observed occurs five hours earlier (Figure 4). This 

mismatch in the time of occurrence may be due to 

inaccurate starting time and duration of the fires in 

the model. Recall all the fires in the CMAQ-DDM 

model were assumed to start at11:00 and last 3 hours 

in the simulation; however, permit records for 

March 9 show fires approved to start in the afternoon 

and end at night. However, the actual start time and 

duration of fires are not known since no post-burn 

information is available. Also, since there are hun-

dreds of fires during highly active burn days, it is 

impossible to differentiate each fire and define 

a specific start and end time. On March 10, the 

observed PM2.5 peak at 10:00 (Figure 4a) may be 

caused by a new fire starting early and located close 

to the monitoring site. However, the simulation does 

not have any fires starting before 11:00 and, since the 

boundary layer is changing rapidly at 10:00, it is hard 

to distinguish which fire causes the peak. The simu-

lation does not capture the exceedance of the 35 µg/ 

m3 daily PM2.5 NAAQS standard either. The large 

difference between the observation and simulation at 

the beginning hours of March 10 may be mainly 

caused by simulated meteorology. The observed 

wind speed is zero from 1:00 to 6:00 and then 

again from 19:00 to 0:00; however, the WRF- 

simulated wind speed is larger than 2 m/s during 

the same periods (Figure 4c). A systematic bias that 

leads to overestimated nighttime wind speed have 

been reported in other applications of WRF (Garcia- 

Menendez, Hu, and Odman 2013; McNider et al. 

2018).

The DCHS low-cost sensor and EPD’s Albany site 

are located in two neighboring grid cells in the model 

simulations. At 18:00 on March 9, the simulated PM2.5 

concentrations at these two grid cells are almost the 

same (~ 30 µg/m3). However, the observations from 

EPD’s BAM at Albany (80 µg/m3) and low-cost sensor 

(50 µg/m3) at DCHS are quite different. The simulation 

does not capture this large spatial gradient in PM2.5 

concentrations (Figure 4(a,Figure 4b)). On a different 

note, the peak concentration at the Albany EPD site is 

observed at 10:00 on March 10 (Figure 4a), while the 

peak at DCHS occurs at 11:00 (Figure 4b). There may 

be fires or lingering smoke nearby impacting the low- 

cost sensors at DCHS.

For the WCHS low-cost sensor, the peak at 13:00 

(Figure S11) on March 13, 2018 is caused by medium 

size fires (51 to 150 acres) to the northwest, marked by 

the orange circles in Figure 2d. There are several large 

fires (> 150 acres) to the west and southwest; however, 

their smoke plumes move to the southeast under north-

westerly winds and miss the Albany EPD site as well as 

the DCHS low-cost sensor (Figure 5). The observations 

at both locations are quite flat at low concentrations 

from 11:00 to 16:00 (Figure S11). Meanwhile, the coun-

ties to the south, including parts of Dougherty County, 

are severely affected by those large fires as shown in 

Figure 5, but there are no observations in this area to 

confirm this.

Data fusion and data withholding results

There is little correlation between observations and 

CMAQ simulations at EPD site in Albany, DCHS and 

WCHS (Figure 6a-c). Due to the nature of data fusion 

method (i.e., observation values dominate at the grid cell 

where the monitoring site is located), the strong correla-

tions between observations and data fusion results 

(Figure 6d-f) are expected. The results of the data with-

holding evaluation show that low-cost sensors could 

improve the accuracy of exposure fields compared to 

raw CMAQ results, especially for the data withholding 

test at Albany EPD site (Figure 6g) that uses observa-

tions from two low-cost sensors located at DCHS (1 km 

away from the EPD site) and WCHS only. It shows an 

increased R2 of 0.27 (Figure 6g) compared to 0.04 

(Figure 6a) from CMAQ. The increase of R2 is signifi-

cant (from 0.17 to 0.38) even at WCHS where data from 

sites 25 km away are being fused. This evaluation shows 
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that using low-cost sensors and applying the data fusion 

method could improve the accuracy of estimated expo-

sure fields. Nevertheless, there is still a large fraction of 

the variability that needs to be explained.

The temporal trends at the three locations (Figure 

7) reflect similar trends that show how including 

observations from low-cost sensors can improve the 

accuracy of the final exposure fields. Using low-cost 

sensor observations could decrease the 

underestimation of prescribed burning impacts dur-

ing the night time of model simulations, which is 

a systematic problem of the meteorological model 

with overestimation of the nighttime wind speed. 

Failure to predict the exceedance day on March 10 

was mainly due to the night time underestimation of 

PM2.5 concentrations. The data fusion as well as data 

withholding results at Albany EPD site agree better 

with the observations and capture the high level of 

Figure 4. Comparisons between hourly observed and simulated PM2.5 concentrations, and the simulated fire impact on March 9–10, 
2018 at a) Albany EPD site (BAM), and b) DCHS site (sensor); and c) Hourly wind speed observations at the Southwest Georgia Regional 
Airport (KABY) and simulations at KABY and Albany EPD site.
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PM2.5 concentrations compared to CMAQ simula-

tions (Figure 7). The early morning and nighttime 

results on March 10, March 11, March 14 and 

March 15 all show similar improvements. The miss-

ing peaks also have been adjusted to get closer to the 

observations by including observations from low-cost 

sensors. For example, the peak concentration on 

March 10 detected around 10:00at the Albany EPD 

site was missed by the CMAQ simulation; however, 

the data withholding result captures this peak, 

although with a delay of one hour (Figure 7a). The 

comparisons at DCHS and WCHS all show similar 

findings that early morning and midnight underesti-

mations of PM2.5 concentrations and missing peaks 

have been adjusted to be closer to observations.

Conclusion

The sparsity of air quality monitors limits our ability to 

understand air pollution dynamics, evaluate air quality 

models, assess potential health impacts of air pollution 

and identify the most effective strategies to improve air 

quality and protect public health. The shortage of mon-

itoring sites in Southwestern Georgia is of particular 

importance because of the widespread use of prescribed 

burning and its influence on local air quality and public 

health. As shown here, low-cost PM sensors can poten-

tially be used to detect prescribed burning impacts and 

may provide additional spatial and temporal 

information that may be missed by model simulations. 

Further, they can provide supplemental information on 

air quality when regulatory monitors fail or when there 

is a lack of monitors in a given location. However, low- 

cost sensor collocation with regulatory monitors is 

important and still needs further investigation to 

answer questions such as which data correction 

method should be used. Collocation at a distant site 

with a different level and mixture of PM2.5 may result in 

poor low-cost sensor performance. In our case, using 

an RH correction factor in a linear-regression equation 

with measurements from a reference instrument at 

a local site improved the accuracy of the sensor mea-

surements. Lack of any mid-study correction check is 

a limitation of our study.

Because of the highly non-homogeneous distribu-

tion of PM2.5 concentrations in Southwestern Georgia, 

particularly when fire plumes are present, spatial gra-

dients cannot be captured even with a 4-km resolution 

model simulation. 1-km (or finer) resolution together 

with better knowledge of start and end times of the 

burns are needed to improve simulations. However, the 

accuracy of the fire impact simulation is highly depen-

dent on accurate modeling of the meteorology. The 

systematic high bias of wind speed at nighttime in the 

WRF model makes it harder to capture the temporal 

variation and level of pollution. Uncertainties in wind 

speed and wind direction limit the accuracy of the 

simulations.

Figure 5. Spatial fields of hourly PM2.5 concentrations on March 13 from 11:00 to 16:00: Georgia EPD site in Albany (white dot), DCHS 
(green dot), WCHS (blue dot) and LCHS (red dot).
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The application of a data fusion method that include 

observations from low-cost sensors can improve the accu-

racy of exposure fields for hourly PM2.5 concentrations. 

Adding observations from low-cost sensors reduces the 

underestimation of nighttime PM2.5 concentrations and 

reproduces the peaks that are missed by the simulations. 

Here, a limited number of sensors placed at convenient sites 

showed that there is room for improvement. We recom-

mend fusing model simulations with observations from 

a well-designed, dense network of low-cost sensors for 

improved estimation of exposures to smoke from pre-

scribed burning.
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